Skip to main content Skip to main navigation
MLT Headerbild© Adobe Stock

Sprachtechnologie und Multilingualität

Publikationen

Seite 1 von 1.

  1. Retrieval-Augmented Knowledge Integration into Language Models: A Survey

    In: Sha Li; Manling Li; Michael JQ Zhang; Eunsol Choi; Mor Geva; Peter Hase; Heng Ji (Hrsg.). Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024). Workshop on Towards Knowledgeable Language Models (KnowLLM-2024), Bangkok, Thailand, Pages 45-63, Association for Computational Linguistics, 2024.

  2. Sharlyn ST Ng; Robert Oehring; Nikitha Ramasetti; Roland Roller; Philippe Thomas; Yuxuan Chen; Simon Moosburner; Axel Winter; Max-Magnus Maurer; Timo A Auer; Can Kamali; Johann Pratschke; Christian Benzing; Felix Krenzien

    Concordance of a decision algorithm and multidisciplinary team meetings for patients with liver cancer—a study protocol for a randomized controlled trial

    In: Trials, Vol. 24, 577 (2023), No. 1, Pages 1-10, Springer, 9/2023.

  3. Why only Micro-F1? Class Weighting of Metrics for Relation Classification

    In: Proceedings of the 1st Workshop on Efficient Benchmarking in NLP. Annual Meeting of the Association for Computational Linguistics (ACL-2022), May 22-27, Dublin, Ireland, Association for Computational Linguistics, 5/2022.

  4. Yuxuan Chen; Jonas Mikkelsen; Arne Björn Binder; Christoph Alt; Leonhard Hennig

    A Comparative Study of Pre-trained Encoders for Low-Resource Named Entity Recognition

    In: Proceedings of the 7th Workshop on Representation Learning for NLP (ACL-REPL4NLP 2022). ACL Workshop on Representation Learning for NLP (RepL4NLP-2022), located at ACL 2022, May 22-27, Dublin, Ireland, ACL, 5/2022.

  5. Multilingual Relation Classification via Efficient and Effective Prompting

    In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing (EMNLP-2022), Online and Abu Dhabi, the United Arab Emirates, Association for Computational Linguistics, 2022.

Kontakt

Sekretariat:
Tel.: +49 681 85775 5282
Fax: +49 681 85775 5338

Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH (DFKI)
Campus D3 2
Stuhlsatzenhausweg 3
66123 Saarbrücken
Deutschland