Skip to main content Skip to main navigation

AI for Assistive Health Technologies

Publications

Page 1 of 4.

  1. Anna Kordowski; Ina Hohensee; Vivian Tetzlaff-Lelleck; Franziska Schmelter; Yves Laumonnier; Lennart Jablonski; Artur Piet; Anna Exner; Abid Hasan; Nicole Heßler; Yaser Hatem; Inke König; Marcin Grzegorzek; Christian Sina

    INDICATE-FH - Neue Wege in der Diagnostik und Therapie von Nahrungsmittelunverträglichkeiten - Technologische Neuerungen zur Verbesserung der Diagnostik und Therapie von Weizenunverträglichkeit

    12/2025.

  2. Shange Wang; Lin Xu; Linshuai Zhang; Yujie Zhang; Chen Li; Marcin Grzegorzek; Jing Guo; Tao Jiang

    HHBSNet: a global channel–spatial attention and multi-scale dilated convolution network for automatic melasma segmentation

    In: Frontiers in Physiology, Vol. 16 - 2025, Frontiers Media SA, 11/2025.

  3. Rui Li; Tao Jiang; Hao Xu; Marcin Grzegorzek; Xiaoyan Li; Chen Li

    TGMT-FSL: Text-Guided Multi-task Framework for Few-Shot Learning of Histopathological Image Analysis

    In: Advanced Data Mining and Applications - 21st International Conference, ADMA 2025 - Proceedings. International Conference on Advanced Data Mining and Applications (ADMA-2025), October 22-24, Kyoto, Japan, Pages 408-418, Lecture Notes in Computer Science (LNCS), Vol. 16198, ISBN 978-981-95-3456-2, Springer Nature, Singapore, 10/2025.

  4. Zhenwei Zhai; Chen Li; Zihao Wang; Marcin Grzegorzek; Lin Xu; Linshuai Zhang; Yujie Zhang; Pengfei Zeng; Ji Yin; Jing Guo; Tao Sun; Tao Jiang

    MEMI-DS: A Benchmark Melasma Image Dataset for Image Segmentation

    In: Advanced Data Mining and Applications - 21st International Conference, ADMA 2025 - Proceedings. International Conference on Advanced Data Mining and Applications (ADMA-2025), October 22-24, Kyoto, Japan, Pages 419-430, Lecture Notes in Computer Science (LNCS), Vol. 16198, ISBN 978-981-95-3456-2, Springer Nature, Singapore, 10/2025.

  5. Xin Ma; Xiaona He; Yun Wang; Marcin Grzegorzek; Wenjie Long; Hongxi Chen; Fang Gao; Nan Mao; Xinyu Huang

    Role of biomarker SOCS1 in peritoneal dialysis-associated peritoneal fibrosis and immune infiltration based on machine learning screening

    In: Frontiers in Pharmacology, Vol. 16 - 2025, Frontiers Media SA, 10/2025.

  6. Weihua Li; Xinghao Wang; Yiling Wang; Jiani Wang; Xinyu Huang; Marcin Grzegorzek; Qian Chen; Zhenchang Wang; Peng Zhang; Lirong Tang

    Dissecting the Causal Association Between Bulimia Nervosa and Structural Brain Abnormalities: A Two‐Sample Bidirectional Mendelian Randomization Study

    In: Brain and Behavior, Vol. 15, No. 9, Wiley, 9/2025.

  7. Tianming Du; Tao Jiang; Xuanyi Li; Md Mamunur Rahaman; Marcin Grzegorzek; Chen Li

    Prediction of TP53 mutations across female reproductive system pan-cancers using deep multimodal PET/CT radiogenomics

    In: Frontiers in Medicine, Vol. 12, Pages 1608652-1608652, Frontiers Media SA, 9/2025.

  8. Yuzhou Wang; Xiaojie Li; Frank Kulwa; Xiaoyan Li; Shuochen Tai; Shuaiyi Tian; Kunyang Teng; Marcin Grzegorzek; Xinyu Huang; Tao Jiang; Chen Li

    A Microscopic Image Processing Platform for Multi-class Cell Segmentation Using Deep Learning

    In: Intelligent Medicine, Vol. not yet assigned, Page not yet assigned, Elsevier, 9/2025.

  9. Zhuonan Liu; Dhirendra Mouni; Shimin Zhang; Tianming Du; Chen Li; Marcin Grzegorzek; Hongzan Sun

    Predicting the early response to neoadjuvant chemotherapy in high-grade serous ovarian cancer by intratumoral habitat heterogeneity based on 18F-FDG PET/CT

    In: European Journal of Nuclear Medicine and Molecular Imaging (EJNMMI), Vol. 52, Pages 1-13, Springer Nature, 8/2025.

  10. Xinyu Huang; Franziska Schmelter; Christian Seitzer; Lars Martensen; Hans Otzen; Artur Piet; Oliver Witt; Torsten Schröder; Ulrich Günther; Lisa Marshall; Marcin Grzegorzek; Christian Sina

    Digital biomarkers for interstitial glucose prediction in healthy individuals using wearables and machine learning

    In: Scientific Reports (Sci Rep), Vol. 15, Pages 30164-30164, Nature Publishing Group UK, 8/2025.

Contact

Office:
Phone: +49 451 3101 5600