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Abstract

In this paper, we present a novel approach, named RS2D,
to risk driven semantic service query routing in unstruc-
tured, so called pure P2P networks. Following the RS2D
protocol, each peer dynamically learns about the query an-
swering behavior of its direct neighbours. without prior
knowledge on the semantic overlay. The decision to whom
to forward a given service request is then driven by the es-
timated mixed individual Bayes’ conditional risk of routing
failure in terms of both semantic loss and high communi-
cation costs. The results of our experimental evaluation of
retrieval performance and robustness show that RS2D top
performs compared to other relevant systems.

1. Introduction

The retrieval of relevant services is one key to service
oriented computing in the web and semantic web. As of to-
day, web services are supposed to be still discovered mainly
by means of central repositories or registries such as UDDI
[1]. In contrast, unstructured P2P service networks are ex-
pected to be robust against dynamic changes in the under-
lying network topology at the very expense of adminis-
trative communication overhead in due course of the self-
regulation of the peers. The major challenge of decentral-
ized semantic Web service retrieval in unstructured P2P ser-
vice networks is to keep the communication costs of service
retrieval low with reasonably high precision of the returned
results.

Different approaches to solve this problem have been
proposed in the literature; an accessible survey is provided
in [2]. Whereas broadcast-based approaches are very ro-
bust with high precision they typically suffer from poor
scalability due to their high communication overhead. Ran-
domized routing usually keeps the communication effort
low, but at the expense of low precision of the returned
results. Our solution to this problem is the first risk as-
sessment driven semantic service query routing protocol,

named RS2D. Key idea is to let the peers dynamically learn
the average query-answer behavior of their direct neigh-
bours in the network for making individual probabilistic risk
based routing decisions with respect to both semantic gain
and communication costs. In contrast to other existing ap-
proaches, RS2D does not require any prior knowledge on
the environment including service distribution, global on-
tologies, or network topology. We implemented the RS2D
protocol and experimentally evaluated its performance and
robustness in randomly generated unstructured P2P net-
works in different scenarios.

The remainder of this paper is organized as follows: Af-
ter brief discussion of related work in section 2, we provide
the outline of the RS2D protocol in section 3, and provide
the details of the underlying Bayesian risk based routing
decision rule in section 4. Section 5 provides and discusses
the results of the experimental evaluation of RS2D com-
pared with other relevant approaches. Section 6 presents
some insights into the implementation of the RS2D system
and its simulation, and section 7 concludes the paper.

2. Related Work

The GSD-algorithm by Chakraborty et al.[4] takes ad-
vantage of the hierarchical structure of a global underly-
ing ontology of the semantic network. Peers advertise their
services not as service description, but with an ontological
classification. When a peer gets a request for a service, it
uses this classification to determine the distance between
the requested and the offered services in the ontology tree.
This approach has the clear disadvantage that only a static
and commonly known ontology can be used. Additionally,
sometimes the ontological classification might not be suffi-
cient to find matching services, e.g. if they differ in their
input and output parameters.

Another approach was proposed by Haase et al. with
Bibster [8]. Their system relies on service advertisements
that build up a semantic topology overlay. This is done by
a special advertisement caching policy: peers add adver-
tised services of neighbours to their list of known services



only if they are semantically close to at least one of their
own services. This way, peers become experts for seman-
tically similar services. When a query then asks for a cer-
tain service, Bibsters routing mechanism chooses those two
neighbours whose expertise is closest to the query. Thus the
query travels along a path of peers with similar expertise
what increases the result precision and decreases communi-
cation overhead. However, the message traffic induced by
the initial exchange of service advertisements is rather high.
Also, prior knowledge about other peers’ ontologies as well
as their mapping to local ontologies is assumed.

To the best of our knowledge, there exist no other rel-
evant and implemented solutions to the problem of decen-
tralized semantic service retrieval in unstructured P2P net-
works.

3 RS2D Routing Protocol Overview

One major challenge of decentralized service retrieval
in unstructured P2P networks, is to achieve a reasonably
high retrieval performance with low communication costs
without any prior knowledge about the environment includ-
ing services, ontologies, or network topology. There is no
central directory or repository in the system. The basic
idea of our solution to the problem is to allow each peer
to quickly learn which of its direct neighbours in the net-
work will probably return relevant semantic web services
for a given query with minimal risk of both semantic loss
and high communication in total. We first outline the RS2D
protocol to be followed by each peer, and then provide the
details of it in subsequent sections.

Let be for each peer v, q a service request (query); S set
of locally known services, Sq the current top-k relevant ser-
vices (URIs) retrieved; a ∈ R the communication effort of
propagating q, that is the number of messages in the rout-
ing subtree for q in the network graph; TS the individual
training set of a peer consisting of information about previ-
ous queries and their results; hop ∈ N the distance from v
in the network. Then, each peer v performs the following
steps:

• Determine the set S ′
q of services that are semantically

relevant to q: S ′
q = Sq ∪ {∀s ∈ S : σ(s, q)}.

The function σ(s, q) ∈ [0, 1] maps the matching re-
sults of the used semantic web service matchmaker
to [0, 1], where σ(s, q) = 0 and σ(s, q) = 1 repre-
sent a matching failure and exact match, respectively.
For our experiments with RS2D, we used the hybrid
OWL-S service matchmaker OWLS-MX [9] which
renders RS2D independent from any fixed global on-
tology, as this matchmaker dynamically maintains a lo-
cal matchmaker ontology by means of logic based rea-

soning upon provided service advertisements and re-
quests (see also sect. 6).

• For each peer vk in the direct neighbourhood of v
(hop = 1):

– Estimate the expected semantic gain E(y), and
communication costs E(a) of forwarding request
r = (q, Sq, S

′
q, a) to vk based on the actual train-

ing set TS.

– Compute the individual Bayes’ conditional risk
of routing r to vk, or not (cf. section 4).

– Send r to vk, if the risk of forwarding is minimal,
or if (initially) TS = ∅ then multicast r to all
neighbours.

• Observe the query answer behavior of neighbour peers
vk by storing received replies with a semantic score
L(S′′

q ) of intermediate results S ′′
q returned and com-

munication costs a per query in the local training set
TS. The semantic score measures the quality of the
set of retrieved services with respect to q by means of
L(Sq) :=

∑
s∈Sq

σ(s, q).

• Reject a received request r, if it has been already pro-
cessed locally, or a fixed number of forwarding steps
(hops) is reached, or the risk of further forwarding is
maximal for each of its neighbours.

• Return set of top-k semantically matching services in
a priority queue if the semantic gain is positive, that is
L(S′′

q ) − L(S′
q) > 0.

Each peer collects the replies on query q it receives from
its neighbours and merges them together with its local re-
sults set which is then returned to the one who did forward
q to it. This way, the result set for a query is created while
being propagated back to its origin. At the same time, each
peer involved in this process continuously learns about the
query answering behaviour of each of its neighbours in gen-
eral. It caches the individual observations in its local train-
ing set each time it receives a reply. This, in turn, enables
each peer to estimate the corresponding risk of forwarding
a query to individual peers.

4 Bayes Risk of Query Routing

The decision of each peer to route a given query q to any
of its neighbours vk is based on the individual estimated
mixed risk of doing so in terms of both semantic gain and
communication costs. The estimated semantic gain E(y),
the estimated communication costs E(a) as well as the
probability with which a neighbour will answer are com-
puted from the training set TS by means of a naive Bayes



approach [5]. More concrete, the risk assessment driven
routing decision bases on the computation of the individual
Bayes’ conditional risk defined as:

R(αi|x) =
|C|∑

j=1

λ(αi, cj) · P (cj |x) (1)

with

• Binary routing alternatives α0 and α1 for not routing,
respectively, routing the query.

• Query answer class set C = {c0, c1} with classes c0

(= query rejected because it already was processed by
vk) and c1 (= vk answers to the query with a semantic
gain, i.e. with L(S ′′

q ) − L(S′
q) > 0.

• Observation x of query answering behavior of vk for
past queries

• Mixed semantic and communication loss λ(αi, cj) for
routing alternative αi and query answer class cj .

• Conditional probability P of query answering class c j

for given observation x.

Having computed the mixed risk values for each binary
routing alternative for each of its neighbours, the peer then
routes the query q only to those peers for which the corre-
sponding alternative with minimal risk

α∗ = argmin{R(α0|x), R(α1|x)} (2)

is α1, otherwise rejects. This minimizes the overall risk
R =

∫
R(α(x)|x)P (x)dx in compliance with the known

Bayes Decision Rule, in other words a decision for the al-
ternative with minimal overall risk is optimal.

What does an individual peer observe in concrete terms?
From each reply to a given query q it received from some
neighbour vk, it extracts data into a training record t =
(q, S′

q, S
′′
q , L(S′

q), L(S′′
q ), f id, tid, cj, a) and stores it in a

local training set TS. These observation data are as fol-
lows:

q: Request in terms of the description of a desired service
written in a semantic web service description language
such as OWL-S.

S′
q: Set of top-k relevant services retrieved before forward-

ing the request.

S′′
q : Set of top-k relevant services retrieved after forward-

ing the request.

L(S′
q), L(S′′

q ): Semantic score of S ′
q, S′′

q

fid: Identifier of the peer from which the request was re-
ceived.

tid: Identifier of the peer to which the request was for-
warded.

cj : Query answer result class (c0 or c1).

a: Communication effort entailed by the decision to route
the request to vk, i.e. the number of message hops in
the routing subtree of the request.

The observation vector x ∈ N
2 used for risk estimations

is defined as x = (fid, tid). Our experiments showed, that
already the use of these two parameters yield an reason-
ably well prediction. To be able to predict the values of
λ, E(y), E(a) and P (cj |x), we filter the training set in dif-
ferent ways. Let TSp1,...,pz ⊂ TS denote the set of train-
ing records t with parameters p1 to pz set to given values,
for example, TSfid,tid the subset which has the given val-
ues for fid and tid (here: z = 2 having p1 = fid and
p2 = tid).

The estimated semantic loss of routing q to a peer vk (al-
ternatives α0, α1) for possible query answer classes (c0, c1)
based on its average Q/A behavior according to the actual
training set is computed as follows:

λ(α0|·) λ(α1|·)
c0 −E(a)κ 2κ
c1 τE(y) −τE(y)

(3)

The average message transmission costs are denoted by
κ, and assumed to be constant. In addition, the average ex-
pected semantic gain E(y) and average number of messages
E(a) are defined as follows:

E(y) :=
1

|TSfid,tid|
∑

t∈TSfid,tid

[L(S′′
q )]t − [L(S′

q)]t (4)

E(a) :=
1

|TSfid,tid|
∑

t∈TSfid,tid

[a]t (5)

with [x]t extracting the parameter x from observation record
t in the training set TS. The real-valued user preference pa-
rameter τ denotes the weighted relation between maximum
semantic gain (y = 1) and communication costs the user is
willing to accept; in our experiments, we obtained the best
results with τ = 1000. Each of the above defined cases
of semantic loss of a routing decision by an individual peer
v with respect to forwarding a given request to one of its
neighbor peers vk is justified as follows:

λ(α0|c0) No routing of the request to the targeted peer vk

takes place, but it would have been rejected by this peer
anyway. As a consequence, the risk based decision
is of benefit for v in terms of saved communication
efforts (−E(a)κ).



λ(α0|c1) In this case, peer v does not forward the query to
vk but would have received a positive reply with se-
mantic gain. Hence, the loss is computed in terms of
the costs of the lost opportunity, that is the semantic
gain weighted by its relation to individually prefered
upper bound of communication costs (τE(y)).

λ(α1|c0) Peer v decides to route the query to vk which re-
jects it. Hence, the decision was not beneficial for v in
that it produced unnecessary communication costs of
the specific request and reply.

λ(α1|c1) The request of peer v will be answered by vk with
some expected semantic gain for v. Hence, the deci-
sion is beneficial for v in terms of negative loss (utility
−τE(y)).

Using λ for computing the risk of routing alternatives
α0, α1 does reflect the classical loss relation between utility
and costs:

R(α0|x) = −E(a) · κ · P (c0|x) + τ · E(y) · P (c1|x) (6)

R(α1|x) = 2 · κ · P (c0|x) − τ · E(y) · P (c1|x) (7)

Alternatively, one could have defined the semantic loss
of the query answering class c1 directly as difference be-
tween expected semantic gain and average communication
costs in terms of number and volumes of messages ex-
changed:

λ′(α0|·) λ′(α1|·)
c0 −E(a)κ 2κ
c1 E(y) − E(a)κ −E(y) + E(a)κ

(8)

However, according to the results of our experimental eval-
uation, this option can be significantly improved by the one
chosen in terms of retrieval performance with only slightly
increased communication efforts.

Then, the conditional probability P (cj |x) of possible an-
swering result classes of the considered peer vk based on
its observed Q/A behavior in the past is computed as usual
based on he prior probability P (x|cj), the likelihood P (cj),
and the normalizing evidence factor P (x) from the training
set TS:

P (cj |x) =
P (x|cj) · P (cj)

P (x)
(9)

with

cP (cj) =
|TScj |
|TS| (10)

P (x|cj) =
n∏

l=1

P (xl, cj) (11)

P (x) =
|C|∑

j=1

P (x|cj) · P (cj) (12)

with the probability P (xl, cj) of the occurence of the ob-
servation feature component xl together with class cj de-
fined as

P (xl, xj) =
|TSxl,cj |
|TScj |

(13)

The decision making process heavily relies on the train-
ing set TS that each peer maintains individually. Initially,
when a peer joins the network, its training set TS is empty;
in this case, it sends its queries to all its direct neighbours
until the size (θ(TS))) of its training set, more specifically
TSfid,tid is sufficiently large for continuing with risk as-
sessment driven routing decisions from this point. Our ex-
periments provide evidence in favor of θ(TSfid,tid) = 1
(θTS = 8 when using the alternative semantic loss defini-
tion in equ.(8)).

5 Evaluation

We have implemented the RS2D protocol and evaluated
it by means of simulation. For this purpose, we randomly
generated unstructured, sparsely connected P2P networks
of different size with 50, 100, 200, and 576 peers, and
used the OWLS-TC2 service retrieval test collection [6]
which contains 576 OWL-S services, 36 queries with rele-
vance sets, and the OWLS-MX matchmaker [7] for seman-
tic matching by each peer.

Figure 1. Example of unstructured network of
576 peers used in our experiments

In each simulation run, the queries are sequentially pro-
cessed by each peer to generate the training set, and the top
k (k = 20) services are returned by each peer only. The



P2P service retrieval performance is measured in terms of
micro-averaged precision and recall against communication
overhead with respect to the maximum hop count for query
propagation.

We evaluated the performance of the RS2D service query
routing mechanism against the following relevant alterna-
tive approaches:

BCST Classic broadcast based routing forwards the query
to all direct neighbours until a maximal number of
hops is reached, or all neighbours reject the query.
BCST always yields optimal precision but at the very
expense of communication efforts.

RND2 Random peer selection: This method randomly se-
lects two direct neighbours of a peer vm to which the
query is forwarded. RND2 has low communication
costs but low precision as well. It is also used by de-
velopers of BIBL in [8] for the comparison of perfor-
mance.

BIBL Bibster-like routing: This routing mechanism sim-
ulates the one used in the P2P system Bibster [8]. In
particular, peers have prior knowledge about a fixed se-
mantic overlay network that is initially built by means
of a special advertisement caching policy. Each peer
only stores those advertisements that are semantically
close to at least one of their own services, and then se-
lects for given queries only those two neighbours with
top ranked expertise according to the semantic overlay
it knows in prior.

5.1 Service retrieval performance

In our experiments, we evaluated two essential aspects of
P2P service retrieval performance measurement:

1. Service distribution to peers: Uniformly at random Vs.
Single peer hosts all relevant services per query

2. Query distribution to peers by the user: Random
querying of peers Vs. One central Q/A peer, as a single
entry point to the system for the user

For reasons of space limitation, we present only represen-
tative results of selected experiments.

Experiment 1: As figure 2 shows, in a network of 576 peers
with evenly distributed 576 services, and random query-
ing of peers, RS2D outperforms BIBL as well as RND2 in
terms of precision with lesser number of hops which yields
a better response time. The same results can be obtained for
RS2D in smaller networks.

However, unlike BCST this nearly optimal performance
of RS2D does not come at the very expense of communi-
cation but only almost one third and twice of that of BCST
and BIBL, respectively, as shown in figure 3.

Figure 2. Experiment 1, Precision: RS2D
outperforms BIBL and RND2, and performs
close to optimal BCST.

Figure 3. Experiment 1, Communication.

In more detail, RS2D performs as bad as broadcast in
its initial training phase while in case of processing the last
query of the test collection in one simulation run, RS2D
outperforms even the more savvy BIBL system (see fig.4).

Please note that this provides evidence in favor of mixed
risk-driven routing based on learned average Q/A behavior
rather than query-specific routing only. It would be interest-
ing to investigate a mix of both approaches in future.
Experiment 2: We also simulated the case of single query
authorities and random querying of peers. In this case, one
peer hosts all services that are relevant to a specific query,
thus possesses the complete relevance set of this particular
query. For each query a different peer was chosen at ran-
dom. Then the queries were executed uniformly at random
from different peers as in the first experiment.

In this case, BIBL is more efficient than its competitors
as it heavily benefits from the exploitation of the given se-
mantic overlay structure for optimal routing. RS2D is out-
performed by BIBL because it is difficult to find the au-
thority for a query when only the average query answer be-
haviour is considered (see fig.5).

Not surprising, in this case the communication costs of
RS2D are higher than that of BIBL with given semantic



Figure 4. Experiment 1, Communication (first
and last query): While in the initial train-
ing phase RS2D produces as much traffic as
BCST does, it even outruns BIBL’s traffic on
the last executed query due to the learned
average query answering behaviour. BIBL is
more efficient in communication in the first
run because of its exploitation of given se-
mantic overlay knowledge for routing.

topology but still significantly lower than BCST as shown
in figure 6.
Experiment 3: In case where one centrally located peer
executes all 36 queries for the user, thereby acting as a sin-
gle point of entry, with 576 services distributed uniformly
at random in a 576 peer network, and θTS = 1, RS2D
performed as well as BCST in terms of precision (BCST-
/RS2D curves are overlapping in fig.7) but drastically re-
duced communication overhead.

5.2 Robustness

The remaining question is how robust RS2D enabled
unstructured P2P service networks are against dynamic
changes, when peers can enter or leave the network at any
time. For this purpose, we tested RS2D in a 576 peer net-
work where each peer is hosting exactly one service but
wiht only 80% of all the peers ( = 460) being online. Dur-
ing the simulation run, we randomly let new peers join
and leave the network with a rate of about one peer join-
ing/leaving each 5 simulation steps (about 400 join/leave-
operations per simulation run). In case of incomplete return
paths for a query due to relevant peers having left the net-
work, the peer in question tries to find the subsequent peers
in the path. If this strategy fails, it sends out a limited 2-hop

Figure 5. Experiment 2, Precision: RS2D still
is almost optimal. BIBL exploits its given se-
mantic topology to its maximum. Both out-
perform RND2.

Figure 6. Experiment 2, Communication.

broadcast of the answer to its neighbours. If this last fall-
back also fails, the answer to the query is discarded yielding
a total loss of all related intermediate results.

The join operation for a single peer in RS2D enabled
P2P networks is implemented as a simple handshake-
advertisement: Each peer that wants to join the net-
work, broadcasts a one-hop advertisement to all peers
in its direct (one-hop) neighbourhood and then waits for
acknowlegement-messages. If at least one peer answers, the
requesting peer considers itself to be online, and both peers
mutually take themselve for new routing decisions into ac-
count. The leave operation is completely passive: A peer
just drops out and stops answering to messages. Each of
its neighbouring peers will detect this as soon as it wants to
send a new message to the dropped peer, and removes all
training records that relate to this peer from the local train-
ing set.

As shown in figure 8, RS2D turned out to be reason-
ably robust against dynamic changes in the network topol-
ogy. However, the precision went down for all tested rout-
ing mechanisms due to the following reasons. First, some
of the relevant services are provided by offline peers, hence



Figure 7. Experiment 3, precision: RS2D per-
forms optimal (curve is on that of BCST).
Central peer searches minimal spanning tree
for all queries after initial multicast; Commu-
nication: RS2D outperforms BIBL with signif-
icantly lower communication effort.

were unreachable. Second, some query answers were not
propagated to the querying peer due to broken links in the
network. Please note that the precision of BCST is optimal
for this scenario, and RS2D is close to it but with only half
of its communication efforts. This is because the the initial
training phase is only repeated for recently joined peers - all
stable peers are still risk-evaluated when taking the forward-
decision.

Not surprising, Bibster-like routing performs poor in dy-
namic environments since its semantic topology breaks to
the same extent the network topology changes. Building up
a semantic topology is a very costly process as each peer has
to advertise its hosted services at the cost of one advertise-
ment message propagated over 3 hops in our experiments
leading to a traffic load of about 212.000 messages in a 576
peer network, and about 5.800 messages for each of the 36
queries.

For more details on the RS2D performance and robust-
ness experiments, we refer the interested reader to the RS2D
experiment web page [3].

Figure 8. Experiment 4, dynamic: Preci-
sion goes down for all routing methods but
RS2D significantly outruns both Bibster and
random selection, hence is more robust to
network-fluctuation. However, this comes
at the very expense of communication over-
head compared to Bibster, though half of that
of Broadcast.

6 Implementation

The RS2D approach to OWL-S service retrieval in un-
structured P2P networks has been implemented in Java 1.5,
and evaluated by simulation on one server. The architec-
ture of the simulator is shown in figure 9; the simulator
also provides PHP-script based online visualization of the
experimental evaluation results.

For computing the numeric semantic score LS(Sq) used
by RS2D for its risk based routing decision (cf. section 3),
we defined a simple linear mapping (σ(s, q)) of the oputput
of the semantic Web service matchmaker OWLS-MX [9] to
the interval [0, 1] as shown in figure 10.

The OWLS-MX code is available at [7]. OWLS-MX
takes any OWL-S service description as a query, and re-
turns an ordered set of relevant services that match the query
in terms of both crisp logic based and syntactic similarity
according to five different filters and selected IR similar-
ity metric. Logical subsumption failures produced by the
integrated description logic reasoner of OWLS-MX are tol-
erated, if the computed syntactic similarity value is suffi-
cient. What makes OWLS-MX particularly suitable to ser-
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vice retrieval in unstructured semantic P2P service networks
is its capability to dynamically maintain a local ontology,
hence renders RS2D independent from the use of any fixed
global ontology like in GSD. It classifies arbitrary query
concepts into its dynamically evolving ontology based on
a commonly shared minimal basic vocabulary of primitive
components instead of limiting query I/O concepts to ter-
minologically equivalent service I/O concepts in a shared
static ontology as, for example, the OWLS-UDDI match-
maker does.

For our experiments, we used the OWL-S service re-
trieval test collection OWLS-TC which is available at [6].
The collection consists of 576 OWL-S 1.1 services; its size
in particular limited the maximum size of the unstructured
P2P networks of our experiments as we neither did extend
the collection nor distributed dummy service copies to peers
for simulation.

7 Conclusion

We presented a first approach, named RS2D, to risk as-
sessment driven semantic service retrieval in unstructured
P2P networks without prior knowledge on the semantic
overlay. It relies on the dynamic learning of averaged query-
answer behavior of peers for minimal mixed routing risk.
Experimental evaluation of RS2D showed that it is very ro-
bust and fast with reasonably high precision compared to

Fail
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-

Plug-In
-

dom / sim
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0.0

1.0 0.0 0.01.0 0.01.0 1.0 0.0 1.0 0.0

Figure 10. Used mapping of the degrees of
semantic service matching returned by the
OWLS-MX matchmaker to [0,1] for computing
the numeric semantic score.

other existing relevant approaches. It is, however, weak
in finding single query authority peers, and requires initial
training, though only for an acceptable amount of time. We
intend to make RS2D publicly available under GPL-like li-
cense at semwebcentral.org.
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