Skip to main content Skip to main navigation

Publikationen

Zeige Ergebnisse 61 bis 70 von 576.
  1. Julen Urain; Jan Peters

    Generalized Multiple Correlation Coefficient as a Similarity Measurement between Trajectories

    In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2019), November 3-8, Macau, China, Pages 1363-1369, IEEE, 2019.

  2. Svenja Stark; Jan Peters; Elmar Rueckert

    Experience Reuse with Probabilistic Movement Primitives

    In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2019), November 3-8, Macau, China, Pages 1210-1217, IEEE, 2019.

  3. Samuele Tosatto; Carlo D'Eramo; Joni Pajarinen; Marcello Restelli; Jan Peters

    Exploration Driven by an Optimistic Bellman Equation

    In: International Joint Conference on Neural Networks. International Joint Conference on Neural Networks (IJCNN-2019), July 14-19, Budapest, Hungary, Pages 1-8, IEEE, 2019.

  4. Philip Becker-Ehmck; Jan Peters; Patrick van der Smagt

    Switching Linear Dynamics for Variational Bayes Filtering

    In: Kamalika Chaudhuri; Ruslan Salakhutdinov (Hrsg.). Proceedings of the 36th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2019), June 9-15, Long Beach, California, USA, Pages 553-562, Proceedings of Machine Learning Research, Vol. 97, PMLR, 2019.

  5. Riad Akrour; Joni Pajarinen; Jan Peters; Gerhard Neumann

    Projections for Approximate Policy Iteration Algorithms

    In: Kamalika Chaudhuri; Ruslan Salakhutdinov (Hrsg.). Proceedings of the 36th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2019), June 9-15, Long Beach, California, USA, Pages 181-190, Proceedings of Machine Learning Research, Vol. 97, PMLR, 2019.

  6. Michael Lutter; Christian Ritter; Jan Peters

    Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

    In: 7th International Conference on Learning Representations. International Conference on Learning Representations (ICLR-2019), May 6-9, New Orleans, LA, USA, OpenReview.net, 2019.

  7. Joe Watson; Hany Abdulsamad; Jan Peters

    Stochastic Optimal Control as Approximate Input Inference

    In: Leslie Pack Kaelbling; Danica Kragic; Komei Sugiura (Hrsg.). 3rd Annual Conference on Robot Learning, Proceedings. Conference on Robot Learning (CoRL-2019), October 30 - November 1, Osaka, Japan, Pages 697-716, Proceedings of Machine Learning Research, Vol. 100, PMLR, 2019.

  8. Mikko Lauri; Joni Pajarinen; Jan Peters

    Information Gathering in Decentralized POMDPs by Policy Graph Improvement

    In: Edith Elkind; Manuela Veloso; Noa Agmon; Matthew E. Taylor (Hrsg.). AAMAS '19: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. International Conference on Autonomous Agents and Multiagent Systems (AAMAS-19), May 13-17, Montreal, QC, Canada, Pages 1143-1151, ISBN 978-1-4503-6309-9, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2019.

  9. Mehran Goli

    Automatisierte Analyse virtueller Prototypen auf der ESL

    In: S. Hölldobler et al.. Ausgezeichnete Informatikdissertationen 2019. Pages 89-98, ISBN 978-3-88579-775-3, GI Gesellschaft für Informatik, 2019.

  10. Emilia Brzozowska; Oscar Lima; Rodrigo Ventura

    A Generic Optimization Based Cartesian Controller for Robotic Mobile Manipulation

    In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA). IEEE International Conference on Robotics and Automation (ICRA-2019), May 20-24, Montreal, Canada, Montreal, Canada, Pages 2054-2060, ISBN 978-1-5386-6027-0, IEEE Xplore, 2019.