Skip to main content Skip to main navigation

Publikationen

Zeige Ergebnisse 1381 bis 1390 von 14402.
  1. Exploring a Hybrid Case-Based Reasoning Approach for Time Series Adaptation in Predictive Maintenance

    In: Lukas Malburg (Hrsg.). Proceedings of the Workshops at the 32nd International Conference on Case-Based Reasoning (ICCBR-WS 2024). International Conference on Case-Based Reasoning (ICCBR-2024), co-located with the 31st International Conference on Case-Based Reasoning (ICCBR 2024), located at 31st International Conference on Case-Based Reasoning (ICCBR 2024), July 1-5, Merida, Mexico, CEUR Workshop Proceedings, CEUR-WS.org. 7/2024.

  2. Diffusion Models, Image Super-Resolution, and Everything: A Survey

    In: IEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol. 0, Pages 1-21, IEEE, 2024.

  3. Vassilios Yfantis; Achim Wagner; Martin Ruskowski

    Numerical benchmarking of dual decomposition-based optimization algorithms for distributed model predictive control

    In: Results in Control and Optimization (RICO), Vol. 17, Pages 1-19, Elsevier, 12/2024.

  4. Detection of Rare Fault Cases for Mobile Robot Applications

    In: Achim Wagner; Kosmas Alexopoulos; Sotiris Makris (Hrsg.). Advances in Artificial Intelligence in Manufacturing. European Symposium on Artificial Intelligence in Manufacturing (ESAIM-2023), Cham, Pages 61-70, ISBN 978-3-031-57496-2, Springer Nature Switzerland, 2024.

  5. Jibinraj Antony; Dorotea Jalu¨ić; Simon Bergweiler; Ákos Hajnal; Veronika ´labravec; Márk Emődi; Dejan Strbad; Tatjana Legler; Attila Csaba Marosi

    Adapting to Changes: A Novel Framework for Continual Machine Learning in Industrial Applications

    In: Journal of Grid Computing, Vol. 22 (71), Pages 1-19, Springer, 11/2024.

  6. Towards Robust Federated Image Classification: An Empirical Study of Weight Selection Strategies in Manufacturing

    In: 2024 2nd International Conference on Federated Learning Technologies and Applications (FLTA). International Conference on Federated Learning Technologies and Applications (FLTA-2024), September 17-20, Valencia, Spain, Pages 55-62, IEEE, 2024.

  7. Seamless Integration: Sampling Strategies in Federated Learning Systems

    In: 2024 2nd International Conference on Federated Learning Technologies and Applications (FLTA). International Conference on Federated Learning Technologies and Applications (FLTA-2024), September 17-20, Valencia, Spain, Pages 148-155, IEEE, 2024.

  8. Enhancing Object Detection with Hybrid dataset in Manufacturing Environments: Comparing Federated Learning to Conventional Techniques

    In: 2024 1st International Conference on Innovative Engineering Sciences and Technological Research (ICIESTR). International Conference on Innovative Engineering Sciences and Technological Research (ICIESTR-2024), May 14-15, Muscat, Oman, Pages 1-6, ISBN 979-8-3503-4863-7, IEEE, 2024.

  9. Gregor Duwe; Dominique Mercier; Verena Kauth; Kerstin Moench; Markus Junker; Juan Pablo Vesga; Werner Seiz; Juergen Scheele; Andreas Dengel; Axel Haferkamp; Thomas Höfner

    First preliminary results of artificial intelligence generated treatment recommendations for urothelial cancer based on multidisciplinary cancer conferences from the KITTU project

    In: Annals of Oncology, Vol. 35, No. S2, Pages 1161-1161, ESMO, 9/2024.

  10. Gregor Duwe; Verena Kauth; Kerstin Moench; Dominique Mercier; Markus Junker; Juergen Scheele; Werner Seiz; Oliver Pfante; Juan Pablo Vesga Simmins; Natasja De Bruin; Axel Haferkamp; Andreas Dengel; Thomas Höfner

    KITTU: Artificial intelligence supports multidisciplinary cancer conferences – first steps towards revolutionizing clinical decision making in oncology

    In: Reinhard Büttner (Hrsg.). Oncology Research and Treatment, Vol. 47, No. Supl. 1 - 36. Deutscher Krebskongress - Fortschritt gemeinsam gestalten, Pages 20-20, Karger Publishers, 2/2024.