Skip to main content Skip to main navigation

Publications

Displaying results 241 to 250 of 579.
  1. Jihao Andreas Lin; Joe Watson; Pascal Klink; Jan Peters

    Function-Space Regularization for Deep Bayesian Classification

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2307.06055, Pages 0-10, arXiv, 2023.

  2. Daphne Theodorakopoulos; Christoph Manss; Frederic Theodor Stahl; Marius Lindauer

    Green AutoML for Plastic Litter Detection

    In: ICLR 2023 Workshop on Tackling Climate Change with Machine Learning. International Conference on Learning Representations (ICLR), None, 2023.

  3. Alan Le Goallec; Samuel Diai; Sasha Collin; Jean-Baptiste Prost; Théo Vincent; Chirag J Patel

    Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images

    In: Nature Communications, Vol. 13, No. 1, Pages 1979-1979, Nature Publishing Group UK London, 2022.

  4. Künstliche Intelligenz und Deep-Learning in der Medizin

    In: Ärzteblatt Rheinland-Pfalz, Vol. 05/23, Pages 21-22, Quintessenz Verlags-GmbH, 2023.

  5. Karl Stelzner; Robert Peharz; Kristian Kersting

    Faster Attend-Infer-Repeat with Tractable Probabilistic Models

    In: Kamalika Chaudhuri; Ruslan Salakhutdinov (Hrsg.). Proceedings of the 36th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2019), June 9-15, Long Beach, California, USA, Pages 5966-5975, Proceedings of Machine Learning Research, Vol. 97, PMLR, 2019.

  6. Robert Peharz; Antonio Vergari; Karl Stelzner; Alejandro Molina; Martin Trapp; Xiaoting Shao; Kristian Kersting; Zoubin Ghahramani

    Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

    In: Amir Globerson; Ricardo Silva (Hrsg.). Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence. Conference in Uncertainty in Artificial Intelligence (UAI-2019), July 22-25, Tel Aviv, Israel, Pages 334-344, Proceedings of Machine Learning Research, Vol. 115, AUAI Press, 2019.

  7. Claas Völcker; Alejandro Molina; Johannes Neumann; Dirk Westermann; Kristian Kersting

    DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets

    In: Peggy Cellier; Kurt Driessens (Hrsg.). Machine Learning and Knowledge Discovery in Databases. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2019), International Workshops of ECML PKDD 2019, Proceedings, Part I, September 16-20, Würzburg, Germany, Pages 28-43, Communications in Computer and Information Science, Vol. 1167, Springer, 2019.

  8. Navdeep Kaur; Gautam Kunapuli; Saket Joshi; Kristian Kersting; Sriraam Natarajan

    Neural Networks for Relational Data

    In: Dimitar Kazakov; Can Erten (Hrsg.). Inductive Logic Programming - 29th International Conference, Proceedings. International Conference on Inductive Logic Programming (ILP-2019), September 3-5, Plovdiv, Bulgaria, Pages 62-71, Lecture Notes in Computer Science (LNAI), Vol. 11770, Springer, 2019.

  9. Patrick Schramowski; Wolfgang Stammer; Stefano Teso; Anna Brugger; Xiaoting Shao; Hans-Georg Luigs; Anne-Katrin Mahlein; Kristian Kersting

    Right for the Wrong Scientific Reasons: Revising Deep Networks by Interacting with their Explanations

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2001.05371, Pages 0-10, arXiv, 2020.

  10. Xiaoting Shao; Alejandro Molina; Antonio Vergari; Karl Stelzner; Robert Peharz; Thomas Liebig; Kristian Kersting

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    In: Manfred Jaeger; Thomas Dyhre Nielsen (Hrsg.). Proceedings of the 10th International Conference on Probabilistic Graphical Models. International Conference on Probabilistic Graphical Models (PGM-2020), September 23-25, Aalborg, Denmark, Pages 401-412, Proceedings of Machine Learning Research, Vol. 138, PMLR, 2020.