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Abstract

In this work we focus on one particular area of the smart grid, namely,
the challenges faced by distribution network operators in securing the balance
between supply and demand in the intraday market, as a growing number of
load controllable devices and small-scale, intermittent generators coming from
renewables are expected to pervade the system. We introduce a multi-agent
design to facilitate coordinating the various actors in the grid. The underpinning
of our approach consists of an online cooperation scheme, eCOOP, where agents
learn a prediction model regarding potential coalition partners and thus, can
respond in an agile manner to situations that are occurring in the grid, by
means of negotiating and formulating speculative solutions, with respect to the
estimated behavior of the system. We provide a computational characterisation
for our solution in terms of complexity, as well as an empirical analysis against
real consumption datasets, based on the macro-model of the Australian energy
market, showing a performance improvement of about 17%.
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1. Introduction

Recent years have seen the advent of distributed energy resources (DERs)
with particular emphasis on clean generation of electricity, predominantly based
on wind and solar power [9]. Albeit representing a sustainable form of energy,
renewables pose a major challenge to current electricity networks due to their
stochastic behavior. DERs are essentially characterised by small-scale, intermit-
tent and highly unpredictable output. In this context, embedding such devices
in the ageing infrastructure of distribution networks requires novel approaches
for managing the grid efficiently [12, 10]. Given this setting, the organization
of the exchange electricity markets is also expected to change.

Currently, the majority of all power is being traded in what is known as
the day-ahead spot market. Here, the following day is discretized over hourly
time intervals and the market is cleared the day before, fixing the prices and
volumes for the contracted amount of energy. In addition, shortages or ex-
cesses of energy are mitigated over the intraday market, which is cleared just
before the actual power is delivered by producers. Such circumstances may
include (but are not limited to) compensating for errors in renewable energy
forecasts, smoothing start-up ramps of conventional power plants, correcting
instantaneous mismatches between supply and demand and providing short-
term contingency power in case of generator or transmission line failures.

Thus, as the network is becoming more reliant on the power generated by
DERs, the role of the intraday market is expected to gain significant importance
[3]. The goal is then to maximise the usage of clean energy upon its availability
and maintain the delicate balance between supply and demand in real-time. In
order to do so, demand should be able to adapt to the volatility in supply. This
can be achieved assuming the flexibility of consumer to adapt their demand
based on incentives provided by the grid operator. Moreover, the system ought
to react in real-time to sudden changes of the aggregated generation profile in
order to balance supply from intermittent renewable resources, while complying
with consumer requirements. In this paper we address the above-identified re-
quirements by proposing a dynamic coalition formation (DCF) algorithm, where
agents representing consumer provide a bottom-up resolution for contingencies
via a coordinated look-ahead response.

The organization of the rest of this paper is as follows. In Section 2 we review
some of the related work. Section 3 introduces a new formalism for the intraday
power regulation problem in terms of a dynamic coalition formation analysis.
We then provide in Section 4 the eCOOP control scheme for the same problem,
addressing the challenges of an efficient payoff allocation and augmenting our
approach in the context of privacy preservation. Finally, Section 5 provides an
empirical evaluation of our scheme. Section 6 concludes.
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2. Related Research

Given that the actors participating in the grid (i.e. consumer loads, dis-
tributed generators) represent different owners with particular, possibly con-
flicting user goals and behaviors, deploying an agent-based distributed control
over the system holds as the natural approach for our scenario [27]. In this work
we aim to apply the multi-agent paradigm to devise a mechanism that enables
local adaptability to dynamic situations at runtime and allows coordination, as
opposed to the more complex task of centralised management [16].

Similar to our work, multi-agent systems have been proposed in the smart
grid domain for the task of demand-side management in a number of studies [33,
36, 28]. Critical peak pricing or spot pricing mechanisms attempt to incentivize
agents to adapt their demand, by reducing consumption during peak times [22].
Of course, this may end up in situations where peaks are only temporarily
flattened and then shifted to different time intervals, as some of the research
has shown [32, 28]. More sophisticated solutions have proposed game-theoretic
frameworks, [21, 2], for a coordinated adaptation of the agents’ behavior.

Power regulation is however distinct, in that the objective of a corrective
action is well defined and localized to a particular region of the grid. Peakload
and contingency periods are typically handled by means of adapting the power
supply, by firing expensive, carbon-intensive, peaking plant generators. Instead,
here, the grid operator provides a request to consumers for a specific power
regulation action that needs to be addressed in a timely fashion. While demand-
side management may be regarded as a day-ahead scheduling problem, for grid
regulation, the response time is constrained within minutes, or to even a couple
of seconds.

Due to these challenges, the majority of current methods have been limited
to propose solutions that can only be applied in the day-ahead market. For
instance, in [35], the authors explore the idea of coupling generation from wind
farms with storage facilities, particularly batteries from electric vehicles. Fur-
thermore, the approach follows the assumption of a hierarchical organization,
where a group leader computes an optimised schedule to maximize profit, for a
fixed number of given participants. In a similar approach, in [7], the authors
consider a single owner for the entire system that allows the use of centralised
control, based on dynamic programming scheduling.

More relevant to our context, in [13], the authors report some preliminary
work on deploying electric vehicles (EVs) for power management in the grid.
However, they restrict their study to a small-scale scenario, also assuming cen-
tralized control over the set of EVs. This eludes some of the harder problems
of operating within limited information environments, where the assumptions
of global knowledge and top-down control of centralization no longer hold.

One of the best practices deployed so far to reduce system peak load is rep-
resented by the category of direct load control (DLC) approaches, which impose
a brute-force on/off strategy to control loads. In [38], the authors report on a
study in cooperation with the Taiwan Power Company, where to achieve DLC
they use a multi-pass dynamic programming method to schedule the operation
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of air conditioners in order to reach peak reduction and maximum cost sav-
ings. Another DLC scheduling solution is given in [23], where the goal is that
of increasing the profit of the utility using a linear programming algorithm.
Recognizing the importance of taking user preference and comfort into account,
some DLC solutions [30, 39] deploy a logic-based system to model, by means of
fuzzy variables, the flexibility of interrupting the air-conditioners and electric
water heaters, in an attempt to factor user satisfaction into their model.

Clearly, the above-mentioned approaches pose a series of limitations. DLC
methods, although already implemented and in use by some energy companies1,
assume full control over the consumer loads, which can be exercised at will.
There is still an inconclusive debate about whether such approaches are actually
going to reach mass adoption, especially in the domestic sector where consumer
are often reticent to comply with such energy usage violations. Centralised
solutions which assume a single owner of the system that has full control over the
operation of all loads is evidently not applicable to instances where participants
are self-interested stakeholders. Finally, applying various pricing schemes has
also been shown to deliver poor results. For example, individual consumers may
unilaterally decide to shift consumption from expensive time slots to cheap time
slots, thus replacing peaks from one period to another. The problem here is due
to consumers i) not having a clear perception of the amount of energy that needs
to be shifted, ii) having an interaction only with the grid operator, while not
being aware of the constraints and consumption preferences of other consumers
and iii) not being able to opt in/out at will, dynamically, for participation in
various energy management schemes. Moving towards a decentralized, agent-
based setting of the electricity grid, we identify a set of desiderata, that to best
of our knowledge all current approaches fail to address. Thus, in more detail,
against the existing research, the contribution of this paper is threefold:

1. Provide a new representation of the power regulation problem by formal-
izing it in the context of dynamic coalitional games;

2. Propose a distributed online protocol for solving this problem given its
real-time constraints, where we integrate:

(a) a cooperation scheme that on the one hand benefits from attractive
economic properties and on the other hand is scalable and computa-
tionally tractable;

(b) prediction-based learning for reasoning about future interactions and
states of the grid;

(c) privacy preservation guarantees for non-intrusive negotiations;

3. Present an empirical evaluation of the approach against datasets available
from the Australian energy market.

1Such as Nest: https://www.nest.com/
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3. A Coalitional Game Formulation for Intraday Power Regulation

Currently, the grid operator is responsible for compiling the day-ahead sched-
ule for power generation, which is explicitly passed to the actors in the grid.
However, with the advent of renewable generation, these schedules are becoming
volatile in nature, as they can be influenced by a wide variety of factors (e.g.
wind speed, solar irradiance, consumer patterns, etc.), though their accuracy
improves as the time-to-prediction elapses.

Henceforth, we take a standpoint where the grid operator, confronted with
the uncertainty regarding both generation and consumption capacities, is run-
ning a continuous prediction of both supply and demand in the near future, in
order to prepare for reductions in available supply or high-peak demand. While
forecasting demand at the distribution or transmission level has been widely
studied in the literature and represents a current practice for network opera-
tors, with the recent deployment of smart meters and electricity sensors at the
household level, utilities are enabled to extract almost real-time information
about the energy consumption [11]. This assumption recognises the importance
of improving the accuracy and granularity of electricity demand forecasting,
however this aspect remains outside the scope of this paper.

In this work, we propose a mechanism owing to which, the grid operator can
attempt to manipulate the behavior of consumers. Namely, once it determines
that a control action needs to be executed, such that power is safely provided
from the substation level (which delivers electric energy to the distribution grid)
to the set of consumers connected to that substation, this information is pub-
lished and becomes available to the consumers in the respective region of the
grid. Normally, due to the small capacity of individual actors, for obtaining a
meaningful impact, cooperation and coordination is required. Thus, in return
for a monetary incentive, consumers can engage in a collaborative effort to shift
demand according to the grid operator’s request. In this paper we are only
interested in considering shifting consumption, either before or after the initial
starting time, however, without altering the overall daily consumption.

More formally, we represent consumers as the set of self-interested agents
A = {ai | 0 < i ≤ n} that always aim at maximizing their incurred gains. In
doing so, we associate with each consumer agent ai the set of all its deferrable
loads Li = {lj | 0 ≤ j ≤ |Li|}, where lj represents a unique identifier for
each load. Based on this correspondence, loads can always be traced back
to determine the agent associated with a certain load. In addition, loads are
operated over a nonempty and finite set of distinct and successive time periods
T = {t1, . . . , tm}, which discretize each day, by specifying their initial starting
time slots sj set by the user, their duration dj , power rating rj (in kW), as well
as the active periods for each load ϕj . Against this background, we introduce
the following definitions.

Definition 1. A corrective action is a tuple αc = 〈ti, tj〉, expressing the need
to shift demand from time slot ti to tj , without affecting the remaining time
slots.
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Definition 2. A corrective action request is a tuple 〈αc, pc,R,P〉. The grid
operator solicits a set of corrective action requests, D, by providing estimations
that take the form of a probability distribution P : D → [0, 1], specifying the
likelihood pc of corrective actions αc ∈ D to be necessary. Additionally, func-
tions R,P : R→ R associate respectively, monetary incentives to be distributed
amongst the members of the coalition that undertakes each task and penalties
to be imposed for unfulfilled commitments, based on the amount of demand to
be shifted.

In short, the grid operator relies on the behavioral flexibility that consumers
can offer based on R, which maps demand reductions to monetary rewards.

Definition 3. Each agent a ∈ A is characterized by its baseline preferred con-
sumption, discretized over time slots T = {t1, . . . , tm} via the profile function
βa that aggregates its schedule:

βa(tk) =
∑
lj∈L

ljϕj(tk),∀tk ∈ T

ϕj(tk) =

{
1 if tk ∈ [sj , sj + dj ]
0 otherwise

(1)

Now, we consider that each agent a is characterized by a set of actions, which
represent the shifting actions specified by the consumer, which he is willing to
take.

Definition 4. An action is a tuple α = 〈l,∆〉 that specifies the potential de-
ferment ∆ of load l, where l ∈ L represents the unique load identifier, while
∆ ∈ {−23, · · · , 23} specifies the positive or negative integer number of time slots
for shifting l, assuming an hourly discretization of the day2. For each agent a
we denote its flexibility domain as the set of possible actions χa = ∪{αj}.

Essentially, an action produces an alteration to the initial profile of the agent.

Definition 5. Function δ : χa×RT → RT captures the changes in consumption
for each time slot, for a given profile function βa and action α of agent a. Let
βa1 and βa2 denote respectively the consumption of agent a before and after
executing α:

δ(〈α, t〉) = βa2 (t)− βa1 (t),∀tk ∈ T (2)

2The granularity of the daily discretization can of course be influenced by increasing or
decreasing the number of time slots in T . For instance, in case of half-hourly time slots
m = |T | = 48 resulting in ∆ ∈ {−47, · · · , 47}
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Figure 1: Structure of the coalitional game

Definition 6. Let αc = 〈ti, tj〉 be a corrective action. Then an action α is
relevant for αc if the following holds for some q:

δ(〈α, t〉) =

 −q if t = ti
q if t = tj
0 otherwise ,

(3)

where q denotes the amount of demand shifted from ti to tj by α. Similarly, a
set of actions αS = {α1, · · · , αm} is relevant for αc if each of the actions αi ∈ αS
satisfies Equation 3.

Definition 7. Let χ =
⋃
a∈A χa. The discomfort cost wa : χ → R quantifies

the marginal loss of agent a in performing a particular action. Noticeably,
wa(α) = 0, ∀α 6⊂ χa, meaning that actions outside its flexibility domain do
not incur any discomfort to agent a.

The business model (see Fig. 1) behind this approach implements a case-by-
case monetary reward for each specific corrective action requested by the grid

7



operator to consumers willing to participate. In principle, the reliability of the
agents to carry out corrective actions should be the basis in committing the
agents for such tasks. Importantly, in our approach the goal is in having the
grid operator be exempt from micromanaging the interactions with every agent
individually. We address this issue by providing reward and penalty functions
fit for this purpose. Explicitly, the reward function consists of two components
(Equation 4), a superadditive3 function f and a subadditive4 function g. The
threshold val specifies the point where increasing the amount of demand to be
reduced by the agents is no longer desired by the grid operator.

R(q) =

{
f(q) if q < val
g(q) if q ≥ val (4)

The penalty P represents a superadditive function. Noticeably, while the re-
ward incentivizes agents to perform joint actions for a higher return, the penalty
denotes a higher cost for failing to deliver these joint actions. Thus, the prob-
lem of the grid operator in assessing the agents’ reliability of actually delivering
their actions is now being transferred to the agents that are incentivized to
police themselves, with the scope of avoiding high penalties.

This models in effect a coalition game, where upon a corrective action re-
quest of a given probability (inline with Definition 2), agents can reallocate load
usage over time schedule T , in order to fulfil the corrective action and be eligible
to collect the associated reward. Coalitions are formed based on the expected
reward of the coalition and the individual costs that the agents incur in per-
forming the actions. If the corrective action takes place and a coalition delivers
the action α as promised, then the reward R(α) is awarded to coalition5. Con-
trary, if the coalition commits, but then fails to deliver action α as promised,
the penalty P(α) is to be imposed on the coalition.

Definition 8. A coalition is a subset of agents S ⊆ A that agree to pursue a
set of actions αS called the joint action of coalition S:

αS ⊆
⋃
a∈S
{χa}

Definition 9. Let αc = 〈ti, tj〉 be a corrective action. Let coalition S commit
joint action αS to a corrective action request αC , producing a reduction of
demand q. Then, coalition S is compliant if the following holds:

∑
αj∈αS

δ(〈αj , t〉) =

 −q if t = ti
q if t = tj
0 otherwise

(5)

3Suppose a1 and a2 can reduce demand with the amount q1 and q2 respectively. Superad-
ditivity implies R(q1 + q2) > R(q1) +R(q2).

4Similarly, subadditivity implies R(q1 + q2) < R(q1) +R(q2)
5For the sake of simplicity, hereafter, we overload notation for R(α), denoting a reward

R(q), where α = 〈q,∆〉. The same holds for function P.
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Definition 10. The cost of coalition S sums up the discomfort costs for all
actions performed by members a of S:

C(αS) =
∑
αj∈αS

wa(αj), (6)

Evidently, an action specifies the unique identifier l of its load, which enables to
relate an action αj to the agent ai performing it and thus, to use the appropriate
discomfort cost function wai .

Definition 11. Let S be a coalition with joint action αS that is relevant for
αc = 〈ti, tj〉. Once coalition S has committed to αc, then the overall coalition
value is computed based on whether the action αS has actually been delivered
or not, by subtracting the discomfort cost of all coalition members from the
given reward R(αc) or penalty P(αc), respectively:

ν(S) =

{
R(αS)− C(αS) if αS is delivered
−P(αS)− C(αS) if αS is not delivered

(7)

In other words, if the coalition is compliant in terms of reducing demand to
the committed amount, the reward is granted to the coalition, otherwise, if the
respective amount is not met, a penalty is incurred by the coalition (see Figure
1). Note that, if the specified amount is not fully met (i.e. only some of the
agents deviate from the schedule), the coalition is still penalized regardless of
the fact that discomfort costs have already been incurred, therefore the result is
a cumulative negative value consisting of both the penalty and the discomfort
cost when an action was not delivered.

Example. Consider a 2-agent scenario, where a1’s flexibility domain is rep-
resented by the actions χa1 = {α1

a1 = 〈l1,∆1〉, α2
a1 = 〈l2,∆2〉}, while for a2

we denote χa2 as the action set χa2 = {α1
a2 = 〈l3,∆3〉}. Function δ deter-

mines the modifications in consumption induced by these actions: δ(α1
a1) =

{(−q1, t1); (q1, t2)}; δ(α2
a1) = {(−q2, t3); (q2, t4)}; δ(α1

a2) = {(−q3, t1); (q3, t2)}.
The notation captures these modifications for each of the altered time slots.
For instances with α1

a1 we denote shifting the demand q1 from time slot t1 to
t2. Suppose now the grid operator requires the corrective action αc = 〈t1, t2〉.
Consequently, the coalition of agents a1 and a2 could reduce consumption in t1
with q = q1 + q3 and shift it to t2 in compliance with the Grid’s request.

4. The eCOOP mechanism and its implementation

We are now in the position to define a number of key requirements for our
power regulation protocol. Let 〈αc, pc,R,P〉 be a corrective action requested
dynamically and initiated by the grid operator. Then, for the coalition forma-
tion process, the goal is to design a protocol where agents self-organize to form
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a coalition structure CS, such that each coalition S ∈ CS is compliant with the
corrective action αc. Moreover, to guarantee stability we need to divide the re-
ward of each coalition among its members in such a way that consumers have no
incentive to deviate. Specifically, the goal is to determine a payoff distribution
u : A → R that is: (i) individually rational iff ∀a ∈ S : u({a}) ≥ ν({a}), (ii)
efficient iff

∑
a∈S u({a}) = ν(S) and (iii) offers coalitional stability guarantees.

Given that the protocol is run distributively among agents, individual valua-
tions, such as discomfort costs and the agents’ utilities to form coalitions, need
to be communicated between them, without transmitting this data to a central
(trusted) site. Thus, an additional requirement is that of preserving data pri-
vacy with regard to the agent’s self valuation wai of possible shifting action in
χai during coalition negotiation. Indeed, in Section 4.1 we address in detail the
problem of payoff distribution, while in Section 4.2 we bring it all together into
the eCOOP algorithm and also present an extended version6 of this algorithm,
which is able to provide privacy guarantees.

4.1. BSV-Stable Payoff Distribution for Dynamic Environments

Having described the macro dynamics of the power regulation game, we now
focus on consumers and how they rationalize about joining potential coalitions.
It is important to realize that agents, representing consumers in the grid, operate
within significant levels of uncertainty. We model a setting where we consider
the sources of uncertainty to be twofold. From the agent’s perspective, on the
one hand, the challenge is in accurately predicting its user’s energy profile and
preferences. This means that the deferment actions specified by each consumer
via its flexibility domain are regarded as soft constraints, from which he may
arbitrarily choose to deviate. Historical data is thus used to profile consumers
and estimate the likelihood of actually executing the deferments in χ. On the
other hand, in order to increase their coordination efficiency, agents need to build
a similar prediction with regard to the expected behavior of potential coalition
partners, allowing them to assess the probability of successfully delivering a joint
action. For now, keep in mind that these aspects are captured by probability
π, which can be computed for any joint action. In Section 5.2 we describe in
detail how this is actually implemented in our experiments.

Definition 12. Given agent a’s estimation π of the probability of a joint action
αS actually occurring, the expected utility of agent a in coalition S is given by
factoring in this probability:

µa(S) = πR(αS)− (1− π)P(αS)− C(αS) (8)

Intuitively, the utility computation considers the expected coalitional reward,
the expected penalty and the cost of performing the joint action.

6In bold we denote the extended version of the algorithm, where privacy-preservation is
enabled through cryptographic primitives during inter-agent communication.
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Definition 13. Let S be a coalition with joint action αS . The expected utility
of S is the average over the individual expected utilities of the members a ∈ S:

µ(S) =

∑
a∈S µa(S)

|S|
(9)

Recall that we assume the grid operator to be providing estimations that
take the form of a probability distribution P : D → [0, 1], that specifies the
likelihood pc of a corrective action αc ∈ D to be necessary. In this context, it
is important to emphasize that a corrective action will have different valuations
for each agent. Agents with a non-empty flexibility domain χ will engage in
a coalition formation procedure, that is, selecting a corrective action α worth
pursuing, by playing the best response depending on their preferred strategy:

α = argmax
αc∈D

E[R(αc)] (10)

A strategy essentially boils down to a particular interpretation of the ex-
pected reward associated with a certain corrective action. Notice now that given
the fact that corrective actions can only be estimated to occur, we have used in
Equation 10 the expected reward term, E[R(αc)]. Furthermore, evaluation at
this stage occurs before a coalition is actually proposed and given that discom-
fort costs from the other coalition members are not yet available, we omit them
altogether from the computation of the expected gain of the coalition. Thus,
the choice for a strategy is solely based on the expected reward of the coalition.
Subsequently, each agent may adopt a different strategy according to its user’s
exposure to risk:

i) risk-neutral strategy : select the solution that maximizes the expected
coalition reward:

α = argmax
αc∈D

pcR(αc)

ii) risk-averse strategy : selects the solution over a restricted set of corrective
actions with high probability for a given threshold h:

α = argmax
αc∈D

pcR(αc) if pc > h

iii) risk-seeking strategy : selects the solution by favouring corrective actions
with a high monetary incentive, regardless of a low probability of occurrence:

α = argmax
αc∈D

R(αc)

As previously detailed in Section 3 and based on their expected utilities,
agents engage in a coalitional game G = (A, µ). In game theoretic terms, a
coalitional game is constituted by a given finite, non-empty set of agents and a
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characteristic function, which maps each subset of agents (named a coalition) to
a real number. In this particular case, the instantiation of the game pertains to
the set of consumer agents A, while the previously introduced expected utility of
a coalition S ⊆ A, given by µ : 2A → R, represents the characteristic function of
the game. In other words, the number µ(S) represents the gain that is expected
to be achieved by cooperation between the members of coalition S. This is a
direct result of the fact that a joint action that can comply with a corrective
action request can affect the reward obtained by the individual agents in the
coalition. The solution of the game is a configuration 〈CS, u〉 that specifies
a payoff distribution u : A → R, which divides the reward of each coalition
among its members and a coalition structure CS, which partitions the set of
agents A into a set of disjoint coalitions that have been formed. According to
the requirements outlined at the beginning of Section 3, the payoff distribution
u(a) is supposed to be individually rational, efficient and stable. Efficiency
means that the joint payoff of the coalition is distributed completely without
any loss, while, individual rationality implies that no agent gets less than it
could obtain by staying alone. Stability, means that another aspect needs to be
addressed, namely, coming up with a payoff configuration where no agent has
an incentive to leave its coalition due to its assigned payoff u(a).

The payoff allocation scheme results from running a negotiation procedure,
where agents reschedule loads in order to meet the required constraints. More-
over, considering the real-time requirements for generating the payoff distribu-
tion, the protocol should minimize computational and communication demands.
However, it is well known that the classical stability concepts in coalitional game
theory are of high computational complexity [25]. A solution concept identifies
some preferable subset of the possible outcomes (solutions of the game). More
formally, let Γ be a class of games. Associated with Γ is a set Ω of possible
outcomes. Given this notation, we can model a solution concept φ for a class
of games Γ with outcomes Ω as a function: φ : Γ → 2Ω, where φ is required
to satisfy the property that φ(G) ⊆ ΩG , with G ∈ Γ being a specific game.
Game theorists have developed a number of solution concepts, which for every
game identify some subset of the possible outcomes of the game. Solution con-
cepts can typically be understood as strategic optimization problems, because
they propose to capture some notion of optimality in a strategic setting. Often,
they can be interpreted as combinatorial optimization problems, which are com-
putationally hard, thus it becomes imperative that in practice there are ways
for efficiently computing solution concepts and that they are computationally
tractable.

A well-studied solution concept in coalitional games is the Shapley value
[31], which defines a fair way to distribute the value obtained by a coalition.
The Shapley value represents the expected marginal contribution that an agent
brings to the set of agents preceding him in a coalition, while considering each
coalition equally likely to form, as well as the size of the coalitions. The in-
tuition behind the Shapley value is that the payment that each agent receives
should be proportional to his contribution averaged over all possible orderings,
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or permutations, of the players. Formally, for a game G = (A, ν), with |A| = n,
the Shapley value of a agent i ∈ A is denoted by:

φi(G) =
1

n!

∑
P∈ΠA

ν(SP (i) ∪ {i})− v(SP (i)) (11)

where SP (i) is the set of all predecessors of i in a given a permutation P from
the set of all possible permutations ΠA of A.

The Shapley value is particularly appealing because it yields a unique payoff
allocation, while satisfying a set of easily justifiable axioms: efficiency, sym-
metry, dummy player and additivity [25]. The challenge however is that it can
be computationally hard to compute, due to its combinatorial nature. Con-
sequently, as a solution concept for the payoff distribution, in this paper, we
adopt an efficient version of the Shapley value introduced by Ketchpel in [14]
and further developed in [6]:

Definition 14. The union S of two disjoint coalitions S1,S2 is called a bilat-
eral coalition, with S1 and S2 called constituent coalitions of S. The bilateral
Shapley value (BSV) σ(Si,S, ν), i ∈ {1, 2} in the bilateral coalition S is equiv-
alent to determining the Shapley value of constituent coalitions Si in the game
({S1,S2}, ν):

σ(Si,S, ν) =
1

2
ν(Si) +

1

2
(ν(S)− ν(Sk)) (12)

with k = {1, 2}, k 6= i.

In relation to the properties displayed by the Shapley value, we characterise here
the BSV solution concept in the game ({S1,S2}, ν), for the merger S = S1∪S2,
according to [15, 6]:

• efficiency: ν(S) = σ(S1,S, ν) + σ(S2,S, ν)

• symmetry: if for all C ⊂ A that S1,S1 6⊆ C we have ν(C∪S1) = ν(C∪S2),
then σ(S1,S, ν) = σ(S2,S, ν)

• dummy player (non-essential coalition entities receive no payoff):
if ν(S) = ν(S\Si) and ν(Si) = 0, then σ(Si,S, ν) = 0, ∀Si ⊂ S

• for singleton coalitions, BSV equals their self-value:
σ({a}, {a}, ν) = ν({a}), ∀a ∈ A

Moreover, both of the constituent coalitions are willing to form S = S1 ∪ S2, if

ν(Si) ≤ σ(Si,S, ν), ∀i ∈ {1, 2} (13)
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In this manner, individual rationality is expressed in Equation 13, while collec-
tive rationality is captured by Equation 12. Also, notice that Equation 12 can
be rewritten7 such that the surplus of joining S1 and S2 into S is distributed
equally among S1 and S2:

σ(Si,S, ν) = ν(Si) +
1

2
(ν(S)− ν(S1)− ν(S2)) (14)

Now, given two disjunct coalitions S1 and S2, their union S is called a
bilateral coalition, while S1, S2 are subcoalitions of S. In order for a bilateral
coalition S to be recursively bilateral it needs to represent the root node of a
binary tree TS for which i) every non-leaf node is a bilateral coalition and its
subcoalitions are its children and ii) every leaf-node is a single-agent coalition.
It follows then, that a coalition structure CS is recursively bilateral iff ∀S ∈ CS:
S is recursively bilateral or S = {a}, a ∈ A.

Definition 15. Given a game G = (A, ν) and a recursively bilateral coalition
structure CS, a payoff distribution u is called recursively bilateral Shapley value
stable iff for each S ∈ CS, every non-leaf node S∗ in TS : u(S∗i ) = σ(S∗i ,S∗, νS∗),
i ∈ {1, 2} with ∀S∗∗ ⊆ A:

νS∗(S∗∗) =

 σ(Spk ,Sp, νSp) if Sp ∈ TS ,S∗ = S∗∗ = Spk ,
k ∈ {1, 2}

ν(S∗∗) otherwise
(15)

Intuitively, this means that by merging two recursively bilateral coalitions,
the resulting coalitional value is distributed down the coalitional tree TS by ap-
plying the bilateral Shapley value to the actual payoffs of the respective parent
coalition [1]. Note that the BSV properties previously detailed also hold for the
recursive BSV payoff distribution [15]. Similar approaches based on BSV com-
putations have been successfully applied in the context of transmission planning
problems [5, 4]. Thus, we adopt the notion of a recursively bilateral Shapley
value stability due to its computational efficiency and scalability, in contrast to
the combinatorial nature of the Shapley value, which becomes hard to compute
for coalition sizes that exceed tens of agents. Essentially, this stability concept
entails that the agent’s payoff configuration conforms to recursively bilateral
Shapley value payoffs.

Our aim is to find a recursively bilateral coalition structure CS for game
G = (A, µ), as well as a payoff distribution u that is recursively bilateral Shapley
value stable. Notice that such a solution can be constructed incrementally
through a bilateral merging process, where the intermediary coalition value is
computed according to Equation 15.

7By substituting i and k with their designated values and performing arithmetic derivation.
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Figure 2: Example of generating payoff configuration through the bilateral Shapley value

Example. (see Fig. 2) Consider the following 3-agent scenario (A, ν) with A =
{a1, a2, a3}, where we demonstrate the calculations for the payoff distribution
using the bilateral Shapley value:

• ν({a1}) = 1; ν({a2}) = 0.5; ν({a3}) = 0.5;

• ν({a1, a2}) = 4; ν({a2, a3}) = 2; ν({a1, a3}) = 2

• ν({a1, a2, a3}) = 5.5

It follows that merging into coalition A = {a1, a2} and then into coalition B =
{a1, a2, a3} yields the following payoff distributions: σ(A,B, ν) = 4 + 1/2(5.5−
0.5−4) = 4.5; σ({a3}, B, ν) = 0.5+1/2(5.5−0.5−4) = 1. Similarly, the payoff of
A is distributed recursively into σ({a1}, A, ν) = 2.25 and σ({a2}, A, ν) = 1.75.

4.2. The eCOOP algorithm

In the following, we summarize the main steps outlined in the previous sec-
tions and provide the pseudocode of our online cooperation scheme. As detailed
in Section 3, the grid operator holds the task of monitoring the grid at large,
in preparation for various instances of fluctuations, high-peaks, line overloads,
reduced DER generation, etc. As a precautionary measure, the grid operator
dynamically publishes and updates a list of corrective actions. Because the goal
here is power regulation, the list of corrective actions is specifically prescribed
at the substation level, which connects a number8 of individual homes to the
distribution grid. We set out from this typical situation in a residential area,
where agents, representing households on the level of the low voltage grid, need
to coalesce in order to perform the actions indicated by the grid operator. Here,
we describe the eCOOP -induced procedure occurring at each substation in the
grid, while in Section 5 we empirically demonstrate the aggregated impact of
our approach at a grid-level scale.

According to the diagram in Fig. 1, that depicts the overall structure of the
game given in Section 3, the coalition formation procedure introduced hereafter

8We assume an average of 1000 households per substation [20].
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corresponds to the second stage. It is important to point out that the BSV com-
putation detailed in Section 4.1 is implicit to the implementation of the eCOOP
algorithm. That is, generating the coalition structure follows a bilateral coali-
tion formation procedure, kickstarted from the set of singleton coalitions, having
each agent reason about the expected utility of a potential coalition based on its
predictive model, constructed from previous encounters. During each iteration
at least one new coalition is formed by merging of two coalitions, where the
added value of the coalition merger is to be distributed according to the bilat-
eral Shapley value (Eq. 14). Moreover, by adhering to our protocol we enable
consumers to distributively converge to solutions that fulfil corrective actions,
while also meeting the requirements of computing BSV-stable configurations.
Given as input, for each consumer, the flexibility domain χ and the associated
discomfort cost for each action within χ, this information is encapsulated by
the agent. Hereafter, the agent represents the consumer for the induced game,
interacting with the other agents according to the eCOOP algorithm9.

The eCOOP algorithm is run by every agent in the system. The starting
point for each agent is inspecting the global list of corrective actions provided
by the grid operator, along with the associated probability of their occurrence.
According to the user prescribed strategy, the agent selects a set of target events
in EventQueue from CorrectiveActionsList (lines 3-4), which induce a set of
goal-oriented cooperative games that are solved concurrently. Then, for each
target event, the agent determines the set of relevant actions according to Def-
inition 6, inspecting for those that shift demand in line with the respective
target event. Next, for each target event the algorithm iteratively attempts to
construct feasible coalitions starting from the initial set of singleton coalitions
(line 6). A coalition represents an agreement between a group of agents for a
successful resolution of a corrective action solicited by the grid operator. Based
on the information exchange (lines 32-43), each coalition computes internally
the expected utility of a bilateral merger with a potential coalition partner. The
evaluation of past collaborations are captured in the computation of the utility µ
of a coalition in a given coalition merger. Note that function µ is used through-
out the algorithm to store and retrieve these values. Then, potential coalition
formations are simulated via mergers of subcoalitions by computing the coali-
tion value as the mean of the expected utilities of the merging coalitions (line
16). Following the assessment of potential coalition partners, for a designated
candidate set where mergers provide an added reward (line 17), proposals are
opportunistically advanced (lines 44-58).

Communication amongst agents assumes the use of time-outs by means of
which agents place upper bounds, specifying the amount of time allocated for
receiving a reply. In case no reply is received in due time, the particular agent is
simply disregarded from being considered as a candidate for coalition formation.
This simple request-response protocol is encapsulated by the Send/Receive pro-

9For instance by having the eCOOP functionality deployed inside the smart meter.
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cedures, which specify respectively the sender and recipient agents (or coalition
leaders) and the message itself. Messages are routed to the destination agent
and are placed in its message queue. The Receive procedure examines the mes-
sage queue, retrieving null only if the timeout expires before a desired message
arrives and thus avoiding potential deadlocks during the inter-agent commu-
nication. In short, communication with other agents is parallelized by adding
a non-blocking agent behavior (thread) each time commnication with another
agent commences (line 12). The same principle is applied for the inter-coalition
communication, where the coalition leader is responsible for aggregating the ex-
pected utilities of a potential coalition merger based on the evaluations of the
members of its coalition (lines 37-38).

The simulation phase is followed by the actual coalition formation procedure,
which is conducted in a distributed manner. Function MaxV alue is used to
return the coalition with the highest expected utility from the Candidate set.
If proposals are bilaterally accepted, such that a coalitions S1 and S2 both
evaluate the merger S = S1∪S2 as a preferable outcome compared to the current
configuration CSiter or to other possible mergers, then during the next iteration
of the algorithm the new configuration CSiter+1 will substitute S1 and S2 with
the newly formed coalition S (line 25). Additionally, the Update function revises
the current configuration based on notifications from other coalition leaders
regarding mergers that has occurred at this stage. Also, in the event of a merger,
the information is broadcasted not only to the other coalition leaders, but as
well, all coalition members are informed about the new configuration (line 51).
The procedure terminates once the algorithm converges on a particular coalition
structure, meaning that no new coalition mergers are bilaterally acceptable.
Note, that the algorithm terminates after at most |A| rounds, since in each
non-final round at least one coalition is formed.

Finally, once the corrective action has been performed by the coalition, the
reward is distributed according to the BSV computation for that particular
configuration (line 29), resulting in coalitions with stable payoff distributions.
Specifically, once the event has elapsed, according to Equation 7, depending
on the compliance or non-compliance with the corrective action, a reward or a
penalty is determined respectively. The amount is then distributed down the
coalitional tree based on the expected coalitional utilities µ (Definition 13) that
were used in generating the tree structure. Additionally, agents update their
probabilistic model (values of π) with the information inferred from the result
of the coalition formation procedure.

In the following we give the agent program of a leader agent ai in a coali-
tion, where a leader is determined by lexicographic order. The algorithm starts
from the set of singleton coalitions, thus initially each agent also plays the role
of coalition leader. Once an agent becomes part of a coalition and no longer
fulfils the leader role, as a coalition member his role is confined to responding
requests from the coalition leader. We focus on the abovementioned tasks per-
formed by a leader agent by providing in Algorithm 1 the pseudocode of the
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main thread, while Algorithm 2 and Algorithm 3 addresses respectively a num-
ber of subroutines corresponding to the communication and negotiation phases.
More elaborate ways to establish a coalition leader are beyond the scope of this
paper, however, in future work we intend to base this decision on additional
factors such as the agents’ computational resources (i.e. the agent with the
greater computational power is preferred) or network properties (i.e. prioritize
communication hubs).

Algorithm 1 represents the main thread of the eCOOP algorithm.

Data: χai , µai(S),∀S ⊂ A
1: procedure eCOOP
2: Update(CorrectiveActionsList)
3: Select target event set EventQueue from
4: CorrectiveActionsList according to ag. strategy in Eq.10
5: for all target Ti ∈ EventQueue do
6: iter = 0; CSiter = {{a}|a ∈ A};
7: repeat
8: if ∃ S ∈ CSiter so that ai = Lead(S) then
9: Det. action set αS ⊆ χS s.t. Eq. 3 holds ∀α ∈ αS w.r.t. Ti

10: Candidate = ∅
11: if αS not null then
12: for all S′ ∈ CSiter \ {S} do concurrently
13: S̃ = S ∪ S′
14: µS′(S̃) = Communicate(S′)
15: if µS′(S̃) not null then

16: Compute µ(S̃) = µS(S̃)+µS′(S̃)
2

17: if µ(S̃) > µ(S) + µ(S′) then
18: Append(S′, Candidate)
19: end if
20: end if
21: end for
22: Bilateral Negotiation(Candidate, µ)
23: end if
24: iter := iter + 1
25: Update(CSiter)
26: else break
27: end if
28: until CSiter = CSiter−1 or iter = card(A)
29: Compute recursively payoff vector u(C) for all C ∈ TC as in Eq. 15
30: end for
31: end procedure
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Algorithm 2 carries out the communication with the coalition leader of S′.
32: function Communicate(S′)
33: Send(Lead(S), Lead(S′), [αS ;Enc(C(αS))])
34: msg = Receive(Lead(S), Lead(S′), [αS′;Enc(C(αS′))], timeout)
35: if msg = null then return null;
36: else
37: Aggregate µS(S̃) as in Eq. 9 based on µa(S̃), for all a ∈ S
38: using Homomorphic Scheme
39: Send(Lead(S), Lead(S′),Enc(µS(S̃)))
40: val = Receive(Lead(S), Lead(S′),Enc(µS′(S̃)), timeout)
41: return Dec(val)
42: end if
43: end function

Algorithm 3 attempts to establish a bilaterally accepted coalition merger.

44: function Bilateral Negotiation(Candidate, µ)
45: S∗ := MaxV alue(Candidate, µ)
46: if @ MergeProposal(S∗) then
47: Send(Lead(S), Lead(S∗),MergeProposal)
48: end if
49: if Receive(Lead(S), Lead(S∗), Agree/MergeProposal, timeout) then
50: Send(Lead(S), Lead(S∗), Agree)
51: Inform members of S of merger with S∗ and notify all coal. leaders
52: else Candidate := Candidate \ {S∗};
53: if Candidate not null then
54: Bilateral Negotiation(Candidate, µ)
55: else break
56: end if
57: end if
58: end function

As we have already established, we assumed that agents, representing con-
sumers in the grid, act selfishly, therefore, during the negotiation procedure of
forming coalitions, information about the consumers’ profile must remain confi-
dential. As the granularity of the data collected and transmitted over the smart
grid increases, privacy preservation is becoming an imperative concern [19, 29].
In our approach, this is primarily achieved by communicating to potential coali-
tion partners only a restricted set of actions which the agent is willing to take
and their valuation, instead of its complete profile (line 33). However, as this
information represents the objective of the negotiation, revealing it may expose
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Figure 3: Example of homomorphic cryptosystem

the agent to strategic behavior, in addition to other obvious risks of sharing
detailed energy profiles10.

With these considerations in mind, we provide hereafter an extended ver-
sion11 of our algorithm, where we are concerned with enhancing the privacy
guarantees. To this end, we employ a homomorphic cryptosystem that allows
agents to perform data aggregation without requiring that the data is decrypted
beforehand. In particular, we are interested in applying an efficient additive ho-
momorphic encryption scheme. Let (pubkey, privkey) be a pair of public and
matching private keys, Enc(pubkey,m) a function that encrypts message m
using the public key pubkey and m = Dec(privkey,Enc(pubkey,m)) the corre-
sponding decryption function using the private key privkey. Then a public key
cryptosystem with homomorphic property satisfies:

Enc(pubkey,m1) · Enc(pubkey,m2) = Enc(pubkey,m1 +m2) (16)

We use an efficient instantiation of such a scheme, the Paillier cryptosystem,
which provides a fast encryption and decryption protocol. For a more detailed
outlook on this procedure we refer the reader to [26]. In our case, this means that
agents will only be able to determine the coalition value, instead of the individual
agent valuations. More specifically, suppose we are interested in computing the
expected utility µ(S) (Equation 9) of coalition S for a joint action αS , without
disclosing the individual utilities µa(S) of the coalition members ai ∈ S, which
are required during the computation (line 37). The extended version of the
eCOOP procedure prescribes that the coalition leader provides a public key
used by the coalition members to encrypt µa(S). A token message is then passed
further on to all agents in S in a lexicographical sequence, which enables the

10For instance, private behavior could be derived, which may reflect personal routines, when
a location is occupied, work schedules, or other information regarding occupant activities and
lifestyle.

11In the pseudocode, the additions of the extended version appear in bold within the func-
tion Communicate lines 26-42
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agents to construct iteratively the final result using the additive homomorphic
scheme (see Fig. 3). Once all the agents have performed this action, the result
is sent to the coalition leader, who then decrypts it using the private key and
makes the result available to all agents. Based on the homomorphic property,
only the aggregated result is decrypted, while intermediate agents aggregate the
encrypted data during data forwarding, but cannot decrypt it. Importantly, this
approach is guaranteed to achieve a security level of IND-CPA12, which is the
highest security level for homomorphic schemes [18].

The complexity of the proposed DCF (dynamic coalition formation) algo-
rithm is given in the following propositions.

Proposition 1. The computation complexity of the algorithm is O(pn2m),
where n = |A|, m = maxS∈CS{|αS |}, p = max{|EventQueue|}.

Proof. The number of iterations that the algorithm needs to cycle through
is bounded by a) the maximum number of events in the global queue O(p) (line
5); b) the maximum number of coalition mergers that may occur O(n), which
corresponds to the formation of the grand coalition (line 7); c) O(nm) the max-
imum number of operations required in order to construct the list Candidate.
Besides, the secure multi-party computation requires performing an encryp-
tion for every sent message, while the destination agent is needed to add the
corresponding decryption. Hence, the overall complexity of the algorithm is
O(p)O(n)O(nm) = O(pn2m). �

Proposition 2. The communication complexity of the algorithm in the
number of messages per agent is O(mnp).

Proof. During each run of the algorithm the number of messages sent by an
agent is bounded by O(n)+O(m) for the case of coalition leaders, corresponding
to inter-coalition negotiations and intra-coalition message passing respectively.
Otherwise, a single message specifying µa is required to be sent to the coalition
leader for each iteration of the algorithm. In addition to this, due to the usage of
the cryptographic layer, the coalition leader is also responsible for distributing
the public key to each agent, member of its coalition. Thus, given at most pn
rounds of the algorithm, the overall number of messages sent by an agent is
O(mnp). �

5. Empirical Evaluation

In this section we provide an empirical evaluation of the coalition forma-
tion mechanism introduced in Section 4. First, we explain the details of our
experimental setup in Section 5.1. Then, in Section 5.2 we make several re-
marks about our particular choice of a prediction model. Next, we analyse our
empirical results in Section 5.3.

12IND stands for indistinguishability and CPA for chosen plaintext attacks
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5.1. Experimental Set-up

To evaluate the performance of our proposed algorithm, experiments were
conducted on real datasets obtained from the Australian Energy Market Oper-
ator (AEMO)13. It is important to note that AEMO centrally coordinates the
dispatch procedure via a real-time pricing scheme, onwards referred as RTP,
by pooling the quantities of electricity required by consumers from available
generators. Essentially, RTP is a differential pricing scheme, where the cost per
unit of electricity varies periodically throughout the day (i.e. peak consump-
tion corresponds to price increases) and it is considered to be the most efficient
differential price mechanism used for demand response [8]. Through the exper-
iments we sought to study the emerging consumption patterns induced by the
eCOOP scheme w.r.t the RTP approach14, for which archives of price and de-
mand data for half-hourly intervals are available. The performance of eCOOP is
demonstrated under the assumption of an expected elasticity in demand, which
is modelled and simulated, given the lack of such data to document consumers’
preference in providing power regulation services. We further assume that all
messages are processed correctly and all agents work properly.

Consumer agents. Specifically, the dataset used for our first set of experi-
ments archives price and aggregated demand, covering the month of September
2012, for each hourly slot, for the New South Wales (NSW) region. While no de-
tailed data was available on individual consumers, we infer this information and
construct the agents’ profiles βa by disaggregating the total demand. In doing
so, we fix the number of agents to N = 2.252 million, derived from the number
of households15 in the NSW region. In Figure 4 we exemplify the real consump-
tion profile for a typical residential household for one day, while the dataset16

used in the experiments provides a complete year-round consumption profile.
Next, based on this profile we generate stochastically, using a uniform distribu-
tion, new individual consumers that jointly match the initial daily aggregated
demand of the AEMO. That is to say, we add random noise, for each time slot
of the day, to the average load profile, generating individual consumers, whose
total consumption at the end of the day matches the corresponding aggregated
demand provided by the AEMO. Thus, in our scenarios, we used simulated con-
sumption patterns for the N agents, where the consumption per agent per time
slot is drawn from a uniform distribution U(pmin, pmax). We set the following
parameters pmin(t) = −0.15p(t) and pmax = 0.15p(t), where p(t) denotes the
typical consumption at time slot t. We further assume that the strategies rep-
resenting exposure to risk (Section 4.1) are equally represented in the consumer

13http://www.aemo.com.au/Electricity/Data/Price-and-Demand/Aggregated-Price-and-
Demand-Data-Files

14Note that the RTP performance is not determined experimentally but provided through
the AEMO datasets.

15http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/
1338.1Dec%202010?OpenDocument

16Available at UC Irvine Machine Learning Repository; Individual household electric power
consumption Data Set: http://archive.ics.uci.edu/ml/datasets.html
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Figure 4: Example of a daily load curve for an individual household

population and that the extent to which consumers are willing to reschedule
demand by shifting loads is constrained to Υ = 25% of the total consump-
tion, denoting their elasticity of demand as recent reports suggest [9, 17]. It
is estimated that shiftable loads (i.e. washing machines, dish washers) account
on average 25% of the electricity usage of a household, the remainder being
largely due to entertainment and lightning purposes. For associating shiftable
loads with consumer profiles we generate loads with a duration of one time-slot,
which are distributed uniformly over the set of time slots T = {1, . . . , 24}, to
match the given elasticity of demand. The number of time slots to which each
load can be shifted is bounded to ∆ ∈ [−5, 5], while the power ratings of these
loads are uniformly distributed in the set r ∈ {1kW, 2kW, 3kW}. Hence, the
flexibility domain of an agent consists of the set of possible actions, where an
action links a shiftable load l to a potential deferment ∆ (Def. 4).

Grid operator. A corrective action prescribes that demand needs to be
shifted from a time slot ti to another time slot tj . Whenever the grid opera-
tor determines that the average daily consumption is expected to be exceeded
by more than 5%, a corrective action is triggered, requesting that this excess
demand is shifted to the following time-slot with a lower than average consump-
tion. Corrective actions are made available to subsets of N , of a fixed sized,
which is set to 1000 agents (hence preserving the local character of power reg-
ulation at the substation level). Additionally, in order to give a measure of
robustness, we factored into our simulation random variations in the power sup-
ply, accounting for fluctuations from renewable resources, which are estimated
to cover about 13% of the total generation [9]. The mean absolute percentage
deviation (MAPD) is bounded to 20%. Such instances may also represent the
cause for requesting corrective actions in case the abovementioned triggering
condition is met. Also, we consider without loss of generality that coalitions
perform joint actions successfully with a 90% probability rate, in accordance
to recent consumer behavior surveys on customer acceptance retention and re-
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sponse to time based electricity tariffs [34]. This optimistic scenario assumes in
fact that 9 out of 10 coalitions are compliant with their respective corrective ac-
tion requests. Given the previously mentioned fixed maximum size of coalitions,
it follows that the performance improvement is linear with this rate.

In specifying a corrective action request, the grid operator ought to provide
the associated reward and penalty functions (Def. 2). For our scenario, the re-
ward is based on the assumption that the approximate cost otherwise incurred
by deploying expensive power plants is instead distributed to consumers willing
to reduce demand (hence achieving lower emissions). Evidently, in a real sce-
nario, the grid operator may choose to commit only a fraction of this amount
for incentivising consumers. We use the following reward function in Equation
17, supposing that the desired amount of demand to be shifted is q∗ and set
θ = 0.1 (cents). It is important to point out that besides complying with the
properties of Eq. 4, quadratic functions are commonly used to capture the cost
of electricity supply (see [28]). We further consider P(q) = f(q).

R(q) =

{
f(q) = θq2 if q < q∗

0 if q ≥ q∗ (17)

5.2. Predictive Model

The aspects of building an estimation model regarding potential coalition
partners, based on previous encounters, as well as the agent’s own estimated
user behavior, have been addressed in Section 4.1. In our experiments, we
approach both aspects in a unified manner by including sources of uncertainty
in the form of random, uncontrollable variables with probability distributions,
that each agent attempts to learn in an online fashion. Recall that for each
agent a ∈ A there corresponds a set of (deferrable) loads La. Essentially, the
goal is to learn for a given action αlj , that shifts a load lj , the likelihood that
the shift occurs to a particular timeslot k. Suppose now that agent a wants
to determine the likelihood for each of the actions that constitute its flexibility
set χa. Let R = {r1, . . . , r|χa|} denote the set of random variables modelling
future, uncontrollable events and D = {D1, . . . , Dq}, a set of domains for the
random variables such that ri takes values in Di = T . Let σ : R → χa be a
distribution function of random variables to the agent’s actions. Agent a learns
P = {π1, . . . , π|χa|}, which is a set of probability distributions for the random
variables, where each distribution πi : Di → [0, 1] defines the probability law for
random variable ri, such that the values of πi sum up to 1.

Also, there is uncertainty regarding the expected behavior of potential coali-
tion partners, which in turn need to conform to their respective user demands
in a timely fashion. Similarly, agent a tracks past encounters with other agents
and builds a probability set Pi for each agent ai. Consequently, we exploit the
repeated game structure of the problem to learn a prediction model regarding
future interactions and thus infer potential synergies between agents.
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In order to compute the set of probabilities P , for the sake of clarity we adopt
the fictitious play learning model [25]17, where agents observe other agents’, as
well as their own user behavior. Concretely, for the latter case, the fictitious
play requires that agent a models the set of random variables ri by keeping, for
each action of its user αlj ∈ χa, a count cjαk

for each timeslot k:

πk
αlj

=
cjαk∑
i
cjαi

(18)

Of note is the fact that particular actions may be enforced by the user by
setting the prior counts of the distribution. By default, actions that have never
been performed have an equal probability for each time slot.

The same procedure holds for tracking agents that a has been previously
exposed to, during preceding runs of the algorithm. Moreover, for computing
the probability of a joint action αS , we average over the individual probabilities
of each action α ∈ αS :

παS
=

∑
α∈αS

πα

|αS |
(19)

5.3. Results

We conducted the experiments using the Repast toolkit18, which is pure Java
extended portfolio for simulating distributed agent-based environments and has
been previously deployed in smart grid scenarios [24]. At the simulation level,
managing the execution of the agents’ actions is done in a synchronous cyclic
fashion, where at each time-step the schedule iterates through the set of agents,
executing actions following the given pseudocode in Section 4. Notice, however,
that the outcome of eCOOP is not affected by asynchronicity, as it has been
shown for the original BSV algorithm ([6]).

We ran a comparison of the eCOOP algorithm against the existing RTP
mechanism implemented in the Australian market19. Results from these ex-
periments are shown in Figure 5, where we plot the average daily consumption
patterns (in MW) for a one month period (September 2012). The results are
obtained by averaging after repeating the experiments 100 times. Error bars are
omitted, as variance between runs was negligible (relative standard deviation
below 0.02) and does not improve the readability of the figure.

Based on our numerical experiments we can conclude that our coalition-
based approach leads to a significant flattening of the energy consumption curve,

17Of course, more complex functions could be considered, but this is beyond the scope of
this paper.

18http://repast.sourceforge.net
19Recall that RTP denotes the actual consumption recorded by the AEMO.
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Figure 5: Comparison over aggregated demand patterns by averaging daily consumption
(divided into 1h time slots) over a one month period.

as opposed to the RTP solution, although the overall consumption is maintained
the same. Intuitively, Figure 5 clearly shows that by applying our proposed
algorithm, ahead of critical peak periods, demand can efficiently adapt so that
such instances are being prevented from occurring. In order to give a more
quantitative measure for our results we consider the load factor metric [37],
which represents the ratio of average power demand to the maximum (peak)
demand. Let β denote the daily total load profile across all consumers over
time-schedule T :

β(t) =
∑
a∈A

βa(t), ∀t ∈ T

βpeak = max
t∈T

β(t) and βaveg =
1

|T |
∑
t∈T

β(t) (20)

Then the load factor Lf is calculated as:

Lf =
βaveg
βpeak

(21)

One of the key challenges behind bringing about the smart grid vision is par-
ticularly related to the improvements of load factors. Using this metric as an
indicator of operational efficiency, we can measure the disparity of the peak
from average usage. Thus, the flattening of the demand curve corresponds to
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an increase of the load factor toward unity. For the one-month interval we have
considered in our experiments, our approach produces a 14% increase of the load
factor from 0.77 for the RTP scheme to 0.91 when applying the eCOOP algo-
rithm. Through our approach, we aim that the aggregated load is more evenly
distributed across the time schedule T . In contrast, traditional approaches, that
aim to nudge user consumption using price signals broadcasted to all, in effect,
attempt that each user individually achieves a more balanced load, which need
not necessarily be the case for eCOOP. Here, we move the focus from the bilat-
eral interaction between the grid operator and consumers, to a setting where we
enable direct interactions between consumers, incentivized by the grid operator,
such that their coordinated effort achieves a improved Lf value.

The second set of experiments are designed to speculate about future sce-
narios, when due to a wide adoption of plug-in electric vehicles (PEV) as well
as electrification of heating, the proportion of shiftable consumption may in-
crease significantly. Specifically, we are interested in evaluating the impact of
our mechanism for variations of the elasticity of demand Υ, which denotes the
percentage of energy a consumer is willing to defer upon an incoming request
from the grid operator. In Figure 6 (a) we plot the effect of different values of Υ
upon the load factor of the system. We have already seen from our initial setting
very promising results regarding this parameter even for a moderate elasticity
of 25%. A considerable increase in elasticity above this value is thus expected to
provide negligible increases of the load factor, below 10%. Importantly though,
the experiments show that against a consumer with zero elasticity, even a small
increase can produce a large impact on the load factor, which is a very encour-
aging result.

Next, we investigate another criterion for evaluating the energy efficiency of
the system, in close relation to the previous case. A high value of the load factor
means a decrease in the usage of peaking plants and as a result, a lower carbon
footprint. In other words, a reduced consumption during peak intervals and an
overall flatter demand means that energy can be generated from less polluting
sources. The amount of emissions is in direct correspondence to the energy
mix required in order to satisfy the aggregated demand. We use the AEMO
dataset20 to determine the correspondence between a load factor value and the
induced CO2 emissions. We use the Pearson coefficient, r, as a measure of the
strength of the linear relationship between these two variables. For the period
under consideration we obtain a statistically significant result with r = 0.81.
Based on these findings, Figure 6 (b) shows the decrease in the amount of
carbon emission per kWh by applying the eCOOP algorithm for various degrees
of elasticity in demand. Not surprisingly, a similar pattern can be observed,
representing a steep reduction of emissions for small increases in elasticity for
up to an approximate 20%.

Lastly, avoiding the need to deploy peaking plants can be directly translated

20http://www.aemo.com.au/Electricity/Settlements/Carbon-Dioxide-Equivalent-Intensity-
Index
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Figure 6: Average evolution of (a) load factor, (b) carbon emissions and (c) percetage savings
for different degrees of elasticity of demand
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Figure 7: Simulation results for year-round load factor comparison averaged monthly

into consumer savings. In Figure 5 we have also represented the evolution of
real-time pricing according to the given aggregated demand, as provided by the
AEMO dataset. Observably, off-peak intervals are correlated with lower prices,
while higher prices correspond to peak periods. As we have seen, applying our
algorithm produces on aggregate a modified consumption pattern. We now de-
termine the average cost savings perceived by consumers, assuming that the cost
of electricity (per kWh) is given by the total demand in the system according
to the RTP pricing in our dataset. We plot the results in Figure 6 (c), where we
give an estimation of percent savings incurred by consumers during the time slot
with the highest consumption during the day, for varying degrees of elasticity.
This is again an encouraging result, showing an approximate 30% reduction of
kWh cost in return for an elasticity of 20%. Further flexibility in consumption
can lead to a reduction of up to 40%.

Finally, we provide conclusive results for the performance of our algorithm,
demonstrating how eCOOP outperforms the existing RTP scheme, evaluated
over an extended year-round scenario (Sept. 2012 - Sept. 2013). It is impor-
tant to note that consumption patterns vary throughout the year. Specifically,
winter and summer months are known to exhibit increased high-peak intervals
due to an intense usage of electricity. We started our experiments investigating
an average consumption month. For generality, we now give in Figure 7 the
year-round results based on the load factor computation for the two approaches
under consideration. It is interesting to observe that RTP produces different
outcomes depending on the particular period of the year, highly correlated to
the expected consumption usage. For instance, on the one hand, the lowest
efficiency is observed during January with a load factor value of 0.6 and on the
other hand, April and November represent the highest efficiency months. In
contrast, eCOOP consistently manages to attain a higher efficiency of an ap-
proximately 0.9 load factor value, invariantly of the period under consideration,
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while producing an average 17% improvement.

6. Conclusions

In this paper we are interested in a mechanism that can cope with an in-
creasing amount of intermittent energy generated via renewable resources. We
introduced the eCOOP agent-based algorithm, where look-ahead coalitional ne-
gotiations are run within minimal information environments in order to address
the dynamism and uncertainty of the energy system. Furthermore, our protocol
provides for computing an efficient payoff allocation scheme that guarantees sta-
ble coalitions, while the extended version offers strong guarantees for satisfying
privacy-preservation of sensitive data. We have also provided an empirical eval-
uation of our approach based on real datasets and have shown the advantages
of using it in terms of increased grid efficiency.

It is important to point out that, by design, the intervention of the grid
operator addresses explicitly the shifting actions that consumer need to perform
in order to collect the reward. In contrast to traditional pricing schemes, this
allows us to impose the necessary constraints such that by removing peaks
we are not replacing them by new ones, which is also known as the herding
effect. Moreover, the design of the reward function allows us to transfer the
responsibility of determining the reliability of the agents to carry out corrective
actions, from the grid operator to the agents themselves.

In this work we have used a standard approach for computing the prediction
model, namely fictitious play. In future work we plan to look into more complex
models and assess their performance. Also, providing an extensive study on the
impact of the communication infrastructure is another interesting future line of
work, which does not make the scope of this paper, hence we do not involve
with it deeply. We hypothesize that a more efficient way to determine coalition
leaders would be to account for the agents’ communication and computational
resources. Additionally, we assume that eCOOP is not affected by any data
loss or noise, while messages are sent, received and processed exactly in the
order prescribed in the pseudocode. However, enhancing the protocol with
synchronization procedures initiated by coalition leaders, in order to check for
correct message passing along the execution of the algorithm, is one way that
could guarantee robustness.

Moreover, we are interested to evaluate our model in scenarios where con-
sumers are not only willing to shift loads to different time intervals given mon-
etary incentives, but may additionally be considering to reduce their total con-
sumption given that a certain revenue could be attained. Expectedly, this ought
to further flatten demand and thus, increase the overall efficiency of the grid,
especially during periods when generation from renewables is highly fluctuat-
ing. Unfortunately, specifying these sorts of parameters, such as the threshold
in revenue to which consumers may react and the extent to which their con-
sumption behavior may be altered, remains an open question. With more pilot
programs led by utility companies surfacing in this area, we expect that in the
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future more of this type of data will become available. For the same consider-
ations, given the lack of data required to quantitatively assess how consumers
would price potential shifting actions in a realistic setting, in this work, we feel
more confident in presenting the result with respect to the elasticity in demand
of consumers and only provide an indication of maximum user savings, based
on the electricity price decrease corresponding to the levels of demand. In this
regard, we aim to dwell on this type of evaluation more deeply in future work
subject to the availability of relevant data.
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