
Evaluation of WSML Service Retrieval with WSMO-MX

Matthias Klusch, Patrick Kapahnke
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, Saarbrücken
klusch@dfki.de, patrick.kapahnke@dfki.de

Frank Kaufer
Hasso-Plattner-Institute at University of Potsdam

Prof.-Dr.-Helmert-Strasse 2-3, Potsdam
frank.kaufer@hpi.uni-potsdam.de

Abstract

The hybrid semantic Web service matchmaker WSMO-
MX applies different matching filters to retrieve WSML ser-
vice descriptions that are semantically relevant to a given
query with respect to seven degrees of hybrid matching.
These degrees are recursively computed by aggregated val-
uations of ontology-based type matching, logical constraint
and relation matching, and syntactic similarity as well. In
this paper, we provide results of our experimental evalu-
ation of the performance of WSMO-MX. In summary, it
turned out that hybrid semantic matching of WSML-MX
services can outperform logic-based only semantic service
matching.

1 Introduction

The problem of efficiently retrieving relevant services
in the envisioned semantic web has been solved so
far by only a few approaches for services described in
OWL-S such as [13, 9], and WSML such as [7, 14,
11]. We developed the first hybrid semantic matchmaker,
called WSMO-MX, for WSML services [4]. Both ser-
vices and goals are described in a Logic Programming
(LP) variant of WSML, called WSML-MX, which is
based on WSML-Rule. The hybrid matching scheme of
the matchmaker WSMO-MX combines and extends the
ideas of hybrid semantic matching realized by OWLS-
MX [9], the object-oriented structure-based matching pro-
posed in [8], and the concept of intentional match-
ing introduced in [6]. WSMO-MX v0.4 is available
at http://projects.semwebcentral.org/projects/wsmomx/. In
this paper, we build upon this work and show the results of
our experimental evaluation of the performance of WSMO-

MX based on a service retrieval test collection for WSML
services.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview on how WSMO-MX works,
while the testing environment and the preliminary results of
the evaluation of its retrieval performance is given in sec-
tion 3. Related work is strived in section 4, and section 5
concludes this paper.

2 WSMO-MX Overview

In this section, we briefly summarize the functionality
of the WSMO-MX matchmaker and provide a brief exam-
ple. WSMO-MX pairwisely matches services in an exten-
sion of WSML-Rule called WSML-MX. As a service-IOPE
(input, output, precondition and effect) matchmaker, it fo-
cuses on matching service profiles or capabilities but not
process models; goals are described as desired services in
WSML-MX. For further details on the functionality and im-
plementation of WSMO-MX, we refer to [4].

2.1 Service description in WSML-MX

The basic idea behind WSML-MX is to allow users
to add preferences and relaxation constraints for seman-
tic matching of desired service capabilities described in
WSML-Rule. For this purpose, WSML-MX introduces an
additional language element to WSML-Rule, the so-called
derivative of a service or goal (request) which is an ex-
tended version of the object set introduced in [8]. A deriva-
tive DT in WSML-MX encapsulates an ordinary conceptT
(in this context called type) with relation (type) signature
logically defined in a given ontology by attaching meta-
information mainly about the way howT can be matched
with any other type. This meta-information is defined in

Webservice_D...
type: Webservice
...

capability

Capability_D...
type: Capability
... postconditionprecondition

...

...

... ...

...

...

... ...

State

StatePart

Figure 1. Service derivative in WSML-MX

terms of different meta-relations of the derivativeDT . In
services, these meta-relations concern the use of service
paramters as input (param⇒⇒out) or output parameters
(param⇒⇒out) and logical constraints (constraint⇒⇒c).
The typeT itself is defined to be either atomic or a complex
type with relations, the derivativeDT can also have a set
of relations different fromT . A state is a set of state parts,
which are derivatives each defined as atomic, or as complex
by means of relations with derivatives as range: A semantic
service in WSML-MX is a directed object-oriented graph
with derivatives considered as nodes and relations between
them as edges, as shown in figure 1.

WSML-MX allows specifying matching constraints on
both relations and derivatives in F-logic [1]. LetD be a
derivative,C a F-Logic rule body andXD a free variable in
C, then we callc a constraintof D, if D[constraint→→c]
and∀XD.satCons(XD, c) ← C holds. VariableXD is
bound with potential instances ofD, and satCons veri-
fies whether such an instance satisfiesc. A derivative can
have zero or many constraints. WSML-MX constraints
are as expressive and only semi-decidable as WSML-Rule
axioms are. However, the WSMO-MX matchmaker ap-
proximates query containment through means of relative
query containment for constraint matching. Moreover, the
matching of parts of WSML-MX expressions represented
as acyclic object-oriented graphs without constraints is de-
cidable in polynomial time. An example for a service in
WSML-MX is shown in figure 2. The constraint (the F-
Logic rule at the bottom of the figure) on the output parame-
ter derivativeTicketD5 (with meta-relationparam→→out;
constraint→→c2) ensures that the service returns tickets for
any trip between any two German towns, but if the depar-
ture is from Berlin, the destination must be Hamburg.

2.2 Hybrid matching degrees

The result of matching a derivativeDG from a goal
description with a derivativeDW from a service descrip-

State
Webservice_D2

capability

Capability_D4
postcondition Ticket_D5

param->>out
constraint->>c2

GermanTown_D1

param->>in

GermanTown_D2

param->>in

Date_D4

param->>in

departure arrival date

FORALL X.satCons(X,c2) <- (X[departure->>berlin] -> X[arrival->>hamburg]).

Client_D1

param->>in

purchaser

Town_D8
param->>in

livesAt

Figure 2. Example service in WSML-MX

tion is a vectorv ∈ R7 of aggregated valuations of
(a) logical ontology-based concept matching, (b) logi-
cal constraint matching, (c) recursive relation matching
(identified by name), and (d) syntactic similarity-based
matching. In this respect, the semantic service match-
ing of WSMO-MX is hybrid. Each real-valued entry
in the so called service matching valuation vectorv =
(π≡, πv, πw, πu, π∼, π◦, π⊥) with πi ∈ [0, 1] (i ∈ {≡
,v,w,u,∼, ◦,⊥}) and

∑
πi = 1, denotes the extent

(also called the semantic similarity score) to which both
derivativesDG and DW match with respect to the hy-
brid semantic matching degreesπi. As shown in Table
1, the logic-based semantic matching degrees are com-
puted as the logical relationsequivalence (or exact), and
plug− in known from software component retrieval [16] or
the similarrule of consequencesfrom Hoare logic [3], and
inverse − plugin, intersection anddisjunction (fail).
The degree offuzzy similarity refers to a non-logic-based
semantic match such as syntactic similarity or numeric
path-length distance in the ontology (excluding parent-child
paths), while the degreeneutral stands for neither match
nor fail, hence declares the tolerance of matching failure.
The set-theoretic semantics of these hybrid matching de-
grees (cf. Table 1) base on the computed relations between
the maximum possible instance sets of the derivativesDG

andDW , denoted byG andW. We use the heuristic relative
query containment for logical constraint matching restrict-
ing these sets to the finite sets of known instances in the
matchmaker knowledge base which satisfy the given logi-
cal constraints in F-Logic.

2.3 Hybrid matching process

In order to compute the degrees of hybrid seman-
tic matching of given goal and service derivatives in
WSML-MX, WSMO-MX recursively applies different
IOPE-matching filters to their preconditions and postcon-
ditions inherently including service inputs and outputs as

order symbol degree of match pre post
1 ≡ equivalence G =W
2 v plugin G ⊆ W W ⊆ G
3 w inverse-plugin G ⊇ W W ⊇ G
4 u intersection G ∩W 6= ∅
5 ∼ fuzzy similarity G ∼ W
6 ◦ neutral by derivative specific definition
7 ⊥ disjunction (fail) G ∩W = ∅

Table 1. Degrees of hybrid semantic matching of WSML service and goal derivatives

in WSML, and returns the aggregated matching valuation
vector. While logic-based type matching bases on the sub-
concept relations and path distance between types (classes)
in the matchmaker ontology, F-logic constraint matching is
computed by means of relative query containment, and re-
lation matching recursively matches the ranges of equally
named relations with each other. Syntactic matching is per-
formed in case one of these filters fails (compensative),
or complementary in any case, if not specified differ-
ently. Subsequently, WSMO-MX computes the maximum
weighted bipartite graph match, where nodes of the graph
correspond to the goal and service state parts. The respec-
tively computed valuation vectors act as weights of edges
existing between the two state parts to be matched. Finally,
all valuation vectors computed during recursive matching of
goal and service derivatives are aggregated into one single
valuation vector. The overall result of the matching process
is a ranked list of services with their hybrid matching valu-
ation vector and annotations. Services are ranked with re-
spect to the maximum value of hybrid semantic matching
degrees in descending order (cf. table 1), starting withπ≡.
For reasons of space limitation, we refer to [4] for more
details on the hybrid matching filters and provide an illus-
trative example in the following.

2.4 Example

Suppose the user defines a goal derivative as a desired ser-
vice derivativeTicketD4 as shown in figure 3. That is,
she is looking for any ticket for a trip between two arbi-
trary towns, but if it starts in Berlin, then it must not end
in Bremen. Please note, that the user may specify match-
ing relaxations for any object of the goal as exemplified,
but also different weights for the matching filters to be ap-
plied. In this example, we assume the filters to be equally
weighted. Further, the derivatives TD are of equally named
types (TD[type→→T]) that are defined in the matchmaker
ontology and not explictly shown in the example. The part
of the type hierarchy in the matchmaker ontology and all
instances used in this example are shown in figure 4.

In this example, the service derivativeTicketD5 given

StateGoal_D2

capability

Capability_D3
postcondition

Ticket_D4

Town_D3

typeSimRel->>sub
param->>in

Town_D4

typeSimRel->>sub

Date_D3

param->>in

departure arrival date

typeSimRel->>sub
param->>out
missingStrat@(via)->>assumeEquivalent
constraint->>c1

Town_D5

typeSimRel->>sub
existensialIntension->>true

via

FORALL X. satCons(X,c1) <- (X[departure->>berlin] -> not X[arrival->>bremen]).

Customer_D1

purchaser

Town_D7

param->>in

residence

param->>in
synSimUsage->>compensative
synSimScope->>scpType
synSimMetric->>loi
synSimMinDegree->0.7

Figure 3. Example goal in WSML-MX

Town

Location

Station

Date

Thing

Ticket

Trainticket

GermanTown

Person

Customer Client

Figure 4. Example ontology

in section 2 will be matched against the goal derivative
TicketD4 as follows.

1. Type matching: The goal derivative type ”TicketD4”
is logically equivalent (equivalent) to the service
derivative type ”TicketD5” according to the match-
maker ontology. Therefore, the binary valuation vector
of type matching is
v1 = (1,0,0,0,0,0,0).

2. Parameter matching: Both derivatives are marked as
output parameters. No annotation necessary.

3. Relation matching Sorted pairs of equally named re-
lations of goal and service derivatives are recursively
matched as follows.

Relation departure: The range of the relation
”departure” of goal derivative ”TicketD4” is the
derivative ”TownD3” of type ”Town” for which
a subtype matching is allowed (meta-relation
Town D3[typeSimRel→→sub]). Since the type ”Ger-
manTown” of the derivative ”GermanTownD1” as
range of the equally named relation ”departure of the
service derivative ”TicketD5” is not equivalent to but
a subtype of ”Town” according to the ontology, we get
a type matching valuation in terms of a logical plug-in
match, that isv2 = (0,1,0,0,0,0,0).

Relation via: There is no equally named relation
in the service derivative ”TicketD5”, hence ”via” is
a missing relation. However, since the user spec-
ified a missing relation strategy for this relation in
the goal (TicketD4[missingStrat(@via)→→ assumeE-
quivalent]) the matchmaker assumes an equivalent re-
lation for ”via” in the service and returns a missing re-
lation strategy matching valuation in terms of logical
equivalence:v3 = (1,0,0,0,0,0,0).

Relationarrival: Since the type ”GermanTown” of the
range derivative of the relationarrival in the service
is a subtype of the type ”Town” of the same relation
of the goal derivative according to the ontology, we
obtain a type matching valuation in terms of a logical
plug-in match:v4 = (0,1,0,0,0,0,0).

Relation date: The range types of this relation are
equivalent in both goal and service which yields a type
matching valuation in terms of logical equivalence:v5

= (1,0,0,0,0,0,0).

Relation purchaser: Since the type ”Customer” of
the range derivative of this relation is a sibling of
the type ”Client” of the matched relation in the ser-
vice derivative, they do not logically match, hence
the matching of ”CustomerD1” and ”Client D1” fails.
However, the user allowed a relaxed matching of
derivative ”CustomerD1” by means of a compen-
sative syntactic matching of its type ”Customer” (Cus-
tomerD1[synSimScope→→ scpType]). For this pur-
pose, the loss-of-information (LOI) metric shall be ap-
plied to the weighted keyword vector representations
of type definitions ”Customer” and ”Client” logically
unfolded in the matchmaker ontology. These vec-
tors are (Customer:1, Town:1, Person:1, Location:1,
Town:1), respectively, (Client:1, Town:1, Person:1,
Location:1, Town:1) with LOI-based similarity degree
0.75. Since this syntactic similarity value exceeds the
given threshold (CustomerD1[synSimMinDegree→→
0.7]), this yields a syntactic type matching valuation
for fuzzy matching:v6 =(0,0,0,0,1,0,0).

The overall result of this relation matching of
goal derivative ”TicketD4” with service derivative

”Ticket D5” is the average of the individual matching
valuations in terms of the seven matching degrees:v7

= v2+...+v6
5 = (0.4,0.4,0,0.2,0,0).

4. Constraint matching: Any instance of the goal deriv-
ative ”Ticket D4” has to satisfy the logical constraint
c1 (TicketD4[constraint→→ c1). This is satisfied
by the instancest1, . . . , t5 of the matchmaker knowl-
edge base. On the other hand, the constraint c2,
which is imposed on instances of the service deriva-
tive ”Ticket D5” is satisfied by the instancest3, . . . , t5
of the same knowledge base. That is, the answer
set of instances for ”TicketD5” is included in that
for ”Ticket D4” which means that the service (output)
constraint implies that of the goal yielding a constraint
matching valuation in terms of a logical plug-in match:
v8 = (0,1,0,0,0,0,0).

Finally, the aggregated matching valuations of service and
goal derivatives in terms of the seven matching degrees of
WSMO-MX is v9 = v1+v7+v8

3 = (.46, .46, 0, 0, .08, 0,
0) Informally, that means that the service is semantically
relevant to the goal according to 46% equivalence and 46%
plug-in matching. Services are ranked with respect to the
total order of the seven matching degrees.

3 Evaluation of performance

The experimental evaluation of the retrieval performance
of WSMO-MX focuses on measuring its recall and preci-
sion based on an extension of our test collection WSML-
TC2. The performance measures are defined as follows:
Recall = |A∩B|

|A| , Precision = |A∩B|
|B| , whereA is the

set of all relevant documents for a request, andB the set
of all retrieved documents for a request. The so-called F1-
measure equally weights recall and precision and is defined
as: F1 = 2×Precision×Recall

Recall+Precision . We adopt the prominent
macro-averaging of precision. That is, we compute the
mean of precision values for answer sets returned by the
matchmaker for all queries in the test collection at standard
recall levelsRecalli (0 ≤ i < λ). Ceiling interpolation
is used to estimate precision values that are not observed in
the answer sets for some queries at these levels; that is, if for
some query there is no precision value at some recall level
(due to the ranking of services in the returned answer set by
the matchmaker) the maximum precision of the following
recall levels is assumed for this value. The number of re-
call levels from 0 to 1 (in equidistant stepsn/λ, n = 1..λ)
we used for our experiments isλ = 10. Thus, the macro-
averaged precision is defined as follows:Precisioni =
1
|Q|×

∑
q∈Q

max{Po|Ro ≥ Recalli∧(Ro, Po) ∈ Oq}, where

Oq denotes the set of observed pairs of recall/precision val-
ues for queryq when scanning the ranked services in the
answer set forq stepwise for true positives in the relevance
sets of the test collection. For evaluation, the answer sets are
the sets of all services registered at the matchmaker which
are ranked by the matchmaker with respect to their (totally
ordered) hybrid matching degree.

3.1 Testing environment

Currently, there is no public service retrieval test collec-
tion for WSML available such that we built our own one.
WSML-TC1 has been built upon domain ontologies, ser-
vices and queries developed in the DIANE project1. We
transformed services and queries from the project-specific
F-DSD format into WSML-MX, and subjectively deter-
mined binary relevance sets for each query in the collec-
tion WSML-TC1. The results of our first experimental test-
ing of WSMO-MX over this WSML-TC1 are presented in
[10]. Meanwhile, the test collection has been updated and
extended to a second version WSML-TC2 which contains
97 services and 22 queries with 325 concepts (types) and
810 instances in a given ontology together with relevance
sets and over 2200 derivatives used by service and query
descriptions in WSML-MX. For the retrieval performance
test runs, we used our open-source tool SME2 (Semantic
Web Service Matchmaker Evaluation Environment) which
is available at SemWebCentral2. The SME2 was designed
as an extensible tool with a plugin design for different Web
service matchmakers that allows to run retrieval perfor-
mance tests over different test collections not restricted to
a specific format. It is also utilized in the international S3
(Semantic Service Selection) contest3. For the performance
tests, SME2, WSMO-MX v.05 and OntoBroker v5.0 were
deployed on a machine with Windows 2000, Java 6, CPU
1,7 GHz and 2 GB RAM.

3.2 Experiments

On the basis of version WSML-TC2 of our test collec-
tion, we conducted the following five experiments to inves-
tigate the matchmaker behaviour with respect to different
configurations of its semantic, syntactic and hybrid match-
ing. The retrieval performance of WSMO-MX is classically
measured in terms of its recall, precision and F1-values
well-known from information retrieval [2]. The preprocess-
ing of derivatives for syntactic matching is done online for
each matching request but not persistently indexed such that
the time efforts for syntactic and logic-based matchings re-
mains comparable. In practice, however, all services can

1http://hnsp.inf-bb.uni-jena.de/wiki/index.php/DSD
2http://projects.semwebcentral.org/projects/sme2/
3http://www.dfki.de/-klusch/s3/

Figure 5. Logic-based type matching

easily be indexed in prior which would reduce the time for
one matching process to some milliseconds.

3.2.1 Logic-based semantic matching

In the first experiment, we investigated the performance of
logic-based only matching of WSMO-MX. For this pur-
pose, we consider service matching deviations from goal
derivative types with increasing degree of relaxation as fol-
lows: (a)default: Only service derivative type deviations
that are explicitly granted in the goal derivative are allowed;
(b) subSuper: Service derivatives which types have a log-
ical subclass relationship with the goal derivative are al-
lowed. (c)relative-3: Service derivative types are only re-
quired to have a maximum distance of three in the ontol-
ogy. The logical subtype relations are implemented directly
in F-Logic and type deviations are classified by OntoBro-
ker. OntoBroker also manages the integration of service re-
lated domain ontologies into one matchmaker ontology. As
shown in figure 5, the logic-based matching configuration
subSuperyields highest precision at all recall levels, since
the test collection still relies on rather flat and homogenous
domain ontologies. Not surprising, the configurationde-
fault is too restrictive in general which results in lower pre-
cision thansubSuperfor top-ranked results but it performs
almost as good assubSuperfor high recall values. The
most relaxed logic-based matching configurationrelative-
3 performs worse than each of the above with impractical
average query response time of 24 seconds (subSuperand
defaultrequire 8, respectively, 2.5 seconds).

Figure 6. Syntactic similarity-based matching
(Jaccard, Cosine, Extended Jaccard, Multiset
Jaccard)

3.2.2 Syntactic similarity-based matching

In this experiment, we compared the R/P-performance of
four selected token-based IR metrics for syntactic match-
ing by WSMO-MX, that are Jaccard, Extended-Jaccard,
Multiset-Jaccard and Cosine/TFIDF with syntactic simi-
larity threshold of 0.6 and structural unfolding of service
(and goal) derivative types and relations in the ontology.
As shown in figure 6, for this setting, all metrics except
Extended-Jaccard perform almost as good as logic-based
semantic matching by WSMO-MX in significantly less
computational time most of which spent for unfolding and
index generation per query (which can be done in prior for
practical applications of WSMO-MX). Regarding the top-
ranked results (corresponding to the leftmost part of the R/P
curve), the Jaccard similarity metric performed best and is
exclusively used for syntactic matching in the following ex-
periments.

3.2.3 Syntactic matching with varying depth of struc-
tural service unfolding

The performance of both syntactic and logic-based match-
ing depends on how much information about the given goal
and service derivative can be taken into account by the
matchmaker. In particular, for syntactic similarity measure-
ment, this information is determined by the structural un-
folding of a derivative typeT , that is the maximum depth
of the (nested) ralational structure ofT the matching algo-

Figure 7. Influence of structural service un-
folding depth on syntactic similarity match-
ing performance

rithm (of WSMO-MX) is allowed to inspect for processing
T into a weighted keyword vector. Intuitively one would
expect that the more complete the matching ofT ’s struc-
ture, the better the result of its syntactic matching with any
other service (goal) derivative type. However, this largely
depends on the details to which services and goals are de-
scribed in terms of their nested relation and type signatures
with subtypes and relations defined in the ontology. In this
experiment, we successively increased the depth of service
derivative structures to which the syntactic matching is al-
lowed to unfold relations and types in the ontology for text
similarity measurement from 0 (only the service derivative
type itself, no relations and respective types of derivatives
as ranges of these relations) to 3, that is the maximum depth
of relational structures of service and goal derivatives in
WSML-TC2. As shown in figure 7, a value of 2 yields
the best recall/precision result compared to the results for
structural unfolding depths of 0 or 1 caused by too much
of the derivative structures, hence information for semantic
matching, being cut off. Computational time of structural
unfolding and syntactic matching of derivatives is linearly
dependend on the unfolding depth.

3.2.4 Syntactic matching with varying scope of struc-
tural service unfolding

In the last experiment the limited structural unfolding of ser-
vice (and goal) derivatives covered both the complete (log-
ical) unfolding of reached types and relations in the ontol-

Figure 8. Syntactic matching with different
scopes: types, relations, both

ogy. This scope of structural unfolding can be varied by
means of logically unfolding either types or relations but
not both in the ontology as follows: (a)types: Only the set
of all types of a complete service (or goal) derivative struc-
ture are logically unfolded in the matchmaker ontology and
the resulting set of primitive components used for weighted
keyword-based syntactic matching; (b)relations: Only the
names of all relations of a complete service (or goal) deriva-
tive structure are used for weighted keyword-based syntac-
tic matching. For example, the logical unfolding of deriva-
tive CustomerD1 (Fig. 3 in section 2.4) with types as scope
yields the weighed keyword vector (Customer:1, Person:1,
Town:1, Location:1). If relations are the scope of the un-
folding of this derivative, the resulting term vector is (resi-
dence:1). The combination of both would result in a vector
containing all of the above weighted keyword entries. Not
surprisingly, as shown in figure 8, only syntactic matching
with combined scope of structural unfolding of derivatives
performed best with reasonable tradeoff between recall and
precision, and average computational time twice as much as
for only one of both scopes.

3.2.5 Hybrid vs. logic-based semantic matching

Further, we compared the R/P performance of logic-based
only, syntactic and hybrid semantic matching. For this pur-
pose, we used matching configurations that performed best
in the experiments above: (a) logic-based onlysubSuper
matching, (b) syntactic matching with the Jaccard-metric,
similarity threshold of 0.6 and combined scope of struc-

Figure 9. Recall/Precision of logic-based,
syntactic and hybrid semantic matching

tural unfolding of derivatives to a maximum depth 2. Hy-
brid matching combines both matching configurations and
uses compensative syntactic matching. As shown in fig-
ure 9, all matching variants of WSMO-MX perform reason-
ably well in terms of precision and recall over the test col-
lection WSML-TC2. Figure 10 shows the corresponding
F1-values with equally weighted importance of recall and
precision. The hybrid matching variant of WSMO-MX per-
forms best since it avoids false-positives and false-negatives
of both its syntactic and logic-based only matching. For
example, logic-based only false-negatives can be avoided
by compensative syntactic similarity measurement, while
syntactic matching only false-positives can be avoided by
logic-based onlysubSupermatching. The hybrid matching
variant of WSMO-MX over WSML-TC2 took four minutes
to complete its run, that is slightly more than its logic-based
only matching variant but significantly slower than its syn-
tactic similarity matching which took only 47 seconds to
complete.

4 Related work

Other implemented approaches to WSML service dis-
covery are rare such as the logic-based matchmaker
GLUE[14], and the syntactic search engine for QoS-
enabled WSML service discovery in P2P networks [15].
Approaches to logic-based semantic matching of so-called
rich functional service descriptions (WSML-oriented) in
abstract state spaces based on concurrent transaction logic

Figure 10. F1 graph of semantic, syntactic
and hybrid matching variants

are proposed in [5, 12], though it is unclear to what ex-
tent they have been implemented. WSMO-MX is a pub-
licly available general and hybrid matchmaker for WSML-
oriented services. In any case, the lack of a sufficiently large
and commonly agreed test collection for evaluating the per-
formance of semantic Web service matchmakers for any
of the current description frameworks is a general problem
which can only be tackled by the community as a whole. In
this respect, the presented results of the performance evalu-
ation of WSMO-MX can only be considered preliminary.

5 Conclusions

In summary, our experimental evaluation of the perfor-
mance of WSMO-MX showed, that hybrid matching of
WSML-MX services performs reasonably well, and can
outperform crisp logic-based matching. Furthermore, the
experiments indicated that pure syntactic matching - if para-
metrized appropriately - can keep up with logic matching
regarding recall/ precision and significantly outperforms it
with respect to computation time. We are currently working
on the updating of WSMO-MX for an upcoming release.

References

[1] J. Angele and G. Lausen. Ontologies in f-logic. In S. Staab
and R. Studer, editors,Handbook on Ontologies, pages 29–
50. Springer, 2004.

[2] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information
Retrieval. ACM Press, Addison-Wesley. pages 75ff, ISBN
0-201-39829-X, 1999.

[3] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM (CACM), 12(10):576–580, 10
1969.

[4] F. Kaufer and M. Klusch. Wsmo-mx: A logic programming
based hybrid service matchmaker. InProceedings of the
4th IEEE European Conference on Web Services (ECOWS
2006), IEEE CS Press, Zurich, Switzerland, 2006.

[5] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel.
Automatic location of services. InProc. 2nd European Se-
mantic Web Conference (ESWC), Heraklion, Crete, LNCS,
3532, Springer, 2005.

[6] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel.
Automatic location of services. InProceedings of the 2nd
European Semantic Web Symposium (ESWS2005), Herak-
lion, Crete, June 2005.

[7] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen,
and D. Fensel. A logical framework for web service discov-
ery. InProceedings of the ISWC 2004 Workshop on Semantic
Web Services: Preparing to Meet the World of Business Ap-
plications, volume 119, Hiroshima, Japan, November 2004.
CEUR Workshop Proceedings.

[8] M. Klein and B. König-Ries. Coupled signature and spec-
ification matching for automatic service binding. InPro-
ceedings of European Conference on Web Services (ECOWS
2004), LNCS 3250, page 183, Erfurt, Germany, September
2004. Springer.

[9] M. Klusch, B. Fries, and K. Sycara. Automated semantic
web service discovery with owls-mx. InProceedings of 5th
International Conference on Autonomous Agents and multi-
agent Systems AAMAS, Hakodate, Japan, 2006.

[10] M. Klusch and F. Kaufer. Performance of hybrid wsml ser-
vice matching with wsmo-mx: Preliminary results. InPro-
ceedings of the 1st Intl. Joint Workshop on Semantic Match-
making and Resource Retrieval, at Intl. Semantic Web Con-
ference, Busan, Korea, 2007, 2007.

[11] R. Lara, M. A. Corella, and P. Castells. A flexible model
for web service discovery. InProceedings of the 1st In-
ternational Workshop on Semantic Matchmaking and Re-
source Retrieval: Issues and Perspectives, Seoul, South Ko-
rea, 2006.

[12] M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-
phase web service discovery based on rich functional de-
scriptions. InProc. European Semantic Web Conference,
Buda, Montenegro, LNCS, Springer, 2007.

[13] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated discovery, interaction and composition of seman-
tic web services.Journal of Web Semantics, 1(1):28, 2003.

[14] E. D. Valle and D. Cerizza. Cocoon glue: a prototype of
wsmo discovery engine for the healthcare field. InProceed-
ings of the WIW 2005 Workshop on WSMO Implementations,
volume 134, Innsbruck, Austria, June 2005. CEUR Work-
shop Proceedings.

[15] L. Vu, M. Hauswirth, F. Porto, and K. Aberer. A search
engine for qos-enabled discovery of semantic web services.
In EPFL, LSIR-REPORT-2006-002, Switzerland, 2006.

[16] A. M. Zaremski and J. M. Wing. Specification matching of
software components. In3rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 10 1995.

