Skip to main content Skip to main navigation

Publications

Displaying results 71 to 80 of 651.
  1. Xiaoting Shao; Alejandro Molina; Antonio Vergari; Karl Stelzner; Robert Peharz; Thomas Liebig; Kristian Kersting

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    In: Manfred Jaeger; Thomas Dyhre Nielsen (Hrsg.). Proceedings of the 10th International Conference on Probabilistic Graphical Models. International Conference on Probabilistic Graphical Models (PGM-2020), September 23-25, Aalborg, Denmark, Pages 401-412, Proceedings of Machine Learning Research, Vol. 138, PMLR, 2020.

  2. Robert Peharz; Steven Lang; Antonio Vergari; Karl Stelzner; Alejandro Molina; Martin Trapp; Guy Van den Broeck; Kristian Kersting; Zoubin Ghahramani

    Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

    In: Proceedings of the 37th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2020), July 13-18, Pages 7563-7574, Proceedings of Machine Learning Research, Vol. 119, PMLR, 2020.

  3. Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks

    In: 8th International Conference on Learning Representations. International Conference on Learning Representations (ICLR-2020), April 26-30, Addis Ababa, Ethiopia, OpenReview.net, 2020.

  4. Amos Treiber; Alejandro Molina; Christian Weinert; Thomas Schneider; Kristian Kersting

    CryptoSPN: Expanding PPML beyond Neural Networks

    In: Benyu Zhang; Raluca Ada Popa; Matei Zaharia; Guofei Gu; Shouling Ji (Hrsg.). PPMLP'20: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice. Workshop on Privacy-Preserving Machine Learning in Practice (PPMLP-20), located at CS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security, November 9, Virtual Event, Pages 9-14, ISBN 978-1-4503-8088-1, ACM, 2020.

  5. Patrick Schramowski; Wolfgang Stammer; Stefano Teso; Anna Brugger; Franziska Herbert; Xiaoting Shao; Hans-Georg Luigs; Anne-Katrin Mahlein; Kristian Kersting

    Making deep neural networks right for the right scientific reasons by interacting with their explanations

    In: Nature Machine Intelligence, Vol. 2, No. 8, Pages 476-486, Springer, 2020.

  6. Johannes Czech; Moritz Willig; Alena Beyer; Kristian Kersting; Johannes Fürnkranz

    Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data

    In: Frontiers in Artificial Intelligence, Vol. 3, Pages 1-10, Frontiers, 2020.

  7. Hikaru Shindo; Devendra Singh Dhami; Kristian Kersting

    Neuro-Symbolic Forward Reasoning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2110.09383, Pages 0-10, arXiv, 2021.

  8. Zhongjie Yu; Fabrizio Ventola; Kristian Kersting

    Whittle Networks: A Deep Likelihood Model for Time Series

    In: Marina Meila; Tong Zhang (Hrsg.). Proceedings of the 38th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2021), July 18-24, Pages 12177-12186, Proceedings of Machine Learning Research, Vol. 139, PMLR, 2021.

  9. Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting With Their Explanations

    In: IEEE Conference on Computer Vision and Pattern Recognition. International Conference on Computer Vision and Pattern Recognition (CVPR-2021), June 19-25, Pages 3619-3629, Computer Vision Foundation / IEEE, 2021.

  10. Xiaoting Shao; Arseny Skryagin; Wolfgang Stammer; Patrick Schramowski; Kristian Kersting

    Right for Better Reasons: Training Differentiable Models by Constraining their Influence Functions

    In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI Conference on Artificial Intelligence (AAAI-2021), Pages 9533-9540, AAAI Press, 2021.