Critical Node Detection Problem Solving
on GPU and in the Cloud

Cholpon Degenbaeva
Saarland University
Saarbruecken, Germany
Email: s9chdege @stud.uni-saarland.de

Abstract—The Critical Node Detection Problem (CNDP) is a
well-known NP-complete, graph-theoretical problem with many
real-world applications in various fields such as social network
analysis, supply-chain network analysis, transport engineering,
network immunization, and military strategic planning. We
present the first parallel algorithms for CNDP solving in general,
and for fast, approximated CND on GPU and in the cloud
in particular. Finally, we discuss results of our experimental
performance analysis of these solutions.

I. INTRODUCTION

The critical node detection problem (CNDP) is a well-known
NP-complete graph-theoretical problem' [3]. In its general
version, it is defined as follows: Given an undirected graph
G = (V,E) and an integer k, the task is to identify a subset
of nodes A C V, such that |A| < k and the removal of A
results in minimal pairwise connectivity of the residual graph
G(V \ A). In this sense, the nodes in A are called “critical”
to the graph G. The critical node set A is defined as:

A = argmin Zi’jE(V\A) wi (GV\NA): A <k (1)

where G(V'\ A) is a subgraph induced by removing A from
V, and

1,
Ui, 5 = { 0,
2

The function in (2) is a connectivity measure for pairs of nodes
1 and j, while the sum in (1) can be rewritten as:

Z Op * (O’h — 1) (3)
heM 2

where M is the set of all connected components in G(V '\ A4),
and oy, is the size of component h.

Approximated solutions of the CNDP have many real-world
applications in various fields. For example, knowledge about
critical nodes can be used to identify most influential actors
in social graphs, and to design strategies for vehicle routing,
communication breakdowns, or network immunization. Many
sequential algorithms for approximated solutions of different
CNDP versions have been developed [10], [1], [8], [11], [11],
[4], but, to the best of our knowledge, there are no parallel
algorithms for solving this NP-complete problem available.
On the other hand, parallel computing on GPUs with CUDA
(Compute Unified Device Architecture) and in clouds with

if i and j are in the same component of G(V \ A),
otherwise.

INP-completeness of CNDP has been proven by its reduction to the Vertex
Cover problem, or the Independent Set problem.

Matthias Klusch

German Research Center for Artificial Intelligence

Saarbruecken, Germany
Email: klusch@dfki.de

MapReduce programs became quite popular in the past decade
in general, and is quite attractive for the development of fast,
approximated CNDP solutions in particular.

To this end, we present the first parallel algorithms for approx-
imated CNDP solving on GPU and in the cloud. Both parallel
solutions are inspired by the currently best performing state-of-
the-art sequential algorithm CND for heuristic-based solving
of the general CNDP in [3]. In particular, we significantly
reduced the computational complexity of the CND algorithm,
used this new version CND* as basis for the development of
parallel CND algorithms in CUDA and MapReduce, and tested
their performance on GPU and cloud based on a CNDP test
set of Watts-Strogatz graphs and Barabasi-Albert graphs.

The paper is structured as follows: The sequential CND*
algorithm is presented in Sect. 2, while its parallized versions
in CUDA and MapReduce are described in Sect. 3 and 4, re-
spectively. Results of our experimental performance evaluation
are shown in Sect. 5 before we conclude in Sect.6

II. SEQUENTIAL CND* ALGORITHM

In this section, we describe our critical node detection (CND*)
algorithm for a fast, sequential computation of an approxi-
mated solution of the general CNDP. It is an improved version
of the currently best performing state-of-the-art algorithm
(CND) [3] (cf. Figure 1) for approximated solutions of the
general CNDP, and served as a basis for the development
of parallel CND algorithms which we describe in subsequent
sections.

The CND heuristically computes the maximal independent set
(MIS) for a given graph G. Intuitively, the MIS by its nature
induces an empty subgraph such that the removal of nodes
that are not in the MIS of G can lead to a disconnected or
empty subgraph, which is what characterizes critical nodes of
G. In particular, the CND determines the MIS in a greedy
way, and as long as |[MIS| ! = |V| — k, it greedily selects
nodes v € V\MIS for their inclusion in MIS according to
the objective function mentioned above, which induces the
minimal connectivity score. Since the result is only optimal
in cases where the cardinality of the initial MIS is greater or
equal to k, a respective optimization procedure “LocalSearch”
is subsequentially performed. The overall runtime complexity
of the CND algorithm is O(VZ(V+ E)). We modified this
CND algorithm into a significantly faster algorithm CND* (cf.
Figure 2) with runtime O(V(V+E)) by use of an appropriate
Union-Find data structure to speed-up the MIS generation by
the original CND algorithm. This data structure supports (a)
find-type operations for locating a set corresponding to an ele-

procedure CriticalNode(G, k)

1 MIS + MaximalIndepSet(G)

2 while (|MIS| 5 |[F| — k) do

3 i argmin{Ycy, w j eV \MIS}
4 MIS « MIS U {i}

5 end while

6 refurn 7\ MIS /+ set of k nodes to delete +/
end procedure CriticallNode

Fig. 1. Basic CND procedure [3]

ment X and (b) union-type operations for merging two subsets
corresponding to x and y into one set. The find-type operations
are used by the CND* to keep track in component[node] and
sizes[component] on which component a node belongs to and
how many nodes are in a given component, respectively. A
component search is performed by the CND* each time it
iterates over nodes v; € V\MIS as candidates for MIS and
uses the component sizes to determine the connectivity score
for a candidate node’s addition to MIS. Further, the union-type
operation unite() is performed to merge two components into
one with reassigning component ids of the affected nodes in
components only after a candidate node has been found; this
operation is performed at most O(V - k) times. The CND* uses
an implementation of the data structure with O(1) for find-type
operations and O(n) for union-type operation.

The MIS is determined by the CND* in a greedy way like by
the CND (line 9), i.e. the first node is chosen arbitrarily and
added to an empty set, then the CND* keeps adding nodes that
are non-adjacent to any of the nodes in the set. In the rest of
the paper, we will call the nodes selected to be in the MIS the
selected nodes (including those added later to the initial MIS)
and nodes in the complimentary set the forbidden (critical)
nodes. All nodes in the initial MIS get unique component
ids, their components’ sizes are set to one and the number of
the forbidden nodes is counted (lines 12-20). Then the CND*
compares the number of the forbidden nodes with the given
integer k. If there are exactly k forbidden nodes, it returns
VA\MIS as set of critical nodes. If the number of the forbidden
nodes is smaller than k, then most of the nodes are already in
MIS and the CND* arbitrarily chooses k - |forbidden nodes|
nodes from the already selected ones, and adds them to the
set of forbidden nodes (lines 21-28). While the number of
forbidden nodes is greater than k, a candidate node is selected
from the forbidden nodes that minimizes the connectivity score
and added to the set of selected nodes (line 29-35). The while-
loop execution has the following invariant:

- For any selected node = : component[x] != 0

- For any forbidden node y: component[y] = 0

- Let x be from selected nodes and n € N be a number
of nodes z, such that component [z] = component[x].
Then, for any node x in set of selected nodes it holds
that sizes [component[x]] = n.

We provide details of the CND* algorithm in the following.
The next_candidate procedure of CND* searches for the next
candidate node to add to the MIS (Figure 3): It precomputes the
connectivity score for the selected nodes without the addition
of a new node (lines 6-9). In lines 10-18 it iterates through
all nodes and considers each node that has a component id
equal to zero (i.e. forbidden nodes). For each such node z the
procedure computes the score this node would have if added
to selected nodes. It is done with the score_with_node (see

INPUT: a graph G = (V, E), an integer k
OUTPUT: a set of critical nodes A C V, such that |[A| =k
1: procedure CND*: CRITICAL NODE DETECTION
2: for i =1 to G.size() do > Initialization
3: componentli] + 0
4 end for
5 maz_component < G.size
6: for i = 1 to max_component do
7 sizes[i] + 0
8 end for
9 MIS «+ find_mis(G)
10: component_id + 1
11: forbidden_count < 0
12: for i =1 to G.size() do
13: if ¢ € MIS then
14: component[i] < component_id
15: sizes[component_id] < 1
16: component_id ++
17: else
18: forbidden_count ++
19: end if
20: end for
21: if forbidden_count < k then > Trivial Case
22: X « choose arbitrary k - forbidden_count
23: nodes € MIS
24: for (each = € X) do
25: sizes[component[z]] « 0
26: component|z] + 0
27: end for
28: end if
29: while forbidden_count > k do > Main Case
30: cand_node <+ next_candidate(G, component, sizes)
31: united_comp < any_neighbour_component(G,
32: cand_node, component)
33: unite(G, component, sizes, cand_node, united_comp)
34: forbidden_count ——
35: end while
36: return V \ MIS
37: end procedure

Fig. 2. Sequential critical node detection algorithm CND*

Figure 4). If a candidate node is added to the set, then all
components reachable from it become one united component.
For computing a new score, the procedure subtracts old score
contributions from all of the reachable components, computes
a score produced by the united component and adds it to the
total score. In order to avoid processing the same component
twice the procedure marks already processed components.
Once the score induced by a candidate node is computed, the
next_candidate procedure compares it with the current minimal
score (line 12, Figure 3) and saves the candidate node and its
score only if it is smaller (lines 13-16).

Once the node for addition to MIS is found, the CND*
greedily searches for the component id that will be assigned
to components that are reachable from it. For this purpose,
it iterates over neighbor nodes, checks their component ids
and returns the first component id, which is not equal to zero
(line 31, Figure 2). Then the found component id is used to
unite all affected components and adjust their sizes which
is is done by the unite procedure (Figure 5). Let the node

INPUT: graph G, component][], sizes]]
OUTPUT: a node that induces a minimal connectivity score for
addition to MIS
1: procedure NEXT CANDIDATE
Min_score <— oo
3 candidate <+ -1
4 total_score < 0
5 max_component < G.maz_node()
6: for c =1 to max_component do
7
8

total_score <+ total_score + sizes|c|*
: (sizes[c] —1)/2
9: end for

10: for node = 1 to G.size() do

11: if component[node] = 0 then

12: score < score_with_node(node, total_score)
13: if score < min_score then

14: min_score <— score

15: candidate < node

16: end if

17: end if

18: end for

19: return candidate

20: end procedure

Fig. 3. Searching for candidate nodes for MIS

INPUT: graph G, node z, total_score, sizes|], component]]
OUTPUT: connectivity score for selected_nodes U {z}

1: procedure SCORE WITH NODE

2: new_size < 1

3 for i = 0 to G.neighboursz].size() do

4 neighbour < G.neigbours|x][i]

5 comp <— component [neighbour

6: if comp # 0 and marked [comp} # true then

7 marked [comp] — true

8

comp_score <— Sizes [comp] *

9: (sizes [comp] —1)/2

10: total_score < total_score — comp_score

11: new_size < new_size + sizes [comp

12: end if

13: end for

14: result < new_size x (new_size — 1) /2 + total_score
15: for i =1 to G.neighbours|z].size() do

16: marked[component|G.neighbour[z][i]]] < false
17: end for

18: return result

19: end procedure

Fig. 4. Computing of connectivity scores for selected nodes

that was chosen for addition to MIS be the node x: In the
initialization phase, procedure unite sets the component id of
T to be united_component and the size of united_component
to one. In order to avoid counting the same component twice,
the procedure marks the components affected by the addition
of node z (lines 4-11). With such markings done, the procedure
iterates over nodes and assigns the affected nodes to the new
united component and adjusts sizes of the affected components
(lines 12-20).

Lemma 1: Runtime of CND*. The runtime of the CND*
is determined by the runtime costs of its while-loop, thus (a)
the next_candidate procedure which is O(V + E); (b) the
searching for the component to unite next which takes O(V);
and (c) the unite procedure which is also O(V). With at most

INPUT: node id z, component id united_component, sizes|],
component||, graph G
OUTPUT: adjusts component ids of the affected nodes and sizes
of the affected components
1: procedure UNITE
2: component [z] < united_component
3: sizes [united_component] + +
> set markings
4: for i = 0; i < G.neighbours.size(); i++ do
5: neighbour < G.neighbours [Z]
6: component <— component [neighbour]
7 if component # 0 A marked [component] #1
8: A component # united_component then
9: marked [component] +—1
10: end if
11: end for
> adjust component ids of nodes and sizes of
components
12: for node = 1; node < G.size(); nodet++ do
13: comp = component|[node]
14: if comp # 0 A marked[comp] = 1
15: A comp # united_component then
16: component node} < united_component
17: sizes [comp} - —
18: sizes [united_component] + +
19: end if
20: end for
21: clear_markings()
22: end procedure

Fig. 5. Uniting affected components after node addition to MIS

O(V) times entering the loop, the overal runtime of CND* is
O(V(O(V+4E) + O(V)+0(V)) = O(V(V+E)).

III. PARALLEL CND* ALGORITHM FOR GPU

Our first parallel version of the CND* algorithm, called
pCND*(GPU), makes use of GPU computing under the CUDA
model. To realize instruction-level parallelism on many-core
GPU, CUDA programs effectively exploit the global and
shared memory of thousands of GPU registers which can be
partitioned among threads of execution organized and concur-
rently running within blocks, several caches, and execution
cores [12], [6]. A CUDA program consists of instructions
written for the host (CPU) and the device (GPU): The host part
is typically responsible for allocating/freeing memory on the
device and calling a kernel, a GPU-executable program. Once
the necessary data has been copied to the device memory, a
kernel is launched as a grid of thread blocks. The number of
threads per block and the number blocks is predetermined in
the host program. The basic strategy of the CUDA program
pCND*(GPU) is as follows:

e The given graph G is stored in the global memory and
is used with the read-only access by B blocks of T'
threads. 2

e FEach block gets its own MIS version and its own
copies of component and sizes arrays, which are stored

2@ is represented as a compressed adjacency list with two arrays: The fo
array stores all lists of adjacent nodes for each node (one after another), and
the start array which for a given node id shows where its own adjacency list
starts. Besides, the component array maps each node to its component id, and
the sizes array stores the size of each component.

in the shared memory.

e Each block employs 7" number of threads and splits
different parallelizable parts of the algorithm between
the threads.

e At the end each block will return its own found
solution and the algorithm will compare and select
the best one from all of the found solutions.

INPUT: integer k, graph, component array, sizes array, scores
array
OUTPUT: a set of k£ found critical nodes
1: procedure PCND*(GPU): CND oN GPU
> Initialization
2 block_id < current_block.block_id
3 component|]« block_id.component
4 sizes[|« block_id.sizes
5: selected_count < count_selected_nodes()
6: forbidden_count < |V|- selected_count
7 total_score < compute_total_score()
8

if forbidden_count < k then > Trivial Case

9: remove any (k — forbidden_count) nodes from MIS
10: end if

11: while |forbidden_nodes| > k do > Main Case
12: next_candidate(total_score, graph, component|],
13: sizes|], datal], score]])

14: sync_threads()

15: next_node < minarg(data, score)

16: total_score < unite(next_node, total_score,
17: graph, component[], sizes[], data[],scorel])

18: sync_threads()

19: forbidden_count < forbidden_count - 1

20: end while

21: return result

22: end procedure

Fig. 6. Parallel critical node detection algorithm pCND*(GPU)

We describe details of the pCND*(GPU) algorithm in the
following. The host (sequential) part of the algorithm prepares
arrays while the pseudocode for the device part (cf. Figure
6) runs concurrently in B blocks of 7' threads. In lines 2-4 a
thread saves a block id, to which it belongs to, and links to
the component and sizes arrays that are shared among threads
within the same block of threads. Number of the selected nodes
is counted with a helper-function (line5). Each thread iterates
over nodes in the graph with an interval of size 7. If a node
has a component id greater than zero means that it is in MIS
and a thread increments its counter. Once a thread is done
with its subset of nodes, it writes its result in the thread’s
field of the shared array. The connectivity score for the set
of selected nodes is computed in parallel by 7T threads that
iterate with interval of size T over sizes|]. All threads are
synchronized and their results are summarized by the aggregate
sum procedure in a parallel way (cf. Figure 7).

As long as the number of forbidden nodes is bigger than k,
the algorithm selects a node from the set of forbidden nodes to
be added to the selected ones. For this purpose (a) the set of
forbidden_nodes is partitioned into 7' subsets each assigned
to a different thread; (b) each thread ¢ then finds the best
candidate node from its subset and writes it together with its
score into the i-th elements of two shared arrays (data and
score); and (c) the shared array is reduced by use of the minarg
procedure to find the best node from the found options.

INPUT: a shared array datal] of size T' that contains integers
to be summed up
OUTPUT: a sum of all integers in datal]
1: procedure SUM
2: thread_id < threadldx.x
3: synchronize_threads()
4: t« T
5 h+t/2
6: while ¢ > 1 do
7. if thread_id + h < t then
8: data[thread_id] < datalthread_id] +
9: datalthread_id + h)
10: end if
11: tt /2
12: h <« h /2
13: synchronize_threads()
14: end while
15: return data[0]
16: end procedure

Fig. 7. Aggregation of results of threads

INPUT: a graph, total_score, component[], sizes[], datal],
scorel]
OUTPUT: a node for addition to selected_nodes with its
induced score
1: procedure NEXT_CANDIDATE
thread_id < thread_Idx.z
3 min_score < Integer.Max_V alue
4 for i = 1 + thread_id; i < graph.size(); i += T do
5 node_id <+ graphli
6: if component[node_id] = 0 then
7.
8

score < score_with_node(node_id, total_score,
graph, sizes| |, component| |)

9: if score < min_score then
10: min_score <— score
11: candidate < node_id
12: end if

13: end if

14: end for

15: data[thread_id] < candidate

16: score[thread_id] < min_score

17: end procedure

Fig. 8. Selecting next node for addition

For the first two steps, the next_candidate procedure (cf.
Figure 8) is executed in parallel with T threads and only
one best solution is chosen from a block of threads. Each
thread iterates over nodes in a graph array with an interval
of T. Among those nodes a thread finds those that are in the
forbidden nodes (i.e. with component[i] = 0) and for each
such node it computes the corresponding score if the node
would be added to selected nodes with score_with_node. If
the found score is smaller than the current value of min_score,
then the procedure saves the node that produced the score
and the score itself. The connectivity score of a node x is
computed by score_with_node (Figure 9) which iterates over
its neighbor nodes and applies a heuristic, that is, if = has
a high number of neighbors then it its connectivity score is
high. For each adjacent node of z, the procedure checks its
component (lines 11-17) and, if the component id has not been
processed before, subtracts the component’s score contribution
from the total score and adds the component’s size to the

new_size (lines 20-21). Eventually, the score contributions of
all reachable components are subtracted from the fotal_score
and the contribution of a new component is added (line 25).

INPUT: node z, total_score, a graph, component [], sizes]
OUTPUT: a connectivity score that x induces if added to
selected nodes
1: procedure SCORE_WITH_NODE
2: beg < graph.start[x]
3: end < graph.start[z + 1]
4: if (end - beg) > threshold then
5: return oo
6: end if
7: new_size < 1
8: for ¢ = beg; i < end; i++ do
> Get the adjacent component
9: ¢ < component[graph.to[i]]
10: if (c != 0) then
> Check if the component was already processed
11: boolean was < false
12: for j = beg; j < i; j++ do
13: if component[graph.tolj]] = c then
14: was 4 true
15: break
16: end if
17: end for
18: if (lwas) then
19: s « sizes|c]
20: total_score < total_score - s * (s —1)/2
21: new_size <— new_size + §
22: end if
23: end if
24: end for
25: result < total_score+new_size*(new_size —1)/2
26: return result
27: end procedure

Fig. 9. Computing scores for selected nodes

The unite procedure (Figure 10) finds and marks those adjacent
components that are affected by the addition of a new node
by iterating over adjacent nodes with 7" threads in a parallel
manner as before, using the shared data and score arrays.
Each thread uses its thread_id to save the sum of sizes of
all components that it has processed in the data array and
the sum of all scores of all components it has processed
in the score array. Eventually, the sizes of all components
affected by the addition of x are summed up in parallel and
adds the node x to MIS. The procedure also adds one to
the sum’s result to reflect the addition of the node x. The
result is a size of the newly united component (line 8). The
scores of affected components are summed up in parallel (line
9). Then threads iterate over nodes and for each node that
belongs to the component that needs to be united, threads
reassign the node to the united_component id (line 10). The
components that need to be united are recognized by checking
their size, since the affected components have been marked by
resetting their sizes to zero. Once all threads have finished
their work (line 11), the thread with the thread_id of “0”
updates the sizes array to include a new component with the
united_component id and with a new size (line 13). It also
updates the component id of the newly added node (line 14).
After uniting the affected components into one, the procedure
returns the updated total_score for selected nodes (line 17).

INPUT: node z, total_score, a graph, component][], sizes[|,
datal], score]|
OUTPUT: an updated total_score after the affected compo-
nents are united

1: procedure UNITE

2: thread_id < threadldx.x

3 united_component < any_neighbor_component(zx,

4 graph, component)

5 synchronize_threads()

6: reset_sizes_of_neighbor_components(x, graph,

component, sizes, data, score)

7 synchronize_threads()

8 new_sizes < sum(data) +1;

9: removed_scores = sum(score)

10: reassign_components(x, graph.mazx_node(),
united_component, component, sizes)

11: synchronize_threads()

12: if thread_id = 0 then

13: sizes[united_component] < new_sizes

14: component|[z] + united_component

15: end if

16: total_score < total_score - removed_scores +
new_sizes x (new_sizes — 1) /2

17: return total_score

18: end procedure

Fig. 10. Uniting of components

Lemma 2: Runtime of pCND*(GPU). Runtime costs of the
pCND*(GPU) are dominated by its while-loop in lines 11-18.
Since this loop is entered at most V times, the cost is: O (V -
(next_candidate+ unite)) = O (V - (V/ T - max_degree®> + V
- max_degree®/ T + log(T))) = O (V? / T- max_degree* + V-
log(T))

IV. PARALLEL CND* ALGORITHM FOR CLOUD

Our second parallel version of the CND* algorithm, called
pCND*(Cloud), exploits cloud computing [5] with the Apache
Hadoop MapReduce model [2]. In the following, we briefly
describe how the MapReduce program of pCND*(Cloud)
works, and then compare its performance with that of the
CND* as baseline and the CUDA version of CND¥* in the
subsequent section.

Mappers. Each of the mappers (cf. Figure 11) executes the
main logic of the CND* independently from others. A mapper
reads a graph structure and a random seed number from an
input file by itself, generates its own MIS using the seed
number and runs the CND* algorithm to find its own best
solution.

In the initialization phase, each pCND*(Cloud) mapper pre-
pares (a) its own copy of a graph and MIS based on a given
random seed from the input file, (b) computes component and
sizes arrays based on its MIS 3, and (c) counts the number
forbidden nodes. Then the mapper proceeds with finding
critical nodes as in the CND* algorithm. Having found the
necessary number of critical nodes, the mapper calculates the
connectivity score and outputs its result as a pair, where the
first element is this score, and the second element is the array
of critical nodes that induce the score.

Reducer. The results from all mappers are accumulated and
submitted to the reducer task of the pCND*(Cloud). The

3The component and sizes arrays are used as explained in Sect.2

INPUT: graph, integer k and random integer seed for MIS
OUTPUT: (score, k critical nodes)

1: procedure MAPPER() > Initialization
2 graph < read_graph()

3: random_seed < read_seed()

4 MIS <+ generate_MIS(graph, random_seed)

5

component|], sizes||, forbidden_count + set_up()

> Main Part
6: if forbidden_count < k then
7: remove any (k — forbidden_count) nodes from MIS
8: end if
9: while | forbidden_nodes| > k do
10: next_node < next_candidate(graph,
11: component||, sizes|])
12: united_comp < any_neighbor_component (
13: graph, next_node, component)
14: unite(next_node, united_component,
15: graph, component, sizes)
16: forbidden_count <+ forbidden_count - 1
17: end while
18: critical_nodes[] + V \ selected_nodes
19: score < find_score()
20: return (score, critical_nodes]|)

21: end procedure

Fig. 11. Mapper function of pCND*(Cloud)

reducer iterates over the first elements of input pairs and
searches for the minimal score. Once the reducer has found the
minimal score, it outputs the second element that corresponds
to the found score; this second element is an array with found
critical nodes.

V. PERFORMANCE EVALUATION

We have tested the runtime performance of our sequential
and parallel CND* algorithms on CPU, respectively, on GPU
and in the cloud with a CNDP test suite of 50 graphs with
real-world properties, in particular 25 Barabasi-Albert (BA)
and 25 Watts-Strogatz (WS) graph instances. While the BA
graph model is used for generating random scale-free networks
using a preferential attachment mechanism, the WS model
produces graphs with a small-world property and a high
clustering coefficient [7]. The sizes of graph instances in the
test suite varied from small (100, 500 nodes) to medium
(2.000 nodes) and large (10.000, 20.000 nodes), while the
number £ of critical nodes to find varied from 5 to 5.000. As
evaluation baseline, we used the performance of our improved
version CND* of the currently best performing state-of-the-
art solution CND [3]. The CND* and pCND*(GPU) were
tested on a massmarket laptop with an Athlon I X2 240 (2x
2800 MHz, 8GB) CPU and a GeForce GTX 750 GPU (512
cores, 1GB); the pCND*(GPU) run on 8 blocks with 1024
threads in each block. The pCND*(Cloud) was executed with
60 mappers on the Amazon Elastic Cloud (EC2) MapReduce
service with one cl.xlarge (8 vCPUs,7GB) namenode and
two c3.8xlarge (64 vCPUs,60GB) datanodes. In Figs. 12 and
13, the average runtime performance ratios for GPU- and
cloud-based CND* versions with the sequential CPU-based
CND* as baseline for WS and BA graph instances (over
all k) are summarized. More detailed results are available at
http://cndalgorithm.weebly.com/. The basic CND* algorithm
appears to be best suited for small-sized BA or WS graphs;
in these cases, its parallel version for GPU required more
time for memory de/allocation, data tranfer (host/device) and

global/shared memory access by threads. For mid-sized graphs,
the GPU-based version significantly outperformed the other
versions, and was outrun by the cloud-based one first for large
WS graphs with 10.000 nodes where full MIS of graphs did
not fit into the shared memory of GPU. Finally, for very large
graphs of both models with 20.000 nodes, the cloud-based
version most significantly outrun its competitor on GPU (up
to 14 times faster).

Alg. \ Size 100 node 500-node 2000-node 10000-node | 20000-node
instances instances instances instances instances
CPU fastest fastest middle slowest slowest
GPU up to 30 up to 4 times | upto2times | upto7 times | upto 8.5
times slower | slower faster faster times faster
Cloud up to 1192 up to 97 upto 7 times | upto 5times | upto 14
times slower | times slower | slower faster times faster

Fig. 12. Average runtime ratios for BA graphs with CPU as baseline

Alg.\ Size 100 node 500-node 2000-node 10000-node | 20000-node
instances instances instances instances instances

CPU fastest fastest middle slowest slowest

GPU up to 15.5 up to 2 times | upto 3.9 upto 6.9 up to 8 times
times slower | slower times faster | times faster | faster

Cloud up to 546 up to 41 upto 25 upto 10.7 up to 22
times slower | times slower | times slower | times faster | times faster

Fig. 13. Average runtime ratios for WS graphs with CPU as baseline

VI. CONCLUSIONS

We presented the first parallel algorithms for approximated
solving of the NP-complete CND problem in general, and
for CNDP solving on GPU and in the cloud in particular.
Experiments revealed that the cloud-based solution can signif-
icantly outperform the currently best sequential, approximated
solution [3] of the general CNDP for large-sized graphs,
while the GPU-based solution achieves that already for mid-
sized graphs. Both parallel versions fail to beat the origin
on small graph instances. Acknowledgment: This research
was supported by the German Ministry for Education and
Research (BMBF) in the project INVERSIV under grant
number 01IW14004.

REFERENCES

[1] R. Albert, H. Jeong, A.-L. Barabasi. Error and attack tolerance of
complex networks. Nature, 406(6794), 2000

[2] Apache Software Foundation. MapReduce tutorial. Website, 2014.
hadoop.apache.org/docs/r1.2.1/mapred-tutorial.html

[3] A. Arulselvan, et al.. Detecting critical nodes in sparse graphs.
Computers and Operations Research, 36(7), 2009

[4] S.P. Borgatti. Identifying sets of key players in a social network.
Computational and Mathematical Organization Theory, 12(1), 2006

[5] T. Erl, R. Puttini, Z. Mahmood. Cloud Computing. Prentice Hall, 2013

[6] R. Farber. CUDA Application Design and Development. Elsevier, 2011

[7] M. Edalatmanesh. Heuristics for the Critical Node Detection Problem in
Large Complex Networks. MSC. thesis, Brock University, CDN, 2013

[8] J.B. Orlin, et al.. Network Flows. Prentice-Hall, 1993

[9] P. Pardalos. Critical Node Detection Problem. Website, 2008
supernet.isenberg.umass.edu/hlogistics/slides/Pardalos-Bellago-
Nagurney.pdf

[10] M. Ventresca, D. Aleman. A derandomized approximation algorithm

for the critical node detection problem. Computers and Operations
Research, 43, Elsevier, 2014

[11] J.L. Walteros, P. M. Pardalos. Applications of Mathematics and
Informatics in Military Science. Springer, 2012
[12] N.Wilt. The CUDA Handbook. Pearson Education Inc., USA, 2012

