Skip to main content Skip to main navigation

Publications

Displaying results 141 to 150 of 658.
  1. Benjamin Hilprecht; Andreas Schmidt; Moritz Kulessa; Alejandro Molina; Kristian Kersting; Carsten Binnig

    DeepDB: Learn from Data, not from Queries!

    In: Proceedings of the VLDB Endowment (PVLDB), Vol. 13, No. 7, Pages 992-1005, Association for Computing Machinery (ACM), 2020.

  2. Benjamin Hilprecht; Kristian Kersting; Carsten Binnig

    SPARE: A Single-Pass Neural Model for Relational Databases

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2310.13581, Pages 0-10, arXiv, 2023.

  3. Liane Vogel; Carsten Binnig

    WikiDBs: A Corpus of Relational Databases From Wikidata

    In: Rajesh Bordawekar; Cinzia Cappiello; Vasilis Efthymiou; Lisa Ehrlinger; Vijay Gadepally; Sainyam Galhotra; Sandra Geisler; Sven Groppe; Le Gruenwald; Alon Y. Halevy; Hazar Harmouch; Oktie Hassanzadeh; Ihab F. Ilyas; Ernesto Jiménez-Ruiz; Sanjay Krishnan; Tirthankar Lahiri; Guoliang Li; Jiaheng Lu; Wolfgang Mauerer; Umar Farooq Minhas; Felix Naumann; M. Tamer Özsu; El Kindi Rezig; Kavitha Srinivas; Michael Stonebraker; Satyanarayana R. Valluri; Maria-Esther Vidal; Haixun Wang; Jiannan Wang; Yingjun Wu; Xun Xue; Mohamed Zaït; Kai Zeng (Hrsg.). Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023). International Conference on Very Large Data Bases (VLDB), August 28 - September 1, Vancouver, Canada, CEUR Workshop Proceedings, Vol. 3462, CEUR-WS.org, 2023.

  4. PerSim: Perception for Planetary Prospection and Internal Simulation

    In: 17th Symposium on Advanced Space Technologies in Robotics and Automation. ESA/Estec Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA-2023), October 18-20, Leiden, Netherlands, ASTRA Proceedings, Noordwijk The Netherlands, 2023.

  5. Jan-Tilman Seipp; Felix Köhler; David Harbecke; Leonhard Hennig; Phuc Tran Truong

    Text2Tech - Deep Learning-based Text Mining for Technology Monitoring in Automotive Production

    In: 13th Global TechMining Conference 2023 - Conference Proceedings. Global TechMining Conference, November 10, Global TechMining Conference, 2023.

  6. Muhammad El-Hindi; Zheguang Zhao; Carsten Binnig

    Towards Decentralized Parameter Servers for Secure Federated Learning

    In: Alfredo Cuzzocrea; Oleg Gusikhin; Wil M. P. van der Aalst; Slimane Hammoudi (Hrsg.). Proceedings of the 11th International Conference on Data Science, Technology and Applications. International Conference on Data Science, Technology and Applications (DATA-2022), July 11-13, Lisbon, Portugal, Pages 257-269, SCITEPRESS, 2022.

  7. Théo Vincent; Tim Lukas Faust; Yogesh Tripathi; Jan Peters; Carlo D'Eramo

    Eau De Q-Network: Adaptive Distillation of Neural Networks in Deep Reinforcement Learning

    In: Proceedings of the 2nd Reinforcement Learning Conference 2025. Reinforcement Learning Conference (RLC-2025), August 5-9, Edmonton, AB, Canada, Reinforcement Learning Journal (RLJ), 2025.

  8. Human-Robot Interaction Through Egocentric Hand Gesture Recognition

    In: Kosmas Alexopoulos; Sotiris Makris; Panagiotis Stavropoulos (Hrsg.). Advances in Artificial Intelligence in Manufacturing II. European Symposium on Artificial Intelligence in Manufacturing (ESAIM-2024), Cham, Pages 125-133, ISBN 978-3-031-86489-6, Springer Nature Switzerland, 2025.

  9. Collaborative Learning in Shared Production Environment Using Federated Image Classification

    In: Kosmas Alexopoulos; Sotiris Makris; Panagiotis Stavropoulos (Hrsg.). Advances in Artificial Intelligence in Manufacturing II. European Symposium on Artificial Intelligence in Manufacturing (ESAIM-2024), Cham, Pages 98-106, ISBN 978-3-031-86489-6, Springer Nature Switzerland, 2025.

  10. Christoph Peter Balada; Aida Romano-Martinez; Vincent ten Cate; Katharina Geschke; Jonas Tesarz; Paul Claßen; Alexander K Schuster; Dativa Tibyampansha; Karl-Patrik Kresoja; Philipp S Wild; others

    Deep Learning for Cardiovascular Risk Assessment: Proxy Features from Carotid Sonography as Predictors of Arterial Damage

    In: Lecture Notes in Computer Science. Medical Image Understanding and Analysis (MIUA-2025), LNCS, Springer Nature, 2025.