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Abstract. In automated bargaining a common method to obtain com-
plex concession behaviour is to mix individual tactics, or decision func-
tions, by a linear weighted combination. In such systems, the negotia-
tion process between agents using mixed strategies with imitative and
non-imitative tactics is highly dynamic, and non-monotonicity in the se-
quence of utilities of proposed offers can emerge at any time even in cases
of individual cooperative behaviour and static strategy settings of both
agents. This can result in a number of undesirable effects, such as de-
layed agreements, significant variation of outcomes with lower utilities,
or a partial loss of control over the strategy settings. We propose two
alternatives of mixing to avoid these problems, one based on individ-
ual imitative negotiation threads and one based on single concessions of
each tactic involved. We prove that both produce monotonic sequences
of utilities over time for mixed multi-tactic strategies with static and dy-
namically changing weights thereby avoiding such dynamic effects, and
show with a comparative evaluation that they can provide utility gains
for each agent in many multi-issue negotiation scenarios.

1 Introduction

Automated negotiation between rational software agents is considered key to fa-
cilitate intelligent decision-making between two or more parties which are in con-
flict about their goals. In such environments, the agents acting on behalf of their
users (buyers, sellers) have no or only uncertain knowledge about opponent’s
behaviours and can use a range of different strategies to conduct negotiation.
In automated bargaining or bilateral negotiation, two rational agents negotiate
by alternatively exchanging offers over issues of a service or product where each
agent has the preference to achieve the highest possible utility from an outcome
while the common interest is to find an agreement before the deadline. A common
approach for the agents to propose offers is to use individual decision functions,
also called tactics, and mix them based on linear weighted combinations to create
complex concession behaviour in the form of negotiation strategies. For instance,
the prominent service-oriented negotiation model by Faratin et al [6] proposes
different types of tactics such as behaviour-, time- or resource-dependent that
can be mixed together. In this paper, we demonstrate that non-monotonic be-
haviour in the form of non-monotonic offer curves and utility sequences can easily
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emerge at any time as a result of the dynamic effects of an agent system in which
the agents use mixed strategies involving behaviour-dependent and -independent
tactics. In other words, such a system created by negotiating agents using mixed
strategies may generate non-monotonic behaviour even when strategy settings
and mixing weights of both agents are static and all involved tactics are cooper-
ative in that their individual concession behaviour is monotonic. As a result, the
agent’s own aggregated utilities over all negotiated issues can be non-monotonic
as well, implying that it proposes offers increasing its own overall utility. These
effects are often considered undesirable for automated single- and multi-issue ne-
gotiations [10] [6] as they may delay final agreements, have significantly varying
outcomes with lower utilities, or result in a partial loss of the agents’ control over
their strategy due to the high sensitivity of parameters. In this paper, we there-
fore provide examples as well as an analysis and evaluation of the traditional
mixing method with respect to the self-emergence of non-monotonic behaviour
in the implied negotiation process. In particular, we propose two alternative mix-
ing mechanisms based on linear weighted combination of tactics that solve this
problem: the first using individual imitative negotiation threads, and the second
combining individually proposed concessions of each tactic involved. We prove
that both methods avoid these dynamic effects and ensure monotonic behaviour,
the first for static and the second for dynamic weights. We further demonstrate
by means of a comparative experimental evaluation that the proposed mecha-
nisms provide utility gains for both parties in many negotiation settings.

In the next section, we briefly introduce the basic model as well as pure
and mixed tactics for agent-based bargaining and discuss the emergence of non-
monotonic behaviour in multi-tactic strategies. The two alternative mixing mech-
anisms are proposed in Section 3, while the results of an experimental evaluation
are given in Section 4. Related work is presented in Section 5, and, finally we
conclude in Section 6.

2 Mixing Negotiation Tactics

The negotiation model we consider in this paper has been introduced in [6] where
two agents a and b exchange offers and counteroffers on a number of real-valued
issues such as price or delivery time. The sequence of all offers exchanged between
agents a and b until time tn is termed a negotiation thread:

Xtn
a↔b = (xti

a↔b)i=1,...,n = (xt1
a→b, x

t2
b→a, x

t3
a→b, . . . , x

tn
b→a). (1)

The offer xtn
b→a at time tn indicates the last element of the negotiation thread

where ti represent discrete time points where ti+1 > ti with i = 1, 2, . . . , n and
n ∈ N. The next counteroffer of agent a given the thread is then x

tn+1

a→b . We assume
that each agent has a negotiation interval Da

j = [mina
j ,maxa

j ] for each issue j
where mina

j and maxa
j are the initial and reservation values, respectively, if a is

a buyer agent whereas the opposite holds for a seller, and Dj is the issue domain
with Da

j , D
b
j ⊆ Dj. Each agent has a utility function Ua

j : Da
j → [0, 1] associated

to each issue which assigns a score to the current value within its acceptable
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interval. We assume that utility functions are monotonically increasing or de-
creasing depending on the issue and the role of the agent. For example, for issue
price the utility function is decreasing for a buyer and increasing for a seller. For
each offer x of an agent a, the aggregated utility function Ua(x) =

∑
j w

a
jU

a
j (xj)

determines the score for all issues j, where the weight waj represents the rela-
tive importance of issue j to agent a with

∑
1≤j≤p w

a
j = 1. Agents may include

discounts or negotiation costs, however, for simplicity we do not consider such
a case here. The agents exchange offers alternately until one agent accepts or
withdraws from the negotiation. An offer is accepted by agent a if the overall
utility of agent b’s last offer is equal or higher than a’s next offer, such that
Ua(xtn

b→a) ≥ Ua(x
tn+1
a ). An agent withdraws if it reaches its deadline tamax. Even

though the utility structure may be more complex and of a different shape the
functioning of the negotiation strategies described in this paper are best mea-
sured when using above linear utility function. Accordingly, it has been shown
[8] that strategies well-suited for monotonic utility models do not cope well with
non-monotonic utility spaces, so that we restrict to the former.

2.1 Negotiation Tactics and Strategies

A common method to generate offers is to use tactics or decision functions which
utilize changes in the negotiation environment such as proposals from negotiation
partners, or available resources such as time or the number of negotiating agents.
In particular, a tactic τaj is as a function mapping the mental state (about its
environment) of an agent a to the issue domainDj with τaj : MSa → Dj . Typical
examples of such tactics are the time-, resource- or behaviour-dependent tactics
proposed in [6]. A wide range of different negotiation strategies can be created by
an agent through mixing of pure tactics. Faratin et al [6] introduces the concept
of strategies where tactics are mixed based on a weight matrix

Γ
tn+1

a→b =

⎛

⎜
⎜
⎜
⎝

γ11 γ12 . . . γ1m
γ21 γ22 . . . γ2m
...

...
. . .

...
γp1 γp2 . . . γpm

⎞

⎟
⎟
⎟
⎠

(2)

where γji ∈ [0, 1] is the weight of tactic i for issue j. The weighted linear combina-
tion of tactics is then defined by the weighted sum of proposed offers of each tactic
x
tn+1

a→b [j] =
∑m

i=1 γji · τji where weights are normalized with
∑m

i=1 γji = 1. The

weighted counterproposal extends the negotiation thread by appending x
tn+1

a→b

whereby each row in the matrix represents a weighted linear combination of m
tactics for one issue. Different types of negotiation behaviour can be obtained
by weighting a given set of tactics in different ways. For example, the agent’s
mental state can change and generate a new weight matrix [4] depending on the
current environment and belief of the agent. The above method of using pure
or mixed tactics represent decision functions which an agent uses to make con-
cessions such that Ua(x

tn+1

a→b )<Ua(x
tn−1

a→b ). In multi-issue negotiations, an agent
can also make trade-offs where the next offer has the same utility as its previous
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offer (both are on the same indifference curve) with Ua(x
tn+1

a→b ) =Ua(x
tn−1

a→b ). In
this paper, we focus on the concession-making mechanisms as detailed above
and refer to [11, 5] for well-discussed trade-off mechanisms.

2.2 Definition of Monotonic Tactics

To determine if a mixed strategy generates a monotonic offer sequence we distin-
guish between monotonic behaviour-dependent and -independent pure tactics:

Definition 1. Given a negotiation between agents a and b, a monotonic beha-
viour-independent tactic τaj (tk) of agent a for issue j is a function generating
offers at any times tk, ti ∈ Tn such that τaj (tk) ≥ τaj (ti) if Ua is decreasing or
τaj (tk) ≤ τaj (ti) if Ua is increasing under the condition that k, i ∈ {1, 2, . . . , n}
and k > i.

Definition 2. Given a negotiation between agents a and b at time tn, a mono-
tonic behaviour-dependent tactic τaj (X̃

tn
a↔b) generates an offer using any se-

quence X̃tn
a↔b = (xt

a↔b)t∈ ˜Tn
where T̃n �= ∅ and T̃n ⊆ Tn = {t1, . . . , tn} under

the conditions that there exists at least one offer xti
b→a ∈ Db

j of agent b in the
sequence such that

– τaj (X̃
tn
a↔b) ≥ τaj (X̃

tn−2

a↔b ) if the sequence of opponent’s offers (xt
b→a)t∈ ˜Tn

and
Ua is monotonic decreasing or

– τaj (X̃
tn
a↔b) ≤ τaj (X̃

tn−2

b↔a ) if the sequence of opponent’s offers (xt
b→a)t∈ ˜Tn

and
Ua is monotonic increasing.

Definition 1 typically represents tactics depending on a particular resource which
state may change over time. Throughout the paper we denote this class of tactics
with τj,time for issue j. In the simplest case the tactic may depend on time or
the number of negotiation rounds. For instance, the polynomial and exponen-
tial time-dependent decision functions proposed by Faratin et al [6] represent
such tactics as they generate offers in a monotonically decreasing or increasing
manner. In the case of a resource-dependent tactic, however, the resource may
diminish and increase over time such that a monotonic sequence of offers is not
guaranteed. An imitative tactic according to Definition 2 uses historical offers
from the opponent to propose counteroffers by preserving a monotonic offer se-
quence as long as the opponent’s sequence is monotonic as well. We refer to
such imitative tactics as τj,beh. For instance, the imitative tit-for-tat tactics in
[6] fulfil this definition. Once non-monotonicity is introduced by one partner it
can in turn cause a non-monotonic offer sequence of the opponent depending on
the degree of how much the concessions are copied. As a result, if monotonic tac-
tics are mixed together, non-monotonic behaviour can emerge even when both
agents apply monotonic tactics as we demonstrate in the next section.

2.3 Monotonicity of Mixed Strategies

It is often argued [10, 4] that the process of negotiation should be designed in
a way that agents make concessions, or seek for joint improvements, i.e. in the



Lecture Notes in Computer Science: Authors’ Instructions 5

form of trade-off proposals, in a negotiation. This implies monotonic behaviour:
an agent makes proposals such that the aggregated utility of its next offer is
equal (trade-off) or lower (concession) than the aggregated utility of its previous

offer, such that Ua(x
tn+1

a→b ) ≤ Ua(x
tn+1

a→b ). In the following, we say that agents have
monotonic concession behaviour if they propose offers according to this principle.
In single-issue negotiations agents typically have opposing utility structures such
that a non-monotonic sequence of offers increases the risk of a withdrawal of the
opponent. In that sense an agent a is acting rational in single-issue negotiations
if it concedes towards the last offer of its opponent, thereby trying to increase
the opponent’s utility such that the sequence of its own utilities is monotonically
decreasing. In multi-issue negotiations, however, an offer of an agent a with a
higher aggregated utility for a as compared to its previous offer can not eas-
ily be detected by the opponent as the utility structures are unknown to each
other. If, in turn, the opponent’s utility for a’s last offer is lower as a’s previous
offers, the opponent may assume that a made a trade-off proposal and can there-
fore not detect the cause of such non-monotonic behaviour. It is also argued that
agents behaving non-monotonic under time-constraints can be advantageous and
the question whether automated negotiation should be designed in a way that
non-monotonic behaviour is ensured is widely discussed in the research liter-
ature [12]. However, non-monotonicity in the sequence of proposed offers and
their respective aggregated utilities of an agent can easily emerge at any time
as a result of the dynamic effects of an agent system in which the agents use
mixed strategies. Intuitively, non-monotonic behaviour can occur when an agent
changes its strategy, e.g. the mixing weights, during the encounter. However,
automatic non-monotonic behaviour can also be observed when imitative and
non-imitative tactics are mixed by a linear weighted combination without the
agent changing its strategy, i.e. even in the case of static strategy settings and
mixing weights. A simple example shall demonstrate this:

Example 1: Assume a negotiation between two agents a and b at time tn
where agent a applies a mixed strategy with static weight γ using one time-
dependent tactic τatime(tn+1) and one imitative tactic simply copying the con-

cession of the partner (basic absolute tit-for-tat): τabeh(x
tn−2

b→a , x
tn−1

a→b , x
tn
b→a) =

x
tn−2

b→a −xtn
b→a+ x

tn−1

a→b such that agent a’s next offer is x
tn+1

a→b = γ · τatime(tn+1)+

(1− γ) · τabeh(xtn−2

b→a , x
tn−1

a→b , x
tn
b→a). Given the thread (. . . , x

tn−2

b→a , x
tn−1

a→b , x
tn
b→a) =

(. . . , 30, 10, 20), agent a’s next time-dependent proposal τtime(tn+1)=11 and the

mixing weight γ = 0.5, the next counteroffer is x
tn+1

a→b = 0.5 · 11+0.5 · 20= 15.5.

Now assume, agent b replies with a comparatively small concession x
tn+2

b→a = 19
and agent a’s next time-dependent proposal is τtime(tn+3) = 12, then agent a’s

response is lower than its previous offer and thus non-monotonic with x
tn+3

a→b =
0.5 ·12+0.5 ·16.5 = 14.25. In this example the non-monotonic behaviour emerges
in static mixed strategies with imitative and non-imitative tactics even though
the sequence of opponents’ offers is monotonic and all involved tactics are mono-
tonic as well. This is because the imitative tactic is not independent from the
other tactics in the mix since it uses the last offer of the current negotiation
thread which is different from the individually proposed one. In addition, if both
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Buyer Agent Seller Agent

Issue 1 min1=10,max1=25, w1=0.7 min1=15, max1=30, w1=0.5
Mixed Strategy (γ1 = 0.3): Mixed Strategy (γ1∈{0.1, 0.12}):
τ1,time: polynomial, β = 5 τ1,time: polynomial, β = 1
τ1,beh: absolute tft, δ=1 τ1,beh: absolute tft, δ = 1

Issue 2 min2=20,max2=40, w2=0.3 min2=30,max2=50, w2=0.5
Mixed Strategy (γ1 = 0.4): Mixed Strategy (γ1 = 0.2):
τ2,time: polynomial, β = 2 τ2,time: polynomial, β = 0.3
τ2,beh: absolute tft, δ=1, R=0 τ2,beh: relative tft, δ = 1

(a) Example 2: Negotiation settings

Fig. 1: Example 2 settings and offer and utility curves using the Traditional
(straight) or the negotiation thread-based mixing (dotted)

agents have imitative tactics in their mix a non-monotonic sequence of offers
is copied to some degree and may thus reproduce the non-monotonicity in the
sequence of opponent’s offers and vice versa. If agents have opposing utility func-
tions, such that a non-monotonic utility sequence of one agent then also causes a
non-monotonic utility sequence of the partner’s offers. This can result in a delay
of agreements, varying outcomes as compared to mixing methods with mono-
tonic offer sequences, and a high sensitivity in terms of the strategy parameters
making it difficult for an agent to apply such strategies in real world scenarios.
In such cases, the described dynamics of the system result in a partial loss of the
agent’s control over its strategy since small changes of parameters may change
the offer curves to a large degree.

Example 2: The settings of the second example with multiple issues are shown
in the table in figure 1(a), and figure 1(b-e) shows the non-monotonic offer
and utility curves of both agents (straight) and how it is reproduced if the
traditional mixing method is used (as a comparison the dotted curves show the
thread-based mixing from next section). As a result, the utility curves of both
agents are non-monotonic with a delayed agreement. In the case of the agents
having different deadlines this behaviour might also result in no agreement.
The example further demonstrates that in such scenarios it is difficult to find
suitable strategy parameters since the outcome utility may change significantly
for slightly different settings as shown in figure 1 for different γ settings (the
difference in utility is 0.1 for both agents when the seller changes γ1 from 0.1
to 0.12). The agent can avoid non-monotonic behaviour by applying a simple
min- or max-constraint (if it is a buyer or seller, respectively) to the next offer
proposal to ensure that the agent’s own utility does not increase with the new
offer. However, the offer curve then rapidly changes to linear and the agent may
propose the same offer over a long time period which may also increase the
risk of the opponent’s withdrawal. In the next section, we therefore present two
alternative mixing mechanisms producing monotonic offer and utility sequences
thereby avoiding the dynamic effects described above.
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3 Monotonic Mixing Mechanisms

3.1 Mixing based on Negotiation Threads

To calculate the imitative tactics in mixed strategies using the traditional mixing
method the last offer in the current thread is used. The imitative part of the strat-
egy does therefore not represent an individually applied behaviour-dependent
tactic. Another intuitive method is to use the last offers of each imitative tac-
tic involved in the mix. This can be interpreted as using individual negotia-
tion threads Xtn

a↔b[j, k] where k denotes the k’th behaviour-dependent tactic

τjk(X̃
tn
a↔b[j, k]) for issue j. As a result, offers from all imitative functions have

to be stored in order to be used in the calculation of next proposals. Formally,
the linear weighted combination of tactics can now be written as:

x
tn+1

a→b [j] =

l∑

i=1

γji · τji(tn+1) +

m∑

k=l+1

γjk · τjk(X̃tn
a↔b[j, k]) (3)

wherem and l denote the total number and the number of behaviour-independent
tactics, respectively. Unlike the traditional mixing method in Section 2.1 this
method can be regarded as a true linear weighted combination of tactics in
which all involved tactics are independent from each other.

Theorem 1. The mixing mechanism using individual negotiation threads for
each behaviour-dependent tactic results in a monotonic offer curve if monotonic
tactics from definitions 1 and 2 are used with static weights for all tactics.

Proof Let Xtn
a↔b be the negotiation thread at time tn with xtn

b→a being the last

offer and x
tn+1

a→b being the next counteroffer of agent a then according to Definition

1 and 2 γk · τk(X̃tn
a↔b[k]) ≥ γk · τk(X̃tn−2

a↔b [k]) and γi · τi(tn+1) ≥ γi · τi(tn−1) if U
a

is decreasing and all γi, γk ≥ 0. Since each term of the sum in (3) at tn is larger
than the corresponding term of the sum at tn−2 it follows that xtn+1

a→b ≥ xtn−1
a→b .

The same line of reasoning can be followed for increasing utility functions Ua. �
Figure 1 shows the monotonic offers curves and the resulting monotonic utility
sequence when both agents use this mixing mechanism for Example 2 (dotted).
The outcome is changed in favour of the seller and agreement is reached earlier.
Agents using this mechanism do not expose the dynamic effects as described in
section 2.3. However, the mechanism does not force the agent to propose offers
in a monotonic manner. For instance, if the opponent still proposes offers in a
non-monotonic sequence, an imitative tactic in the mix may still copy it to some
degree. The agent can choose to strictly ensure monotonicity by applying a con-
straint C to the imitative tactic: C(τjk(X̃

tn
a↔b[j, k]), x

tn−1

a→b [j, k]) where C ≡ min
if Ua decreasing and C ≡ max if Ua increasing. The individual imitative thread
used by this method does not represent the actual negotiation thread. This seems
counter-intuitive as the offer curve and the outcome of the individually applied
imitative tactics might indeed be different from the mixed strategy.
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3.2 Mixing based on Single Concessions

This mixing type calculates individual next concessions for each tactic to mix
behaviour-dependent and -independent tactics as defined in Section 2.2:

x
tn+1

a→b [j] = x
tn−1

a→b [j] +

l∑

i=1

γji · (τji(tn+1)− τji(tn−1)) + . . .

+

m∑

k=l+1

γjk · (τjk(X̃tn
a↔b[j])− x

tn−1

a→b [j])

(4)

with m and l denoting the total number and the number of behaviour-indepen-
dent tactics respectively. In order to use concessions at least two offers of the
opponent are necessary. Any of the former mechanisms can be used for ini-
tial offers as they propose the same offers in the first round. Concessions for
behaviour-independent tactics are, since they do not depend on opponent’ of-
fers, the difference τji(tn+1)− τji(tn−1) between the calculated offer at tn+1 and
the previous individual offer at tn−1. For the imitative tactic we can not follow
the same line of reasoning because, as described in the previous section, the last
offer of the individually applied imitative tactic is unknown. However, suppose
that the agent changed its strategy to the pure imitative tactic at time tn+1 the
last offer is still be x

tn−1

a→b and hence the next offer is given by τjk(X̃
tn
a↔b[j]). We

can hence calculate the behaviour-dependent concession by the difference be-
tween the proposed imitative offer and the last offer of the agent. This approach
provides monotonic offer curves similar to the negotiation thread-based mixing
and also avoids non-monotonic aggregated utilities over time. The major advan-
tage, however, is that a monotonic sequence of utilities is also never introduced
if the agent changes weights for tactics dynamically.

Theorem 2. The mixing mechanism based on single concessions of pure tactics
results in a monotonic offer curve (and therefore preserves a monotonic sequence
of utilities) if monotonic tactics from Definitions 1 and 2 are used.

Proof Let Xtn
a↔b be the negotiation thread at time tn with xtn

b→a being the last

offer and x
tn+1

a→b being the next counteroffer of agent a then according to Definition
1 the behaviour-independent concession τaji(tn+1) − τaji(tn−1) is always greater
zero if Ua is increasing. The offer proposed by the pure behaviour-dependent
tactics τajk(X̃

tn
a↔b[j]) for issue j is greater than the previous offer x

tn−1

a→b [j] if
monotonic tactics from Definition 2 are used and the opponent never introduces
non-monotonicity. The behaviour-dependent concession τajk(X̃

tn
a↔b[j])− x

tn−1

a→b [j]
is therefore always greater zero. For all weights γi, γk ≥ 0 follows that each term
of the sum in Eq. (4) is greater zero and hence xtn+1

a→b ≥ xtn−1
a→b . The same line of

reasoning can be followed for an increasing scoring function Ua. �
Similar to the previous method the agent can strictly avoid imitating a non-
monotonic sequence of opponent’s offers by applying a constraint C to each imi-
tative concession in (4) written as C(τjk(X̃

tn
a↔b[j])−x

tn−1

a→b [j], 0) where C ≡ min if
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s / b CaS CaL BaS BaL

CaS 0/0 7/0.03 30/0.45 100/0.19

CaL 9/0.06 23/0.03 88/0.45 100/0.18

BaS 89/0.36 89/0.43 0/0 0/0

BaL 88/0.06 100/0.16 0/0 0/0

s / b CrS CrL BrS BrL

CrS 4/0.09 4/0.09 70/0.47 100/0.14

CrL 16/0.01 22/0.04 99/0.24 100/0.09

BrS 74/0.46 48/0.55 0/0 0/0

BrL 99/0.13 100/0.26 0/0 0/0

(a) Non-monotonicity in single-issue negotiation (rate in %/max. variation in utility)

Fig. 2: Buyer’s (bottom) and seller’s (top)

Ua decreasing or C ≡ max if Ua increasing. In contrast to the thread-based mix-
ing this mechanism needs no separate negotiation threads and produces mono-
tonic offer curves even for dynamically changing weights.

4 Evaluation

We present the results of a comparative evaluation of the mixing mechanisms
with respect to their non-monotonic behaviour and its respective effects in dif-
ferent bilateral single- and multi-issue negotiation settings. As the number of
possible mixes of tactics is infinite, we restrict the evaluation to a mix of two
tactics from [4], one behaviour- and one time-dependent, for each agent with
static weights throughout the encounter and the following settings:

– Time-dependent (poly.): (C)onceder: β ∈ {3, 7}; (B)oulware: β ∈ {0.1, 0.3}
– Behaviour-dependent : (a)bsolute tft: δ=1, R(M)=0; (r)elative tft: δ=1
– Weights : (S)mall: γ ∈ {0.1, 0.3}; (L)arge: γ ∈ {0.7, 0.9}

where, for example, ‘CaS’ denotes the strategy group containing conceder time-
dependent and absolute tit-for-tat tactics mixed by small weights. Before con-
sidering a multi-issue scenario we are interested in when and to what degree
non-monotonic behaviour emerges in static mixed strategies. For that reason,
we consider first a simple single-issue scenario where two agents, a buyer (b)
and a seller (s), negotiate about a issue 1 from example 1 with partially over-
lapping intervals and equal deadlines tsmax = tbmax = 20. The tables in figure 2
illustrates the rate (%) of negotiations with non-monotonic offer curves in the
case of both agents applying the traditional linear weighted combination of tac-
tics for a particular strategy group. Numbers below the rate are the maximum
variation in terms of non-monotonicity occurred in utility for either the seller
or buyer agent. As we can see, the dynamic occurrence of non-monotonic be-
haviour in static strategy settings is not a negligible side-effect. In such scenarios
the variation is higher in the case of oppositional applied time-dependent tactics
in the mix, such as conceder against boulware. In the second multi-issue scenario
using issue 1 and 2 form example 2, we compare the different mixing mechanisms
(cf. 2.1 to 3.2) applying the same strategy groups. The performance is measured
using the aggregated linear utility (cf. 2.1). Due to the large number of possi-
ble strategy assignments we choose three scenarios, where the buyer applies a
more cooperative (CaS/CaL), a more competitive strategies (BaS/Bal) for both
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issues, or a mixture of both (BaS/CaL), whereas the seller is cooperative for
issue 1 (CaS) and applies different combinations for issue 2. Figures 2(b) and (c)
show the buyer’s and seller’s aggregated utilities for the different multi-issue sce-
narios in which both agents use the same mixing mechanism. In each diagram
a group of bars represent one strategy scenario, where the different bars de-
pict the mixing mechanism from left (light) to right (dark): (1) Linear weighted
combination (cf. 2.1), (2) Constrained linear weighted combination (cf. 2.3), (3)
thread-based mechanism (cf. 3.1) and (4) concession-based mechanism (cf. 3.2).
Both agents gain higher utilities in many strategy scenarios using the proposed
mixing mechanisms, however, most significantly when the buyer applies the com-
petitive (BaS/Bal) mixed strategy. The monotonic mixing may also shift utility
from an agent that gained advantage through its non-monotonic utility sequence
to the other agent with monotonic behaviour (see buyer strategy CaS/Cal). Both
monotonic mechanisms perform similar since all pure tactics are treated inde-
pendently in both methods. In general, we further observed the effect that the
difference between traditional and the monotonic mixing mechanisms increases
when the time-dependent tactics and the mixing weights are oppositional, i.e.
one agent uses conceder with small mixing weights while the other agent em-
ploys boulware tactics with large mixing weights and vice versa. For instance, if
both agents use similar strategies (both cooperative or both competitive) utili-
ties are similar for all mixing mechanisms. These observations correspond to the
results from the first experiment (cf. figure 2(a)) where oppositional concession
behaviours exposed the highest rate of non-monotonicity.

5 Related Work

A large number of negotiation scenarios have been studied to provide effective
negotiation mechanisms and strategies, while, however, many focus on single
families of tactics [6], trade-offs mechanisms [4] or meta-strategies [11], but do
not consider the dynamic effects in the negotiation process. For example, Fatima
et al [7] investigate scenarios of single- and multi-issue negotiation where agents
have only partial information about each other trying to find optimal strategies
that most exploit the opponent. The work focus on the effect of time, informa-
tion states and discounting factors on the outcome while comparisons are made
to equilibrium solutions but are limited to time-dependent tactics. Evaluation
results for pure, static and dynamic mixed strategies are presented in [4] with
focus on the influence of long and short term deadlines, and initial offers. Matos
et al [9] propose the application of genetic algorithms to determine most suc-
cessful mixed strategies that evolve depending on the environment and strategy
of the opponent. Both approaches demonstrate that mixed strategies perform
better than pure tactics in terms of gained utility and negotiation cycles, but do
not investigate the mechanism of their mixing with respect to the emergence of
non-monotonic behaviour. Cardoso et al [3], and Brzostowski et al [2] [1] con-
sider the mixing of different tactic families to evaluate adaptive strategies based
on reinforcement learning, respectively, heuristic predictive methods or regres-
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sion analysis with respect to their negotiation outcomes only. Sierra and Ros
[11] propose to let an agent make concessions through single or mixed tactics
whenever a deadlock occurs, i.e. the opponent’s last offer does not improve the
utility of the offer two steps before, otherwise a trade-off tactic is used. However,
utilities of offers may also decrease when pure tactics are combined as shown in
this paper. Our work is different in that it focuses on the analysis of the mixing
mechanism itself, and proposes new mechanisms that, in contrast to the com-
monly used mixing of tactics, avoid the dynamic emergence of non-monotonic
utility sequences during the process of negotiation, thereby also avoiding the
drawbacks described in this paper.

6 Conclusions

We provided an investigation of (non-)monotonic behaviour of multi-tactic strate-
gies created by different mechanisms for mixing pure tactics in bilateral single-
and multi-issue negotiations. The traditional mixing based on linear weighted
combination can undesirably expose non-monotonic utilities over time, even in
cases of individual cooperative behaviour and static strategy settings of both
agents, if behaviour-dependent and -independent tactics are used. As alterna-
tive, we proposed two mixing mechanisms that solve this problem by provably
producing monotonic concession behaviour for static and dynamic weights: the
first using imitative negotiation threads and the second single concessions for
each involved tactic. A comparative evaluation showed provided evidence that
both mechanisms yield higher utilities for both agents in many multi-issue ne-
gotiation scenarios as compared to traditional mixing when both agents use the
same mixing mechanism.
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