Skip to main content Skip to main navigation

Publications

Displaying results 271 to 280 of 646.
  1. Julen Urain; Michele Ginesi; Davide Tateo; Jan Peters

    ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by Normalizing Flows

    In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2020), October 24 - January 24, Las Vegas, NV, USA, Pages 5231-5237, IEEE, 2020.

  2. Carlo D'Eramo; Davide Tateo; Andrea Bonarini; Marcello Restelli; Jan Peters

    Sharing Knowledge in Multi-Task Deep Reinforcement Learning

    In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. International Conference on Learning Representations (ICLR), OpenReview.net, 2020.

  3. Sebastián Gómez-González; Sergey Prokudin; Bernhard Schölkopf; Jan Peters

    Real Time Trajectory Prediction Using Deep Conditional Generative Models

    In: IEEE Robotics and Automation Letters (RA-L), Vol. 5, No. 2, Pages 970-976, IEEE, 2020.

  4. Julien Brosseit; Benedikt Hahner; Fabio Muratore; Michael Gienger; Jan Peters

    Distilled Domain Randomization

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2112.03149, Pages 0-10, arXiv, 2021.

  5. Antoine Grosnit; Rasul Tutunov; Alexandre Max Maraval; Ryan-Rhys Griffiths; Alexander I. Cowen-Rivers; Lin Yang; Lin Zhu; Wenlong Lyu; Zhitang Chen; Jun Wang; Jan Peters; Haitham Bou-Ammar

    High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2106.03609, Pages 0-10, arXiv, 2021.

  6. Michael Lutter; Shie Mannor; Jan Peters; Dieter Fox; Animesh Garg

    Robust Value Iteration for Continuous Control Tasks

    In: Dylan A. Shell; Marc Toussaint; M. Ani Hsieh (Hrsg.). Robotics: Science and Systems XVII. Robotics: Science and Systems (RSS-2021), July 12-16, Virtual Event, Robotics Science and Systems, Online Proceedings, 2021.

  7. Hany Abdulsamad; Oleg Arenz; Jan Peters; Gerhard Neumann

    State-Regularized Policy Search for Linearized Dynamical Systems

    In: Laura Barbulescu; Jeremy Frank; Mausam; Stephen F. Smith (Hrsg.). Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling. International Conference on Automated Planning and Scheduling (ICAPS-2017), June 18-23, Pittsburgh, Pennsylvania, USA, Pages 419-424, AAAI Press, 2017.

  8. Riad Akrour; Filipe Veiga; Jan Peters; Gerhard Neumann

    Regularizing Reinforcement Learning with State Abstraction

    In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2018), October 1-5, Madrid, Spain, Pages 534-539, IEEE, 2018.

  9. Paavo Parmas; Carl Edward Rasmussen; Jan Peters; Kenji Doya

    PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos

    In: Jennifer G. Dy; Andreas Krause (Hrsg.). Proceedings of the 35th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2018), July 10-15, Stockholm, Sweden, Pages 4062-4071, Proceedings of Machine Learning Research, Vol. 80, PMLR, 2018.

  10. Michael Lutter; Christian Ritter; Jan Peters

    Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

    In: 7th International Conference on Learning Representations. International Conference on Learning Representations (ICLR-2019), May 6-9, New Orleans, LA, USA, OpenReview.net, 2019.