Skip to main content Skip to main navigation

Publications

Displaying results 181 to 190 of 579.
  1. Fabio Muratore; Theo Gruner; Florian Wiese; Boris Belousov; Michael Gienger; Jan Peters

    Neural posterior domain randomization

    In: Aleksandra Faust; David Hsu; Gerhard Neumann (Hrsg.). Proceedings of the 5th Conference on Robot Learning. Conference on Robot Learning (CoRL-2021), November 8-11, London, United Kingdom, Pages 1532-1542, Proceedings of Machine Learning Research (PMLR), Vol. 164, PMLR, 2022.

  2. Boris Belousov; Bastian Wibranek; Jan Schneider; Tim Schneider; Georgia Chalvatzaki; Jan Peters; Oliver Tessmann

    Robotic architectural assembly with tactile skills: Simulation and optimization

    In: Automation in Construction, Vol. 133, Pages 1-10, Elsevier, 1/2022.

  3. Bastian Wibranek; Yuxi Liu; Niklas Funk; Boris Belousov; Jan Peters; Oliver Tessmann

    Reinforcement learning for sequential assembly of SL-blocks-self-interlocking combinatorial design based on machine learning

    In: Vesna Stojaković; Bojan Tepavčević (Hrsg.). eCAADe 2021 - Towards a New, Configurable Architecture, Volume 1 - Proceedings. Education and Research in Computer Aided Architectural Design in Europe (eCAADe-2021), September 8-10, Novi Sad, Serbia, Pages 27-36, eCAADe, 2021.

  4. Michael Lutter; Debora Clever; Boris Belousov; Kim Listmann; Jan Peters

    Evaluating the Robustness of HJB Optimal Feedback Control

    In: International Symposium on Robotics. International Symposium on Robotics (ISR-2020), 52th, December 9-10, Pages 1-8, VDE, 2020.

  5. Lukas Sommer; Julian Oppermann; Alejandro Molina; Carsten Binnig; Kristian Kersting; Andreas Koch

    Automatic Mapping of the Sum-Product Network Inference Problem to FPGA-Based Accelerators

    In: 36th IEEE International Conference on Computer Design. IEEE International Conference on Computer Design (ICCD-2018), October 7-10, Orlando, FL, USA, Pages 350-357, IEEE Computer Society, 2018.

  6. Amos Treiber; Alejandro Molina; Christian Weinert; Thomas Schneider; Kristian Kersting

    CryptoSPN: Expanding PPML beyond Neural Networks

    In: Benyu Zhang; Raluca Ada Popa; Matei Zaharia; Guofei Gu; Shouling Ji (Hrsg.). PPMLP'20: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice. Workshop on Privacy-Preserving Machine Learning in Practice (PPMLP-20), located at CS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security, November 9, Virtual Event, Pages 9-14, ISBN 978-1-4503-8088-1, ACM, 2020.

  7. Patrick Schramowski; Wolfgang Stammer; Stefano Teso; Anna Brugger; Franziska Herbert; Xiaoting Shao; Hans-Georg Luigs; Anne-Katrin Mahlein; Kristian Kersting

    Making deep neural networks right for the right scientific reasons by interacting with their explanations

    In: Nature Machine Intelligence, Vol. 2, No. 8, Pages 476-486, Springer, 2020.

  8. Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks

    In: 8th International Conference on Learning Representations. International Conference on Learning Representations (ICLR-2020), April 26-30, Addis Ababa, Ethiopia, OpenReview.net, 2020.

  9. Johannes Czech; Moritz Willig; Alena Beyer; Kristian Kersting; Johannes Fürnkranz

    Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data

    In: Frontiers in Artificial Intelligence, Vol. 3, Pages 0-10, Frontiers, 2020.

  10. Hikaru Shindo; Devendra Singh Dhami; Kristian Kersting

    Neuro-Symbolic Forward Reasoning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2110.09383, Pages 0-10, arXiv, 2021.