
Clustering Distributed Short Time Series with
Dense Patterns

Josenildo C. da Silva∗, Gustavo H. B. S. Oliveira∗, Stefano Lodi† and Matthias Klusch‡
∗ Instituto Federal do Maranhão (IFMA), Depto. de Computação,

Av. Getúlio Vargas, 04, Monte Castelo, CEP 65030-005, São Luı́s, MA, Brasil
Email: {jcsilva,gustavo.oliveira}@ifma.edu.br

† Dipartimento di Informatica - Scienza e Ingegneria, Viale Risorgimento 2, Bologna, Italy
Email: stefano.lodi@unibo.it

‡ DFKI GmbH Stuhlsatzenhausweg 3, Campus D3.2, D-66123, Saarbrücken, Germany
Email: klusch@dfki.de

Abstract—The clustering of genes with similar temporal profiles
is an important task in gene expression data analysis. Current
approaches to the clustering of sparse gene expression data
with temporal information suffer from their at least quadratic
complexity in the number of clusters, the number of genes, or
both, and are not distributed. In this paper, we present the first
distributed and density-based approach to short time series clus-
tering, called DTSCluster, which is suitable for gene expression
data. DTSCluster identifies dense patterns in the distributed
datasets and uses them to generate the time series clusters.
The comparative experimental results revealed that DTSCluster
is scalable in the dataset size with linear complexity in time
and space, and outperforms other representative approaches in
terms of cluster validation with the silhouette index as well.
The distributed scenario also opens up the opportunity for
collaborative data mining between different gene expression data
holders.
Index Terms—Time series clustering, short time series, dis-
tributed data clustering

I. INTRODUCTION

Time series is an abundant form of data found on all areas
of human activity. Stock options closing prices, electro car-
diograms, number of sun spots, are but a few examples of
data collected with time dimension. In fact, there has been
much investigation on how to extract knowledge from time
series [14], [13], resulting in a large body of research on time
series similarity [23], [33], [29], pattern discovery [31], [9],
[34], [28], classification [15], [37], [6], [2] and clustering [45],
[25], [29], [20], [40].
Time course gene expression experiments capture the inter-
actions of genes through a specific period of time. Typical
gene expression data only contain a limited number of time
points, giving rise to short-time-series data. One of the major
challenges with time course gene expression data is data
sparsity, which may lead to weak statistics due to limited
sampling [47]. Sparsity is a consequence of high costs of
experiments or a limited number of samples in animal or
clinical studies.
An important task in gene expression data analysis is the
clustering of genes with similar temporal profiles. Given data
from time course gene expression experiments, researchers
are often interested in identifying groups of differentially

expressed genes which are significantly correlated with each
other, since such genes might be part of the same causal
mechanism or pathway [32]. Since data is sparse and in-
cludes temporal information, classical clustering algorithms
usually do not perform well. STEM [12], [11] is the first
software application designed specifically for the analysis of
short time series from gene expression datasets (3 to 8 time
points). Another and representative approach for interpolation-
based consensus clustering (IBCC) with B-splines interpola-
tion, affinity propagation, and consensus clustering has been
proposed in [41]. However, these approaches suffer from
their high computational complexity. For example, STEM is
quadratic on the number of clusters, and IBCC is quadratic
on the number of genes and the number of clusters. Besides,
to the best of our knowledge, none of the current approaches
address clustering for the distributed genomic data scenario
[44], [38], [46], [51].
In this paper, we present a first approach to density-based
distributed time series clustering with special focus on short
time series, such as time course microarray [12] or RNA-
sequencing [49], [7] experiments data. The basic idea of
this method is to identify dense patterns in the distributed
dataset and use them to generate time series clusters. The
results of a comparative experimental evaluation reveal that
this approach is scalable in the dataset size with only linear
complexity in time and space, and improves cluster quality
compared with relevant alternative approaches. Besides, the
underlying distributed scenario also allows for collaborative
research between different gene expression data holders.
The remainder of this paper is structured as follows. Related
work is briefly summarized in Section II, and the addressed
research problem is introduced in Section III. The proposed
solution is presented in detail in Section IV, while the results
of the comparative experimental evaluation are discussed in
Section V. Section VI concludes this contribution.

II. RELATED WORK

Time series clustering problem has been extensively inves-
tigated and applied to a large variety of fields [25], [35],
[13]. For instance, it can be used as a pre-processing step for

time series classification, pattern discovery [18], forecasting
[21], etc. Interestingly, a recent survey showed that most of
the studies are focusing on representation methods, distance
measurement and prototypes while less than 10% focused on
enhancing cluster approaches [1]. In general, a well-known
algorithm such as k-means, or self-organizing maps (SOM)
[24], is modified to work with a transformed version or a
model of the time series, e.g. k-means applied to shaplets [50].
Most time series from gene expression datasets contain less
than 9 points, and there are few tools available geared towards
the analysis of this type of data [12]. For short time series data,
classical clustering algorithms are expected to perform less
optimally due to data overfitting caused by the small number of
sampled time points [42]. Moreover, short-time series data are
usually very noisy and, therefore, algorithms that are designed
to analyze either steady state data or long time-series data
do not perform well due to their relatively small number of
time points [43]. The main approaches for short time series
clustering are: prototypes followed by clustering [27], [12],
[11], feature extraction followed by clustering [16], [41], and
statistical modeling [48], [3].
The FCV-TSD (Fuzzy-C Varieties with transitional stated
discrimination) method in [27] for short time series clustering
produces a set of prototypes from the original data, and then
uses these prototypes to produce a cluster solution. However,
the prototypes generation takes O(k2S) steps, where k is the
number of clusters and S is the number of possible states in the
time series. The clustering phase of FCV-TSD is an iterative
algorithm that runs until it reaches a given stop criterion.
The STEM (Short Time-series Expression Mining) method in
[12], [11] uses a predefined set of model profiles to capture
the potential distinct patterns that can be expected from the
experiment. The number of possible profiles for n time points
is p = (2S+ 1)n−1, where S is the number of possible states
in the time series. A given profile shows how the original
expression changes over time. First, a subset of possible
profiles is selected and, then, STEM evaluates the significance
levels of each profile using a permutation test based method.
Finally, it assigns genes to its most similar profile, measured
by a Pearson correlation based distance metric. STEM is one
of the first methods designed to address short time series.
However, STEM takes O(k2(2S + 1)n−1) steps to select k
clusters profiles with S possible states, and n is the size of
the short time series. Similar profiles are grouped together via
a graph-theoretical algorithm, where profiles originate large
cliques of very similar profiles. Profile grouping takes O(p′4)
steps, where p′ ≤ p is the number of significant profiles.
The FBPA (Feature-Based PAM) method in [16] extracts
features from each short time series and feeds them into the
partition around medoids (PAM) clustering algorithm [22].
PAM is similar to k-means but uses median instead of mean to
describe clusters. The features describing the time course are
the vector of slopes between adjacent time points, maximum
and minimum expression, time of maximum and minimum
expression, and the steepest positive and negative slope. The
feature extraction part is straightforward. However, the PAM

algorithm used at the clustering step has time complexity of
O(k(Gn− k)2) [30], where k is the number of clusters, and
n is the size of the short time series and G is the number of
genes. Therefore, FBPA does not scale well with the size of
datasets.
The IBCC (Interpolation-Based Consensus Clustering) method
in [41] is based on B-splines interpolation, affinity propaga-
tion, and consensus clustering. The coefficients of B-splines
are used as features describing the time series. It requires
no prior knowledge, such as the number of clusters or the
cluster exemplars. However, IBCC has O(G2n2 + k2) time
complexity, where G is the number of genes, n is the size of
short time series, and k is the number of clusters.
The two-stages fuzzy clustering algorithm SiMM [3] first
identifies all points that cannot be clustered with high certainty.
This is followed by employing a variable length genetic
algorithm to find a cluster solution without these points. For
the purpose of the latter, a multiobjective genetic algorithm
called NSGA-II [8] is used by SiMM running over a fixed
number of iterations. SiMM runs for 100 generations with
two objectives M = 2, and population N = 50. However,
each iteration of the core algorithm NSGA-II is of quadratic
complexity O(MN2), where M is the number of objectives
to optimize and N the population size.
In summary, although current solutions improved the quality of
gene expression clustering, they still present at least quadratic
runtime complexity. Furthermore, all existing solutions assume
a centralized dataset. In contrast, our approach assumes a
distributed dataset and focus on scalability both of dataset size
and number of peers in the mining group. Our approach also
improves the quality of cluster solutions measured by average
silhouette index.

III. PRELIMINARIES

This section briefly introduces the general notations used in
subsequent sections, and the problem of distributed short time
series clustering that is being solved by our approach. Let
f : N → R be a real-valued measurement function mapping
timestamps to reals, and a time series T be a sequence of
reals xt coming from f . A time series is denoted as T =
〈x1, x2, x3, . . . , xn〉, with xt = f(t), 1 ≤ t ≤ n. With |T | we
denote the length of a time series T . A time series with small
n is commonly called a short time series. For example, about
80% of the time series in the Stanford Microarray Database
(SMD) are short by having less than 9 points only [12]; in the
following, we assume n ≤ 20. A set of time series is a denoted
T = {T1, T2, T3, . . . TG}, where |Ti| = n, with i = 1, . . . , G.
Furthermore, let d : Rn × Rn → R be a function measuring
the distance between two vectors in Rn.
For the distributed scenario, we assume a group of networked
peers L = {Li}, i = 1, . . . , p, each of which having an
individual local dataset Ti. The time series data collected at
different sites refers to the same genes and has the same time
spacing. The peer sites are organized into an unstructured peer-
to-peer network, such that each party may act as an initiator
or as an arbitrary party in any given clustering session. In a

given clustering session, peers organize themselves by means
of a circular list, such that peer Li knows neighbors Li−1 and
Li+1. The problem of distributed short time series clustering
considered in this paper is as follows: Given a group of
peers L = {Li} and local datasets Ti = {Ti1, Ti2, . . . , TiGi

},
the task is to find a partition C = {C1, C2, . . . , Ck} of
T =

⋃p
i=1 Ti, such that similar time series are grouped

together based on a given distance measure d. Each Ci is
called a cluster, where T =

⋃k
i=1 Ci and Ci ∩ Cj = ∅ for

i 6= j. Additionally, no local dataset should be transferred
among the peers during a clustering session. The basic idea of
our approach to solve this problem is to transform the original
series in a discretized form and detect the most frequent
patterns in the new discrete space. These patterns are then
utilized to group time series based on the observation that
similar time series generate similar discrete transformations.

IV. CLUSTERING DISTRIBUTED SHORT TIME SERIES

In this section, we present an approach to distributed time se-
ries clustering, called DTSCluster, that is particularly suitable
for short time series analysis. The basic idea of DTSCLuster
is inspired by the work reported in [26] on the discovery of
frequent patterns in time series. While the latter first attempts
to reduce the dimension of original time series and then
discretizes the original time series values into a smaller set of
symbols, DTSCluster does not need to perform the dimension
reduction step but computes the set of most dense sequences
found in the discretized time series. The relevant methods
1 and 2 together with the embedded auxiliary methods of
DTSCluster are described in pseudo-code in more detail in
the following.

A. Discretization

Each time series Ti ∈ T is transformed in a discretized version
S′i ∈ Σw. Thus, discretization generates the set S ⊆ Σw given
T . Each time series T = 〈x1, x2, . . . , xn〉 is transformed in a
discretized sequence S′, which is a sequence of symbols in a
given alphabet Σ. For each element x of T , the corresponding
string S′ will have a symbol σa ∈ Σ. The substitution proce-
dure first chooses breakpoints {βa} in the values dimension of
original series T , such that |{βa}| = |Σ|+1, and such that each
occurrence of a given value s′ of S′ has the same probability
[26], assuming they are normally distributed. For example,
considering a 4-symbol alphabet, we need five break points,
where each region will have probability 0.25 of appearing in
T . Then, the substitution rule is applied for each s′j ∈ S′:

s′j = σa if βa−1 < xj ≤ βa,with 1 < a < |Σ|

B. Estimating Density of sequences

Local density estimation. Each local site Lj estimates the
density of each sequence S′i ∈ S corresponding to time series
Ti ∈ Tj , the local dataset. An important requirement is that the
density estimate function ϕ̂ be a non-negative function over
R. A general approach to compute data density function is
kernel-based density estimation. For a given kernel function

K such that
∫ +∞
−∞ K(x)dx = 1, an estimate of the density, for

a specific dataset D, is given by:

ϕ̂[D, r](x) =
1

Nh

∑
xi∈Neigh(x,r)

K

(
d(x, xi)

h

)
(1)

where N is the total number of points, d is a distance function.
The parameter h is a bandwidth parameter and controls the
smoothness of the density estimates. Neigh(x, r) is the set of
points close to x, in a given dataset D, which are inside a ball
of radius r computed with distance d. Here, an arbitrary data
point xi in (1) is a discrete sequence S′i ∈ S. In the sequel,
we will not need to compute values of the estimate at arbitrary
space points, but only at the discrete sequences S′i. Therefore,
we represent the density estimate as a sample lookup table
holding sequences S′i and their density values.
Global density computation. The mining group of p peers
cooperatively sums up all local density estimates. Initially, peer
L1 sends its local density to L2. After that, each peer Li

receives partial density estimate ϕ̂i from its neighbor Li−1,
2 < i ≤ p. Li adds its local density to the received partial
global density estimates and sends the new partial global
density ϕ̂i to the next neighbor Li+1 in the mining group.
This protocol continues until Lp sends the partial sum to L1,
which broadcasts the global density estimate ϕ̂ to all members
of the mining group. Notice that density estimates are additive,
therefore, summing up all local densities produces the same
result as estimating a global density from a centralized dataset.

C. Clustering Local Series with Global Profiles

The main idea is to use hill climbing on a global density
estimate function to find clusters of strings P = {Pi ⊆ S},
with i = 1, . . . , k. It is called cluster profile because the strings
in Pi are discrete representations of original time series in T .
The set P is a cluster map in the string space and can be used
to identify C, the cluster map in the original time series space.
Label assignment. (Algorithm 3) Given the density estimate
ϕ̂ and a distance function d, the set of local maxima is defined
as:

M = { S′m ∈ S | ∀S′i ∈ S : d(S′m, S
′
i) ≤ r → ϕ̂(S′m) > ϕ̂(S′i)}.

Local maxima are found through hill climbing. For each string
S′i we choose a neighboring string S′j that has a higher density
than S′i. If there is no such neighbor, the S′i is a local maximum
and receives a new label. Otherwise, the search continues from
S′j until a local maximum is found and its label is assigned
to S′j . Each point S′i reaching a local maximum S′m is thus
assigned the same label as S′m.
Building of cluster profiles on global density. (Algorithm
4) First, the local maxima in the global density estimate are
identified, i.e., centers of the densest regions in the lookup
table that stores the density estimates. Each string S′m ∈ M
is added to a different singleton set called Pm = {S′m}, m =
1, . . . , k. Then, each string S′i ∈ S that is connected to a
maximum S′m ∈ Pm will be included in the profile set Pm

together with S′m. The idea is that local maxima correspond

Algorithm 1 DTSCluster: initiator L1

Require: A group of peers L
Ensure: A local cluster map C1

At the initiator L1:
1: S1 ← DISCRETIZE(T1, Σ) . Cf. Sec. IV-A
2: ϕ̂1 ← ESTIMATEDENSITY(S1,d,r,K,h) . Cf. Sec. IV-B
3: SEND(ϕ̂1, L2)
4: RECEIVE(ϕ̂p, Lp)
5: ϕ̂← ϕ̂p

6: for all S′i ∈ ϕ̂.getKeys() do
7: ASSIGNLABEL(S′i, ϕ̂, r)
8: end for
9: P ← BUILDCLUSTERPROFILES(ϕ̂, r)

10: for all Li ∈ L do
11: SEND(P ,Li)
12: end for
13: Ci ← ∅
14: for each Tj ∈ T1 do
15: l← ASSIGNTOCLUSTER(Tj ,P , Σ)
16: Cl ← Cl ∪ {Tj}
17: C1 ← C1 ∪ Cl

18: end for
19: return C1

Algorithm 2 DTSCluster: party Li

Require: Peer group L, local time series Ti, alphabet Σ,
distance d, radius r, Kernel function K, kernel width h

Ensure: Local cluster map Ci
At an arbitrary party Li:

1: RECEIVE(ϕ̂i−1, Li−1)
2: Si ← DISCRETIZE(Ti, Σ) . Cf. Sec. IV-A
3: ϕ̂i ← ESTIMATEDENSITY(Si,d,r,K,h) . Cf. Sec. IV-B
4: SEND(ϕ̂i, Li+1 mod |L|)
5: RECEIVE(P ,Lh)
6: Ci ← ∅
7: for each Tj ∈ Ti do
8: l← ASSIGNTOCLUSTER(Tj ,P , Σ)
9: Cl ← Cl ∪ {Tj}

10: Ci ← Ci ∪ Cl

11: end for
12: return Ci

to strings that reoccur more frequently than others do in their
cluster. Additionally, all neighboring strings S′i that contributed
to the density of a given maximum S′m are also included in
the cluster description since they represent variations of the
maximum. We consider only the strings that are closer than
radius r from S′m to avoid clusters with strings that are too
dissimilar to S′m. The set of all profiles P represents a partition
of all strings found during the density estimation. Thus, each
string is in only one cluster profile.

Algorithm 3 assignLabel

Require: Discrete seq. S′i, density estimate ϕ̂, radius r
Ensure: Cluster label l

1: if ¬S′i.labeled() then
2: N ← ϕ̂.getNeighbors(S′i, r)
3: S′m ← S′i
4: for all S′j ∈ N do
5: if ϕ̂(S′j) > ϕ(S′m) then
6: S′m ← S′j
7: end if
8: end for
9: if (i 6= m) then

10: l← ASSIGNLABEL(S′m,ϕ̂,r)
11: end if
12: if ¬S′m.labeled() then
13: l← newLabel()
14: S′m.setLabel(l)
15: end if
16: S′i.setLabel(l)
17: return l
18: else
19: return S′i.getLabel()
20: end if

Algorithm 4 buildClusterProfiles

Require: Density estimates ϕ̂
Ensure: Set of cluster profiles P

1: S ← ϕ.getKeys()
2: for all S′i ∈ S do
3: if S′i.getLabel() = j then
4: Pj ← Pj ∪ {Si}
5: end if
6: end for
7: return P

Algorithm 5 assignToCluster

Require: Local time series Ti, profiles P , alphabet Σ
Ensure: Cluster label j

1: S′i ← DISCRETIZE(Ti,Σ)
2: for all Pj ∈ P do
3: if S′i ∈ Pj then
4: return j
5: end if
6: end for
7: return -1 . labeled as noise

Grouping of local time series in global clusters. (Algorithm
5) Once the global set of profiles P is found by L1 and
broadcast to Li, i 6= 1, each local peer Li can use it to cluster
its local time series. For each sequence S′i, Li compares it with
strings in a profile Pj ∈ P . Since the strings do not repeat in
the profiles, S′i will match with only one string in a particular

profile Pj . Ti will be assigned to the cluster Cj represented
by the profile Pj containing the match.

D. Complexity Analysis

Computational complexity. In DTSCluster, the function ES-
TIMATEDENSITY() computes the density of each sequence
in S. Considering v as the number of neighbors (vicinity)
for each sequence, and the cost of accessing these neighbors,
it takes O(|S|vF) steps in the worst case, where F is the
cost of fetching each neighbor and v � |S|. Function
ASSIGNLABELS() has computational complexity of O(|S|),
since it visits each sequence in S and its neighbors. There are
2wr neighbors considering only the variations of one symbol
(before and after a given position) with size w. Note that each
sequence is labeled only once, and the search stops when
the sequence is already labeled. Similarly, the construction
of cluster profiles with function BUILDCLUSTERPROFILES()
requires the visiting of each point in S, which yields a
complexity of O(|S|). In the last stage of DTSCluster, the
function ASSIGNTOCLUSTER() examines each time series in
T , and assigns a cluster to it by looking up all possible
profiles in P , which results in a computational complexity of
O(|T ||P|), with |P| � |T |. Finally, DTSCluster has a space
complexity of O(|S|), which is the amount of space necessary
to store all entries of a lookup table for the density estimates;
in practice, this structure is sparse.
Communication. DTSCluster needs two rounds of communi-
cation, one to send the local density estimates to the helper,
and a second one to communicate the cluster profiles. The
messages from local peers to the helper have size O(|Si|),
and the number of messages sent from the helper to the other
peers are O(k), where k is the number of clusters.

V. EXPERIMENTAL EVALUATION

A. Setup

The experimental evaluation has been conducted on an Intel
Core i7 (2.40 GHz) with 8GB memory running on Windows
8.1 64 bits. The core library of DTSCluster was developed in
Java 7, and the distributed version was implemented with the
JADE framework [4].
Kernel function. All experiments were performed with a
Gaussian kernel with kernel bandwidth h equal to the radius
(h = r).
Distance function. We used a Pearson-based distance for
dissimilarity measurement PD(x, y) = 1 − rxy , where rxy
is the Pearson correlation of two vectors x and y. Pearson
correlation is defined as follows:

rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2

where x = 1
n

∑n
i=1 xi is the sample mean, and y is similarly

defined. Pearson based distance is one of the most widely em-
ployed measure in gene expression data [19], [10]. Although
there are studies indicating that Pearson-based distance may
not be the best measure for clustering [39], all algorithms for

short time series clustering we investigate utilize this measure
[3], [41], [12], [16].
Cluster validation. The silhouette index (SI) is a cluster
validity index that is used to assess the quality of any clustering
map C. Given the average distance a(i) of a point i from the
other points in the same cluster, and the minimum average
distance b(i) from point i to other points in other clusters, the
silhouette width s(i) of point i is defined as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
The silhouette index SI of a cluster solution is the averaged
silhouette width for all data points taking a value between −1
and 1, where higher values indicate better cluster solutions.
Alphabet, number of clusters and radius. Alphabet Σ,
number of clusters k, and radius are user given parameters.
We ran several experiments with different configurations of
alphabet size, number of clusters k and radius values r,
and restrict the reporting of results to configurations that
maximized the average silhouette index for each dataset.
Datasets. The following data sets were used for the compar-
ative performance evaluation of DTSCluster:
• The Galactose dataset is composed of 205 genes involved

in galactose use in Saccharomyces cerevisiae. Expres-
sion profiles correspond to the mean of four replicates
of 20 time points (20 perturbations in the galactose
pathway)[17].

• The Yeast sporulation dataset contains gene expression
measurements during sporulation for more than 6400
genes of budding yeast. The measurements were taken
at seven time points (0h, 0.5h, 2h, 5h, 7h, 9h, and 11h).
Genes with missing expression values and genes that
showed no significant changes in expression during the
process were excluded from the experimental analyses
[3]. The final dataset is composed of 474 genes with 7
time point.

• The Yeast cell-cycle dataset [41], also known as Y5
dataset, includes more than 6000 yeast genes. The ex-
pression levels were measured during two cell cycles at
17 time points as the 5-phase of the cell-cycle: early
G1 (G1E), late G1 (G1L), S, G2, and M. In this paper,
we used a subset of the Yeast cell-cycle dataset [36]. It
consists of 384 genes with 17 time points.

• The G27 dataset is initially composed of 24192 genes
with 5 time points measuring the genetic expression of
the wild-type G27 strain of Helicobacter pylori, a human
pathogenic bacteria [12]. The Data was obtained from two
replicates on the same biological sample in which time
series data was collected at five time points (0h, 0.5h, 3h,
6h, and 12h).

• The Yeast Lithium dataset, contains 6.6678 genes ex-
pression measurements of wild-type strain CEN.PK113-
7D, which was grown with 20 g/L galactose, with three
samples analyzed at 0 minute and one sample at 20,
40, 60 and 140 minutes after addition of Lithium (LiCl,
10mM) [5].

Dataset #Genes n k Σ r SI

Galactose 205 20 4 {a, b, c} 0.20 0.79698
Sporulation 474 7 4 {a, b, c, . . . , e} 0.05 0.79108
Y5 384 17 5 {a, b, c, . . . , h} 0.15 0.46752
G27 2243 5 9 {a, b, c, . . . , f} 0.01 0.62725
Lithium 6670 7 8 {a, b, c, . . . , f} 0.01 0.74132

TABLE I: Performance of DTSCluster on various datasets

Cluster 1

0.0 5.0 10.0 15.0 20.0
Time point

-2.5

0.0

2.5

E
xp

re
ss

io
n

le
ve

l

Cluster 2

0.0 5.0 10.0 15.0 20.0
Time point

-2.5

0.0

2.5
E

xp
re

ss
io

n
le

ve
l

Cluster 3

0.0 5.0 10.0 15.0 20.0
Time point

-2.5

0.0

2.5

E
xp

re
ss

io
n

le
ve

l

Cluster 4

0.0 5.0 10.0 15.0 20.0
Time point

-2.5

0.0

2.5

E
xp

re
ss

io
n

le
ve

l

Fig. 1: Clusters from galactose dataset

B. Results

Cluster validation. Table I shows a summary of the silhouette
index (SI) obtained by DTSCluster with several datasets, and
expression profiles for each experiment. Each short time series
from genes in the same cluster is plotted in gray, while the
central red line indicates the arithmetic mean computed at each
time point. The configuration used for each experiment and SI
achieved by DTSCluster per dataset are as follows.
• Galactose: We used alphabet {a, b, c} with radius r =

0.2. Figure 1 shows cluster profiles of 4 clusters found on
the galactose dataset. DTSCluster achieved SI of 0.79108
with k = 4.

• Yeast sporulation: We used alphabet {a, b, c, d, e} with
radius r = 0.05. Figure 2 shows cluster profiles of 4
clusters found on the sporulation dataset. DTSCluster
achieved an average SI of 0.79108 with k = 4.

• Y5: We used alphabet {a, b, c, d, e, f, g, h} with radius
r = 0.15. Figure 3 shows cluster profiles of 5 clusters
found on the Y5 dataset. DTSCluster achieved an average
SI of 0.46752 with k = 5. This dataset is difficult due to
the presence of noise, which makes it hard to find good
cluster solutions.

• G27: We used alphabet {a, b, c, d, e, f} and radius r =
0.01. DTSCluster achieved average SI of 0.62725 with
k = 8.

• Yeast Lithium: We used alphabet {a, b, c, d, e, f} and
radius r = 0.01. DTSCluster achieved average SI of
0.74132 with k = 8.

Cluster 1

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time point

-2.0

-1.0

0.0

1.0

2.0

E
xp

re
ss

io
n

le
ve

l

Cluster 2

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time point

-2.0

-1.0

0.0

1.0

2.0

E
xp

re
ss

io
n

le
ve

l

Cluster 3

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time point

-2.0

-1.0

0.0

1.0

2.0

E
xp

re
ss

io
n

le
ve

l

Cluster 4

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time point

-2.0

-1.0

0.0

1.0

2.0

E
xp

re
ss

io
n

le
ve

l

Fig. 2: Clusters from sporulation dataset

Cluster 1

0.0 5.0 10.0 15.0
Time point

-2.0
-1.0
0.0
1.0
2.0
3.0

E
xp

re
ss

io
n

le
ve

l

Cluster 2

0.0 5.0 10.0 15.0
Time point

-2.0
-1.0
0.0
1.0
2.0
3.0

E
xp

re
ss

io
n

le
ve

l

Cluster 3

0.0 5.0 10.0 15.0
Time point

-2.0
-1.0
0.0
1.0
2.0
3.0

E
xp

re
ss

io
n

le
ve

l

Cluster 4

0.0 5.0 10.0 15.0
Time point

-2.0
-1.0
0.0
1.0
2.0
3.0

E
xp

re
ss

io
n

le
ve

l

Fig. 3: Clusters from yeast cell-cycle (y5) dataset

Dataset DTSCluster IBCC

best k SI best k SI

Galactose 4 0.79698 5 0.75451
Sporulation 4 0.79108 5 0.75976
Y5 5 0.46752 5 0.24416

TABLE II: Cluster validation: DTSCluster compared to IBCC
[41]

Table II shows the comparative evaluation of DTSCluster with
IBCC with respect to cluster validation on three different
datasets. Note that in [41] the IBCC was applied to neither
the Lithium nor the G27 dataset. DTSCluster significantly
outperformed IBCC in terms of the silhouette index (SI) for
all three datasets. Table III shows the results of DTSCluster
compared to other representative clustering algorithms on the
sporulation dataset.
Runtime performance. The runtime of DTSCluster has been
measured for experiments with different dataset sizes. For this
purpose, the G27 dataset was split into subsets with 1000

Algorithm SI

DTSCluster 0.79108
IBCC [41] 0.75976
SiMM-TS [3] 0.62470
SOM [24] 0.58450

TABLE III: Cluster validation: DTSCluster vs. IBCC, SiMM-
TS, and SOM for the Yeast Sporulation dataset

0 20000 40000 60000 80000 100000 120000

Dataset Size (G×n)

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

s)

1e9

Fig. 4: DTSCluster execution time vs. dataset size

0 5 10 15 20

Num of peers

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
 (

s)

1e9

Fig. 5: DTSCluster execution time vs. number of peers

series, 2000 series up to 20000 series, with five time points for
each series. Figure 4 displays the average execution time of
DTSCLuster for each dataset size. Figure 5 shows the results
of measuring the execution time of DTSCluster for different
numbers of peers, where the G27 dataset is split into subsets
uniform at random and same size for each peer. It turns out
that the execution time of DTSCluster grows sublinearly with
the number of peers.
Message size and space. The lookup table which stores a
sample of the density estimates is the largest data structure
used by DTSCluster. Thus, we use it measure space com-
plexity. The lookup table is also sent over the network from
one peer to another and, therefore, accounts for the size of
messages during the protocol. We run a series of experiments
with subsets of datasets and performed 30 runs for each subset.
Figure 6 shows the message size for different dataset sizes.
Notice that in the worst case space grows linearly with the
size of the dataset.

VI. CONCLUSIONS

We presented a novel distributed and density-based approach,
called DTSCluster, for short time series clustering, which is

0 5 10 15 20 25 30 35
Dataset Size (KB)

0

1

2

3

4

5

6

7

8

9

M
sg

.
si

ze
 (

K
B

)

(a) Yeast Galactose.

0 5 10 15 20 25 30 35
Dataset Size (KB)

0

1

2

3

4

5

6

7

M
sg

.
si

ze
 (

K
B

)

(b) Sporulation.

0 10 20 30 40 50 60 70
Dataset Size (KB)

0

2

4

6

8

10

12

14

M
sg

.
si

ze
 (

K
B

)

(c) Yeast (Y5)

0 100 200 300 400 500 600 700 800 900
Dataset Size (KB)

20

25

30

35

40

45

M
sg

 s
iz

e
 (

K
B

)

(d) H. pylori (G27).

Fig. 6: Message size vs. dataset size

particularly suitable for time course gene expression data. The
two stages of DTSCluster are concerned with the identification
of dense patterns in the distributed datasets and the utilization
of these patterns for generating the time series clusters. Re-
sults of our comparative experimental evaluation revealed that
DTSCluster scales in the dataset size and number of peers with
linear complexity in time and space, and outperforms other
representative approaches in terms of cluster validation with
the silhouette index. Finally, DTSCluster allows for research
cooperation among different parties without the necessity of
transmitting original gene expression time series to a central
location. Ongoing work is the integration of DTSCluster with
the Gene Ontology1 for integrated evaluation of computed
clusters by DTSCluster with respect to biological relevance
of found cluster solutions. DTSCluster currently provides a
crisp cluster solution, which is a first step in a wider ongoing
project. An interesting line of investigation is to allow for soft
density based cluster solutions. We also plan to investigate
other gene expression related problems, like bi-clustering and
pathway analysis.

REFERENCES

[1] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah. Time-series
clustering: A decade review. Information Systems, 53(C):16–38, 2015.

[2] A. Bagnall, A. Bostrom, J. Large, and J. Lines. The great time series
classification bake off: An experimental evaluation of recently proposed
algorithms. In Proc. of the 2nd Works. on Mining and Learning from
Time Series (MiLeTS), 2016.

[3] S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik. An im-
proved algorithm for clustering gene expression data. Bioinformatics,
23(21):2859–2865, 2007.

[4] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. Jade — A Java
Agent Development Framework, pages 125–147. Springer, 2005.

[5] C. Bro, B. Regenberg, G. Lagniel, J. Labarre, et al. Transcriptional,
proteomic, and metabolic responses to lithium in galactose-grown yeast
cells. Journal of Biological Chemistry, 278(34):32141–32149, 2003.

[6] Z. Chen, W. Zuo, Q. Hu, and L. Lin. Kernel sparse representation for
time series classification. Information Sciences, 292:15 – 26, 2015.

1Gene ontology consortium: http://www.geneontology.org/

http://www.geneontology.org/

[7] Y. Chu and D. R. Corey. Rna sequencing: platform selection, exper-
imental design, and data interpretation. Nucleic Acid Therapeutics,
22(4):271–274, 2012.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolut.
Computation, 6(2):182–197, 2002.

[9] A. Denton, C. Besemann, and D. Dorr. Pattern-based time-series
subsequence clustering using radial distribution functions. Knowledge
and Information Systems, 18(1):1–27, 2009.

[10] R. Deshpande, B. VanderSluis, and C. L. Myers. Comparison of
profile similarity measures for genetic interaction networks. PLOS ONE,
8(7):1–11, 07 2013.

[11] J. Ernst and Z. Bar-Joseph. Stem: a tool for the analysis of short time
series gene expression data. Bioinformatics, 7(1):1–11, 2006.

[12] J. Ernst, G. J. Nau, and Z. Bar-Joseph. Clustering short time series gene
expression data. Bioinformatics, 21(suppl 1):159–168, 2005.

[13] P. Esling and C. Agon. Time-series data mining. ACM Computing
Surveys, 45(1):12:1–12:34, 2012.

[14] T.-C. Fu. A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1):164–181, 2011.

[15] P. Geurts. Pattern extraction for time series classification. In Proc. of
the 5th European Conf. on Principles of Data Mining and Knowledge
Discovery (PKDD), pages 115–127. Springer, 2001.

[16] S. A. Ghandhi, A. Sinha, M. Markatou, et al. Time-series clustering of
gene expression in irradiated and bystander fibroblasts: an application
of fbpa clustering. BMC Genomics, 12(1):1–23, 2011.

[17] T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, et al.
Integrated genomic and proteomic analyses of a systematically perturbed
metabolic network. Science, 292(5518):929–934, 2001.

[18] F. Iglesias and W. Kastner. Analysis of similarity measures in times
series clustering for the discovery of building energy patterns. Energies,
6(2):579, 2013.

[19] P. A. Jaskowiak, R. J. Campello, and I. G. Costa. On the selection
of appropriate distances for gene expression data clustering. BMC
Bioinformatics, 15(2), Jan 2014.

[20] A. Jha, S. Ray, B. Seaman, and I. S. Dhillon. Clustering to forecast
sparse time-series data. In Proc. of the 31st Intl. Conf. on Data
Engineering (ICDE), pages 1388–1399. IEEE, 2015.

[21] A. Jha, S. Ray, B. Seaman, and I. S. Dhillon. Clustering to forecast
sparse time-series data. In 31st Intl. Conf. on Data Engineering (ICDE),
pages 1388–1399, 2015.

[22] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009.

[23] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimension-
ality reduction for fast similarity search in large time series databases.
Knowledge and Information Systems, 3(3):263–286, 2000.

[24] T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, J. Honkela, V. Paatero, and
A. Saarela. Self organization of a massive document collection. IEEE
Transactions on Neural Networks, 11(3):574–585, 2000.

[25] T. W. Liao. Clustering of time series data: a survey. Pattern Recognition,
38(11):1857–1874, 2005.

[26] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series.
In Proc. of the 2nd Work. on Temporal DM at the 8th KDD. ACM, 2002.

[27] C. Möller-Levet, K. Cho, and O. Wolkenhauer. Microarray data
clustering based on temporal variation: FCV with TSD preclustering.
Applied Bioinformatics, 2(1):35–45, 2003.

[28] Y. Mohammad and T. Nishida. Approximately recurring motif discovery
using shift density estimation. In Proc. of 26th Intl. Conf. on Industrial,
Engineering and Applications of Intelligent Systems (IEA/AIE), pages
141–150. Springer, 2013.

[29] U. Mori, A. Mendiburu, and J. A. Lozano. Similarity measure selection
for clustering time series databases. IEEE Transactions on Knowledge
and Data Engineering, 28(1):181–195, 2016.

[30] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In Proc. of the 20th Intl. Conf. on Very Large Data
Bases, VLDB, pages 144–155. Morgan Kaufmann Publishers Inc., 1994.

[31] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive
time series databases. In Proc. of Intl. Conf. on Data Mining (ICDM),
pages 370–377. IEEE, 2002.

[32] K. Pollard and M. van der Laan. A method to identify significant clusters
in gene expression data. In Proc. of Conf. on Systemics, Cybernetics
and Informatics (SCI), Vol. II, pages 318–325, 2002.

[33] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, et al. Searching
and mining trillions of time series subsequences under dynamic time
warping. In Proc. of the 18th Intl. Conf. on Knowledge Discovery and
Data Mining (KDD), pages 262–270. ACM, 2012.

[34] T. Rakthanmanon and E. Keogh. Fast shapelets: A scalable algorithm
for discovering time series shapelets. In Proc. of the Intl. Conf. on Data
Mining (SDM), pages 668–676. SIAM, 2013.

[35] S. Rani and G. Sikka. Recent techniques of clustering of time series
data: A survey. Intl. Journal of Comp. Appl., 52(15):1–9, 2012.

[36] A. Schliep, I. G. Costa, C. Steinhoff, and A. Schonhuth. Analyzing
gene expression time-courses. IEEE/ACM Trans. on Comp. Biology and
Bioinformatics, 2(3):179–193, 2005.

[37] P. Senin and S. Malinchik. Sax-vsm: Interpretable time series classifica-
tion using sax and vector space model. In Proc. of the 13th Intl. Conf.
on Data Mining (ICDM), pages 1175–1180. IEEE, 2013.

[38] H. Shi, C. Jiang, W. Dai, X. Jiang, Y. Tang, et al. Secure multi-
party computation grid logistic regression (smac-glore). BMC Medical
Informatics and Decision Making, 16(3):89, Jul 2016.

[39] A. S. Shirkhorshidi, S. Aghabozorgi, and T. Y. Wah. A comparison
study on similarity and dissimilarity measures in clustering continuous
data. PLOS ONE, 10(12):1–20, 12 2015.

[40] K. Sirinukunwattana, R. S. Savage, M. F. Bari, et al. Bayesian
hierarchical clustering for studying cancer gene expression data with
unknown statistics. PLoS ONE, 8(10):e75748, 2013.

[41] C.-C. Y. Tai-Yu Chiu, Ting-Chieh Hsu and J.-S. Wang. Interpolation
based consensus clustering for gene expression time series. Bioinfor-
matics, pages 1–17, 2015.

[42] A. B. Tchagang, K. V. Bui, T. McGinnis, and P. V. Benos. Extracting
biologically significant patterns from short time series gene expression
data. BMC Bioinformatics, 10(1):1–11, 2009.

[43] A. B. Tchagang, S. Phan, F. Famili, H. Shearer, P. Fobert, Y. Huang,
J. Zou, D. Huang, A. Cutler, Z. Liu, and Y. Pan. Mining biological infor-
mation from 3d short time-series gene expression data: the optricluster
algorithm. BMC Bioinformatics, 13(1):1–17, 2012.

[44] P. M. Thompson, J. L. Stein, S. E. Medland, Hibar, et al. The
enigma consortium: large-scale collaborative analyses of neuroimaging
and genetic data. Brain Imaging and Behavior, 8(2):153–182, Jun 2014.

[45] M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based
anytime algorithm for k-means clustering of time series. In Proc. of
Workshop on Clustering High Dimensionality Data and Its Applications,
at the 3rd Intl. Conf. on Data Mining (SDM), pages 23–30. SIAM, 2003.

[46] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, et al. Healer:
homomorphic computation of exact logistic regression for secure rare
disease analysis in GWAS. Bioinformatics, 32(2):211–218, 2016.

[47] X. Wang, M. Wu, Z. Li, and C. Chan. Short time-series microarray
analysis: Methods and challenges. BMC Syst. Biology, 2(1):1–6, 2008.

[48] Y. Wang, M. Xu, Z. Wang, M. Tao, J. Zhu, L. Wang, R. Li, et al. How to
cluster gene expression dynamics in response to environmental signals.
Briefings in Bioinformatics, 13(2):162–174, 2012.

[49] Z. Wang, M. Gerstein, and M. Snyder. RNA-seq: a revolutionary tool
for transcriptomics. Nature Reviews Genetitcs, 10(1):57–63, 2009.

[50] J. Zakaria, A. Mueen, and E. Keogh. Clustering time series using
unsupervised-shapelets. In Proc. of the 12th Intl. Conf. on Data Mining
(ICDM), pages 785–794. IEEE Computer Society, 2012.

[51] Y. Zhang, M. Blanton, and G. Almashaqbeh. Secure distributed genome
analysis for GWAS and sequence comparison computation. BMC
Medical Informatics and Decision Making, 15(5):S4, Dec 2015.

	Introduction
	Related Work
	Preliminaries
	Clustering Distributed Short Time Series
	Discretization
	Estimating Density of sequences
	Clustering Local Series with Global Profiles
	Complexity Analysis

	Experimental Evaluation
	Setup
	Results

	Conclusions
	References

