
An Integration Framework for a Mobile Multimodal Dialogue System
Accessing the Semantic Web

Norbert Reithinger, Daniel Sonntag

DFKI GmbH – German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3

D-66123 Saarbrücken, Germany
{bert,sonntag}@dfki.de

Abstract
Advanced intelligent multimodal interface systems usually

comprise many sub-systems. For the integration of already ex-
isting software components in the SMARTWEB1 system we de-
veloped an integration framework, the IHUB. It allows us to
reuse already existing components for interpretation and pro-
cessing of multimodal user interactions. The framework facil-
itates the integration of the user in the interpretation loop by
controlling the message flow in the system which is important
in our domain, the multimodal access to the Semantic Web. A
technical evaluation of the framework shows the efficient rout-
ing of messages to make real-time interactive editing of seman-
tic queries possible.

1. Introduction
Advanced intelligent multimodal interface systems usually
comprise many sub-systems. Needed functionalities are, e.g.
modality recognition for speech or gestures, modality interpre-
tation and fusion, intention processing, modality fission, and
finally, result rendering for graphics on a screen or synthesis
of speech. For many of these sub-tasks software modules from
academia or industry can be used off the shelf. Furthermore, in
many projects integration frameworks for this types of systems
have been developed and exist, like the Galaxy Communicator,
Open Agent Architecture, Multiplatform, the General Architec-
ture for Text Engineering or Psyclone [1, 2, 3, 4, 5]. The W3C
consortium also proposes inter-module communication stan-
dards like the Voice Extensible Markup Language VoiceXML2

or the Extensible MultiModal Annotation markup language
EMMA3, with products from industry supporting these stan-
dards4.

Against this rich background of available knowledge, the
process to start a new project should be straightforward: you
write down your list of needed functionalities and technical re-
quirements, fill your shopping cart with all the necessary tech-
nology, and build your system in a straightforward way.

However, if one looks closer to the actual project’s re-
quirements, this idealistic vision begins to blur. In the project
SMARTWEB [6] we develop a context-aware, mobile multi-
modal user interface to the Semantic Web. The user carries
a smartphone as interaction device. He poses questions via
speech and gestures on the device. The multi-modal input is

1http://www.smartweb-project.de
2http://www.w3.org/TR/voicexml20
3http://www.w3.org/TR/emma
4http://www.voicexml.org

transmitted using UMTS or wireless LAN to a back end server
system. There is where the server-based multi-modal recog-
nisers, the dialogue system, and the Semantic Web access sub-
systems run. Whereas the computer-telephony platform and the
recognisers are based on commercial products from Sympalog
GmbH5, the core dialogue engine and the access functions to
the Semantic Web are the main focus of our research.

In this article, we will first analyse the requirements for di-
alogue processing in SMARTWEB and will then introduce the
component architecture we developed. Attention will be drawn
to implementation issues of the information hub (IHUB) and its
performance to enable real-time interactive queries to the Se-
mantic Web.

2. Requirements
Dialogue processing in SMARTWEB differs from traditional di-
alogue systems in various ways. Roughly speaking, a tradi-
tional NLP dialog system realises the recognise - analyse - re-
act - generate - synthesise pipeline [7]. Once the recogniser has
started, the information in the pipeline is propagated until the
end, which means, that the user/system interaction is reduced to
user and result messages (Figure 1). If the user uses “barge-in”
to stop or modify his input, it might interrupt the output of the
synthesised reaction. However, it is unclear whether or not the
internal state of the system reflects this interruption. In more or
less stateless environments like VoiceXML based solutions this
is a viable way to go.

Figure 1: Traditional Dialog Engine architecture. The user is
presented with final result at the end of the processing pipeline.

The dialogue engine of SMARTWEB realises the analyse
- react - generate steps from parsing the output of the speech
recogniser over the connection to the Semantic Web interface
and finally to the rendering of the graphics and generation of

5http://www.sympalog.de



the input to the speech synthesiser. The I/O interfaces use the
W3C recommendations EMMA for multimodal I/O representa-
tions, RDF for the interaction with the Semantic Web interface
and the Speech Synthesis Markup Language SSML to connect
to the speech synthesis subsystem. In our highly interactive,
context-sensitive and multimodal system environment we have
to find advanced solutions to control the flow of information in
the dialogue system. SMARTWEB accesses the open domain of
the Semantic Web. This requires a large language vocabulary
for recognition and processing as basis. Also, the user has to
have the opportunity to intervene early in the processing to cor-
rect and clarify the input.

Formal queries to the Semantic Web are posed in an ex-
plicit query language which are ontology instances serialised
as EMMA/RDF XML-files. The user interaction is focused on
deriving this representation from the user input, which should
be voice input as standard, despite its interpretation difficulties.
In combination with the mobile use with its varying acoustic
conditions, this requires immediate multimodal feedback on the
smartphone.

In general, situations where the user can intervene are the
direct manipulation of interpretation results with the pen and
the indirect manipulation with speech. The pen can be used to
correct the best recognition result. It is immediately presented
on the screen and the user is able to edit, delete or insert words.
In the next step, he can correct the understood semantic content:
the output of the dialogue speech interpretation module will be
paraphrased and realised on the screen. The user can again edit,
delete or insert concepts. This representation is intentionally
similar to the Semantic Web query being posed, but the user
can still intervene, before the request is sent to the Semantic
Mediator. This module is the gateway to the Semantic Web
and addresses different strands of search technology, such as a
semantic Q&A-system, or an ontology database. Of course, the
user can cancel a request if the answer is not important anymore
- the reasons might vary, e.g., the system is searching too long.
A CANCEL button is visible permanently on the interface.

Using speech, the user can correct an utterance as soon as
he realises the error. An example like

“I did not mean Fuji but Fiji.”

can be uttered during the processing of the sentence or after the
system delivered an answer to the original utterance.

All these interventions can be viewed as barge-in. The di-
rect manipulation actions on the interface are clearly defined
and can be processed in a (relatively) straightforward way in
the processing chain of the dialogue module. However, if the
user corrects items on the screen, a re-interpretation has to take
place. The underlying architecture must support this fast-and-
easy re-interpretation. Figure 2 outlines the user in the interpre-
tation loop, where REAPR is the acronym for the reaction and
presentation module. Speech based barge-in differs from that
processing mode. While the direct manipulation takes place in-
side an interpretation step, a new utterance from the user re-
quires, for first, a complete interpretation of the utterance and,
for second, the initiation of the intended activities [8].

Though we need the flexibility to cope with direct user in-
teractions, we still want and need to reuse well-tested off the
shelf components available at our lab that were developed over
the years in various projects like Verbmobil6 [9], Smartkom7

6http://verbmobil.dfki.de
7http://www.smartkom.org

[10], Miamm8 [11], and Comic9 [12], and for various integra-
tion platforms. All these components are written in Java.

Another requirement of our integration platform is that it
must be fairly easy to replicate a complete dialogue module:
SMARTWEB will be demonstrated in a realistic environment
where multiple users are able to connect to the access system.
As a consequence the systems structure must ease the start of
new dialogue module instances to process the requests of new
users.

Figure 2: User in the Interpretation Loop.

3. Dialog system components
Even though we have to integrate different, self-contained pro-
cessing modules, we benefit from the fact that all are written in
Java. The architecture we developed follows the hub-and-spoke
architecture, and is topologically similar to the Galaxy Commu-
nicator and the Open Agent Architecture (OAA). In contrast to
OAA the hub in our system – which we named IHUB – does not
reason about the content of a message. It only routes the mes-
sages between the components and controls the validity of the
messages. Figure 3 shows all modules in our dialogue system.

Figure 3: Server-based Dialogue System Components

The dialogue module employs simple and clean interfaces
to external modules such as the speech recogniser. The EMMA
Unpacker and Packer (EUP) component provides the communi-
cation with the external world and communicates with the other

8http://www.miamm.org
9http://www.hcrc.ed.ac.uk/comic



modules in the system, namely the Multimodal Recogniser, the
Semantic Mediator which provides the interfaces to the Seman-
tic Web, and the Speech Synthesis.

The actual processing starts with the speech interpretation
component (SPIN). Its input is mainly the N-best word chains,
the output is a parsed word chain containing an RDF/S descrip-
tion for the analysable parts of the chain.

The modality fusion and discourse component (FADE)
keeps track of the ongoing discourse, completes different types
of anaphora, and merges input from different modalities. In-
put is mainly a parsed word chain, and the gesture description
on an ontological level with geometric position. The output is
the enhanced word chain (e.g. resolved co-references) and the
completed ontological description of the user’s utterance.

The system reaction and presentation component REAPR
decides what to do with the interpretation of the user’s input. It
gets all input from SPIN (the processed best word sequence) and
FADE (the query’s words and completed ontological descrip-
tion). These intermediate results are presented on the screen and
can be edited by the user. If the user changes the paraphrase or
original input, the message is sent back to the originating mod-
ule for reinterpretation. Finally it sends the user’s request to
the Semantic Mediator. The results obtained from the Seman-
tic Mediator are prepared for presentation and rendered on the
mobile device.

If there is a semantic representation as answer, the text gen-
eration module NIPSGEN generates a text, which is sent to the
speech synthesis.

All messages are routed through the IHUB. It knows about
the scheduling requirements between subcomponents and the
addressees of particular messages. This knowledge is the cen-
tre piece of the hub-and-spoke architecture and is embedded in
IHUB’s rule base. The internal communication between com-
ponents is based technically on the exchange of objects con-
taining ontological information, using the Jena Semantic Web
framework10 for Java. We would like to place emphasis on the
ontology instances that are communicated between the compo-
nents. Every component adds its processing output in ontologi-
cal form. The result being sent to the Semantic Mediator is the
ontological semantic description of the user query.

Additionally, the IHUB has to block messages which are
no longer valid. Consider a SPIN result that was passed both to
FADE for discourse processing and to REAPR for immediate
control by the user. If the user changes a word, REAPR sends
back the new message to SPIN. FADE, in the meantime, did
already process the previous interpretation and passes it on to
the IHUB for further distribution.

To control the messages we employ a simple mechanism:
All messages communicated have a turn (major) and a job (mi-
nor) number. If the user corrects any input, the job number of
the resulting message is increased. All jobs with a lower job
number are invalidated and blocked by the IHUB. This correc-
tion mainly takes place at two processing stages during interac-
tion: Firstly, the voice input must be interpreted as natural lan-
guage input. Secondly, the natural language input (text) must be
semantically parsed and transformed to a Semantic Web Query.
The IHUB’s message blocking behaviour is designed for allow-
ing flexible corrections and reinterpretations at these stages.

Our message blocking design is beneficial in that we do not
have to change the internal logic of the components of the di-
alogue system. They terminate processing all incoming mes-
sages, the produced output may be discarded then. This is

10http://jena.sourceforge.net

safe for all components without a memory. i.e., for the ma-
jority. Modules like FADE which contain the dialogue mem-
ory, amongst other things, have to augment the standard modus
operandi. We therefore introduced two additional signals (mes-
sages) in the architecture.

• COMMIT: if REAPR sends the final interpretation of the
user’s input to the Semantic Web, it sends this signal, in-
cluding the turn and job number, to the IHUB, which dis-
tributes it to all components. These modules then know
which interpretation is the “final” one and can update the
respective persistent memories.

• CANCEL: if the user pushes the CANCEL button or
says something like “Stop it”, the respective turn/job
number combination is also distributed throughout the
system. If a component with memory is currently in the
process of interpreting this input, all intermediate repre-
sentations can be erased, or, if a COMMIT was already
sent, the entries must be marked in the dialogue memory
as cancelled by the user. Since the user can refer to his
own, albeit cancelled, input the information in the dia-
logue memory can still be useful.

4. Implementation
Following the general object-oriented software development
framework, we implemented the basic IHUB functionality with
a main controller class and interfaces for the components which
are realised as threads in one Java environment. The interface
contains the basic send/receive methods and functionality for
basic error handling. Control functionality comprises the con-
trolled start and termination of components and the restart of
threads in the case they have thrown an error previously. Also,
a basic control GUI is available to see ”inside” the system and
to support development and debugging.

One dialogue engine for one user therefore comprises of
an IHUB controller as master process and one thread for each
component in figure 3. The interface to the outside world, the
EMMA unpacker and packer EUP, also runs as independent
thread. If it gets a new EMMA message from the multimodal
recogniser, it creates the internal, Jena based representation of
that message. All control information, like turn number, and
start and end time, are copied from the corresponding EMMA
slots and inserted to the Jena message. EUP then sends the mes-
sage to the IHUB with job number 1 for further processing.

In the IHUB, a straightforward rule based mechanism de-
cides on the addressees of a message based on the sender. The
base work flow is guaranteed by implication rules that at first
take sender information, including time, turn and job number,
as antecedent. Implication rules are expressions like X ⇒ Y ,
where X and Y are disjoint sets of items. Our implications are

• EUP ⇒ REAPR,SPIN (immediate representation,
interpretation)

• SPIN ⇒ REAPR,FADE (immediate representa-
tion, discourse processing)

• FADE ⇒ REAPR (immediate representation)

• REAPR ⇒ FADE,SPIN (commit rendering, in-
crease job number)

These rules are crafted by hand and represent the flow of
the dialogue system along the principal design of the compo-
nents. Since a message may have several addressees, which
may synchronously update a message, we need a criterion to



discard older messages. Therefore a component must increase
the job number if the message was altered in the sense that the
user changed the content through intervention in the interpreta-
tion loop. The IHUB then knows that messages with lower job
numbers for the same turn must be discarded. Note that com-
ponents that enrich the description of a message, like FADE, do
not increase the job number, since the content as stated by the
user remains the same basically.

The rules in the IHUB don’t analyse the content of a mes-
sage beyond the sender and the turn and job numbers. There-
fore, the logic within the hub is fast and does not delay process-
ing significantly longer than a direct module-to-module com-
munication path.

In a first performance evaluation we measured whether
there is any significant communication overhead, whether the
passing of structured objects i.e. instances of an ontology does
not hamper the speed of message passing and how message
blocking for a new interpretation performs.

The exchange for messages containing between 100 and
10000 characters in a realistic message exchange pattern be-
tween the components needed between 5.22 ms to 5.72 ms.
This time does not vary even if you repeat the experiments
up to 10000 times. Medium message run-times between sub-
components over the IHUB for structured data using the Jena
data structures are also in the 5ms range on a standard lap-
top (Pentium 4, 2.66 GHz) In a further experiment where we
utilised the message blocking feature the processing times show
almost no measurable differences to the processing times as pre-
sented in both previous tests.

5. Conclusion
In this paper we motivated and presented the implementation of
an integration framework for a mobile multimodal dialogue sys-
tem accessing the Semantic Web. The IHUB allows us to reuse
already existing components for interpretation and processing
of multimodal user interactions. The framework was developed
with two major requirements. On the one hand it has to facili-
tate the integration of the user in the interpretation loop which is
important in our domain, the multimodal access to the Semantic
Web. The Semantic Web query must be as explicit and as ac-
curate as possible, therefore we give the user the power to con-
trol and enhance the interpretation process of his query. On the
other hand, the integration framework must support that the re-
sulting dialogue system can be started in multiple incarnations
to enable an efficient multi-user operation of the SMARTWEB
access system. Since existing frameworks like OAA or Galaxy
Communicator support these requirements only partially, if at
all, we came up with a new realisation of the hub-and-spoke
architecture for dialogue systems.

In the future we may need further intelligence to the IHUB
in terms of the rule base and the expressivity of the rule lan-
guage. The use of Jena provides us with a rule engine which
is able to encompass more of processing workflow intelligence.
We would then be able to resort to our domain and discourse on-
tologies in order to create rules based on the information content
of a message. However, we strive for simplicity in the IHUB
and will add these functionalities only if really needed.

6. Acknowledgments
We would like to thank Tim Gehrmann and Alexander Pfalzgraf
for fruitful discussions and for their help during implementation
and evaluation of the system, and Markus Löckelt for useful

input on earlier versions of this paper.
This research was funded by the German Federal Ministry

for Education and Research under grant number 01IMD01A.
The views expressed are the responsibility of the authors. Points
of view or opinions do not, therefore, necessarily represent of-
ficial Ministry for Education and Research position or policy.

7. References
[1] S. Seneff, R. Lau, and J. Polifroni, “Organization, Com-

munication, and Control in the Galaxy-II Conversational
System,” in Proc. of Eurospeech’99, Budapest, Hungary,
1999, pp. 1271–1274.

[2] A. J. Cheyer and D. L. Martin, “The Open Agent Ar-
chitecture,” Autonomous Agents and Multi-Agent Systems,
vol. 4, no. 1–2, pp. 143–148, 2001.

[3] K. Bontcheva, V. Tablan, D. Maynard, and H. Cun-
ningham, “Evolving GATE to Meet New Challenges in
Language Engineering,” Natural Language Engineering,
vol. 10, 2004, special issue on Software Architecture for
Language Engineering.

[4] G. Herzog, A. Ndiaye, S. Merten, H. Kirchmann,
T. Becker, and P. Poller, “Large-scale Software Integration
for Spoken Language and Multimodal Dialog Systems,”
Natural Language Engineering, vol. 10, 2004, special is-
sue on Software Architecture for Language Engineering.

[5] K. R. Thorisson, C. Pennock, T. List, and J. DiPirro, “Ar-
tificial intelligence in computer graphics: A construction-
ist approach,” Computer Graphics, pp. 26–30, February
2004.

[6] W. Wahlster, “Smartweb: Mobile applications of the se-
mantic web,” in GI Jahrestagung 2004, P. Dadam and
M. Reichert, Eds. Springer, 2004, pp. 26–27.

[7] J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent, “An Architecture for a Generic
Dialogue Shell,” Natural Language Engineering, vol. 6,
no. 3, pp. 1–16, 2000.

[8] R. Carlson, J. Hirschberg, M. Swerts, and G. Skantze,
Eds., ISCA Tutorial and Research Workshop on Error
Handling in Spoken Dialogue Systems, 2003.

[9] W. Wahlster, Ed., VERBMOBIL: Foundations of Speech-
to-Speech Translation. Springer, 2000.

[10] ——, SmartKom: Foundations of Multimodal Dialogue
Systems. Berlin: Springer, 2005.

[11] N. Reithinger, D. Fedeler, A. Kumar, C. Lauer, E. Pecourt,
and L. Romary, “MIAMM - A Multimodal Dialogue Sys-
tem Using Haptics,” in Advances in Natural Multimodal
Dialogue Systems, J. van Kuppevelt, L. Dybkjaer, and
N. O. Bersen, Eds. Kluwer Academic Publishers, 2005.

[12] N. Pfleger, “Context based multimodal fusion,” in ICMI
’04: Proceedings of the 6th international conference on
Multimodal interfaces. ACM Press, 2004, pp. 265–272.


