Publikation

Teaching psychomotor skills using machine learning for error detection

Benjamin Paaßen, Milos Kravcik

In: Roland Klemke, Khaleel Asyraaf Mat Sanusi, Daniel Majonica, Anja Richert, Valérie Varney, Tobias Keller, Jan Schneider, Daniele Di Mitri, George-Petru Ciordas-Hertel, Fernando P. Cardenas-Hernandez, Gianluca Romano, Milos Kravcik, Benjamin Paaßen, Ralf Klamma, Michal Slupczynski, Stefanie Klatt, Mai Geisen, Tobias Baumgartner, Nina Riedl (Hrsg.). Proceedings of the 1st International Workshop on Multimodal Immersive Learning Systems (MILeS 2021). International Workshop on Multimodal Immersive Learning Systems (MILeS-2021) befindet sich 16th European Conference on Technology Enhanced Learning (EC-TEL 2021) September 20-24 virtual (Bozen-Bolzano) Italy Seiten 8-14 CEUR Workshop Proceedings 10/2021.

Abstrakt

Learning psychomotor skills is challenging because motion is fast, relies strongly on subconscious mechanisms, and instruction typically disrupts the activity. As such, learners would profit from mechanisms that can react swiftly, raise subtle mistakes to the conscious level, and do not disrupt the activity. In this paper, we sketch a machine learning-supported approach to provide feedback in two example scenarios: running, and interacting with a robot. For the running case, we provide an evaluation how motions can be compared to highlight deviations between student and expert motion.

Projekte

Weitere Links

paassen_kravcik_miles_2021.pdf (pdf, 1 MB )

Deutsches Forschungszentrum für Künstliche Intelligenz
German Research Center for Artificial Intelligence