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Abstract: In this paper, we present a new repository, called iRep3D, for efficient retrieval of semantically annotated
3D scenes in XML3D, X3D or COLLADA. The semantics of a 3D scene can be described by means of
its annotations with concepts and services which are defined in appropriate OWL2 ontologies. The iRep3D
repository indexes annotated scenes with respect to these annotations and geometric features in three different
scene indices. For concept and service-based scene indexing iRep3D utilizes a new approximated logical
subsumption-based measure while the geometric feature-based indexing adheres to the standard specifications
of XML-based 3D scene graph models. Each query for 3D scenes is processed by iRep3D in these indices in
parallel and answered with the top-k relevant scenes of the final aggregation of the resulting rank lists. Results
of experimental performance evaluation over a preliminary test collection of more than 600 X3D and XML3D
scenes shows that iRep3D can significantly outperform both semantic-driven multimedia retrieval systems
FB3D and RIR, as well as the non-semantic-based 3D model repository ADL in terms of precision and with
reasonable response time in average.

1 INTRODUCTION

For the success of 3D Web applications in many do-
mains like virtual 3D product engineering both a high-
ly precise and reasonably fast retrieval of relevant 3D
scenes modelled in X3D1, XML3D2 or COLLADA3

is of paramount importance. Research on efficien-
t retrieval of semantically annotated 3D scenes gained
momentum in the past years. For example, the ISRe-
al platform for intelligent and web-based 3D simula-
tion of realities (Kapahnke et al., 2010) allows users
to annotate XML3D scene objects with descriptions
of their conceptual meaning and functional behavior
with formal concepts, services and hybrid automa-
ta, and leverages these hybrid semantic annotations
for simulations of virtual 3D worlds with intelligent
avatars. Current scene retrieval systems like FB3D
(Camossi et al., 2007), RIR (Alvez and Vecchietti,
2011) and the open-source 3D repository ADL4 lever-
age in particular advanced methods of matching tex-
tual descriptions, geometric features and RDF5-based
semantic annotations of 3D scenes.

1http://www.web3d.org/x3d/
2http://www.xml3d.org/
3https://collada.org/
4http://3dr.adlnet.gov/Default.aspx
5http://www.w3.org/RDF/

However, syntactic-based 3D scene retrieval ap-
proaches (Gao et al., 2011; Gong et al., 2011; Leif-
man et al., 2005; Hou et al., ; Koutsoudis et al.,
2011; Qi et al., 2011) offer fairly fast response times
in average but almost always suffer from a relative-
ly low average precision due to syntactic mismatch-
es. Alternatively, current RDF(Laborie et al., 2009;
Alvez and Vecchietti, 2011) and strict logic-based
approaches of 3D scene retrieval(Kalogerakis et al.,
2006; Hois et al., 2007a; Hois et al., 2007b; Pittarel-
lo and De Faveri, 2006; Yang, 2010) were shown to
be capable of alleviating this problem to some extent
but at the cost of higher response times and without
considering 3D scenes geometric features.

In iRep3D, an annotated 3D scene in XML3D, X3D
or COLLADA is indexed not only with respect to
its geometric features but referenced concepts and
services which formally describe the conceptual and
functional semantics of the scene in standard OWL2.
The semantic indexing of scenes utilizes, in particu-
lar, a new approximated concept similarity measure
based on weighted logical abduction, while B+ tree-
based scene indices are built for geometric features
of scenes. A query for top-k relevant 3D scenes is
processed by iRep3D in its three scene indices for
concepts, services, and geometric features in parallel.
The resulting scene relevance rank lists are then ag-



gregated with Fagin’s threshold algorithm (TA) (Fa-
gin, 2002) before the final answer set to the query is
returned to the user.
The remainder of the paper is structured as follows:
Semantic annotations of 3D scenes and correspond-
ing scene indices are described in section 2 while the
hybrid semantic retrieval by iRep3D is explained in
section 3. Results of experimental performance eval-
uation and related work are presented in sections 4
and 5. We conclude the paper in section 6.

2 SEMANTIC SCENE
ANNOTATION AND INDICES

The annotation of 3D scene graphs in X3D, XML3D,
or COLLADA with concepts, services, and geomet-
ric features can be embedded in the respective X-
HTML files with standard RDFa. Inspired by (Ka-
pahnke et al., 2010), iRep3D leverages such machine-
understandable descriptions of conceptual, functional
or behavior-based, and geometric feature-based scene
semantics for a more informed retrieval of relevant
3D scenes. In the following, we introduce the differ-
ent kinds of annotations and corresponding scene in-
dices which are created by iRep3D off line for a given
collection of annotated 3D scenes.

2.1 3D Scene Annotation and Query

A simple example of an annotated X3D scene named
Toledo Car 001 of a special car model is shown
in figure 1. The scene annotation includes a scene
concept ”Toledo”, a semantic service ”transport”, and
the color of the car as one of its geometric features.
In addition, a free-text description of this 3D scene
model is given in its meta-tag. As stated above, the
semantic annotations can be embedded with standard
RDFa in any XML-based 3D scene description.

Annotation with scene concepts. For example,
the scene concept ”Toledo” describes the overall
semantics of the 3D scene of the respective car
model. In the figure the concept is shown together
with its logical expression which is derived by
iRep3D from the formal definition of this concept
in a referenced ontology in standard OWL2. Such
concept expressions contain only logical operators
(conjunction u, negation ¬) and quantifiers (uni-
versal ∀, exists ∃) over a set of primitive concepts
or terms (·P). For example, the logical expression
of scene concept ”Toledo”’ contains the primitive
concepts VehicleP and CarP as well as quantified and
cardinality restricted (primitive) roles in the clauses

Figure 1: Annotated X3D model Toledo Car 001.

∀canCarry.PassengerP, ¬∀onwership.PrivateP and
= 4hasWheels.WheelP. For the sake of simplicity,
in the following we assume ontologies O and OS in
OWL2-DL which are used by 3D scene designers
or third-party users for semantic annotation of 3D
scenes stored in a given iRep3D repository with
concepts and services, and an ontology Oreq for scene
requests. The set of primitive terms is the shared
basic minimal vocabulary of these ontologies out of
which more complex concepts can be individually
defined.

Definition 1: Annotated 3D scene
Let X the set of 3D scenes stored in an iRep3D
repository r, O the 3D scene concept ontology. A
3D scene x ∈ X is defined by the tuple: x = [id, sd,
τ(C,O), SS, GF , da] where id denotes the UUID
of x; sd the (syntactic, textual) description of the
meaning of x; τ(C,O) the logical unfolding of the
scene concept C of x in the scene concept ontology
O in OWL2-DL; SS the set of semantic services in
OWL-S provided by x (cf. Def. 2); GF the set of
geometric features of x (cf. Def. 3); and da the data
of scene x including the XML-based description file
and its referenced resources like images, animations,
sounds. �

Annotation with semantic services. The functional-
ity of 3D scene objects like the transport of passen-
gers and goods by a car, or the opening or closing
of its doors can be described in terms of appropri-
ate services which semantics are formally defined in
OWL-S6. A semantic service profile (IOPE) describes
the semantics of service signature (I/O) parameter-

6http://www.w3.org/Submission/OWL-S/



s in terms of an appropriate conjunctive list of (I/O)
concepts defined in OWL2-DL. In addition, the pre-
condition (P) and effect (E) of the service execution
is described in terms of logical expressions in stan-
dard PDDL. Each semantic service of a 3D scene is
grounded in an executable service program such as a
3D animation script (Kapahnke et al., 2010).
For example, the functionality of the car model
Toledo Car 001 in figure 1 is partly described in
the profile of the semantic service ”transport” with
the concepts Passenger, Location of the service
(program) input variables pg, lc which semantics are
defined in a referenced OWL2 ontology. In addition,
the service precondition requires that the car should
be available for the Passenger and the Location
should be reachable, while the effect at(psg, lc)
of executing this transport service means that the
Passenger eventually will be at the given Location.
There is a variety of tools for efficient selection of
semantic services for a given service request available
(Klusch, 2012) like the currently most precise service
matchmaker iSeM (Klusch and Kapahnke, 2012).

Definition 2: Semantic services of a 3D scene
A semantic service ss ∈ x.SS of an annotated 3D
scene x ∈ X is defined by the tuple: ss = [URI, In,
Out, Prec, E f f ] where URI denotes the URI of the
service description file of ss in OWL-S; In (Out)
the set of input (output) parameter concepts of ss
in OWL2-DL; Prec (E f f ) the logical expression of
the precondition (effect) of ss in PDDL or SWRL.
The concepts in In, Out, Prec and E f f are defined
in a service parameter ontology Osp. For sake of
simplicity, without loss of generality, we assume
one Osp for all semantic services of 3D scenes
x ∈ X stored in the considered iRep3D repository.
Denote As the set of predicates that are used in the
services of any 3D scene x ∈ X . Let ss.In, ss.Out,
ss.Prec and ss.E f f denote ss[i], ss[o], ss[p] and
ss[e], respectively, and SS =

⋃
x ∈x.SS the set of

all semantic services of annotated 3D scenes x∈X . �

Geometric features of scenes. Any geometric
feature g f of a given scene x is an instance of some
feature type f which is defined in the specification of
X3D, XML3D or COLLADA.

Definition 3: Geometric features of a 3D scene
Let F denote the space of all types of geometric fea-
tures of 3D scenes in X3D, XML3D and COLLADA.
A geometric feature g f ∈ GF of a 3D scene x ∈ X is
defined by the tuple: g f = [name, f , {(k,v)}] where
name denotes the feature name of g f in the context
of x; f ∈ F the feature type of g f ; and {(k,v)} the

set of attribute-value pairs which assigns values v(k)
to each attribute k of the geometric feature type f
with a proper data structure according to the X3D,
XML3D or COLLADA specifications. Let K f the
set of attributes of feature type f , and GF the set of
geometric features of all scenes x ∈ X stored in the
considered repository; x.v( f .k) denotes the value of
attribute k of feature f in scene x. �

Semantic query for 3D scenes. The repository
allows users to issue semantic queries for relevant
3D scenes, in particular, by means of specifying
the desired conceptual, functional and geometric
features.

Definition 4: Semantic 3D scene query
Let Oreq denote an ontology used by a requester
req to formulate a request q for relevant 3D scenes.
Such a query q for 3D scenes is defined by the tuple:
q = [sd, τ(C,Oreq), SS, GF , A] where sd denotes the
syntactic (textual) description of the desired scene;
τ(C,Oreq) the logical unfolding of requested scene
concept C in Oreq; SS the set of semantic services
that the desired scene should provide; GF the set of
geometric feature instances that the desired scene
should have; and A the total number of the most
relevant scenes requested by req. �

For example, the user query for a 3D scene of
a yellow colored car which is capable of car-
rying passengers and goods to a given destina-
tion is transformed by iRep3D into the query tu-
ple q = {”yellowcar”; τ(YC,Oreq) = VehiclePu
CarPu ∀canCarry. (GoodsP u PassengerP); SS =
{[URI; haveFun; In(Passenger psg, Goods gds,
TargetLocation tl); Out(); Prec(availableFor(psg));
Eff(at(psg,tl)∧ at(gds,tl))]} GF = {[name : color; f :
Material;{(0.8,0.9,0.15)}]}}.

2.2 Building of Scene Indices

A 3D scene x ∈ X is indexed by an iRep3D repos-
itory with respect to its different kinds of semantic
annotation. In particular, iRep3D is creating three
inverted scene indices for (a) scene concepts C ∈ O,
(b) semantic services ss ∈ SS , and (c) geometric
features g f ∈ GF , and stores the indexed scenes in
an XML database.7

7Each annotated 3D object of the XML-based structure
of an annotated scene in XML3D, X3D or COLLADA is
indexed by iRep3D as an individual 3D scene with a unique
(XPATH) scene identifier. We omit the details of subscene
identification for reasons of space.



Scene index for concepts. The scene concept index
ISC of the repository is a set of ranked lists R(C′) of
scenes x ∈ X for all concepts C′ in the scene ontology
O. Each of these lists R(C′) ∈ ISC contains pairs
(x.id,d(x,C′)) of scenes x together with their rele-
vance scores d(x,C′) for the considered (list) concept
C′ ∈ O. The scene relevance score is computed as
weighted degree d(x,C′) of the approximated logical
subsumption relation sab,v(x.C,C′) between the list
concept C′ and the scene concept of x. Finally,
each of these lists R(C′) of scenes of the scene
concept index ISC is sorted in descending order of the
computed scene relevance scores.

Approximated concept subsumption. The above
mentioned degree sab,v(C,C′) ∈ [0,1] of approximat-
ed logical concept subsumption between concepts
C,C′, where C is approximately subsumed by C′,
bases on the process of structured logical concept
(contraction and) abduction. That is, the incompatible
part G, the compatible and the missed parts K and M
of the logical definition of concept C compared with
the one of concept C′ are first identified (C = GuK)
by means of concept contraction (Di Noia et al.,
2009). These identified parts are then used by the
process of logical abduction to rewrite the original
concept definition of C such that the resulting ap-
proximated concept Capp is logically subsumed by
the target concept C′.

Definition 5: Approximated logical concept subsump-
tion
Let CP a primitive term in C, which conflicts with a
primitive term C̄P (named as the counter-part of CP) in
C′; |C| the number of conjunctive primitive terms in
C; PC(C) the set of primitive concepts of C; PR(C)
the set of primitive roles of C; PRE(C) the set of
primitive numeric restrictions of C. The approximat-
ed concept subsumption score sab,v(C,C′) is comput-
ed as follows:

sab,v(C,C′) = |K|
|C′| · (1− sac f (C,C′)),

sac f (C,C′) =
∑CP in G or M(sc f (CP,C′)·w(CP,C′))

|C| ,

sc f (CP,C′) = 1, if CP in M or CP in PC(C)∪PR(C)

sc f (CP,C′) = rg(CP)\rg(C̄P)
rg(CP)

, else (CP ∈ PRE(C)) .
w(CP,C′) = 1

∑C′P in G or M impt(C̄P,C′) · impt(C̄P,C′).

where |K|
|C′| denotes the proportion of the compatible

part K of C w.r.t. C′; sac f the averaged strength of
logical conflicts between C and C′; sc f (CP,C′) the
strength of an (atomic) logical conflict on CP in C
w.r.t. C′. The latter is computed as follows: If CP is
in M then CP will surely appear in the abduced (new)

concept Capp of C w.r.t. C′; while in case of CP being a
primitive concept or role in G, any logical conflict on
CP will cause the full rewriting of CP during concept
abduction. If CP is a primitive numeric restriction in
G, the conflict strength is the fraction of uncovered
range of CP w.r.t. its counter-part C̄P in C′. The func-
tion rg(CP) computes the restricted numeric range of
CP ∈ PRE(C).
Each atomic conflict strength sc f (CP,C′) is
further weighted with a weight w(CP,C′)
((∑CP in G or M w(CP,C′) = 1, w(CP,C′) > 0) which
estimates the importance of this conflict on CP

w.r.t. C′ for the corresponding approximated logical
subsumption relation. Let C′l p the direct parent
concept of C′ in O (Os); C′′ the rewritten (abduced)
concept of C′ which is generated by replacing C̄P

with CP if CP is in G, or removing CP from C′ if CP

is in M. The binary function impt(C̄P,C′) ∈ {a,b}
(0 < a < b ≤ 1) determines the importance of C̄P in
terms of keeping the hierarchy of C′ in O (Os): It
returns b if C′′ v C′l p is false; a otherwise. In other
words, if the replacement of C̄P (in C′) with CP or
the removal of CP makes C′′ no longer a subsumee of
C′l p, the conflict on CP between C and C′ then has a
greater negative impact on C being subsumed by C′.
�

Example 1: Consider the example of an annotated 3D
scene x∈X in figure 1. The indexing of x in the scene
index for scene concepts starts with computing the
similarity score sab,v(Toledo,C′) between scene con-
cept Toledo and each concept C′ in the given ontology
O. Let the logical unfolding of the defined concept
FamilyCar ∈O (abbr. FC) τ(FC) := VehicleP uCarP

u ≤ 4hasWheels.WheelP u∀canCarry.GoodsP

u∀canCarry.PassengerP u∀ownership.PrivateP u
∀hasNickname.NameP. Further, let PrivateCar ∈ O
(abbr. PC) the direct parent concept of FC with
τ(PC) = VehicleP uCarP u∀ownership.PrivateP

u∀hasNickname.NameP. For indexing x in R(FC),
the relevance score d(x,R(FC)) = sab,v(Toledo,
FC) of x is computed based on approximated
logical subsumption as follows: The determined
incompatible part G = ¬∀onwership.PrivateP

and the missed part M = ∀canCarry.GoodsP u
∀hasNickname.NameP of scene concept Toledo
w.r.t. list concept FC lead to the respective
conflict strengths: sc f (¬∀onwership.PrivateP,
FC) = 1, sc f (∀canCarry.GoodsP, FC) = 1 and
sc f (∀hasNickname.NameP, FC) = 1. Then,
in very brief, the abduction of FC′ from FC
based on these conflicts of Toledo w.r.t. FC is
done as follows. Let impt(·, ·) ∈ {0.1,0.9}. If
we replace ∀onwership.PrivateP in τ(FC) with



¬∀onwership.PrivateP, then the abduced con-
cept FC′ is no longer subsumed by PC which
implies impt(∀onwership. PrivateP, FC) = 0.9,
therefore: w(∀onwership.PrivateP, FC) =
w(∀hasNickname.NameP, FC) = 0.9

0.9+0.1+0.9 =
0.47, w(∀canCarry.GoodsP, FC) = 0.06. Sub-
sequently, the averaged conflict strength is sac f

= 1
|Poledo| · ∑CP in GuM(sc f (CP,FC) · w(CP,FC))

= 1
5 (1 · 0.9 + 1 · 0.1 + 1 · 0.9) = 0.38. Fi-

nally, sab,v(Toledo, FC) = |K(Poledo,FC)|
|FC| ·

(1 − sac f (Poledo,FC)) = 3
7 · (1 − 0.38) = 0.26.

A pair (x,0.26) is inserted into R(FC) ∈ ISC. ♦

Scene index for services. The scene index ISS for
semantic services consists of two (sub-)indices: the
scene index IIO for semantic service I/O concepts,
and the scene index IPE for semantic service pre-
conditions and effects. Similar to the scene index
for scene concepts, we create the first index IIO as a
set of two ranked lists R(Cs)[i] = {(x.id,ds(x,Cs)[i])}
and R(Cs)[o] = {(x.id,ds(x,Cs)[o])} of scenes x ∈ X
for each concept Cs in the given service ontology
Os of the repository. Each entry of the list R(Cs)[i]
(R(Cs)[o]) states that some scene x is annotated with a
semantic service ss ∈ x.SS which has an input (out-
put) parameter concept C′s ∈ Os that is sufficient-
ly and maximally similar with the list concept Cs ∈
Os: ds(x,Cs)[l] = maxC′s∈ss[l],ss∈x.SS dc(C′s,Cs)[l], l ∈
{i,o}where dc(C′s,Cs)[l] = f r(C′s)[l] ·sab,v(C′s,Cs) de-
notes the approximated concept similarity subject to
sab,v(C′s,Cs) ≥ θ ∈ [0,1]. The weight f r(C′s)[l] =
|x.SSC′s

[l]|
|x.SS| ·maxss∈x.SSC′s

n(C′s,ss[l])
|ss| is the frequency of oc-

currence of concept C′s in x.SS with n(C′s,ss[l]) the
number of occurrences of C′s in the input (l = i) or
output (l = o) parameter set and |ss| the total number
of parameters of service x.ss. Each list R(Cs)[l], l ∈
{i,o} of scenes is sorted in descending order of their
relevance scores ds(x,Cs)[l].

The second index IPE consists of ranked lists R(α)[p]
and R(α)[e] of scenes x ∈ X for each defined pred-
icate α ∈ As which appears in the logical precondi-
tion or effect of annotated services of these scenes.
Each scene x is ranked in the lists R(α)[l], l ∈ {p,e}
of pairs (x.id,da(x,α[l])) according to its relevance
score da(x,α)[l] = pl(α,x)[l] which denotes the plau-
sibility of α over the preconditions (effects) of all ser-
vices of x. In particular, let l′ ∈ {p,e}; As(x)[l′] the
set of non-negative predicates that appear in the pre-
conditions or effects of services provided by x; and H

= 2As(x)[l′]:

pl(α,x)[l′] = 1−BelAs(x)[l′]\α(x),
BelH(x)[l′] = ∑h⊆H v(h),
vH(x)[l′] = nH (x)[l′]

nH (x)[l′] , subject to:
v( /0) = 0,∑H⊆H v(H) = 1,

nH (x)[l′] = ∑H⊆H nH(x)[l′],
nH(x)[l′] = ∑α∈H nα(x)[l′],
nα(x)[l′] = ∑ss∈x.SS Pα(x.ss[l′]|α).

where Pα(x.ss[l′]|α) is the probability that the logical
precondition or effect x.ss[l′] is evaluated to true
given that α is true according to the truth table of
x.ss[l′].

Example 2: Consider the scene x in Example 1. Let
the semantic service transport (abbr. tr) the only one
provided by scene x, and θ = 0.25. The process of in-
dexing x in the scene index ISS starts with the subindex
IIO. Assume that the degree sab,v(Passenger, People)
of approximated subsumption relation between ser-
vice input concept Passenger and requested concep-
t People in the service ontology Os of the reposito-
ry is 0.5. The frequency of occurrence of Passenger
in x.SS is f r(Passenger)[i] = |1|

|1| ·maxss∈x.SSPassenger [i]

{ 1
2} = 0.5. The weighted and maximal approximat-

ed similarity between Passenger and People ∈ Os
then is dc(Passenger, People)[i] = f r(Passenger)[i] ·
sab,v(x, People) = 0.5 · 0.5 = 0.25. Note that
dc(Location,People)[i] is ignored since their simi-
larity score sab,v(Location, People) = 0.1 is small-
er than θ. Finally, ds(x,People)[i] = dc(Passenger,
People)[i] = 0.25. Assume that ds(x,Place)[i] = 0.63.
The pair (x,0.25) ((x,0.63)) is inserted into the rank
list of scenes R(People)[i] (R(Place)[i]). For index-
ing x in the second subindex IPE , the plausibilities of
the predicates availableFor, reachable and at (denot-
ed as ava, rea and at, respectively) are computed. For
this purpose, we consider the truth tables for the ser-
vice precondition tr[p] and effect tr[e], respectively:

ava(psq) T T F F
rea(lc) T F T F
tr[p] T F F F

,
at(psg, lc) T F
tr[e] T F

Based on these truth tables the indexing process
estimates the probabilities Pa(tr[p]|ava(psg)) = 0.5,
Pa(tr[p]|rea(lc)) = 0.5 and Pa(tr[e]|at(psg,at)) =
1.0. Regarding the power set H = 2{ava,rea} of the
predicates, we obtain the plausibility values pl(ava,
x)[p] = pl(rea, x)[p] = 0.9 and pl(at,x)[e] = 1. As a
result, the pairs (x,0.9), (x,0.9) and (x,1) are inserted
into the rank lists R(ava)[p], R(rea)[p] and R(at)[e]
of the subindex IPE . ♦



Scene index for geometric features. In contrast to
the scene indices for concepts and services, the scene
index IGF is concerned with the geometric features
of a scene x. Each such feature g f ∈ GF of type
f ∈ GF (cf. Def. 3) consists of a set K f of attributes
k with numeric or string data type. The scene index
IGF is the set of B+ trees bt( f ,k) of scenes which is
built for every attribute f .k of each feature f ∈F . The
scenes x ∈ X are maintained in these trees according
to the feature attribute values v( f .k), if x has such val-
ues: Each leaf node of bt( f ,k) points to the address
of a ranked list R j( f ,k) of pairs (x.id,x.v( f .k)) in the
descending order of x.v( f .k).
Let Ml the maximum number of scenes that a ranking
can accommodate; Mn the maximum fanout (the
number of child nodes) of each node; X f ⊆ X the
subset of scenes containing a value of k ∈ K f : The
construction of bt( f ,k) is performed in the following
steps: (i) sort scenes in X f in the descending order of
v( f .k); (ii) compute the number nl of needed ranked
lists: nl = d

|X f |
Ml
e; (iii) create d nl

Mn
e leaf-nodes; (iv)

initialize the pointers from leaf-node to rankings and
label each pointer with the attribute value of the first
entry in the corresponding ranking; (v) compute the
number of needed non-leaf-nodes in each level from
bottom to top and create their pointers and labels.
If a scene x contains multiple instances of the same
feature type attribute, then x has multiple entries in
bt( f ,k). Each of these entries are additionally labeled
with the specific name g f .name of the geometric
feature f of x.

Example 3: Consider the scene x in Example 1. For
indexing x in the geometric index IGF , the B+ tree
bt(Material, di f f useColor) is created since x has a
geometric feature of type f = Material and x has a
value x.v(Material.di f f useColor) = (1.0,0.9,0.0)
for the feature attribute k = di f f useColor.
Thus, (x,(1.0,0.9,0.0)) is inserted into a ranked
list R j( f ,k) of scenes refered to by the tree
bt(Material,di f f useColor). ♦

3 HYBRID SEMANTIC SCENE
RETRIEVAL

Once the semantic indices have been created off line
for a given collection of 3D scenes by the repository,
the user can make requests q (cf. Def. 4) for relevant
3D scenes based on concepts, services, and geometric
features. Key idea of answering a scene request with
high precision and fairly fast is (a) to process the
respective subqueries in the corresponding indices

ISC, ISS and IGF in parallel, and (b) to aggregate the
resulting rank lists Rsc, Rss and Rg f of scenes that
are relevant for q with Fagin’s threshold algorithm.
Finally, the iRep3D repository returns and displays
the top-k relevant scenes to the user. As mentioned
above, iRep3D’s preprocessing of annotated 3D
scenes allows the indexing of annotated scenes that
are part of others. If indexed scenes are relevant
but part of non-relevant scenes, only the first will
be displayed together with meta-information on the
latter. For example, if a scene model of a yellow car
is requested and such an indexed scene is found to
be part of another indexed scene of a parking garage
with tens of different cars, only the first scene is
returned to the user with a link to the overall scene.

Scene concept-based query processing. If the query
q includes a request for scenes about some concepts
C′ defined by the logical expression τ(C′,Oreq) then
iRep3D classifies this concept into the current scene
ontology O and returns the corresponding rank list
RSC of scenes which are relevant to q with respect
to the approximated logical similarity of their scene
concepts with the requested one C′.

Scene service-based query processing. If the query
q contains the description of desired scene services
(ss ∈ q.SS) then iRep3D processes the respective sub-
queries in the scene index for services. Firstly, for
each ss ∈ q.SS, a rank list R(ss) of scenes that are rel-
evant to ss is computed. For this purpose, the indices
IIO and IPE are searched in parallel. The resulting
ranked lists R(ss)[io] and R(ss)[pe] are further merged
into the list R(ss) of scenes which are relevant to ss.
Finally, all lists R(ss) of ss ∈ q.SS are merged, which
leads to the ranked list RSS of scenes which are rele-
vant to q in terms of the requested semantic services.
Searching index IIO for scenes with service ss: For
each ss ∈ q.SS, iRep3D first retrieves in parallel a set
{R(C′s)[l], l ∈ {i,o}} of ranked lists of scenes each
of which relevant to a distinct service signature pa-
rameter concept C′s[l] in ss[l]. In particular, the logi-
cal expression of each concept C′s in ss[i] (ss[o]) gets
classified into the ontology Os, and the corresponding
ranked list with suffix [i] ([o]) is eventually retrieved.
Subsequently, the aggregation with TA(Fagin, 2002)
is performed on {R(C′s)[l]} to compose a ranked list
R(ss)[io] of scenes relevant to q with respect to the
I/O parameters of the requested service ss.
In particular, the TA performs a sorted scan of all it-
s input rank lists in {R(C′s)[l]} from top to bottom in
parallel. The i-th scan fetches the score values at the
i-th positions of all lists in {R(C′s)[l]}, and then em-
ploys a m-ary (m the cardinality of {R(C′s)[l]} for ss)



function t that computes the aggregated relevance s-
core and threshold. The general form of t is given in
(Fagin, 2002) and can be further customized for any
application. In our context, we define t as the weight-
ed average of the vector of scores~s fetched from each
rank list in {R(C′s)[l]} per scan. The weight v j of the
j-th list in {R(C′s)[l]} refers to the number of occur-
rences of C′s in either ss[i] or ss[o]:

t(~s) =
∑

m
j=1 v j · s j

∑
m
j=1 v j

Each scan performed by the TA may find a new scene
xn that does not exist in the current R(ss)[io]. To in-
sert xn into R(ss)[io], iRep3D computes the aggregat-
ed relevance score s(xn,ss)[io] of scene xn to q w.r.t.
the I/O concepts of ss∈ q.SS: From each ranked list in
{R(C′s)[l]}, TA collects (possibly by random access)
the so far missed ds(xn.id,C′s) of xn; and further ap-
plies the t function on all ds(xn.id,C′s) in order to com-
pute s(xn,ss)[io]. Then TA maintains a threshold val-
ue T for determining its termination, which is updated
with the t function value over the latest scanned val-
ues after each scan. TA terminates, if T ≤ s(x,ss)[io]
for all the ranked objects x in R(ss)[io].
Searching index IPE for scenes with service ss: For
each ss ∈ q.SS, the searching of IPE for ss result-
s in two sets of ranked lists {R(α)[l′]} (l′ ∈ {p,e})
for every non-negative predicate α in ss[l′]. In addi-
tion, it merges the ranked lists in each set into a list
R(ss)[l′] of scenes that are relevant to ss in terms of
ss[l′]. For this purpose, multiple pairs of the same
scene x in different lists are merged; pairs in different
lists are merged if they have the same scene id. The
score value s(x,ss[l′]) of x in R(ss)[l′] of each result
pair is computed by applying the Gödel minimum t-
norm and maximum t-conorm functions according to
the conjunctive, respectively disjunctive relations be-
tween the predicates in ss[l′]:

s(x,ss[l′]) = mincla∈ss[l′](s(x,cla[l′])),
s(x,cla[l′]) = maxα∈cla(da(x,α)[l′]).

where cla[l′] denotes a clause of disjunctive predi-
cates. Finally, the search process merges R(ss)[p]
and R(ss)[e] in order to compute R(ss)[pe] of scenes
which are relevant to ss in terms of the precondition
and effect. The completion of the parallel computa-
tions of R(ss)[io] and R(ss)[pe] triggers their merging
and yields the ranked list R(ss) of scenes relevant to q
in terms of ss ∈ q.SS. The relevance score s(x,ss) of x
in R(ss) is the convex combination of the correspond-
ing scores in R(ss)[io] and R(ss)[pe]:

s(x,ss) = φs(x,ss[io])+ψs(x,ss[pe]),
where the real positive values φ and ψ (φ+ψ = 1) are
the weights of IO and PE matching respectively. They
can vary in specific systems with different concerns.

Merging of scene rank lists R(ss) for all ss ∈ q.SS: In
a next step, the resulting ranked lists R(ss) for all ss ∈
q.SS are merged, if (some of) their entries in different
lists share the same id. The relevance score s(x,q.SS)
for x with respect to q.SS is the average of the scores
s(x,ss) of x in R(ss) for each service ss:

s(x,q.SS) = 1
|q.SS| ∑ss∈q.SS s(x,ss).

Finally, the merged list are resorted in descending
order of s(x,q.SS) yielding the ranked list RSS of
scenes partially relevant to q with respect to q.SS.

Geometric feature-based query processing. If the
query q contains the description of desired geomet-
ric features g f ∈ q.GF of a scene then iRep3D pro-
cesses the respective subqueries in the scene index
IGF as follows. Firstly, for each g f ∈ q.GF , a par-
allel search is performed in the B+ trees bt(g f . f ,k)
where each search results in a ranked list R(g f . f .k)
of scenes relevant to q in terms of g f . f .k. Please
note that R(g f . f .k) does not have similarity scores
but the feature attribute values. Secondly, for each
entry (x.id,x.v( f .k)) ∈ R(g f . f .k), iRep3D computes
the degree of geometric feature attribute similarity
sk(q.v( f .k),x.v( f .k)) between the requested and ex-
isting feature attributes based on its values q.v( f .k)
and x.v( f .k). This results in a new rank list
R(q,g f . f .k) of scenes that are relevant to q for the re-
quested value of g f . f .k. Thirdly, all lists R(q,g f . f .k)
of attributes which belong to the same feature type
g f . f are further merged (by scene id) into a ranking
R(q,g f ) of scenes that are relevant to q with respect
to the g f . Finally, all feature-level rankings R(q,g f )
for all g f ∈ q.GF are merged into one which yields
the overall ranking of scenes relevant to q.
The data types of geometric feature attributes defined
in the X3D, XML3D and COLLADA specification-
s include the following primitive data types: (i) s-
ingle number, string or boolean (e.g. SFDouble,
SFString); (ii) 2-, 3- or 4-ary tuple of numbers or
strings (e.g. SFVec2d, SFVec3f, float4 type); (i-
ii) vector of values of the types in (i) and (ii) (e.g.
MFDouble, MFVec3d). Let t p(k) denote the primitive
data type of feature attribute k. iRep3D computes the
geometric feature attribute similarity score as follows:
sk(v1,v2) =
• xor(v1,v2), if t p(k) is single boolean;
• EDS(v1,v2) = 1− ED(v1,v2)

max(|v1|,|v2|)
, if t p(k) is single

string, where |v1| denotes the length of v1;
• min( v1

v2
, v2

v1
), if t p(k) is single number;

• 1
|v1| ∑

|v1|
i=1 xor(v1i,v2i), if t p(k) is a boolean vector,

where |v1| denotes cardinality of v1;
• cos sim(v1,v2), if t p(k) is a pair, triple or a vector



of numbers;
• V EDS(v1,v2) =

1
|v1| ∑

|v1|
i=1 EDS(v1i,v2i), if t p(k) is a

pair, triple or a vector of strings;
• 1
|v1| ∑

|v1|
i=1 cos sim(v1i,v2i), if t p(k) is a vector of pairs

or triples of numbers;
• 1
|v1| ∑

|v1|
i=1 V EDS(v1i,v2i, if t p(k) is a vector of pairs

or triples of strings;
where nor(v1,v2) is the exclusive OR of v1 and v2;
EDS(v1,v2) the Levenstein edit distance of v1 and
v2; cos sim(v1,v2) the cosine distance of v1 and v2.
We omit the data types SFImage, MFImage, SFTime
and MFTime of the X3D specification since they are
not considered as geometric data types.
The geometric feature-based retrieval of relevant
scenes computes the rank lists R(g f . f .k) each of
which entries contain the identifiers of scenes and
their values v( f .k) for the requested feature attribute
k. Instead of directly retrieving a pointed ranking
by a leaf node of the B+ tree, R(g f . f .k) is comput-
ed by applying a window tolerant strategy which
retrieves at most N entries from both parts of the
entry (x.id,x.v(g f . f .k)) whose feature attribute value
has a minimum distance to q.v(g f . f .k) (N is called
half-window width value).

Final aggregation of relevance rank lists of scenes.
In the end, the computed three different relevance
rank lists Rsc, Rss and Rg f of 3D scenes for q are
merged by, again, leveraging Fagin’s TA algorithm as
described above. If the score of a scene x is missing
in some of these rank lists, the lowest score in the re-
spective list is used by default. The TA terminates if
the threshold is not larger than the least score of the
A-th (cf. Def.4) entry in the total ranking, or all three
lists above are scanned over.

4 EXPERIMENTAL EVALUATION

The repository iRep3D has been fully implement-
ed in Java and stores its 3D scenes in the XML
database BaseX. We conducted an experimental e-
valuation of the performance of iRep3D in compari-
son with three other representative open-source repos-
itories for 3D scenes. For this purpose, we select-
ed (a) the FB3D system for functional and behav-
ioral ontology-based semantic retrieval of 3D scenes
(Camossi et al., 2007), (b) the RIR system for RD-
F index-based scene retrieval approach (RIR) (Alvez
and Vecchietti, 2011), and (c) the syntactic-based 3D
model repository ADL.
Experimental settings. Since there is, to the best of
our knowledge, no 3D scene retrieval test collection

iRep3D FB3D RIR ADL
AP 0.721 0.490 0.633 0.408
DCG10 2.133 0.952 1.370 0.767
AQRT (sec) 0.166 1.887 0.059 0.042

Table 1: AP, DCG10 and AQRT of iRep3D and competitors

publicly available yet, we built a first version of it,
called 3DS-TC, which consists of 616 manually an-
notated scene graphs (591 in X3D8, 25 in XML3D).
The respective scene ontology O in OWL2 contain-
s 260 concepts, 48 roles and 7 role restrictions, and
the scenes in 3DS-TC are also annotated with refer-
ences to 33 services in OWL-S in total. The pre-
condition and effect of services are encoded in RD-
F plain literals. As mentioned above, all annotation-
s are embedded into the scene graphs with standard
RDFa. Further, the test collections consists of a set
Q of 20 scene queries together with relevance set-
s each of which containing 10 relevant scene graphs
with relevance scores rel ∈ {1.0,0.9, . . . ,0.1}), while
non-relevant scenes were assigned a score of 0 by de-
fault. Further, we set A = 10 for all q ∈ Q; θ = 0.5;
φ=ψ= 0.5; a= 0.1, b= 0.9 for the importance func-
tion; and the half-tolerance window width N = 10.
In order to enable FB3D reasoning on functional
descriptions of scenes, we added 12 concepts and 4
roles extracted from the annotated scene services to
our scene ontology. Besides, we let FB3D pre-load
the scene concepts before its query processing in
order to eliminate the loading and parsing time of
3D scenes. For the RIR system, we (i) created the
required RDF triples for the scene concepts and ser-
vice parameter concepts of annotated 3D scenes with
the Jena OWL analyzer9, (ii) employ the indexing
facilities of MySQL database to index the generated
RDF triples in terms of their subject, predicate and
object, and (iii) constructed one SPARQL query for
each query q ∈ Q. For the ADL system, we store the
syntactic descriptions of scene semantics provided in
the meta-tags in a MySQL database.

Performance evaluation measures. We use the
following standard retrieval performance evaluation
metrics for our comparative experimental evaluation
of scene retrieval by the 3D scene repositories
iRep3D, FB3D, RIR and ADL: Macro-average pre-
cision (MAPλ) at 11 recall levels (REλ) (MAP@RE)
with equidistant steps of 0.1; average precision (AP);
Averaged discounted cumulative gain (DCG10) at
rank position 10; and average query response time
(AQRT) in seconds.

8http://www.web3d.org/x3d/content/examples
9http://jena.apache.org/



Figure 2: MAP@recall of iRep3D, FB3D, RIR, and ADL.

Evaluation results. The experimental results reveal,
among other, that for the given collection 3DS-TC the
iRep3D repository significantly outperforms its com-
petitors in terms of retrieval precision (MAP@RE,
AP and DCG10): In particular, its average precision
is 34%, 13%, and 55% higher than that of FB3D,
RIR, and ADL, respectively. Compared with FB3D,
the main reason of this improvement in precision is
that iRep3D avoids misclassifications caused by strict
logic-based matching of scene concepts and due to it-
s hybrid semantic matching of scenes tolerates more
parameter mismatches than the one-shot functional
concept matching performed by FB3D. The RIR sys-
tem alleviates the problem of text similarity-based
classification failures of ADL by exploiting RDF-
based scene descriptions but due to its exact SPARQL
query pattern matching it still remains much less ac-
curate than iRep3D. Given some conjunctive keyword
query, ADL directly queries its underlying database
by wildcard SQL and limits its search for relevant
scenes by ignoring text segmentation.

On the other hand, the high precision of hybrid se-
mantic retrieval of scenes by iRep3D is not achieved
at the cost of extremely high response times. In fact,
the average query response of iRep3D appears rea-
sonably fast (0.166 secs) compared to those of FB3D
(1.887 secs), RIR (0.059 secs) and ADL (0.042 secs).
However, iRep3D is slower than RIR and ADL since
it requires more time for logical classification of re-
quested scene and service parameter concepts into its
scene (and service concept) ontology than the SPAR-
QL query processing by RIR and keyword matching
by ADL.

5 RELATED WORK

Many content and geometric feature-based approach-
es to 3D model retrieval have been proposed in the
past decade such as (Tangelder and Veltkamp, 2004;
Bustos et al., 2007; Paquet et al., 2000) but their mu-
tually incompatible geometric feature definitions and
formalisms limit their usage. The majority of 3D
scene retrieval systems still relies on merely syntactic-
based classification of scenes based on their geomet-
ric or non-geometric descriptive properties. For ex-
ample, (Gao et al., 2011) proposes a probabilistic
classification of 3D objects based on a Gaussian pro-
cess while (Leifman et al., 2005) refines geometric-
topological feature matching with unsupervised off-
line learning and subsequent on-line supervised fea-
ture extraction from scenes. The approaches present-
ed in (Gong et al., 2011) and (Hou et al., ) perform
SVM-based (off line) learning of 3D object classifica-
tion based on their non-geometric features and label
each grounded object with the category in a prede-
fined universe of discourse. Similarly, (Akguel et al.,
2010) proposes SVM-based learning of a geometric
feature-based classifier of 3D object descriptions off-
line, and then estimates a probabilistic similarity be-
tween a given query and candidate objects on line.
In contrast to iRep3D, the average precision of these
adaptive approaches to 3D scene retrieval essentially
depends on the chosen type of kernel function and the
training set used by the SVM for learning the binary
relevane classifier of 3D scenes.
On the other hand, the leveraging of semantic tech-
nologies for 3D scene annotation and retrieval has
gained some momentum recently. For example, the
work presented in (Alvez and Vecchietti, 2011; La-
borie et al., 2009) utilizes RDF stores with efficient
SPARQL query processing for indexing and retriev-
ing RDF-annotated 3D scenes. In these cases, how-
ever, the query answering requires exact matches of
scene graph patterns and attribute labels. In (Hois
et al., 2007b) an approach for 3D image recogni-
tion is proposed based on a logic-based scene on-
tology for object recognition during the planning of
robot actions; and (Camossi et al., 2007) presents a
knowledge-based system for a semantic annotation
and retrieval of 3D models based on an a specific
ontology in OWL-DL about scene formation, func-
tionality and behavior. In contrast to these approach-
es, iRep3D leverages approximated logical reason-
ing on ontology-based conceptual semantics of an-
notated scenes which shows to be less prone to be
affected by syntactic and strict pattern mismatches,
and may avoid strict logic-based misclassifications of
scene annotations. (Yang, 2010) proposes to use high-



level content signatures and linguistic extensions of
multimedia contents for being able to handle impre-
cise queries for 3D scenes but at the cost of poten-
tial loss of information about the original scene se-
mantics. Möller et. al. (Peraldi et al., 2009) ap-
ply rule-based abduction on the extracted low-level
semantic descriptions of multimedia objects for an-
swering grounded conjunctive queries in the fact base
of a given scene ontology. Unlike iRep3D, these re-
trieval approaches do not rely on efficient scene in-
dexing, hence might not as well scale to very large
and distributed settings of scene retrieval.

6 CONCLUSION

We presented a new approach, called iRep3D, for
efficient semantic indexing and retrieval of XML-
based annotated 3D scenes. Results of experimen-
tal performance evaluation over a given preliminary
test collection of X3D and XML3D scenes shows that
iRep3D can significantly outperform representative,
open-source and state of the art multimedia retrieval
systems in terms of average precision and with rea-
sonable response time.
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