Skip to main content Skip to main navigation

Publications

Displaying results 3231 to 3240 of 14427.
  1. Marco Ewerton; David Rother; Jakob Weimar; Gerrit Kollegger; Josef Wiemeyer; Jan Peters; Guilherme Maeda

    Assisting Movement Training and Execution With Visual and Haptic Feedback

    In: Frontiers in Neurorobotics, Vol. 12, Pages 0-10, Frontiers, 2018.

  2. Oliver Kroemer; Simon Leischnig; Stefan Luettgen; Jan Peters

    A kernel-based approach to learning contact distributions for robot manipulation tasks

    In: Autonomous Robots, Vol. 42, No. 3, Pages 581-600, Springer, 2018.

  3. Alexandros Paraschos; Christian Daniel; Jan Peters; Gerhard Neumann

    Using probabilistic movement primitives in robotics

    In: Autonomous Robots, Vol. 42, No. 3, Pages 529-551, Springer, 2018.

  4. Antoine Grosnit; Rasul Tutunov; Alexandre Max Maraval; Ryan-Rhys Griffiths; Alexander I. Cowen-Rivers; Lin Yang; Lin Zhu; Wenlong Lyu; Zhitang Chen; Jun Wang; Jan Peters; Haitham Bou-Ammar

    High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2106.03609, Pages 0-10, arXiv, 2021.

  5. Daniel Tanneberg; Elmar Rueckert; Jan Peters

    Evolutionary Training and Abstraction Yields Algorithmic Generalization of Neural Computers

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2105.07957, Pages 0-10, arXiv, 2021.

  6. Joe Watson; Hany Abdulsamad; Rolf Findeisen; Jan Peters

    Stochastic Control through Approximate Bayesian Input Inference

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2105.07693, Pages 0-10, arXiv, 2021.

  7. Herke van Hoof; Oliver Kroemer; Jan Peters

    Probabilistic Segmentation and Targeted Exploration of Objects in Cluttered Environments

    In: IEEE Transactions on Robotics (T-RO), Vol. 30, No. 5, Pages 1198-1209, IEEE, 2014.

  8. Daan Wierstra; Tom Schaul; Tobias Glasmachers; Yi Sun; Jan Peters; Jürgen Schmidhuber

    Natural evolution strategies

    In: Journal of Machine Learning Research, Vol. 15, No. 1, Pages 949-980, JMLR, 2014.

  9. Christoph Dann; Gerhard Neumann; Jan Peters

    Policy evaluation with temporal differences: a survey and comparison

    In: Journal of Machine Learning Research, Vol. 15, No. 1, Pages 809-883, JMLR, 2014.

  10. Christoph H. Lampert; Jan Peters

    Active Structured Learning for High-Speed Object Detection

    In: Joachim Denzler; Gunther Notni; Herbert Süße (Hrsg.). Pattern Recognition, 31st DAGM Symposium, Proceedings. Annual Symposium of the German Association for Pattern Recognition (DAGM-2009), September 9-11, Jena, Germany, Pages 221-231, Lecture Notes in Computer Science, Vol. 5748, Springer, 2009.