Skip to main content Skip to main navigation
MLT Headerbild© Adobe Stock

Sprachtechnologie und Multilingualität

Publikationen

Seite 2 von 4.

  1. Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring

    In: Witold Pedrycz; Shyi-Ming Chen (Hrsg.). Interpretable Artificial Intelligence: A Perspective of Granular Computing. Chapter 1, Pages 1-28, Vol. 937, ISBN 9783030649487, Springer, 2021.

  2. Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing

    In: ECIS 2021 - 29th European Conference on Information System. European Conference on Information Systems (ECIS-2021), 29th, June 14-16, Marrakech, Morocco, 2021.

  3. Prescriptive process analytics with deep learning and explainable artificial intelligence

    In: Twenty-Eighth European Conference on Information Systems (ECIS2020) - A Virtual AIS Conference. European Conference on Information Systems (ECIS-2020), 28th, June 15, Marrakech, Morocco, AISeL, 6/2020.

  4. Big-Prozess-Analytik für Fertigungsmanagementsysteme (MES)

    In: Marion Steven; Timo Klünder (Hrsg.). Big Data: Anwendung und Nutzungspotenziale in der Produktion. Chapter 2, Pages 215-239, ISBN 978-3-17-036476-9, Kohlhammer, Stuttgart, 2/2020.

  5. Explainable Process Predictions (xPP): A Holistic Framework and Applications

    In: Claudio Di Ciccio; Benoît Depaire; Jochen De Weerdt; Chiara Di Francescomarino; Jorge Munoz-Gama (Hrsg.). ICPM 2020. International Conference on Process Mining (ICPM-2020), 2nd, October 4-9, Padua, Italy, Pages 17-18, Vol. 2703, CEUR, 2020.

  6. Patrick Lübbecke; Nijat Mehdiyev; Peter Fettke

    Substitution of hazardous chemical substances using Deep Learning and t-SNE

    In: Proceedings der Internationalen Tagung Wirtschaftsinformatik. Internationale Tagung Wirtschaftsinformatik (WI-2019), Human Practice. Digital Ecologies. Our Future. February 24-27, Siegen, Germany, AIS, 2019.

  7. Jana-Rebecca Rehse; Nijat Mehdiyev; Peter Fettke

    Towards Explainable Process Predictions for Industry 4.0 in the DFKI-Smart-Lego-Factory

    In: KI - Künstliche Intelligenz, German Journal on Artificial Intelligence - Organ des Fachbereiches "Künstliche Intelligenz" der Gesellschaft für Informatik e.V. (KI), Vol. 33, No. 1, Pages 181-187, Springer, 2019.

  8. Nijat Mehdiyev; Joerg Evermann; Peter Fettke

    A Novel Business Process Prediction Model Using a Deep Learning Method

    In: Springer Fachmedien Wiesbaden (Hrsg.). Business & Information Systems Engineering (BISE), Vol. 5/2018, Pages 1-15, Springer Fachmedien, Wiesbaden, 7/2018.

  9. iPRODICT – Intelligent Process Prediction based on Big Data Analytics

    Business Process Management (BPM-17), Industry Track, September 10-15, Barcelona, Spain, BPM, Springer, Cham, 9/2017.

  10. Nijat Mehdiyev; Joerg Evermann; Peter Fettke

    A Multi-Stage Deep Learning Approach for Business Process Event Prediction

    In: 19th IEEE Conference on Business Informatics. IEEE Conference on Business Informatics (CBI-17), located at IEEE Conference on Business Informatics, July 24-27, Thessaloniki, Greece, IEEE, 7/2017.

Kontakt

Sekretariat:
Tel.: +49 681 85775 5282
Fax: +49 681 85775 5338

Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH (DFKI)
Campus D3 2
Stuhlsatzenhausweg 3
66123 Saarbrücken
Deutschland