Skip to main content Skip to main navigation

Publications

Displaying results 1 to 10 of 62.
  1. Khurram Azeem Hashmi; Rakshith Bymana Ponnappa; Syed Saqib Bukhari; Martin Jenckel; Andreas Dengel

    Feedback Learning: Automating the Process of Correcting and Completing the Extracted Information

    In: International Conference on Document Analysis and Recognition. International Conference on Document Analysis and Recognition Workshops (ICDARW), September 22-25, Sydney, NSW, Australia, ISBN 978-1-7281-5054-3, IEEE, 9/2019.

  2. Jens Krauth; Stefan Gerlach; Christian Marzahl; Jörn Voigt; Heinz Handels

    Synthetic Training with Generative Adversarial Networks for Segmentation of Microscopies

    In: Heinz Handels; Thomas M. Deserno; Andreas Maier; Klaus Hermann Maier-Hein; Christoph Palm; Thomas Tolxdorff (Hrsg.). Bildverarbeitung für die Medizin 2019. Workshop Bildverarbeitung für die Medizin (BVM-2019), March 20-22, Lübeck, Germany, Pages 37-42, ISBN 978-3-658-25326-4, Springer Fachmedien Wiesbaden, 2019.

  3. Timo Kepp; Jan Ehrhardt; Mattias P. Heinrich; Gereon Hüttmann; Heinz Handels

    Topology-Preserving Shape-Based Regression Of Retinal Layers In Oct Image Data Using Convolutional Neural Networks

    In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE International Symposium on Biomedical Imaging (ISBI-2019), April 8-11, Venice, Italy, Pages 1437-1440, IEEE, 2019.

  4. Timo Kepp; Christine Droigk; Malte Casper; Michael Evers; Gereon Hüttmann; Nunciada Salma; Dieter Manstein; Mattias P. Heinrich; Heinz Handels

    Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks

    In: Christoph Hitzenberger (Hrsg.). Biomedical Optics Express, Vol. 10, No. 7, Pages 3484-3496, OSA, 7/2019.

  5. Benjamin Hilprecht; Carsten Binnig; Uwe Röhm

    Towards learning a partitioning advisor with deep reinforcement learning

    In: Rajesh Bordawekar; Oded Shmueli (Hrsg.). Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management. International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (aiDM-2019), aiDM@SIGMOD, July 5, Amsterdam, Netherlands, Pages 6:1-6:4, ACM, 2019.

  6. Abdallah Salama; Alexander Linke; Igor Pessoa Rocha; Carsten Binnig

    XAI: A Middleware for Scalable AI

    In: Slimane Hammoudi; Christoph Quix; Jorge Bernardino (Hrsg.). Proceedings of the 8th International Conference on Data Science, Technology and Applications. International Conference on Data Science, Technology and Applications (DATA-2019), July 26-28, Prague, Czech Republic, Pages 109-120, SciTePress, 2019.

  7. Nathaniel Weir; Andrew Crotty; Alex Galakatos; Amir Ilkhechi; Shekar Ramaswamy; Rohin Bhushan; Ugur Çetintemel; Prasetya Utama; Nadja Geisler; Benjamin Hättasch; Steffen Eger; Carsten Binnig

    DBPal: Weak Supervision for Learning a Natural Language Interface to Databases

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1909.06182, Pages 0-10, arXiv, 2019.

  8. Benjamin Hilprecht; Carsten Binnig; Uwe Röhm

    Learning a Partitioning Advisor with Deep Reinforcement Learning

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1904.01279, Pages 0-10, arXiv, 2019.

  9. Michael Benedikt; Kristian Kersting; Phokion G. Kolaitis; Daniel Neider

    Logic and Learning (Dagstuhl Seminar 19361)

    In: Dagstuhl Reports, Vol. 9, No. 9, Pages 1-22, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2019.