Skip to main content Skip to main navigation

Publications

Displaying results 221 to 230 of 661.
  1. Xiaoting Shao; Kristian Kersting

    Gradient-based Counterfactual Explanations using Tractable Probabilistic Models

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2205.07774, Pages 0-10, arXiv, 2022.

  2. Xiaoting Shao; Karl Stelzner; Kristian Kersting

    Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2202.00391, Pages 0-10, arXiv, 2022.

  3. Arseny Skryagin; Wolfgang Stammer; Daniel Ochs; Devendra Singh Dhami; Kristian Kersting

    Neural-Probabilistic Answer Set Programming

    In: Gabriele Kern-Isberner; Gerhard Lakemeyer; Thomas Meyer (Hrsg.). Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning. International Conference on Principles of Knowledge Representation and Reasoning (KR-2022), July 31 - August 5, Haifa, Israel, IJCAI Organization, 2022.

  4. Nandini Ramanan; Mayukh Das; Kristian Kersting; Sriraam Natarajan

    Discriminative Non-Parametric Learning of Arithmetic Circuits

    In: Manfred Jaeger; Thomas Dyhre Nielsen (Hrsg.). Proceedings of the 10th International Conference on Probabilistic Graphical Models. International Conference on Probabilistic Graphical Models (PGM-2020), September 23-25, Aalborg, Denmark, Pages 353-364, Proceedings of Machine Learning Research, Vol. 138, PMLR, 2020.

  5. Lukas Struppek; Dominik Hintersdorf; Daniel Neider; Kristian Kersting

    Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash

    In: FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency. ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT-22), June 21-24, Seoul, Korea, Republic of, Pages 58-69, ISBN 978-1-4503-9352-2, ACM, 2022.

  6. Alejandro Molina; Antonio Vergari; Karl Stelzner; Robert Peharz; Pranav Subramani; Nicola Di Mauro; Pascal Poupart; Kristian Kersting

    SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1901.03704, Pages 0-10, arXiv, 2019.

  7. Robert Peharz; Antonio Vergari; Karl Stelzner; Alejandro Molina; Martin Trapp; Xiaoting Shao; Kristian Kersting; Zoubin Ghahramani

    Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

    In: Amir Globerson; Ricardo Silva (Hrsg.). Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence. Conference in Uncertainty in Artificial Intelligence (UAI-2019), July 22-25, Tel Aviv, Israel, Pages 334-344, Proceedings of Machine Learning Research, Vol. 115, AUAI Press, 2019.

  8. Claas Völcker; Alejandro Molina; Johannes Neumann; Dirk Westermann; Kristian Kersting

    DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets

    In: Peggy Cellier; Kurt Driessens (Hrsg.). Machine Learning and Knowledge Discovery in Databases. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2019), International Workshops of ECML PKDD 2019, Proceedings, Part I, September 16-20, Würzburg, Germany, Pages 28-43, Communications in Computer and Information Science, Vol. 1167, Springer, 2019.

  9. Navdeep Kaur; Gautam Kunapuli; Saket Joshi; Kristian Kersting; Sriraam Natarajan

    Neural Networks for Relational Data

    In: Dimitar Kazakov; Can Erten (Hrsg.). Inductive Logic Programming - 29th International Conference, Proceedings. International Conference on Inductive Logic Programming (ILP-2019), September 3-5, Plovdiv, Bulgaria, Pages 62-71, Lecture Notes in Computer Science (LNAI), Vol. 11770, Springer, 2019.

  10. Karl Stelzner; Robert Peharz; Kristian Kersting

    Faster Attend-Infer-Repeat with Tractable Probabilistic Models

    In: Kamalika Chaudhuri; Ruslan Salakhutdinov (Hrsg.). Proceedings of the 36th International Conference on Machine Learning. International Conference on Machine Learning (ICML-2019), June 9-15, Long Beach, California, USA, Pages 5966-5975, Proceedings of Machine Learning Research, Vol. 97, PMLR, 2019.