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ABSTRACT
We present an approach to hybrid semantic Web service
matching that complements logic based reasoning with ap-
proximate matching based on syntactic IR based similarity
computations. The hybrid matchmaker, called OWLS-MX,
applies this approach to services and requests specified in
OWL-S. Experimental results of measuring performance and
scalability of different variants of OWLS-MX show that un-
der certain constraints logic based only approaches to OWL-
S service I/O matching can be significantly outperformed by
hybrid ones.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.4 [Information Systems Applications]: Mis-
cellaneous

Keywords
OWL-S, matchmaking, information retrieval

1. INTRODUCTION
Key to the success of effectively retrieving relevant ser-

vices in the future semantic Web is how well intelligent ser-
vice agents may perform semantic matching in a way that
goes far beyond of what standard service discovery proto-
cols such as UPnP, Jini, or Salutation-Lite can deliver. Cen-
tral to the majority of contemporary approaches to semantic
Web service matching is that the formal semantics of services
specified, for example, in OWL-S or WSMO are explicitly
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defined in some decidable description logic based ontology
language such as OWL-DL [8] or F-Logic, respectively. This
way, standard means of description logic reasoning can be
exploited to automatically determine services that semanti-
cally match with a given service request based on the kind
of terminological concept subsumption relations computed
in the corresponding ontology. Prominent examples of such
logic-based only approaches to semantic service discovery
are provided by the OWLS-UDDI matchmaker [16], RACER
[11], MAMA [5], and the WSMO service discovery approach
[20].

These approaches do not exploit semantics that are im-
plicit, for example, in patterns or relative frequencies of
terms in service descriptions as computed by techniques
from data mining, linguistics, or content-based information
retrieval (IR). The objective of hybrid semantic Web ser-
vice matching is to improve semantic service retrieval per-
formance by appropriately exploiting means of both crisp
logic based and approximate semantic matching where each
of them alone would fail.

Consider, for example, a pair of real world concepts that
are semantically synonymous or very closely related, but
differing in their terminological definitions which are part of
the underlying ontology. In particular, the crisp conjunc-
tive logical concept expressions are differing with respect to
a few pairs of unmatched logical constraints only. In this
case, both concepts would be logically classified as disjoint
siblings in a concept subsumption hierarchy such that any
description logic reasoner would fail to detect the original
real world semantic relationship. As a consequence, if the
semantic comparison of both concepts is essential to dis-
cover services that are relevant to a given request, any logic
based only matching approach would necessarily fail. The
underpinning general problem is that standard logical spec-
ification of real world concept semantics is known to be in-
adequate. One operational way to cope with this problem
would be to tolerate logical matching failures up to a speci-
fied extent by complementary approximate matching based
on syntactic concept similarity computations. Of course, we
acknowledge that the adaptation to the latter eventually is
on the user’s end.

In this paper, we present the first hybrid OWL-S ser-
vice matchmaker called OWLS-MX, that exploits means of
both crisp logic based and IR based approximate matching.
Our experimental evaluation shows that under certain con-
straints this way of matching can indeed outperform logic



based only approaches.
The remainder of the paper is structured as follows. After

brief background information on OWL-S in section 2, we
present the hybrid matching filters, the generic algorithm of
OWLS-MX together with its variants, and a simple example
in section 3. Some details on the implementation of OWLS-
MX version 1.1 are given in sections 4. The experimental
results of measuring performance and scalability of OWLS-
MX are presented in section 5, before we briefly comment
on related work in section 6, and conclude in section 7.

2. OWL-S SERVICES
In the following, we briefly introduce the essentials of the

semantic Web service description language OWL-S that are
needed to understand the concepts of hybrid service match-
ing. For more details, we refer the reader to, for example,
[13].

Figure 1: Parametric structure of OWL-S service
profiles

OWL-S is an OWL-based Web service ontology, which
supplies a core set of markup language constructs for de-
scribing the properties and capabilities of Web services in
unambiguous, computer-intepretable form. The overall on-
tology consists of three main components: the service profile
for advertising and discovering services; the process model,
which gives a detailed description of a service’s operation;
and the grounding, which provides details on how to inter-
operate with a service, via messages. Specifically, it specifies
the signature, that is the inputs required by the service and
the outputs generated; furthermore, since a service may re-
quire external conditions to be satisfied, and it has the effect
of changing such conditions, the profile describes the precon-
ditions required by the service and the expected effects that
result from the execution of the service.

To the best of our knowledge, the majority of current
OWL-S matchmakers performs service I/O based profile match-
ing that exploits defined semantics of concepts as values of
service parameters hasInput and hasOutput (cf. figure 1).
Exceptions include service process based approaches like in
[3]. There exists no implemented matchmaker that performs
an integrated service IOPE matching by means of additional
reasoning on logically defined preconditions and effects. Re-
lated work on logic based semantic web rule languages such
as SWRL and RuleML is ongoing.

3. HYBRID SERVICE MATCHING
Hybrid semantic service matching performed by the match-

maker OWLS-MX exploits both logic-based reasoning and
content-based information retrieval techniques for OWL-S
service profile I/O matching. In the following, we define the
hybrid semantic filters of OWLS-MX, the generic OWLS-
MX algorithm, and its five variants according to the used
IR similarity metrics.

3.1 Matching filters of OWLS-MX
OWLS-MX computes the degree of semantic matching for

a given pair of service advertisement and request by succes-
sively applying five different filters exact, plug in, sub-

sumes, subsumed-by and nearest-neighbor. The first
three are logic based only whereas the last two are hybrid
due to the required additional computation of syntactic sim-
ilarity values.

Let T be the terminology of the OWLS-MX matchmaker
ontology specified in OWL-Lite (SHIF(D)) or OWL-DL
(SHOIN(D)); CTT the concept subsumption hierarchy of T ;
LSC(C) the set of least specific concepts (direct children)
C′ of C, i.e. C′ is immediate sub-concept of C in CTT ;
LGC(C) the set of least generic concepts (direct parents)
C′ of C, i.e., C′ is immediate super-concept of C in CTT ;
SimIR(A,B) ∈ [0, 1] the numeric degree of syntactic similar-
ity between strings A and B according to chosen IR metric
IR with used term weighting scheme and document collec-
tion, and α ∈ [0, 1] given syntactic similarity threshold;

.
=

and ≥̇ denote terminological concept equivalence and sub-
sumption, respectively.

Exact match. Service S exactly matches request R ⇔ ∀
inS ∃ inR: inS

.
= inR ∧ ∀ outR ∃ outS : outR

.
=

outS . The service I/O signature perfectly matches
with the request with respect to logic-based equiva-
lence of their formal semantics.

Plug-in match. Service S plugs into request R ⇔∀ inS ∃
inR: inS ≥̇ inR ∧ ∀ outR ∃ outS : outS ∈ LSC(outR).
Relaxing the exact matching constraint, service S may
require less input than it has been specified in the re-
quest R. This guarantees at a minimum that S will
be executable with the provided input iff the involved
OWL input concepts can be equivalently mapped to
WSDL input messages and corresponding service sig-
nature data types. We assume this as a necessary con-
straint of each of the subsequent filters.

In addition, S is expected to return more specific out-
put data whose logically defined semantics is exactly
the same or very close to what has been requested by
the user. This kind of match is borrowed from the soft-
ware engineering domain, where software components
are considered to plug-in match with each other as de-
fined above but not restricting the output concepts to
be direct children of those of the query.

Subsumes match. Request R subsumes service S ⇔∀ inS

∃ inR: inS ≥̇ inR ∧ ∀ outR ∃ outS : outR ≥̇ outS .
This filter is weaker than the plug-in filter with re-
spect to the extent the returned output is more spe-
cific than requested by the user, since it relaxes the
constraint of immediate output concept subsumption.
As a consequence, the returned set of relevant services
is extended in principle.



Subsumed-by match. Request R is subsumed by service
S ⇔ ∀ inS ∃ inR: inS ≥̇ inR ∧ ∀ outR ∃ outS : (outS.
= outR ∨ outS ∈ LGC(outR)) ∧ SimIR(S, R) ≥ α.
This filter selects services whose output data is more
general than requested, hence, in this sense, subsumes
the request. We focus on direct parent output con-
cepts to avoid selecting services returning data which
we think may be too general. Of course, it depends
on the individual perspective taken by the user, the
application domain, and the granularity of the under-
lying ontology at hand, whether a relaxation of this
constraint is appropriate, or not.

Logic-based fail. Service S fails to match with request R
according to the above logic-based semantic filter cri-
teria.

Nearest-neighbor match. Service S is nearest neigh-

bor of request R ⇔ ∀ inS ∃ inR: inS ≥̇ inR ∧ ∀ outR

∃ outS : outR ≥̇ outS ∨ SimIR(S, R) ≥ α.

Fail. Service S does not match with request R according to
any of the above filters.

The OWLS-MX matching filters are sorted according to
the size of results they would return, in other words accord-
ing to how relaxed the semantic matching. In this respect,
we assume that service output data that are more general
than requested relaxes a semantic match with a given query.
As a consequence, we obtain the following total order of
matching filters

Exact < Plug-In < Subsumes < Subsumed-By <
Logic-based Fail < Nearest-neighbor < Fail.

3.2 Generic OWLS-MX matching algorithm
The OWLS-MX matchmaker takes any OWL-S service as

a query, and returns an ordered set of relevant services that
match the query each of which annotated with its individ-
ual degree of matching, and syntactic similarity value. The
user can specify the desired degree, and syntactic similarity
threshold. OWLS-MX then first classifies the service query
I/O concepts into its local service I/O concept ontology. For
this purpose, it is assumed that the type of computed ter-
minological subsumption relation determines the degree of
semantic relation between pairs of input and concepts.

Auxiliary information on whether an individual concept is
used as an input or output concept by any registered service
is attached to this concept in the ontology. The respective
lists of service identifiers are used by the matchmaker to
compute the set of relevant services that I/O match the
given query according to its five filters.

In particular, OWLS-MX does not only pairwisely deter-
mine the degree of logical match but syntactic similarity
between the conjunctive I/O concept expressions in OWL-
Lite. These expressions are built by recursively unfolding
each query and service input (output) concept in the local
matchmaker ontology. As a result, the unfolded concept
expressions are including primitive components of a basic
shared vocabulary only. Any failure of logical concept sub-
sumption produced by the integrated description logic rea-
soner of OWLS-MX will be tolerated, if and only if the de-
gree of syntactic similarity between the respective unfolded
service and request concept expressions exceeds a given sim-
ilarity threshold.

The pseudo-code of the generic OWLS-MX matching pro-
cess is given below (cf. algorithms 1 - 3). Let inputsS = {
inS,i|0 ≤ i ≤ s}, inputsR = { inR,j |0 ≤ j ≤ n}, outputsS

= { outS,k|0 ≤ k ≤ r}, outputsR = { outR,t|0 ≤ t ≤ m},
set of input and output concepts used in the profile I/O
parameters hasInput and hasOutput of registered service
S in the set Advertisements, and the service request R,
respectively. Attached to each concept in the matchmaker
ontology are auxiliary data that informs about which regis-
tered service is using this concept as an input and/or output
concept.

Algorithm 1 Match: Find advertised services S that best
hybridly match with a given request R; returns set of
(S, degreeOfMatch, SIMIR(R, S)) with maximum degree
of match (dom) unequal FAIL (uses algs. 2 and 3 to com-
pute dom), and syntactic similarity value exceeding a given
threshold α.
1: function match(Request R, α)
2: local result, degreeOfMatch, hybridF ilters = {

subsumed-by, nearest neighbour}
3: for all (S, dom) ∈ candidatesinputset(inputsR) ∧

(S, dom′) ∈ candidatesoutputset(outputsR) do
4: degreeOfMatch ← min(dom, dom′)
5: if degreeOfMatch ≥ minDegree ∧ (

degreeOfMatch /∈ hybridF ilters ∨
simIR(R,S) ≥ α) then

6: result := result ∪ { (S, degreeOfMatch,
simIR(R,S) ) }

7: end if
8: end for
9: return result

10: end function

In the following section, we present five variants of this
generic OWLS-MX matchmaking scheme.

3.3 OWLS-MX variants
We implemented different variants of the generic OWLS-

MX algorithm, called OWLS-M1 to OWLS-M4, each of which
uses the same logic-based semantic filters but different IR
similarity metric SIMIR(R,S) for content-based service I/O
matching. The variant OWLS-MO performs logic based
only semantic service I/O matching.

OWLS-M0. The logic-based semantic filters Exact, Plug-

in, and Subsumes are applied as defined in section
3.1, whereas the hybrid filter Subsumed-By is utilized
without checking the syntactic similarity constraint.

OWLS-M1 to OWLS-M4. The hybrid semantic match-
maker variants OWLS-M1, OWLS-M3, and OWLS-
M4 compute the syntactic similarity value SimIR (outS ,
outR) by use of the loss-of-information measure, ex-
tended Jacquard similarity coefficient, the cosine sim-
ilarity value, and the Jensen-Shannon information di-
vergence based similarity value, respectively.

Based on the experimental results of measuring the per-
formance of similarity metrics for text information retrieval
provided by Cohen and his colleagues [4], we selected the top
performing ones to build the OWLS-MX variants. These
symmetric token-based string similarity measures are de-
fined as follows.



Algorithm 2 Find services which input matches with that
of the request; returns set of (S, dom) with minimum degree
of match dom unequal FAIL.

1: function candidatesinputset(inputsR)
2: local H , dom, r
3: � If a service input matches with multiple request

inputs the best degree is returned
4: H := { (S, inS,i, dom) ∈ S

j=1..n

candidatesinput(inRj ) | dom = argmaxl{
(S, inS,i, doml) |1 ≤ l ≤ n, 1 ≤ i ≤ s} }

5: � If all inputs of service S are matched by those of
the request, S can be executed, and the minimum
degree of its potential match is returned

6: for all S ∈ Advertisement do
7: if { (S, inS1 , dom1), · · · , (S, inSs , doms) } ⊆ H

then
8: r := r ∪ { (S, min(dom1, · · · , doms)) }
9: end if

10: end for
11: � Services with no input can always be exe-

cuted and are preliminary exact-match can-
didates: servNoIn() = { (S, exact) | S ∈
Advertisements ∧ inputsS = ∅ }

12: � Remaining, unmatched services are at least
nearest neighbour-match candidates: rem-

Serv() = { (S, nearest neighbour) | S ∈
Advertisements ∧ 〈S, degreeOfMatch′〉 /∈ r }

13: return r := r ∪ servNoIn() ∪ remServ()
14: end function
15:
16: function candidatesinput(inR,j) �

Classify request input concept into ontology, and use
the auxiliary concept data to collect services that at
least plug-in match with respect to its input.

17: local r
18: r := r∪ { (S, inS, exact) | S ∈ Advertisements,

inS ∈ inputsS, inS
.
= inR,j , }

19: r := r∪ { (S, inS, plug-in ) | S ∈ Advertisements,
inS ∈ inputsS, inS ≥̇ inR,j , }

20: return r
21: end function

Algorithm 3 Find services which output matches with that
of the request; returns set of (S, dom) with minimum degree
of match unequal FAIL.

1: function candidatesoutputset(outputsR)
2: local r, dom
3: if outputsR = ∅ then
4: return { (S, exact) | S ∈ Advertisements }
5: end if
6: for all S ∈ Advertisements do
7: if (S, domt) ∈ candidatesoutput(outR,t) ∧

domt ≥ subsumes for t = 1..m then
8: r := r ∪ { (S, min{dom1, · · · , domm})}
9: else if (S, domt) ∈ candidatesoutput(outR,t)

∧ domt ∈ { exact, subsumes } for t = 1..m
then

10: r := r ∪ { (S, subsumed-by }
11: end if
12: end for
13: � Any remaining, unmatched service is a potential

nearest neighbour-match: remServ() = { (S,
nearest neighbour) | S ∈ Advertisements ∧
S /∈ r }

14: return r := r ∪ remServ()
15: end function
16:
17: function candidatesoutput(outR,t) � Classify request

output concept into ontology, and use the auxiliary
concept data to collect services with output concepts
that match with outR,t.

18: local r
19: r := r ∪ { (S, exact) | outS

.
= outR,t }

20: r := r ∪ { (S, plug-in) | outS ∈ LSC(outR,t) ∧ S
/∈ r }

21: r := r ∪ { (S, subsumes) | outS ≤̇ outR,t ∧ S /∈ r
}

22: r := r ∪ { (S, subsumed-by) | outS ∈ LGC(outR,t)
}

23: return r
24: end function



• The cosine similarity metric

SimCos(S, R) =
�R · �S

||�R||22 · ||�S||22
(1)

with standard TFIDF term weighting scheme, and the
unfolded concept expressions of request R and ser-
vice S are represented as n-dimensional weighted index
term vectors �R and �S respectively. �R·�S =

Pn
i=1 wi,R×

wi,S , ||X||2 =
qPn

i w2
i,X , and wi,X denotes the weight

of the i-th index term in vector X.

• The extended Jacquard similarity metric SimEJ(S, R) =

�R · �S

||�R||22 + ||�S||22 − �R · �S
(2)

with standard TFIDF term weighting scheme.

• The intensional loss of information based similarity
metric SimLOI(S, R) =

1 − LOIIN (R,S) + LOIOUT (R, S)

2
(3)

LOIx(R, S) =
|PCR,x ∪ PCS,x| − |PCR,x ∩ PCS,x|

|PCR,x| + |PCS,x| (4)

with x ∈ {IN, OUT}, PCR,x and PCS,x set of primi-
tive components in unfolded logical input/output con-
cept expression of request R and service S

• The Jensen-Shannon information divergence based sim-
ilarity measure SimJS(S, R) = log2 − JS(S, R) =

1

2log2

nX
i=1

h(pi,R) + h(pi,S) − h(pi,R + pi,S) (5)

with probability term frequency weigthing scheme, e.g.,
pi,R denotes the probability of i-th index term occur-
rence in request R, and h(x) = −xlogx,

The extended Jacquard metric is a standard for mea-
suring the degree of overlap as the ratio of the number of
shared terms (primitive components) of unfolded concepts
of both service and request, and the number of terms pos-
sessed by either of them. In contrast to the TFIDF/cosine
similarity metric, it does not favor the document with com-
mon terms. The Jensen-Shannon measure is based on the
information-theoretic, non-symmetrical Kullback-Leibler di-
vergence measure. It measures the pairwise dissimilarity of
conditional probability term distributions between service
and request text rather than looking at the whole collec-
tion as it is the case for the TFIDF/cosine, or the extended
Jacquard metric. The loss of (intensional) information in
case some concept A is terminologically substituted by con-
cept B, can be measured as the inverse ratio of the number of
matching primitive components with those which remain un-
matched in terminologically disjoint unfolded concept con-
straints. The symmetric LOI-based similarity value for a
given pair of service and request is then computed analo-
gously for all I/O concept definitions involved.

3.4 Example
Let us illustrate the hybrid service retrieval with OWLS-

MX by means of a simple example. Suppose the concept

subsumption hierarchy or taxonomy of the OWLS-MX match-
maker ontology, the service request R for physicians of hos-
pital h that provide treatment to patient p, and relevant
service advertisements S1 and S2 are as shown in figure 2.

Figure 2: Example of hybrid service matching with
OWLS-MX

Service S1 is considered semantically relevant to request
R, since it returns for any given person p and hospital h,
the individual surgeon of h that operated on p. Likewisely,
service S2 is relevant to R, since it returns those emergency
physicians who provided emergency treatment to p before
her transport to hospital h. Hence, both services S1 and S2

should be returned as matching results to the user.
However, the logic based only variant OWLS-M0 deter-

mines S1 as plug-in matching with R but fails to return S2,
since the formal semantics of the output concept siblings
”emergency physician” and ”hospital physician” in the on-
tology are terminologically disjoint. In this example, the set
of terminological constraints of unfolded concepts c corre-
spond to the set of primitive components (cp) of which the
individual concepts are canonically defined in the match-
maker ontology T . Hence, the unfolded concept expressions
are as follows.

• unfolded(Patient, T ) = (and Patientp Personp)

• unfolded(Hospital, T ) = (and Hospitalp (and
MedicalOrganisationp Organisationp))

• unfolded(HospitalPhysician, T ) = (and
HospitalPhysicianp (and Physicianp Personp))

• unfolded(Surgeon, T ) = (and Surgeonp (and
HospitalPhysicianp (and Physicianp Personp)))

• unfolded(EmergencyPhysician, T ) = (and
EmergencyPhysicianp (and Physicianp Personp))

As a result, for example, OWLS-M1 would return S1 as
plug-in matching service with syntactic similarity value of
SimLOI (R, S1) = 0.87. In contrast to OWLS-MO, it also
returns S2, since this service is nearest-neighbor matching
with the request R: Their implicit semantics exploited by
the IR similarity metric LOI (cf. (5), (6)) with SimLOI



(R, S2) =
(1− 5−4

5+4 )+(1− 4−2
3+3 )

2
= 0.78 ≥ α = 0.7 is sufficiently

similar. Our preliminary experimental results show that this
kind of matching relaxation may be useful in practice.

4. IMPLEMENTATION
We implemented the OWLS-MX matchmaker variants ver-

sion 1.1 in Java using the OWL-S API 1.1 beta with the tab-
leaux OWL-DL reasoner Pellet developed at university of
Maryland (cf. http://www.mindswap.org). As the OWL-S
API is tightly coupled with the Jena Semanic Web Frame-
work, developed by the HP Labs Semantic Web research
group (cf. http://jena.sourceforge.net/), the latter is
also used to modify the OWLS-MX matchmaker ontology.

Figure 3: OWLS-MX v1.1 screenshot: Definition of
service request and relevance set

Figures 3 to 5 show some screenshots of the OWLS-MX
version 1.1 graphical user interface.

Figure 4: OWLS-MX v1.1 screenshot: Selection of
OWLS-MX variant

After parsing service advertisements and requests, the re-
spective input and output concepts are analysed and, if nec-
essary, added to the local matchmaker ontology together
with auxiliary data on their unfolding. As a consequence,
the matchmaker ontology is dynamically built and grow-
ing with the number of services and underlying ontologies
loaded. In addition, the matchmaker ontology is extended
with auxiliary information for each concept whether it is
used as an input or output concept of which service reg-
istered at the matchmaker. Service requests are treated

similarly, except that they are not stored in the extended
matchmaker ontology.

Figure 5: OWLS-MX v1.1 screenshot: Display of
selected type of results (performance)

For each service request concept, the service identifiers
attached to its immediate parent and child concepts of the
enhanced matchmaker ontology are retrieved. The semantic
degree of matching for each service is then determined by
applying the semantic filters on this set of matching candi-
dates. After this step, the syntactic similarity is computed
by applying the selected IR similarity metric to the strings
of unfolded concepts of the query and each registered ser-
vice. Both the semantic degree of match and the syntactic
similarity value determine the hybrid degree of matching of
one service with the request. If this hybrid degree is better
than or equal to the minimum degree specified by the user,
then this service will be returned as potentially relevant.

In practice, OWLS-MX spend the largest amount of time
with classifying the ontologies used by the registered services
to check for new concepts not known to the matchmaker,
and then to classify them into the matchmaker ontology.

5. EXPERIMENTAL EVALUATION
For measuring the service I/O retrieval performance of

each OWLS-MX variant we used the OWL-S service re-
trieval test collection Owls-TC v2. This collection consists
of more than 570 services specified in OWL-S 1.1 covering
seven application domains, that are education, medical care,
food, travel, communication, economy, and weaponry. The
majority of these services were retrieved from public IBM
UDDI registries, and semi-automatically transformed from
WSDL to OWL-S. Owls-TC v2 provides a set of 28 test
queries each of which is associated with a set of 10 to 20 ser-
vices that two of the co-authors subjectively defined as rel-
evant according to the standard TREC definition of binary
relevance [17] 1. The collection Owls-TC v2 is available as
open source at
http://projects.semwebcentral.org/projects/owls-tc/.

In terms of measuring the retrieval performance of each
OWLS-MX variant, we adopted the evaluation strategy of

1Please note, that no standardized test collection for OWL-
S service retrieval does exist yet. Therefore, like with any
other reported results on retrieval performance of alterna-
tive OWL-S service matchmakers developed by different re-
search groups world wide, we have to consider both our test
collection and experimental results as preliminary.



micro-averaging the individual precision-recall curves [18].
Let Q be the set of test queries (service requests) in Owls-

TC, A the sum of relevant documents of all requests in Q,
AR the answer set of relevant services (service advertise-
ments) for request R ∈ Q. For each request R, we consider
λ = 20 steps up to its maximum recall value, and measure
the number BλR| of relevant documents retrieved (recall) at
each of these steps. Similarly, we measure related precision
with the number Bλ of retrieved documents at each step λ.
The micro-averaging of recall and precision (at step λ) over
all requests, as we used it for performance evaluation is then
defined as

Recλ =
X
R∈Q

|AR ∩ BλR|
|A| , P recλ =

X
R∈Q

|AR ∩ BλR|
|Bλ| (6)

The micro-averaged R-P curves of the top and worse per-
forming IR similarity metric together with those for the
OWLS-MX variants as well as the average query response
time plots are displayed in figures 4 and 5, respectively.
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MX vs IR based service matching

These experimental results provide, in particular, evidence
in favor of following conclusions.

• The best IR similarity metric (Cosine/TFIDF) applied
to the concatenated unfolded service profile I/O con-
cept expressions performs close to the pure logic based
OWLS-M0 (see figure 6: Best IR SnTdIO (Cos) vs.
OWLS-M0). But OWLS-M0 is only superior to IR
based matching (cf. figure 6: Worst IR IO (JS) denot-
ing Jensen-Shannon divergence based similarity met-
ric) at the very expense of its recall. However, for dis-
covering semantic web services, precision may be more
important to the user than recall, since the set of rel-
evant services is supposed to be subject to continuous
change in the semantic Web in practice.

• Pure logic based semantic matching by OWLS-M0 can
be outperformed by hybrid semantic matching, in terms
of both recall and precision. That is the case, for exam-
ple, by use of the best performing hybrid matchmaker
OWLS-M4 (cf. figure 6). The main reason for this
is, that the additional IR based similarity check of the
nearest-neighbor filter allows OWLS-M1 to M4 to find
relevant services that OWLS-M0 would fail to retrieve.

• Hybrid semantic matching by OWLS-MX can be out-
performed by each of the selected syntactic IR similar-
ity metrics to the extent additional parameters with
natural language text content are used. That is the
case, for example, by applying the cosine similarity
metric to the extended set of service profile parame-
ters including not only hasInput and hasOutput but
also serviceName and textDescription (cf. figure 6).

• Both pure logic based and all hybrid OWLS-MX match-
makers are significantly outrun by IR based service re-
trieval in terms of average query response time almost
by size of magnitude (cf. figure 7). This is due to the
additional computational efforts required by OWLS-
MX to determine concept subsumption relationships
in NEXPTIME description logic OWL-DL based on
the imported large ontologies the OWL-S services re-
fer to.

6. RELATED WORK
Quite a few semantic Web service matchmakers have been

developed in the past couple of years such as the OWLS-
UDDI matchmaker [16], RACER [11], SDS [12], MAMA [5],
HotBlu [6], and [10]. Like OWLS-MX, the majority of them
does perform profile based service signature (I/O) matching.
Alternate approaches propose service process-model match-
ing [3], recursive tree matching [2], P2P discovery [1], auto-
mated selection of WSMO services [20] and METEOR-S for
WSDL-S services [19]. Except LARKS [15], none of them
is hybrid, in the sense that it exploits both explicit and
implicit semantics by complementary means of logic based
and approximate matching. To the best of our knowledge,
OWLS-MX is the only hybrid matchmaker for OWL-S ser-
vices yet.

The OWLS-MX matchmaker bases on LARKS [15]. How-
ever, LARKS differs from OWLS-MX in that it uses a pro-
prietary capability description language and description logic
different from OWL-S and OWL-DL, respectively. Further-
more, LARKS does not perform any subsumes and subsumed-



by nor nearest-neighbour matching, and has not been exper-
imentally evaluated yet.

The purely logic based variant OWLS-M0 of OWLS-MX is
quite similar to the OWLS-UDDI matchmaker [16] but dif-
fers from it in several aspects. Firstly, the latter makes use
of a different notion of plug-in matching, and does not per-
form additional subsumed-by matching. Secondly, OWLS-
M0 classifies arbitrary query concepts into its dynamically
evolving ontology with commonly shared minimal basic vo-
cabulary of primitive components instead of limiting query
I/O concepts to terminologically equivalent service I/O con-
cepts in a shared static ontology as the OWLS-UDDI match-
maker does.

7. CONCLUSIONS
Our approach to hybrid semantic Web service matching,

called OWLS-MX, utilizes both logic based reasoning and
IR techniques for semantic Web services in OWL-S. Ex-
perimental evaluation results provide evidence in favor of
the proposition that building semantic Web service match-
makers purely on description logic reasoners may be insuffi-
cient, hence should give a clear impetus for further studies,
research and development of more powerful approaches to
service matching in the semantic Web across disciplines.
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