Skip to main content Skip to main navigation

Publications

Displaying results 241 to 250 of 649.
  1. Théo Vincent; Yogesh Tripathi; Tim Lukas Faust; Yaniv Oren; Jan Peters; Carlo D'Eramo

    Bridging the Performance Gap Between Target-Free and Target-Based Reinforcement Learning With Iterated Q-Learning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2506.04398, Pages 1-22, arXiv, 2025.

  2. Théo Vincent; Tim Lukas Faust; Yogesh Tripathi; Jan Peters; Carlo D'Eramo

    Eau De emphQ-Network: Adaptive Distillation of Neural Networks in Deep Reinforcement Learning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2503.01437, Pages 1-26, arXiv, 2025.

  3. Nico Bohlinger; Jan Peters

    Massively Scaling Explicit Policy-conditioned Value Functions

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2502.11949, Pages 1-5, arXiv, 2025.

  4. Daniel Palenicek; Florian Vogt; Jan Peters

    Scaling Off-Policy Reinforcement Learning with Batch and Weight Normalization

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2502.07523, Pages 1-23, arXiv, 2025.

  5. Claudius Kienle; Benjamin Alt; Darko Katic; Rainer Jäkel; Jan Peters

    QueryCAD: Grounded Question Answering for CAD Models

    In: IEEE International Conference on Robotics and Automation, ICRA 2025, Atlanta, GA, USA, May 19-23, 2025. IEEE International Conference on Robotics and Automation (ICRA), Pages 5798-5805, IEEE, 2025.

  6. Théo Vincent; Daniel Palenicek; Boris Belousov; Jan Peters; Carlo D'Eramo

    Iterated emphQ-Network: Beyond One-Step Bellman Updates in Deep Reinforcement Learning

    In: Transactions on Machine Learning Research (TMLR), Vol. 2025, Pages 1-26, arXiv, 2025.

  7. Carlos E. Luis; Alessandro G. Bottero; Julia Vinogradska; Felix Berkenkamp; Jan Peters

    Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability

    In: Transactions on Machine Learning Research (TMLR), Vol. 2025, Pages 1-31, arXiv, 2025.

  8. Roman Heinrich; Oleksandr Havrylov; Manisha Luthra; Johannes Wehrstein; Carsten Binnig

    Opening The Black-Box: Explaining Learned Cost Models For Databases

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2507.14495, Pages 1-4, arXiv, 2025.

  9. Be Careful What You Smooth For: Label Smoothing Can Be a Privacy Shield but Also a Catalyst for Model Inversion Attacks

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2310.06549, Pages 1-31, arXiv, 2023.