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Abstract. Spontaneous formation of peer-to-peer agent-based data
mining systems seems a plausible scenario in years to come. How-
ever, the emergence of peer-to-peer environments further exacerbates
privacy and security concerns that arise when performing data min-
ing tasks. We analyze potential threats to data privacy in a peer-to-
peer agent-based distributed data mining scenario, and discuss infer-
ence attacks which could compromise data privacy in a peer-to-peer
distributed clustering scheme known as KDEC.

1 INTRODUCTION
In the last decade, the automated extraction of patterns from large or
huge centralized datasets, or data mining (DM), has become popu-
lar in many organizations. Meanwhile, the emergence of internet as
a huge, distributed data sharing system has encouraged the creation
of public and private distributed data sources. As a consequence, a
considerable amount of research results in the emerging field of dis-
tributed data mining (DDM) [15] have been accomplished.

Agents have been been employed in the design of DDM systems
[26, 14, 15] and could provide a paradigm which naturally fits a
DDM environment [17], raising however concerns of data security
and trustworthiness. A natural scenario which could emerge in years
to come is that of spontaneous formation of agent societies, in which
each agent, representing one or more organizations or individuals, of-
fers and receives contributions by interacting with others to achieve
similar goals. This kind of agent societies would not have any cen-
tralized coordination to permit both high scalability and large par-
ticipation. Such expectations seem very plausible in view of current
practice in the domain of peer-to-peer (P2P) systems. It is reasonable
to think that soon peer-to-peer networks will go beyond sharing mul-
timedia files by offering more sophisticated services, such as data
mining. Performing DDM in such extremely open distributed sys-
tems exacerbates data privacy and security issues. In most cases, the
peers would deny data sharing due to privacy regulations, or loss of
competitive advantage. Unfortunately, the byproducts of executing a
DDM algorithm might be sufficient to infer the original data either
exactly, approximately, or probabilistically, depending on the pattern.
This is an instance of the inference problem, which has been investi-
gated in statistical databases, and by the data mining community.

The structure of this paper is the following. Section 2 reviews work
on the inference problem. Section 3 describes a P2P homogeneous
DDM scheme and classifies its vulnerabilities. Section 4 describes
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an algorithm to approximately infer data points in a homogeneous
distributed data clustering scheme known as KDEC. Section 6 con-
cludes the paper.

2 THE INFERENCE PROBLEM

The term inference problem appeared first in the work on Statistical
Databases in the mid 1970’s. The problem is that one might disclose
confidential information about individual entity by posing queries on
aggregate statistics Inference control in statistics database has been
extensively studied and a number of inference control mechanism
were developed [8]. Data mining techniques makes the inference
problem even worse as data mining provides a powerful tool for in-
formation extraction. In the following, we briefly review recent ap-
proaches to solve the inference problem in both fields, data mining
and distributed data mining.

Related Work in Data Mining. Most recent efforts addressing
the privacy issue in data mining include the sanitization and the data
distortion approaches.

Sanitization process aims to clean the data base so that sensitive
patterns cannot be mined. It was developed primarily to handle se-
cure issues in association rule mining. These techniques were pro-
posed by Atallah et al. [2] and Dasseni et al. [5]. The idea is basically
to remove or modify items in a database to reduce or increase the sup-
port of some frequent itemsets. By doing this, the data owner expects
to hide some sensitive frequent itemsets with as little as possible im-
pact on other non-sensitive frequent itemsets. Further developments
of this technique can be found in Saygin et al. [23, 24], Oliveira and
Zaı̈ne [19], Johnsten and Raghavan [10] and Clifton [3].

Data distortion (data perturbation, or data randomization) empha-
sizes the protection of the individual data against one miner through
modification of the original data. This technique assumes that the
distorted data, and distribution function of random data used to dis-
tort the original data, can be used to generate an approximation to the
original probability distribution, without revealing any of the original
values. These works are mainly influenced by the results of research
in the field of statistical databases. It can be used by mining algo-
rithms that use probability distributions rather than data values as
input such as kernel-based clustering. Data distortion has been ap-
plied to decision tree based classification [1] and association rules
[22]. This idea has been further elaborated by Evfimievski et al. [7].
However, one weakness of using data distortion for preserving data
privacy is that under certain conditions randomization does not pre-
vent an attacker from reconstructing original data with reasonably
high probability [12, 13].

Related Work in Distributed Data Mining Preventing data in-
ference attacks in open environments is difficult if not impossible



[11], mainly due to problems of scalability, and trustworthiness of
involved parties. The latter problem can be coped with by approaches
to secure multi-party computation.

Secure Multi-party Computation (SMC) aims to compute a given
function in a distributed fashion with minimum information share
between involved parties. After SMC each party only knows the fi-
nal result but no intermediate results that have been achieved in due
course of their computation. In [21, 4], it has been shown in general
that SMC can be applied to the data mining process with only a few
modifications of the original idea with respect to data input size. Re-
lated work to the application of SMC to association rule mining and
decision-tree based data classification are [12, 27, 28], respectively,
[18, 6].

None of the above approaches were conceived aiming to solve the
inference problem. In the literature the privacy problem is concerned
with protecting individual data, while the inference problem relates
to secrecy as well. Both problems are closely related but the question
is whether the solutions to the privacy problem are sufficient to solve
the inference problem.

3 AN AGENT-BASED HOMOGENEOUS DDM
SCHEME

In this section we introduce an environment model for the problem of
combining local patterns of homogeneously distributed data. More-
over we present our definition of inference in a distributed data min-
ing schema and classify the possible inference attack scenarios in
such a model.

3.1 Combining local patterns of homogeneously
distributed data

Let Π be a pattern extraction problem, defined by an instance (S, Γ),
consisting of a relation S ⊆ R

n and a set of parameters Γ, and a
specification of a solution pattern pΠ[S, Γ] for every instance (S, Γ).
A homogeneous distributed extraction problem is defined as an ex-
traction problem in which the single relation is replaced by a homo-
geneous set of relations {Dj : Dj ⊆ R

n, j = 1, . . . , m}. Every
given extraction problem Π can be turned straightforwardly into a
distributed one, by (i) allowing sets of homogeneous relations instead
of the single relation S in the definition of Π, and (ii) adding the fol-
lowing constraint: When the computation halts, the solution pattern
pΠ[S, Γ] must be stored in the data space of every process which ini-
tially stored a Dj . In many cases of practical interest, a solution is in-
dependent of data location and should not be altered by horizontally
partitioning the data among different sites. We therefore say that a
homogeneous distributed extraction problem Ξ extends an extraction
problem Π if and only if pΞ[{D1, . . . , Dm}, Γ] = pΠ[

Sm

j=1 Dj , Γ],
for every instance ({D1, . . . , Dm}, Γ).

A computable function ΦΠ computing solution patterns for prob-
lem Π is a solution function for Π. By additive summary we mean
a function σ on the set of relations on R

n into a commutative group
(G, +,−, 0), such that σ(

Sm

j=1 Sj) =
Pm

j=1 σ(Sj), where “
P

”
iterates over “+”. A solution function ΦΠ which is a composition
of additive summaries forms the basis of a general P2P homoge-
neous DDM scheme for the solution of problem Ξ. Let ΨΠ be a
p-ary computable function and let σ1, . . . , σp be additive summaries
such that ΦΠ(S) = ΨΠ(σ1(S), . . . , σp(S)) for all S. Further let
P = {P j : j = 1, 2, . . . l} be a set of peer sites cooperating to
solve an instance of Ξ, and let L = {Lj : j = 1, . . . , m ≤ l} ⊆ P
be the set of all peers containing a part of the distributed dataset S,

such that Dj is stored on Lj . To solve Ξ, there exists a P ∈ P ex-
ecuting function ΨΠ. When in the course of computation, P needs
a summary σk(S), it broadcasts a request to P . Every Lj computes
σk(Dj) and sends it to a helper or facilitator network in P where
σk(S) =

Pm

j=1 σk(Dj) is computed and sent back to the request-
ing peer. The computation halts soon after P has sent the solution
pattern to L.

Instantiations of the scheme already exist in the literature, or can
be derived straightforwardly, for a significant number of distributed
pattern extraction problems, including density-based data clustering
[25], multivariate regression, and association rules. Note also that
the data owning peers Lj could use the well-known secure sum pro-
tocol [4] to compute the sum of local summaries σk(Dj) instead of
sending the summaries directly to the helpers. Although using such
protocol would make the opportunities to learn the summaries less
likely, we will be concerned about inference techniques and their ap-
plication scenarios in the more traditional setting with helpers acting
as buffers for the peers. Scenarios in which helpers are not malicious
apply to the secure sum setting as well.

3.2 Inference attacks in a DDM system
Informally, we see inference in a DDM system as the process where
one or more peer sites learn any confidential information (models,
patterns, or the data themselves) about the dataset owned by other
peers during a data mining session. We consider different inference
attack scenarios in DDM system from inside and outside the set of
mining parties.

Inside Attack Scenarios. In an inside attack scenario, one or mul-
tiple peer sites Lj ∈ P try to infer useful information from the orig-
inal data owned by other peers in the mining group P . Hence, the
attacker has complete knowledge of the data mining process and pa-
rameters that are used by the group for individual mining tasks at
hand. We distinguish between single and coalition attacks depending
on the number of attackers. In a single attack only one of the peers
behaves maliciously, trying to disclose information. One example of
this attack is the Malicious Helper Attack. In this case a helper peer
behaves maliciously gathering all information the sites sent to it and
uses this information later to disclose information about the data in
the sites. In this case, the malicious helper has the possibility to as-
sign precisely each data inferred to the different participating sites.
In a coalition attack scenario, with n sites, k sites collude to attack a
chosen site (1 < k ≤ n− 1).

Another important aspect of the attack, which is independent of
the number of peer sites that take part in it, is the attack strategy.
Some examples of strategies are probe and eavesdropping. In a probe
attack one peer sets its contributed data to some null value, so that the
global result of a distributed data mining process will reflect the min-
ing results of the other peer only. In the 2-sites case it is equivalent to
mining the database from the other peer directly. In an eavesdropping
attack the malicious peer behaves quite normally inside the group,
but it stores all information possible about the other participants in
the group.

Outside Attack Scenarios. Let P be a set of peer sites whose mem-
bers are engaged in a cooperative data mining task. An outside attack
is a scenario where a malicious peer site P /∈ P tries to infer some in-
formation from the data owned by the members of P . Since P /∈ P ,
we can assume that P knows nothing (or knows just little) about the
mining parameters that have been agreed upon by the groupP . How-
ever, we assume that the attacker site P can steal information via an
eavesdropping channel. The different possibility of an outside attack



scenarios are based on what information P has stolen.
In the next section, we provide an example of agent-based dis-

tributed data mining and discuss instances of different types of infer-
ence attacks.

4 AGENT-BASED DISTRIBUTED DATA
CLUSTERING: THE KDEC SCHEME

Let S = {~x[i] : i = 1, . . . , N} ⊆ R
n be a dataset of points. For any

S, let C(S) = {Ck(S)} ⊆ 2S be a clustering of S, whose elements
are pairwise disjoint. Let Lj , j = 1, . . . , m be a finite set of sites.
Let each site Lj store one local dataset Dj and S =

Sm

j=1 Dj . The
problem of homogeneous distributed data clustering (homogeneous
DDC) is to find for j = 1, . . . , m, a site clustering Cj residing in the
data space of Lj , such that Cj = {Ck(S)∩Dj : k = 1, . . . , |C(S)|}
(correctness requirement), time and communications costs are min-
imized (efficiency requirement), and, at the end of the computation,
the size of the subset of S which has been transferred out of the data
space of any site Lj is minimized (privacy requirement). Homoge-
neous DDC is a homogeneous distributed extraction problem which
extends the problem specified by the pair (S, C(·)).

In [16], a distributed clustering scheme called KDEC was intro-
duced. KDEC can be applied as a solution to homogeneous DDC
when the clustering specification C(·) is based on a nonparametric
kernel density estimate of the data [20, 25]. The main idea is that
kernel density estimates are: (i) additive for homogeneous distributed
datasets, and (ii) can be transmitted in sampled form in order to hide
the data points, which are otherwise explicit in the representation of
a kernel estimate. Each site Lj computes its local kernel density es-
timate (LDE), which we denote by ϕ̂K,h[Dj ](·), as follows:

ϕ̂K,h[Dj ](~x) =
X

~x[i]∈Dj

K

„

d(~x, ~x[i])

h

«

(1)

where h is a scaling parameter called window width, d is a dis-
tance function, and K is a real-valued, non-negative, non-increasing
function on R+ ∪ {0} called kernel function (e.g. the restriction of
the Gaussian function to R+∪{0}). Equation (1) defines the estimate
at ~x ∈ R

n as a weighted sum of scaled distances of data points from
~x, i.e., according to the proximity of the data points to ~x. In KDEC
it is assumed that all sites agree on using the same distance d , kernel
K, and window width h. (For brevity, we will omit K, h from our
notation in the following.) Therefore, the sum of the LDEs equals the
global density estimate (GDE) ϕ̂[S](·).

The approach exploits multi-dimensional information sampling to
minimize communications among sites and to increase privacy, for it
adopts a representation of the estimate which makes no explicit ref-
erence to the data points. Before sending its LDE to the helper, each
site transforms it into sampled form. For any ~x ∈ R

n, let x1, . . . , xn

be its components. Let ~τ = [τ1, . . . , τn] ∈ R
n be a vector of sam-

pling periods and let ~z • ~τ denote [τ1z1, . . . , τnzn], where ~z ∈ Z
n.

Let R(~z1, ~z2) ⊆ Z
n be the n-dimensional rectangle having diagonal

(~z1, ~z2). The sampled form of ϕ̂[Dj ](·) is the finite real sequence
{ϕ̂~z[D

j ]} defined by:

ϕ̂~z[D
j ] = {ϕ̂[Dj ](~z • ~τ) : ~z ∈ R(~z1, ~z2)} (2)

where the sampling parameters ~z1, ~z2 ∈ Z
n and ~τ ∈ R

n are previ-
ously agreed among the peer sites.

Since density estimates in sampled form are additive, the helper
is able to compute the sampled GDE using Equation (3) for all ~z ∈
R(~z1, ~z2) as sum of the sampled LDEs, and send it back to the peers:
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Figure 1. LDE at site j
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Figure 2. Sampled LDE at site j

ϕ̂~z[S] =

m
X

j=1

ϕ̂~z[D
j ] (3)

From the global sampled density estimate ϕ̂~z[S] the local sites can
approximate the true GDE using the interpolation formula

X

~z∈R( ~z1, ~z2)

ϕ̂~z[S] sinc

„

x1

τ1
− z1

«

· · · sinc

„

xn

τn

− zn

«

(4)

where

sinc(x) =

(

1 if x = 0,
sin πx

πx
otherwise.

Expression (4) is an application of the well-known Whittaker-
Shannon sampling series (see e.g. [9]) to the domain of density esti-
mates. Note that the function represented by (4) is not extensionally
equal to the kernel global estimate ϕ̂[S](·) both because kernel esti-
mates are not band-limited to any frequency region, and because of
the truncation in the series. However, it was shown in [16] that the
approximation introduces only a small error and consequently we
can choose ~τ so that the Fourier transform of the estimate ϕ̂[S](·) is
negligible in R

n \ [−π/τ1, π/τ1)×· · ·× [−π/τn, π/τn), and ~z1, ~z2

such that the estimate is negligible in R
n \R(~z1, ~z2).
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Figure 3. Sampled GDE at the
Helper Agent
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Figure 4. Reconstructed GDE at
Site j

Finally, each peer site can use the reconstructed global density es-
timate to cluster its local data. To this end, it uses a gradient-driven
hill climbing procedure to find local maxima in the global density es-
timate. All points that can be connected to one given local maximum
are labeled to the same cluster.

5 INFERENCE ATTACKS IN KDEC
Let us analyse the KDEC scheme with respect to our inference attack
framework.

5.1 Inside attacks in KDEC
In KDEC the inside attack is always possible. Remember that an
inside attacker knows all the parameters that are agreed before the
KDEC protocol starts, i.e., the kernel function K, the window width
h, and the distance function d. Moreover, the sampled global den-
sity estimation is distributed back to all sites that cooperate in the



Algorithm 1 pointhunt
Input: x0, S0;
Output: x, S′;

1: x← search (x0, S0);
2: δ ← |density(x)− ϕ̂[S0](x)|;
3: S′ ← S0;
4: if x 6= x0 then
5: snew ← guess(x, δ);
6: S′ ← S0 ∪ {snew};
7: end if
8: return x, S′

function guess (x, δ);
1: return x + h ∗K−1(δ);

end function
function search (x, S0);

1: Y ← {y ∈ [x,max ] : |density(y)− ϕ̂[S0](y)| > ε}
2: if Y 6= ∅ then
3: return inf Y ;
4: end if
5: return x;

end function

data mining process, including the attacker. Consequently, a mali-
cious peer can use a reconstruction algorithm to infer non-local data.

To exemplify the inside attack in KDEC we have developed
pointhunt, a simple data reconstruction algorithm for datasets of re-
als which can be used to reconstruct original data points from a given
density estimate.

As input pointhunt needs: A starting point x0 and a collection
of already reconstructed data points S0. Furthermore, the following
are needed to run pointhunt : a function density computing the es-
timate of the dataset; the kernel function K and its inverse K−1;
the window width h; a threshold ε representing the deviation of
the current tentative density estimation from density; an interval
[min,max ] ⊇ S such that {density(min), density(max )} ⊂ [0, ε].
Note that this information is known in an inside attack scenario.
The algorithm, which must be iterated until a fixed point is reached,
works by reconstructing one data point at each iteration, from left to
right, as follows. Initially, x0 = min and S0 must equal a (possibly
empty) set of points that are already known to be in S, e.g. the attack-
ers’ local dataset. Function search locates the leftmost point x to the
right of x0 where the difference between the actual and reconstructed
density is not negligible, i.e. exceeds ε. Given x, a point snew , which
is likely to be in S, is calculated by function guess using hK−1. This
heuristics can be informally justified by noting that x is the leftmost
location that is significantly influenced by S \ S0 and therefore x is
likely to be significantly influenced by only one point in S \ S0.

The ideal case for an attacker occurs when K, and consequently
the estimate, has bounded support. For example, this is the case for
the square or triangular pulse, or Epanechnikov’s kernel. Then ε can
be set to zero and search returns a point of the border of the support
of the function density(x) − ϕ̂[S0](x). Assuming without loss of
generality K−1 : [0, wmax ] → [0, 1], there must be one data point
that equals exactly x + h, which guess returns.

Whereas experiments performed by us with such kernels have led
to a full disclosure of the dataset, if the kernel has unbounded sup-
port, e.g. the Gaussian kernel, the attacker is less likely to be suc-
cessful. In general, we can say that the best results are obtained
when points are not too close to each other given a value of h. Fig-
ure 5 shows the density estimate and the contribution of each kernel.
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Figure 5. Original points
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Figure 6. Reconstructed
points

In Figure 6 the data points which were correctly reconstructed by
pointhunt are displayed. Note that the algorithm was unable to find
the points in the region where the points are too close to each other.
These issues are under investigation.

Single Attack in KDEC. The attacker executes all steps of the
KDEC protocol and, after receiving the global density, it tries to re-
construct the original data points. The level of this attack leads to a
full disclosure. Nonetheless, we observe that the attacker is unable to
assign the reconstructed data points to their owner site.

Coalition Attack in KDEC. This attack can be implemented, for
example, if all k attacker sites exchange their own local density esti-
mates. In this case, the global density subtracted by the summation of
all attackers density will reveal the victims’ local density. From the
density the attackers can use a reconstruction algorithm and disclose
the original data. In this case the attack leads to a full disclosure.
However, the attackers will be unable to assign the data points to the
victims, unless k = n− 1.

Probe Attack. The probe attack in KDEC can be achieved if the
attacker sets its local density to zero. In this case it will get back a
global density function on the others’ data. This attack leads to a full
disclosure, but again the attacker is unable to assign the data points.
Note also that the helper could be instructed not to send the sampled
GDE to a probing peer.

Malicious Helper Attack in KDEC. The helper in KDEC knows
all sampled local densities. It could know the parameters if the ma-
licious helper acted as helper during parameter negotiation. In the
latter case, the helper can reconstruct all the data owned by peers in
the group. This is a full disclosure attack, including assignment of
data points to the owning peers. Otherwise the scenario the helper
operates in is similar to an outside attack scenario without knowl-
edge of the window width, the kernel, the distance and the sampling
parameters, but without the need to steal any of the sampled LDEs.

5.2 Outside attacks in KDEC

Reconstructing data from other peers is relatively easy if the mali-
cious peer is inside the data mining group. From the outside, using
only an eavesdropped global density estimate, it is a hard task. In
the following we discuss some different outside attack scenarios in
KDEC, with respect to information that the attacker does not have.

Extreme Case. The extreme case, where the attacker has stolen all
the parameters, degenerates to the inside attack case and the attacker
can try to solve the problem with the pointhunt algorithm.

Attack without the window width h. The parameter h defines how
the kernel function will be stretched in the x-axis, i.e., h determines
the range of influence of one point over its neighbors. If h is un-
known we cannot compute ϕ[S′] and consequently pointhunt cannot
be used. However, if there is at least one outlier point we can compute
h in the following way. Let the set X∗ = {x∗ : ϕ[S](x∗) = K(0)}
represent the “small” local maxima, which are generated by points



with no close neighbors. X∗ can be built in a single pass through the
points in ϕ[S] with time complexity O(n) in the number of points in
ϕ[S]. Let us choose a point xc close to x∗ such that ϕ[S](xc) = w <
K(0). Using the kernel inverse K−1 : [0, wmax ]→ R+∪{0}, where
wmax = K(0), we can compute K−1(ϕ[S](xc)) = K−1(w) = dw

representing the distance from x∗ where one point xc must be placed
to receive the influence w from x∗. But xc lies at d(x∗, xc) from
x∗ because it was scaled by h in the computation of ϕ[S]. We have
that K( d(x∗,xc)

h
) = w = K(dw) what give us dc

h
= dw. After

substitutions we get d(x∗,xc)
h

= K−1(ϕ[S](xc)). Finally, h can be
computed with:

h =
d(x∗, xc)

K−1(ϕ[S](xc))
(5)

Attack without the distance function. The distance function plays a
crucial role in the computation of the GDE. Its inverse is very impor-
tant as well, for our attack algorithm use it to guess the points. Let
us assume that the distance is unknown to the attacker. In this case
he/she may try to use well known distance functions, e.g., Euclidean
distance. To test how good is the distance function chosen, the at-
tacker can use hK−1(ϕ[S](xi)) = d(x∗, xi), where x∗ is an outlier
point, and xi, i = 1, ..., n are points close to x∗. The success of this
approach will depend on how many different candidate functions are
chosen and if there is at least one outlier in the GDE.

Attack without the kernel function. Without the kernel function the
attacker cannot use the trial-and-error approach used in the inside at-
tack to guess the points. There are two options. The first option is to
try to guess the kernel function. The second option is to try to find
the points with methods that are independent of knowing the kernel
function. Guessing the kernel can be accomplished if the dataset con-
tains outliers. Then the attacker can build one table with the points
around an outlier point x∗. This table can be interpolated to get a
candidate kernel function K̂. This K̂ is simple to build, however it
may include many approximation errors, which compromise its use
in pointhunt. Finding points without kernel can be accomplished if
the kernel function, or its derivatives, has discontinuities. We can find
the points using the observation that the distances between disconti-
nuities on one axis are equal to the distances between data points on
the same axis.

Attack without the sampling parameters. KDEC uses a multidi-
mensional sampling technique to transform the density estimates into
a sequence of indexed values. These indexes allow the peer sites to
transmit information without explicit reference to the original data
points. The sampling parameter is ~τ ∈ R

n, which is chosen in the
initial phase of the protocol. Without ~τ we cannot reconstruct the
data points. However, if h and K are known we can choose two
successive values with respect to one axis, wz1, wz2 < K(0) such
that hK−1(wz1) = d1 and hK−1(wz2) = d2 and attempt to find
τ = |d1−d2|

|z1−z2|
.

6 CONCLUSIONS AND FUTURE WORK
In this paper we have discussed various types of inference attacks
peer-to-peer agent-based networks performing data mining tasks on
homogeneous data could be vulnerable to. The potential attack types
to particular scheme for homogeneous distributed clustering, known
as KDEC, have been investigated, and an algorithm which could re-
construct the data from the kernel density estimates employed by
KDEC has been presented. Future work will concentrate on improv-
ing the accuracy of the algorithm to expose further possible weak-
nesses of the KDEC scheme and providing countermeasures to these
attacks in KDEC.
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