
Evaluation of Service Composition Planning With OWLS-XPlan1

Matthias Klusch and Andreas Gerber
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
{klusch@dfki.de, andreas.gerber@x-aitment.net}

1 This work has been supported by the German Ministry of Education and Research (BMBF 01-IW-D02-SCALLOPS), http://www.dfki.de/scallops

Abstract

In this paper, we present the implementation,

evaluation, and application of our OWL-S service
composition planner OWLS-XPlan. Services in OWL-S
1.1 and ontologies are converted to initial state and goal
descriptions in PDDL 2.1, which are then used by the fast
heuristic FF planner XPlan for generating an execution
complete composition plan. Results of experimental
evaluation of XPlan shows its top performance compared
with other selected AI planners. OWLS-XPlan is used in
an agent based eHealth system for medical patient
transport planning.

1. Introduction

Though the composition of complex Web services
attracted much interest in different fields related to service
oriented computing, there are only a few implemented
composition planning tools publicly available for the
semantic Web such as the HTN composition planner
SHOP2 [12] for OWL-S services. One problem with HTN
planners is that they require task specific decomposition
rules and methods developed at design time, hence are not
guaranteed to solve arbitrary planning problems.

That, in particular, motivated the development of our
hybrid composition planner for OWL-S 1.1 services,
called OWLS-XPlan, which always finds a solution if it
exists, though the corresponding planning problem
remains to be NP-complete. OWLS-XPlan is integral part
of the prototypically implemented medical application
service system Health-SCALLOPS. An extended version
of OWLS-XPlan, called OWLS-XPlan+, that allows for
quasi-online re-planning of service composition is used
within the European project CASCOM.

The remainder of this paper is structured as follows.
Section 2 briefly introduces OWLS-XPlan, followed by
the evaluation results of its core planner XPlan and
implementation in sections 3 and 4. Use of OWLS-XPlan
in an eHealth application is described in section 5, while

we briefly refer to related work and conclude in sections 6
and 7, respectively.

2. OWLS-XPlan Overview

The semantic web service composition planner OWLS-
XPlan consists of several modules for pre-processing and
planning (cf. figure 1). It takes a set of available OWL-S
1.1 services, related OWL ontologies, and a planning
request (goal) as input, and returns a planning sequence of
relevant services that satisfies the goal.

Fig. 1. OWLS-XPlan Architecture

For this purpose, it first converts the domain ontology

and service descriptions in OWL and OWL-S,
respectively, to equivalent PDDL 2.1 problem and domain
descriptions using the integrated OWLS2PDDL converter.
The domain description contains the definition of all
types, predicates and actions, whereas the problem
description includes all objects, the initial state, and the
goal state. Both descriptions are then used by the AI
planner XPlan to create a plan in PDDL that solves the
given problem in the actual domain. For reasons of
convenience, we developed a XML dialect of PDDL,
called PDDXML that simplifies parsing, reading, and
communicating PDDL descriptions using SOAP. An
operator of the planning domain corresponds to a service
profile in OWL-S: Both operator and profile describe
patterns of how an action or service as an instance should

look like. A method is a special type of operator for fixed
complex services that OWLS-XPlan may use during its
planning process. Its core AI planning module called
XPlan is a heuristic hybrid FF planner based on the FF
planner developed by Hoffmann and Nebel [5, 6]. It
combines guided local search with relaxed graph
planning, and a simple form of hierarchical task networks
to produce a plan sequence of actions that solves a given
problem. If equipped with methods, XPlan uses only those
parts of methods for decomposition that are required to
reach the goal state with a sequence of composed services.

For each sub-goal g of the determined goal agenda, at
each planning step i, XPlan quickly builds a relaxed
planning graph RPG(i) in a fast goal reachability test
heuristically ignoring negative effects of actions, and the
corresponding relaxed plan RP(i) in a backward pass from
g to Si. The relaxed plan contains all paths of applicable
actions that lead from g to Si, of which only those in its
first action-layer 0 are called helpful. In the following,
XPlan focuses on the helpful actions of RP(i) only, hence
reduces the search space. Please note that the relaxed plan
is not necessarily correct.

In order to decide which helpful action to select as the
next action in a valid plan sequence, it applies each of
them to Si and adds the previously ignored Del-list facts
yielding the complete state Sij, where j in {1,.., l}, denotes
the j-th helpful action applied to state Si .

For each of these states the relaxed plan RPG(i,j) is
built to heuristically search for the relaxed plan RP(i,j)
with heuristically minimal length h(RP(i,j)). In this
context, the "plan length" h(RP(i,j)) just denotes the sum
of all actions in all action-layers of the RP. Finally, XPlan
retains the action Aij with heuristically minimal goal-
distance and starts the next planning step i+1 with Sij. If
there are multiple RPs of equal length, it repeats the same
decision process starting at state Si1 (like a breadth first
search restricted on helpful actions), and then Si2, ..., Sil
until a minimum is found.

Eventually, all created plans for sub-goals g of the goal
agenda are respectively concatenated which yields the
final plan sequence P. The plan then gets executed, and if
it fails, XPlan allows re-planning from the most recent
valid state produced by action execution, to avoid a total
re-planning, if possible.

For more details on the service composition planner
OWLS-XPlan, we refer the reader to [14].

3. Evaluation of XPlan

We evaluated the performance of XPlan, using the
benchmark of the international planning competition in
2003 (IPC3) [5], and compared the results with that of the
four top performing IPC3 participants, i.e. FF planner,
SimPlanner, and the HTN planners TLPlan, and Shop2.

XPlan was tested without task specific methods. Planning
performance was measured in terms of (a) the planning
completeness, i.e. the total percentage of solved problems
(cf. figure 2), (b) the average plan length (cf. figure 3),
and (c) the average plan quality, i.e. the average distance
of individual plans from the optimal plan length (cf. figure
4) in relation to the complexity of the given problems. The
complexity of a planning problem is defined as the
number of objects of the type definitions specified in the
given planning problem domain description. We grouped
all test cases of the IPC3 test scenarios leading to 122
problems in total into complexity classes with an
increasing number of objects.

problems not solved

0
1
2
3
4
5
6
7
8
9

10

100 200 500 1000 5000 10000 15000 30000

complexity groups

fa
il
ed

 p
ro

b
le

m

XPlan FF Simplanner TLPlan SHOP2

Fig. 2: Completeness

First, we tested the completeness of planning (cf. figure
2). It turned out that XPlan and FF planner failed to solve
only a few mid ranged complex problems; in fact, both
solved nearly 97% of given problem cases. There were no
results reported for TLPlan and SHOP2 for the last six
test cases, they failed a lot in solving problems of low and
mid range complexity, but performed very well in solving
more complex problems. Main reason is that the HTN
planners turned out to be equipped with methods that
better enabled them to solve highly complex problems in
most domains. Figure 3 summarizes the results of testing
the average plan length in relation to the complexity of the
problem definition. The HTN planners produced shorter
plans than their competitors with increasing complexity of
the problem, whereas XPlan outperformed all other
planners for given problems of low and mid range
complexity.

average plan length

0,00

20,00

40,00

60,00

80,00

100,00

120,00

100 200 500 1000 5000 10000 15000 30000 50000 100000

complexity groups

p
la

n
 s

te
p
s

XPlan FF Simplanner TLPlan SHOP2
Fig. 3: Average plan length

difference to local optimal plan length

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

100 200 500 1000 5000 10000 15000 30000 50000 100000

complexity groups

p
la

n
 s

te
p
s

XPlan FF Simplanner TLPlan SHOP2

Fig. 4: Average plan quality

Finally, we measured the average plan quality in terms of
the average distance of individual plans from the optimal
solution of a given problem (cf. figure. 4). That is, we
counted the number of additional plan steps of a solution
generated by an individual planner compared to that of the
shortest plan created for the given problem, averaged over
all test cases per complexity class. In this respect, except
for the most complex problems, XPlan outperformed the
other planners.

Fig. 5: Average run time for conversion and planning

We did not have specific information about the underlying
computing hardware used in the IPC3 competition for run
time measurement. Figure 5 shows the reasonably fast run
time of converting and planning by OWLS-XPlan on a
Siemens-Fujitsu Amelio 1425 notebook with 1.8 Ghz Intel
Centrino, and 1 GB RAM.

4. Implementation

OWLS-XPlan has been implemented in Java and C++,
and provides an integrated graphical user interface (cf.
figure6). XPlan uses the Microsoft MSXML parser for
PDDXML definitions and generating plans in XML
format. In addition, OWLS-XPlan provides an integrated
PDDXML editor that allows the experienced user to edit
the goal, and the initial state ontology of given planning
problem.

Fig. 6: OWLS-XPlan GUI (part of)

The initial (world) state ontology is assumed to be
provided to the system; we acknowledge that this is a
major hurdle for inexperienced users, hence are working
on a more convenient user interface.
The generated plan is being displayed, and can be further
optimized with respect to given QoS parameters by means
of ILP based optimization with newly provided
semantically equivalent services. OWLS-XPlan 1.0 is
available under GPL at [17]. We are currently working on
an improved version 2.0 that also allows for dynamic re-
planning in case of non-deterministically occurring
changes during planning.

5. Related work

Existing approaches to service composition planning

can roughly be classified into process oriented, and data
or signature oriented approaches. Members of the first
presume a goal that specifies the global behaviour of the
desired service in terms of the set of possible desired

Average Time for converting OWL-S services to PDDXML

600

2600

4600

6600

8600

10600

12600

14600

19 38 57 76 170 340 680

number of services

m
ill

is
ec

o
n

d
s

Time for converting OWL-S
servicees to PDDXML

Average Time for converting and planning of OWL-S services

1400

1600

1800

2000

2200

2400

17 19 34 38 51

number of services

m
ill

is
ec

o
n

d
s

Time for converting and planning

conversations, or a process flow to be accomplished by
synthesizing the process models of available services that
can either be modified during composition [2], or not [1].
Specification of service behaviour usually takes the form
of FSMs, Petri Nets [13, 16], situation calculus [8], or
linear temporal branching logic formulas. Signature-
oriented or data-driven composition approaches do not
take the process of a service into account but try to
instantiate a goal specification given by the I/O signature
of a desired service together with constraints and user
preferences only. Such an instance is a sequence of atomic
or other composite services considered as black boxes that
accomplishes the goal. OWLS-XPlan falls into the latter
category, and is tightly related to classical planning in AI
[10]. An accessible approach to solutions of the problem
of cyclic composition planning via model checking is in
[15]. To the best of our knowledge, it holds that (a) none
of the implemented planners including OWLS-XPlan does
cope with the open world assumption of OWL, and (b)
OWLS-XPlan and Shop2 are the only implemented OWL-
S service planners publicly available.

6. Conclusion

The implemented OWL-S service composition planner
OWLS-XPlan is used in a prototyped medical health
information service system. Its hybrid core planner XPlan
exploits both relaxed Graph-Plan based FF-planning with
local search and HTN based planning. According to
experimental evaluation, XPlan performs reasonably well
compared to other relevant planners. OWLS-XPlan is
publicly available for downloading, and used in an agent
based emergency medical assistance system.

8. References

[1] D. Berardi, D. Calvanese, G. D. Giacomo, M.
Lenzerini, and M. Mecella. Automatic service
composition based on behavioral descriptions.
Cooperative Information Systems, 14(4), 2005.
[2] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to the design and analysis
of e-service composition. Proc. World Wide Web
Conference WWW, Budapest, Hungary, 2003.
[3] International Planning Competition 2002. IPC3.
http://planning.cis.strath.ac.uk/competition/
[4] J. Hoffmann. A heuristic for domain indepndent
planning and its use in an enforced hill-climbing
algorithm. Proc .12th Intl Symposium on Methodologies
for Intelligent Systems, Springe, 2000.
[5] J. Hoffmann. The Metric-FF planning system:
Translating Ignoring Delete Lists to Numeric State
Variables. Artificial Intelligence Research, 20, 2003.

[6] J. Hoffmann and B. Nebel. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Artificial
Intelligence Research, 14, 2001.
[7] A. Lotem, D. Nau, and J. Hendler. Using planning
graphs for solving HTN problems. Proceedings of
AAAI/IAAI conference, USA, 1999.
[8] S. McIllraith and T. Son: Adapting Golog for
composition of semantic Web services. Proceedings of
Intl Conference on Knowledge Representation and
Reasoning KRR, Toulouse, France, 2002.
[9] B. Medjahed, A. Bouguettya, A.K. Elmagarmid.
Composing Web services on the semantic Web. Very
Large Data Bases (VLDB), 12(4), 2003
[10] J. Peer. Web Service Composition as AI Planning: A
Survey. Technical Report, U St. Gallen, Switzerland
http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf, 2005.
[11] M. Schmidt. Ein effizientes Planungsmodul fuer die
lokale Planungsebene eines InteRRaP Agenten. Master
Thesis, U Saarland, Germany, 2005.
[12] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau. HTN
planning for web service composition using SHOP2.
Journal of Web Semantics, 1(4), 2004.
[13] R. Hamadi, B. Benatallah: A Petri-Net Based Model
for Web Service Composition. Proc. 14th Australian
Conference on Database Technologies, ACM Press, 2003
[14] M. Klusch, A. Gerber, M. Schmidt: Semantic Web
Service Composition Planning with OWLS-XPlan.
Proceedings of the AAAI Fall Symposium on Semantic
Web and Agents, Arlington VA, USA, AAAI Press, 2005.
[15] A. Cimatti, M. Pistore, M. Roveri, P. Traverso:
Weak, strong, and strong cyclic planning via symbolic
model checking, Artificial Intelligence,147(1/2), 2003.
[16] P. Traverso, M. Pistore: Automated Composition of
Semantic Web Services into Executable Processes. Int
Semantic Web Conference, LNCS 3298, Springer, 2004.
[17] OWLS-XPlan:
 http://projects.semwebcentral.org/projects/owls-xplan/

