Skip to main content Skip to main navigation
© SmartFactory-KL / A. Sell

Innovative Fabriksysteme

Publikationen

Seite 1 von 1.

  1. Simon Komesker; William Motsch; Jens Popper; Aleksandr Sidorenko; Achim Wagner; Martin Ruskowski

    Enabling a Multi-Agent System for Resilient Production Flow in Modular Production Systems

    In: Procedia CIRP, Vol. 107, Pages 991-998, Elsevier, 2022.

  2. Simon Jungbluth; Nigora Gafur; Jens Popper; Vassilios Yfantis; Martin Ruskowski

    Reinforcement Learning-based Scheduling of a Job-Shop Process with Distributedly Controlled Robotic Manipulators for Transport Operations

    In: IFAC-PapersOnLine, Vol. 55, No. 2, Pages 156-162, Elsevier, 2022.

  3. Jens Popper; William Motsch; Alexander David; Teresa Petzsche; Martin Ruskowski (Hrsg.)

    Utilizing Multi-Agent Deep Reinforcement Learning For Flexible Job Shop Scheduling Under Sustainable Viewpoints

    International Conference on Electrical, Computer, Communications and Mechatronics Engineering, located at 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, October 7-8, Belle Mare, Mauritius, IEEE, 2021.

  4. Jens Popper; Vassilios Yfantis; Martin Ruskowski (Hrsg.)

    Simultaneous Production and AGV Scheduling using Multi-Agent Deep Reinforcement Learning

    CIRP Conference on Manufactoring Systems (CIRP CMS-2021), 54th CIRP Conference on Manufacturing Systems, 2021, located at CIRP, September 22-24, Athens, Greece, ELSEVIER, 2021.

  5. Jens Popper; Martin Ruskowski

    Using Multi-Agent Deep Reinforcement Learning For Flexible Job Shop Scheduling Problems

    In: Roberto Teti; Doriana M. D'Addona (Hrsg.). CIRP Proceedings. CIRP Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME), Pages 63-67, Vol. 112, Special Issue 15th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 14-16 July 2019, Gulf of Naples, Italy, Elsevier B.V. 2021.

  6. Max Birtel; William Motsch; Jens Popper; Martin Ruskowski

    Method for the development of an Asset Administration Shell in a product-driven modular production – realizing an active digital object memory

    In: Proceedings 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). IEEE International Conference on Industrial Cyber-Physical Systems (ICPS-2020), June 10-12, Tampere/Virtual, Finland, Pages 583-588, IEEE, 2020.

  7. Martin Ruskowski; Arnold Herget; Jesko Hermann; William Motsch; Parsha Pahlevannejad; Aleksandr Sidorenko; Simon Bergweiler; Alexander David; Christiane Plociennik; Jens Popper; Keran Sivalingam; Achim Wagner

    Production Bots für Production Level 4: Skill-basierte Systeme für die Produktion der Zukunft

    In: atp - Automatisierungstechnische Praxis, Vol. 62, No. 9, Pages 62-71, Vulkan, 2020.

  8. Enabling reliable Visual Quality Control in Smart Factories through TSN

    In: Roberto Teti; Doriana M. D'Addona (Hrsg.). Procedia CIRP, Vol. 88 - 13th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 17-19 July 2019, Gulf of Naples, Italy, Pages 549-553, Elsevier B.V. 2020.

  9. Max Birtel; Jens Popper

    Vorgehensweise zum Retrofitting einer Stanzmaschine zur Visualisierung von Prozessdaten

    In: Raimund Dachselt; Gerhard Weber (Hrsg.). Mensch und Computer 2018 - Workshopband. Mensch und Computer (MuC-2018), September 2-5, Dresden, Germany, Gesellschaft für Informatik e.V. Bonn, 2018.

Kontakt

Sekretariat:
Isabel Rheinheimer
Tel.: +49 631 20575 3401

Deutsches Forschungszentrum für
Künstliche Intelligenz GmbH (DFKI)
Forschungsbereich Innovative Fabriksysteme
Trippstadter Str. 122
67663 Kaiserslautern
Deutschland