
Pattern-Based Semantic Composition of Optimal Process
Service Plans with ODERU

Luca Mazzola

DFKI, German Research Center for AI

Saarland Informatics Campus D3.2

66123 - Saarbrücken, Germany

Luca.Mazzola@dfki.de

Patrick Kapahnke

DFKI, German Research Center for AI

Saarland Informatics Campus D3.2

66123 - Saarbrücken, Germany

Patrick.Kapahnke@dfki.de

Matthias Klusch

DFKI, German Research Center for AI

Saarland Informatics Campus D3.2

66123 - Saarbrücken, Germany

Matthias.Klusch@dfki.de

ABSTRACT
To keep pace with the needs of the manufacturing industry of the

future, companies need to flexibly react to changing demands and

be able to manage production capacities in a rapid and efficient

way. This requires agile collaboration among supply chain part-

ners in context of Service-Oriented Architectures (SOA). To this

end, we propose a novel pragmatic approach for automatically im-

plementing service-based manufacturing processes at design and

runtime, called ODERU. Relying on a set of semantic annotations

of business process models encoded into an extension of the BPMN

2.0 standard, it combines pattern-based semantic composition of

process service plans and optimization of non-functional aspects by

means of QoS-based constraint optimization problem (COP) solv-

ing. The ODERU tool is part of a platform for cloud-based elastic

manufacturing. In this paper we present the foundations of ODERU,

showcasing its application to two manufacturing processes with

conflicting requirements showing how it solves the problem by

leveraging the Everything-as-a-Service (XaaS) approach. Some ini-

tial evaluation sketches the expected benefits of such a solution,

depicting its usefulness and potentialities.

CCS CONCEPTS
• Computing methodologies → Planning with abstraction
and generalization; • Applied computing → Business pro-
cess modeling; Business process management systems; • Informa-
tion systems→ Semantic web description languages;

KEYWORDS
QoS based business process optimization, XaaS, SemSOA, BPMN

runtime optimization, COP definition for manufacturing.

ACM Reference format:
Luca Mazzola, Patrick Kapahnke, and Matthias Klusch. 2017. Pattern-Based

Semantic Composition of Optimal Process Service Plans with ODERU . In

Proceedings of The 19th International Conference on Information Integration
andWeb-based Applications & Services, Salzburg, Austria, December 4–6, 2017
(iiWAS ’17), 10 pages.
https://doi.org/10.1145/3151759.3151773

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

iiWAS ’17, December 4–6, 2017, Salzburg, Austria
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5299-4/17/12. . . $15.00

https://doi.org/10.1145/3151759.3151773

1 INTRODUCTION
As every other aspect of the everyday life, also the manufacturing

domain is strongly influenced by innovations in ICT. Companies

need to flexibly react to changing demands to remain competitive

in a dynamic market. This requires multifaceted capabilities, like

being able to manage production capacities in a rapid and efficient

way and enabling agile collaboration among supply chain partners.

The impact of ICT in this domain is broadly known as Industry

4.0 and ranges from the application of artificial intelligence in robot-

assisted production to the usage of IoT devices, always connected

and controllable just-in-time.

Along the same line, manufacturing business processes have to

be designed and executed in a more dynamic production context,

thus creating the need for adaptation and optimization at design

time as well as at runtime. As a consequence, the design of process

models for business applications need to comprise representations

for functional and non-functional requirements beyond what can be

specified in traditional BPM (business process modeling) systems,

such as semantic representations of product models and manu-

facturing services as well as KPI requirements and QoS aspects.

Moreover, the tools need to be able to provide effective composition

of services in the context of SOA (Service-Oriented Architectures)

and XaaS (Everything-as-a-Service) systems and reliable model

optimization to achieve the best executable service plans for busi-

ness processes. Eventually, the provided process service plans (PSP)

should be designed to support effectively a runtime incremental

replanning, in case an included service is temporarily failing or

becomes unavailable.

Due to the unavailability of solutions to solve in an integrated

way these issues, we developed a novel pragmatic approach called

ODERU (Optimization tool for DEsign and RUntime). It is able to

compose functionally correct plans based on semantic annotations

optimizing their non-functional aspects, which are formalized in

terms of a Constrained Optimization Problem (COP). The resulting

complete service plan (services used, their order, the variable bind-

ings and the environmental variables assignment) is encoded back

into specifically developed BPMN 2.0 extensions, bridging the gap

between models and executable plans

The paper is organized as follows: in Section II, related work is

briefly presented, then we describe the ODERU architecture and

algorithm in Section III. Section IV introduces two use cases adopted

as application of ODERU. For each of them, a short introduction of

the scenario is given, followed by showing the COP definition and

eventually describing the design and runtime behavior briefly. The

conclusions are given in Section V.

https://doi.org/10.1145/3151759.3151773
https://doi.org/10.1145/3151759.3151773

iiWAS ’17, December 4–6, 2017, Salzburg, Austria L. Mazzola et al.

2 RELATEDWORK
At the core, ODERU follows the paradigm of Semantic Service-

Oriented Architectures (SemSOA). Process models are automati-

cally implemented with semantic services by applying techniques

of semantic service selection and composition planning. The key

idea is to enable automated understanding of task requirements

and services by providing semantic descriptions in a standardized

machine-understandable way by using formal ontological defini-

tions [1], for example in OWL2
1
. To apply this paradigm to business

processes, several initiatives and approaches exist and reference

architectures as well as frameworks for semantic business process

modeling are proposed in literature. In [2], the benefit of adding

semantics to BPM (SBPM) is discussed, in particular focusing on

the modeling and configuration phases. They propose to make use

of semantics to support the modeling in terms of service selection

and composition on task level and by means of semantic validation,

which enables consistency checks of effects (e.g. for parallel exe-

cution) among others. A more detailed investigation of this aspect

can be found in [3]. Similarly, service bindings can be found during

configuration using semantic annotations. The authors base their

methodology on BPMN, BPEL and WSMO. Along the same lines,

the authors of [4] propose a similar SBPM framework, which com-

bines semantic web services and BPM to overcome the problem of

automated understanding of processes by machines in a dynamic

business environment. The idea is to make use of WSMO in addi-

tion to standard BPMN to represent the semantics of a business

process and its parts. While both works solve the issue of semantic

understanding and provides rationale on the benefit of SBPM, there

is no integration into existing standards and multiple representa-

tions have to be maintained separately. Similarly, the authors of

[5] propose sBPMN, which integrates semantic technologies and

BPMN to overcome the obvious gap between abstract representa-

tion of process models and actual executable descriptions in BPEL.

In particular, they propose an ontology, which is supposed to cap-

ture all the required semantic information. While this integrates

both views, sBPMN is not suited to be used by existing BPMN

tools without additional transformation. [6] follows the same track

with the proposal of BPMO, an ontology, which partly is based

on sBPMN, while [7] takes sBPMN as basis for the Maestro tool,

which implements the realisation of semantically annotated busi-

ness tasks with concrete services by means of automatic discovery

and composition. In [8], a reference architecture for semantic SOA

in BPM is proposed, which aims to address the representation dis-

crepancy business expertise and IT knowledge by making use of

semantic web technologies. The authors highlight the benefit of this

approach by showing capabilities emerging from this combination,

like semantic process model composition and auto-completion of

process models. Like the other approaches shown before, they do

not propose an integrated formalism, but rely on their compiler-like

framework and semantic plug-in concept to bridge the represen-

tation gap. All of these proposals rely on formalizations different

from (although based on) BPMN or do not aim for a full integration

from a formalism point of view. In contrast, ODERU proposes a set

of BPMN extensions, which enable semantic interoperability in a

1
W3C standard; https://www.w3.org/TR/owl2-overview/

semantic SOA as well as support process model composition, task

service selection and process execution.

ODERU applies state of the art semantic service selection tech-

nologies [9] for implementing annotated process tasks. Typically,

work on semantic service selection can be grouped in terms of the

selection criteria and the employed matching approach. Functional

service matchmaking considers the service signature (inputs, out-

puts; IO) and service specification (preconditions and effects; PE)

[10]. Non-functional criteria, often referred to as quality of service

(QoS) (e.g. costs, execution time, availability), can additionally be

considered to find matching services in terms of functional and non-
functional requirements [11–13]. A lot of work has been dedicated

to improve on overall matching precision by not only making use of

strict logic-based selection of services given formal descriptions of

IOPE, but also text similarity metrics and structural computations

or hybrid combinations thereof [14–16]. While showing very good

results in terms of ranking precision, such approaches sacrifice the

property of correctness with respect to the formal specifications as

implied by logic-based reasoning. This is not feasible for ODERU,

because it makes use of service selection as basis for a pattern-based

functional process service plan composition. Therefore, ODERU

employs a logic-based configuration of the iSeM matchmaker [17],

which is capable of IOPE selection given formal semantic descrip-

tions in OWL2 and PDDL
2
. Also, the QoS aspect will not be covered

by the service selection component of ODERU directly. Instead, op-

timality in terms of non-functional QoS specifications is achieved

on the process model level by solving (non-)linear multi-objective

constraint optimization problems (COP) as an integrated follow-

up to the pattern-based composition, which utilizes the service

selection.

Most existing approaches to process service plan composition

do not cover the combination of functional (semantic) aspects and

non-functional (QoS-aware) optimization, but rather focus on one

of them. Naturally, much effort has been put into the functional

composition, because this is one of the basic requirements to com-

pute executable plans. For example, [7, 18, 19] consider functional

semantic annotations to implement business processes by means

of a service composition plan. In contrast, some work focuses on

optimizing process service plans with respect to QoS. [20] provides

a survey giving an overview of existing approaches and initiatives

in this direction and highlights research questions. In [21], a novel

approach for QoS-aware workflow optimization is presented, which

takes structural orchestration components such as AND, XOR, OR

as well as loops and unstructured components into account. The op-

timization is performed by means of Integer Linear Programming,

after a transformation from a non-linear problem to a linear one.

Although the approach can extend to arbitrary QoS types, struc-

turally complex and non-linear problems like solved by ODERU

can not be tackled appropriately. Integrated functional and non-

functional optimization has rarely been considered. One notable

exception is the work presented in [22], which also claims that

existing methods are restricted to predefined functionally valid

plan options. To overcome this, the authors present an integrated

SAT-based cost planning solver, which takes logical reasoning and

2
Planning Domain Definition Language; http://icaps-

conference.org/ipc2008/deterministic/PddlResources.html

Pattern-Based Semantic Composition of Optimal Process Service Plans with ODERU iiWAS ’17, December 4–6, 2017, Salzburg, Austria

temporal planning into account, while at the same time optimiz-

ing QoS respecting a set of global constraints. While composition

typically includes the computation of possible data flows, ODERU

additionally finds optimal service variable assignments that are also

required for executing the resulting plans. This is a novel feature

not yet considered by existing work. Moreover, ODERU performs

re-optimization of process service plans at runtime upon request

by the runtime environment and based on information about the

leasability of services, which is a novel feature. Finally, ODERU em-

ploys means of RDF stream processing to react to service changes

(non-functional QoS aspects) reported by the service registry. This

information can be used to trigger optimizations proactively, if the

RDF stream engine identifies that a previously computed process

service plan is affected.

3 ODERU: OVERVIEW
Given the problem at hand, we identified three main requirements

for ODERU. They are as follows:

(1) it should support integration of functional service selection

and composition with non-functional optimization based on

flexible measures and objective functions,

(2) as output, it must implement the creation of complete plans,

in order to directly enable an execution environment to enact

them,

(3) the used format should simplify the re-use and adaptation

of the created plans in a dynamic environment, at runtime.

This includes the sub-requirement to merge the model infor-

mation with the service plans details in a single place.

As a result, ODERU performs process service plan composition

andQoS-aware plan optimization for given business processmodels,

taking the XaaS (Everything-as-a-Service) perspective and applying

the SemSOA methodology. In general, all available resources are

assumed to be represented in terms of services and the overall goal

of the composition is to assign such services to tasks specified in a

given process model.

Figure 1: ODERU in context of a fully-fledged BPM and exe-
cution architecture.

For an input processmodel in the semantically enriched extended

BPMN format, ODERU computes an executable plan of services

implementing the contained tasks including information on the data

flow between the services. To provide an optimal solution out of

the set of possible functionally valid solutions, ODERU has to make

particular choices driven by non-functional requirements, which

are expressed as functions of the QoS measures provided by the

services. Moreover, ODERU computes concrete settings of service

input parameter values, which yield optimal results in terms of the

optimization criteria. Fig. 1 depicts the role of ODERU in context of

a business process modeling and execution application. A process

designer specifies process models in BPMN using a graphical editor

front end, that support the semantic annotation of IOPE aspects for

each task. Process models are stored (in a data base, for example

in the cloud) and provided to ODERU for performing the process

service plan composition and optimization. The resulting process

service plans, encoded using another BPMN 2.0 notation extension

into the input PM, are stored in a repository and made available

for retrieval by an execution environment. Services to be used for

planning and later on execution are stored in a semantic service

repository.

To achieve this, the incoming BPMN process models are expected

to contain semantically annotated task descriptions as BPMN ex-

tension elements, which ODERU can map to logically equivalent

or plug-in services for execution. Analogous to the semantic ser-

vice descriptions themselves, these annotations are structured in

terms of IOPE and refer to domain knowledge in OWL2. Moreover,

the BPMN should specify what QoS measures are to be optimized

and how they are defined. This is done by specifying a COP at

the process model level, whose solutions dictates what services

to choose from and what parameter settings to use when calling

services. The COP formulation includes information on how to

map optimal parameter values to service inputs and service QoS

to COP constants. The outputs produced by ODERU are process

service plan encoded in the original BPMN itself by making use of

extensions again. Besides the optimal services and input values for

calling the services as described above, this also includes possible

data flows with parameter bindings among services. Such a process

service plan implementing the process model can then be instan-

tiated at runtime by a process plan execution environment under

the following assumptions:

• Loop structures are unfolded during execution only, while

ODERU assumes that service executions are non-exclusive

in general (i.e. a single service can be called multiple times

without any side effect). If a service is exclusive, the execution
environment should trigger exception handling and ask back

ODERU for a new plan implementing the rest of the process

model with other equivalent or plug-in services.

• Gateways are handled by ODERU by computing data flow

alternatives for each possible execution path depending on

the gateway type. Each possible process execution flow is

expressed inside a distinct process service plan. The execu-

tion environment should retrieve relevant alternatives from

ODERU depending on how the gateways are evaluated.

To achieve this, ODERU works as follows in a sequential manner:

• Pattern-based composition using semantic service selection

for all semantically annotated process tasks and computation

of possible data flows.

• QoS-aware non-functional optimization by means of COP

solving on the process model level. This step selects partic-

ular services out of sets of functionally fitting services per

tasks and provides the optimal settings for service inputs.

iiWAS ’17, December 4–6, 2017, Salzburg, Austria L. Mazzola et al.

This workflow can be applied at design time and runtime (of a

process model execution instance). At design time, ODERU will be

called after a process model has been defined in order to provide

an executable implementation of the model as guidance for the

execution environment (cf. Fig. 1). The runtime case might appear

as soon as a process service plan is executed. The execution envi-

ronment can query ODERU to provide alternative plans in case of

an exception during execution (e.g. service became unavailable).

For this, the plan enacting toll should not only provide the process

service plan it tried to execute, but also the current state of execu-

tion. This includes information on what services have already been

executed, how gateways have been evaluated and what services

caused errors during execution. The aim of ODERU in the runtime

case is to provide an alternative solution for the given process in-
stance. That is, it tries to patch the existing process service plan and

considers the current state of the world as fixed and not undoable.

3.1 Semantic Annotation of Tasks and Services
In order to be able to automatically compose functionally valid

process service plans given a process model, we assume process

tasks to be equipped with structured semantic descriptions. Follow-

ing the SemSOA approach, IOPE of tasks are described in terms

of formalized ontological domain knowledge. For the use cases

described in this paper, we propose a reference domain ontology

called CDM-Core [23], which provides OWL2 descriptions of con-

cepts from the manufacturing domain, in particular for hydraulic

metal press maintenance and car exhaust production. The semantic

annotations are embedded in the BPMN model by making use of

extension elements at the task level.

Similarly, we assume that all services come with semantic anno-

tations of IOPE. For this, the W3C recommendation OWL-S [24]

is used, which provides means for not only IOPE annotations, but

also for the QoS aspect required for the non-functional optimiza-

tion. QoS aspects are not predefined in OWL-S, but can be adapted

flexibly to the specific use case at hand. Definitions for various QoS

aspects are defined in the CDM-Core ontology (or can be defined

based on it in terms of extensions) and could for example represent

monetary costs of using a service, operation cycle time of a machine

represented by a service or cumulated probability of failure.

3.2 Constraint Optimization Problem
Definition

We defined an appropriate grammar to represent COPs, based on

the requirements of the project use cases, but also taking into ac-

count its general re-applicability. The COPSE
2
grammar is defined

using antlr4
3
and is presented in Listing 1. It starts by defining the

type of the COP (linear vs. non-linear, single vs. multi objective,

etc.) and continues by declaring the problem class. In this part, the
variables, constants and functions are indicated. In the last segment,

any complex function can be defined, using operators such asMAX,
MIN, SUM, PRODUCT, and IF-ELSE. The constraints set is then de-

fined, with respect to the variables, constants and functions already

specified, and the objective function(s) is normally constructed

by minimising one or more functions (or functions combination).

3
http://www.antlr.org/

In case of a multi objective you can have many of them, also in

comined form of MIN-MAX COP problem.

Listing 1: COPSE2 grammar for Constraint Optimization
Problems.

1 grammar COPSE2_meta;

2

3 problem: 'PROBLEM ' type solver problemclass probleminstance output? 'END

PROBLEM ';

4

5 type: 'TYPE' Linear Objective 'END TYPE';

6 Linear: ('linear '|'nonlinear ');

7 Objective: ('single '|'multi ');

8

9 solver: 'SOLVER ' Solver 'END SOLVER ';

10 Solver: ('centralized '|'distributed '|'both');

11

12 problemclass: 'CLASS ' variables constants? functions? constraints?

objectivefunction+ 'END CLASS';

13

14 variables: 'VARIABLES ' (Identifier|ArrayIdentifier)+ 'END VARIABLES ';

15 constants: 'CONSTANTS ' (Identifier|ArrayIdentifier)+ 'END CONSTANTS ';

16 functions: 'FUNCTIONS ' function+ 'END FUNCTIONS ';

17 functionSignature: Identifier '(' identifierList ')';

18 function: functionSignature '=' (expr|ifexpr);

19

20 Comparison: '>='|'<='|'=='|'!='|'>'|'<';

21 Assignment: '=';

22 expr: '-'? term (('+'|'-') term)*;

23 term: mterm (('*'|'/'|'^') mterm)*;

24 dim: Identifier '.length ' ;

25

26 loop: ('SUM'|'PRODUCT ') '(' Identifier ',' (Number|dim) ',' (Number|dim) ','

expr ')';

27

28 mterm: (Identifier|ArrayElem|REAL|'(' expr ')'|('MIN'|'MAX') '{' expr (','

expr)* '}'|functionSignature|dim|Number|loop);

29

30 ifexpr: 'IF' expr Comparison (expr|Number) 'THEN' (expr|ifexpr) 'ELSE' (expr

|ifexpr) 'END IF';

31

32 constraints: 'CONSTRAINTS ' constraint+ 'END CONSTRAINTS ';

33 constraint: expr (Comparison|Assignment) (expr|Identifier|Number);

34

35 objectivefunction: ('minimize '|'maximize ') expr ('->' URI)?;

36

37 probleminstance: 'INSTANCE ' variabledomains? constantvalues? 'END INSTANCE ';

38

39 variabledomains: 'DOMAINS ' vdomain+ 'END DOMAINS ';

40 constantvalues: 'VALUES ' cvalue+ input? 'END VALUES ';

41

42 input: 'INPUT ' inputEntry+ 'END INPUT';

43 inputEntry: Identifier '<-' '(' Identifier ',' URI ')';

44 URI: 'http ://' ([a-zA-Z0 -9/.])+ '#' ([a-zA-Z0 -9])+;

45

46 vdomain: (Identifier|ArrayIdentifier) (Number | '[' Number ',' Number ']' |

'{' Number (',' Number)* '}');

47 cvalue: (Identifier|ArrayElem) Assignment Number;

48

49 output: 'OUTPUT ' (valueAssignment|serviceSelection)+ 'END OUTPUT ';

50 valueAssignment: (Identifier|ArrayElem) '->' '(' Identifier ',' URI ')';

51 serviceSelection: ArrayIdentifier '::' Identifier;

52

53 fragment Letter: [a-zA -Z];

54 fragment ANumber: [0-9];

55 fragment INF: ('INF'|'-INF');

56

57 Number: (('-'? (ANumber+|ANumber* '.' ANumber+) ('*' ('10'|'e') '^' '-'?

ANumber +)?)|INF);

58

59 Identifier: Letter (Letter|ANumber|'_')*;

60 ArrayIdentifier: Identifier '[]';

61 ArrayElem: Identifier '['Identifier ']';

62 identifierList: Identifier (',' Identifier)*;

63

64 WS: [\t\r\n]+ -> skip;

Our grammar allows to map back the achieved value to the

produced PSP into a semantic concept. In the second part of the

constraint optimisation problem definition, the current problem
instance is indicated: after defining the variables domain and the

value of the constants, the mapping of variables values that gives

the optimal solution is reported back to semantic concepts used as

http://www.antlr.org/

Pattern-Based Semantic Composition of Optimal Process Service Plans with ODERU iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Algorithm 1: The pseudocode for the process service plan

composition

Input: PM: a semantically annotated BPMN model

Input: S: the set of available services from the repository

parameter :Simmin: minimal similarity value accepted

Output: PSP: the computed process service plan

1 % Preparing the data structure

2 forall s ∈ S do
3 IOPEs → IOPES ;

4 end
5 forall task ∈ PM do
6 task → T ;
7 end
8 % Find task service candidates

9 forall t ∈ T do
10 forall s ∈ S do
11 if SIM(IOPEt , IOPEs) >= Simmin then
12 s → CANDIDATESt ;

13 end
14 end
15 end
16 % Solve the COP

17 forall t ∈ T do
18 forall s ∈ CANDIDATESt do
19 forall QoS ∈ T do
20 QoS → Parametersst ;

21 end
22 end
23 end
24 Solutions = COPsolver(Parameters);

25 % Compute a valid data flow

26 forall Solution ∈ Solutions do
27 ComposeVariableBindings(Solution)→ Plans;

28 end
29 % Compute the Process Service Plans

30 forall Plan ∈ Plans do
31 MergePMwithSolution(PM, Plan)→ PSPs;

32 % Save the computed Process Service Plan into
repository

33 end
34 % Return the first computed Process Service Plan

35 return PSPs[0];

inputs of the used services. As can be seen, this approach allows the

definition of complex aggregates of QoS and environment variables

instead of mere lists of objectives for simple QoS, extending the ex-

pressive capability with respect to the non-functional optimization

problem definition.

3.3 Process Service Plan
The computation of the service plan is presented in Algorithm 1,

which uses four helper functions.

The first one is SIM (IOPEA, IOPEB) in line 10, that is used

to compute the similarity between two IOPE annotations based

on a selected measure. Given the semantic description of a task

(IOPEA) and a service (IOPEB) as input, the adopted measures are

the followings:

Logic-based signature pluging match for Inputs and Outputs:

(∀i1 ∈ IA,∃i2 ∈ IB : i2 ⊑ i1) ∧ (∀o1 ∈ OB ,∃o2 ∈ OA : i2 ⊑ i1)

Logic specification pluging for Precondition and Effects:

KB |= (PB ⇒ PA) ∧ (EA ⇒ EB)

These matching filters are inspired by the classical plugin matching

of components in software engineering. While a plugin match

is commonly considered near-optimal, we priorize services with

semantic descriptions, which are logically equivalent with respect

to the to the requested functionality. A possible ranking of logic-

based semantic matching filters is proposed for iSeM as shown in

[25]. Alternative approaches to semantic service selection learn the

optimal weighted aggregation of different types of non-logic-based

and logic-based semantic matching filters [26].

A second helper function is the COPsolve (Parameters) used

in line 23 for computing the set of Pareto-optimal solutions of the

COP. This is simple compiler that transform our COP definition into

a running instance of a JaCoP solver
4
, using the set of parameters

given.

The call to ComposeVariableBindings (Solution) computes a

possible set of variable bindings, which together define the data flow.

Bindings are determined by checking the semantic compatibility of

the semantic variable types. This ensures a functionally meaningful

assignment beyond simple data type compatibility checking. The

overall aim of this function is to connect as many service inputs

in Solution with outputs of services prior in the execution order

determined by the process model definition. Inputs which can not

be bound in that way are considered environmental variables (see

Listing 2 for examples of both cases). This ensures the direct exe-

cutability of the computed service plan.

Please note, that the pseudo code leaves out details on handling

of gateways and different possible execution paths through the

process model for parallel execution and choices. Without loss of

generality, the different paths can be considered additional options

for generating process service plans, each indicating other gateway

decisions and a valid data flow given this decision. ODERU is able

to handle parallel (AND), choice (OR) and exclusive (XOR) gate-

ways. While the AND gateway just opens up independent parallel

paths and is easy to handle, the XOR and OR gateways result in

n and n! possible alternative execution paths, thus widening the

problem space significantly. Structurally however, all these options

are handled in an analogous way to what explained.

Eventually, MergePMwithSolution (PM,Plan) takes care of

adding the full metadata section into the original process model to

create an executable PSP. This happens at line 29.

3.3.1 Services selection. The first step for creating a Process

Service Plan is to select all the possible candidates functionally valid

for each task. For this step, we rely on functionally equivalent exact
or on plug-in matches [27] limited to direct sub class relationships,

4
http://jacop.osolpro.com/

iiWAS ’17, December 4–6, 2017, Salzburg, Austria L. Mazzola et al.

Listing 2: BPMN snipplet showing the extension for the
plan implementation (extract).

1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <bpmn:definitions xmlns:bpmn="http ://www.omg.org/spec/BPMN /20100524/ MODEL"

3 xmlns:crema="http :// crema.project.eu"

4 id="Definitions_1" targetNamespace="http :// bpmn.io/schema/bpmn">

5 <bpmn:process id="Process_1" isExecutable="true">

6 <bpmn:extensionElements >

7 <crema:metadata >

8 <crema:optimization >

9 <crema:formulation ><![CDATA [...]]></ crema:formulation >

10 <crema:results >

11 <crema:log ><![CDATA[...]] ></crema:log >

12 <crema:dimension name="TotalCost(T,SP)"><crema:value >37</ crema:value

></crema:dimension >

13 <crema:dimension name="TotalTime(T,SP)"><crema:value >22</ crema:value

></crema:dimension >

14 <crema:dimension name="Var1"><crema:value >186.92 </ crema:value ></crema

:dimension >

15 </crema:results >

16 </crema:optimization >

17 <crema:implementation >

18 <crema:service implements="ServiceTask_1yjnl8n" seq="1" origin="

optimization">

19 <crema:marketplaceServiceID >6e0940f0 -289f-45ee-b514 </crema:

marketplaceServiceID >

20 <crema:owlsDescription >http ://.../6 e0940f0 -289f-45ee-b514.owl </crema:

owlsDescription >

21 <crema:assignments >

22 <crema:variable name="Var1" service="6e0940f0 -289f-45ee-b514 -

efd533ae9be0" >

23 <crema:value >186.92 </ crema:value >

24 <crema:variable >

25 </crema:assignments >

26 <crema:bindings >

27 <crema:binding >

28 <crema:origin >

29 <crema:variable name="Sp1" service="b5be92ca -a10e -4386 -80be-

ead09a8cb9ce" />

30 </crema:origin >

31 <crema:target >

32 <crema:variable name="Sp1" service="6e0940f0 -289f-45ee-b514 -

efd533ae9be0" />

33 </crema:target >

34 </crema:binding >

35 <crema:binding >

36 <crema:origin >

37 <crema:env />

38 </crema:origin >

39 <crema:target >

40 <crema:variable name="Cu1" service="6e0940f0 -289f-45ee-b514 -

efd533ae9be0" />

41 </crema:target >

42 </crema:binding >

43 </crema:bindings >

44 </crema:service >

45 ...

46 </crema:implementation >

47 </crema:metadata >

48 </bpmn:extensionElements >

49 ...

50 </bpmn:process >

51 </bpmn:definitions >

in order to have a PSP whose logical properties (in term of IOPE)

are conserved with respect to the given PM.

In the central part of the Fig. 2, the set of candidates for each task

are presented as dashed areas, in which one or multiple services are

inserted in descending order of matching. As can be noticed, every

task existing in the process model is considered, as the selection

of a valid combination of the task to be actually implemented in

the returned process service plan is left for the non-functional

optimization, based on the COP solution.

3.3.2 Optimal Services composition. The lower part of Fig. 2

shows an example of a result of the non-functional optimization

step. Amongst all the possible combinations of services of the can-

didate pools of the tasks, the best (or Pareto-optimal in case of

QoS Value

SA Cost Setup + Execution + CleanUp

SA Setup 100

SA Execution 22.5

SA CleanUp 1.5

SA Quality 99.275%

SA Tolerance 0.05 mm

Table 1: The QoS measured for the CNC service

QoS Value

SB1
Cost Setup + Execution

SB1
Setup 2

SB1
Execution 5

SB1
Quality 75%

SB1
Tolerance 1 mm

SB2
Cost Setup + Execution

SB2
Setup 3

SB2
Execution 10

SB2
Quality 79%

SB2
Tolerance 0.75 mm

SB3
Cost Setup + Execution

SB3
Setup 1

SB3
Execution 25

SB3
Quality 85%

SB3
Tolerance 0.375 mm

Table 2: TheQoSmeasured for the three basic services (bend-
ing, drilling, engraving)

multiobjective problem) option is chosen as part of the overall solu-

tion. This implies solving the COP problem associated to the process

model, by minimizing or maximing the objective function(s).

An extract of a possible computed Process Service Plan is pre-

sented in Listing 2, where the results of the COP solution are listed

in metadata : optimization : result. In the section metadata : im-
plementation, the services used for the plan execution are stated

together with their input bindings, which ensure optimal execution

in terms of constraints and objective functions of the COP. Due to

space limitations, only one service is shown here. For details to the

BPMN extensions used by ODERU, we refer to [29].

4 AN APPLICATION
To showcase ODERU functionalities, a process for manufacturing a

mechanical metallic part was designed (e.g. a brake disk component).

Figure 3 depicts it. The process, after some initial administrative

tasks used to retrieve the correct raw material and the production

steps, enacts the actual mechanical operation and is concluded

by some other administrative jobs necessary to associate all the

documentation to the produced piece for the delivery to the client

(such as the production report and the transportation bill).

For our experiment we concentrate only on the task involved in

the actual manufacturing of the part, as the rest of the actions are

only concerned with information management, and the relevant

services are normally not the bottlenecks of manufacturing pro-

cesses. For the implementation of task ‘Mechanical Component’,

Pattern-Based Semantic Composition of Optimal Process Service Plans with ODERU iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Figure 2: An example of the combined functional and non-functional optimized process service plan. Upper two possible in-
stances following different paths for the alternative branch are depicted. Bottom The sequential selection and composition
process is showed: for each task all the functionally equivalent services are pinpointed then, amongst all the possible combi-
nations, the best one based on the COP formulation is selected and returned for execution. In case of request with multiple
objectives, one of the Pareto optimal solution [28] is returned. Each plan is equipped with the relevant variable bindings.

iiWAS ’17, December 4–6, 2017, Salzburg, Austria L. Mazzola et al.

Figure 3: The Disk Brake example production model used.

Figure 4: The IOPE semantic annotation for the services SB0
(Extract Required Operations), SB1

(Bending), SB2
(Drilling), SB3

(Engraving). The composition of these services generate an equivalent aggregate of the SA, from the functional point of view
(see Figure 5). In this way, they are interchangable when computing an optimal functional plan implementation for instances.

Figure 5: The IOPE semantic annotation for the SA service.
Please note that O# indicates an ontology, so every concept
and property is fully defined.

we suppose there will be at least two different services available

and we will describe them in detail in the next paragraphs.

A first specialised service (SA) wraps a Computer Numerical Con-

trol (CNC) equipped machine, able to directly utilise a Computer

Aided Design/Manufacturing (CAD/CAM) for executing a complex

set of operations without direct human intervention. For its seman-

tic annotations, please refer to Figure 5. The QoS of this service are

described in Table 1. In contrast, a set of services (SB1
,SB2

,SB3
) imple-

ments the three basic operations (bending, drilling, and engraving)

that compose the mechanical metallic part building. Their IOPE

semantic annotations can be seen in Figure 4. The QoS relevant for

these services are described in Table 2. Please note that using the

service SA or the sequence of services (SB1
,SB2

,SB3
) is equivalent

from the functional point of view, as only the non-functional aspect

is affected by this choice.

After defining the available services, we describe the COP for-

mulation for two different instance of the given process model: a

first one where the objective function is dominated by the cost com-

ponent (i.e: a standard brake disk for economic cars) and a second

one where the quality aspect is predominant (i.e: a special part for

high range car or a special spare part for tuning purposes). The

difference between the two instances is located inside two aspects

of the process: in the CAD/CAM model and in the optimization

COP formulation.

While we will not enter into the first aspect, because it is specif-

ically related to the mechanical process and not relevant for the

comprehension of the ODERU functionalities, but we present a

mathematical formulation of the Contraint Optimisation Problem,

starting from some helper functions, as from Equations 1,2, and 3.


OFC (S) =

∑S
i=1 S[i] ∗ (ϕ ∗Costs[i]) ϕ = 0.1

OFQ (S) =
∑S
i=1 S[i] ∗ (χ ∗ (1 −Quality[i])) χ = 5

OFT (S) =
∑S
i=1 S[i] ∗ (ψ ∗Tolerance[i]) ψ = 10

(1)

Produced_Quality(S) =
S∏
i=1

{
1 S[i] = 1

Quality[i] otherwise

(2)

Produced_Tolerance(S) =
S∑
i=1

S[i] ∗Tolerance[i] (3)

Pattern-Based Semantic Composition of Optimal Process Service Plans with ODERU iiWAS ’17, December 4–6, 2017, Salzburg, Austria

Then, the high-range production COP can be represented as in

the System 4:

min

s ∈S

(
OFC (S) +OFQ (S) +OFT (S)

)
s .t .

S∑
s=1

Tolerance[s] ≤ Limit_C(= 125)

Produced_Quality(s) ≥ Min_Q(= 0.50)

Produced_Tolerance(s) ≥ Max_T (= 3)

(4)

As a showcase and application of the COPSE2 grammar, we

present the encoding of the mathematical problem for the dual

instance of standard production into Fragment 3.

5 INITIAL EVALUATION
To test the effectiveness of our ODERU solution, we solved the

depicted model using the two instances presented in the previous

Listing 3: The COP definition for the standard instance,
based on the COPSE2 grammar previously defined.

1 PROBLEM

2

3 TYPE linear multi END TYPE

4 SOLVER both END SOLVER

5

6 CLASS

7 VARIABLES

8 S

9 END VARIABLES

10

11 CONSTANTS

12 α β γ Costs [] Quality [] Tolerance [] Limit_C Min_Q Max_T

13 END CONSTANTS

14

15 FUNCTIONS

16 Objective_Function(S) = SUM(i,1,S.length ,S[i] * (α * Costs[i] + β * (1

- Quality{i}) + γ * Tolerance{i}))

17 Produced_Quality(S) = PRODUCT(i,1,S.length , IF S[i] == 1 THEN Quality[i]

ELSE 1 END IF)

18 Produced_Tolerance(S) = SUM(i,1,S.length ,S[i] * Tolerance[i])

19 END FUNCTIONS

20

21 CONSTRAINTS

22 SUM(i,1,S.length , Costs[i]) < Limit_C

23 Produced_Quality(S) >= Min_Q

24 Produced_Tolerance(S) < Max_T

25 END CONSTRAINTS

26

27 minimize Objective_Function(S) -> http :// CREMA/Ont/fake.owl#TaskCosts

28

29 END CLASS

30

31 INSTANCE

32

33 DOMAINS

34 S[]{0 ,1}

35 END DOMAINS

36

37 VALUES

38 α = 1.0 β = 0.2 γ = 0.1 Limit_C = 125 Min_Q = 0.5 Max_T = 3

39 INPUT

40 Costs <- (Task_X, http :// CREMA/Ont/fake.owl#ServiceCosts)

41 Quality <- (Task_X, http :// CREMA/Ont/fake.owl#ServiceQuality)

42 Tolerance <- (Task_X, http :// CREMA/Ont/fake.owl#ServiceTolerance)

43 END INPUT

44 END VALUES

45

46 END INSTANCE

47

48 OUTPUT

49 Produced_Quality(S) -> (Task_X, http :// CREMA/Ont/fake.owl#TaskQuality)

50 Produced_Tolerance(S) -> (Task_X, http :// CREMA/Ont/fake.owl#TaskTolerance)

51 END OUTPUT

52

53 END PROBLEM

Inst SA SB1+2+3
∆ best %

I1 124.005 46.335 77.671 62.6%

I2 99.250 38.986 60.264 60.7%

Table 3: Comparison of the objective function values achiev-
able in case where the weights generate a conflict in the as-
signment for exclusive usage services.

section. As shown in Table 4, it optimizes the two instances for high-

range and standard production using two different functionally

equivalent implementations, respectively one with a single service

SA and the other with a composed service SB , resulting from the

composition of the three elemetary services SB1
, SB2

, and SB3
.

In this case, the result is clearly indicating a preferred assign-

ment for each instance, but in case of different weights (such as ϕ =

0.8, χ = 0.1, andψ = 1.0) both instances will be optimized by using

the same services (namely, the composition of {SB1
, SB2
, SB3

}) as

reported in Table 3. This is, in case of exclusive usage of resources

policy, an issue. However, because the value of the objective func-

tion is reported, the user is in condition of deciding which instance

to make sub-optimal, maintaining the best global result at the intra-

processes level. Despite not being currently fully supported, the

development of a specialized module for this is straightforward,

given the fact that our current implementation stores all the pos-

sible plans (services, sequences, variable bindings and achievable

objective value(s)) computed for an instance in a storage facility.

6 CONCLUSIONS
In this work we presented our innovative flexible solution to op-

timal service composition of process models ODERU, which com-

poses functionally correct plans and supports optimization of non-

functional aspects, in the form of a Constrained Optimization Prob-

lem, using as measures generic QoS and supporting user-defined

composed objective functions. To showcase the capabilities of the

tool, we applied it for optimising two intances of a mechnical pro-

cess (disk brake production) in case of service exclusive usage and

with conflicting requirements.

Its main advantages in respect of the existing approaches are

manifold: the first improvement is the business process formulation:

it allows a full integration of functional service selection and com-

position with non-functional optimization based on user-defined

QoS and objective functions arbitrarily complex in the COP. This is

achieved through our extensions of the BPMN standard and thanks

to the development of a grammar for the optimization part. Sec-

ondly, the produced output is directly enactable by an execution

environment, being a complete plan. This means that it is equipped

with all the relevant information: service assignments, data flow

(variable bindings) and optimal variable assignments for initializ-

ing the enactment environment. Eventually, the approach used,

encoding the computed PSP in an extended BPMN format, allows

to maintain in a single place model and plan. This can be useful for

a faster and easier reconsideration and/or replanning, if needed.

On the top of the presented use case with two conflicting in-

stances, the ODERU prototype was tested in other contexts, as re-

ported in [30]. These additional tests refer to two initial real-world

iiWAS ’17, December 4–6, 2017, Salzburg, Austria L. Mazzola et al.

Inst SA SB1+2+3
∆ best %

I1 α ∗CA+β ∗(1−QA)+γ ∗TA 124.005 α ∗CB1+B2+B3
+β ∗(1−max (QB1

,QB2
,QB3

))+γ ∗TB1+B2+B3
46.335 77.671 62.6%

I2 ϕ ∗CA+ χ ∗(1−QA)+ψ ∗TA 12.901 ϕ∗CB1+B2+B3
+χ ∗(1−max (QB1

,QB2
,QB3

))+ψ ∗TB1+B2+B3
28.900 15.999 55.4%

Table 4: The comparison of the possible objective function values achievable with the two different alternative implementa-
tions for the standard production instance I1 and the high-range one I2. The values in bold indicate the best solution for each
instance (I1 => {SB1

, SB2
, SB3

} and I2 => SA), using constant values as from the Listing 3.

industrial applications in the manufacturing domains of metal press

maintenance and automotive exhaust production.

There are still open points we would like to tackle in the future.

The most important ones affect (a) the internal ODERU workflow

and (b) the usage of data stream information for directing and guide

the tool behavior. From the workflow point of view, we are con-

sidering how to replace the current fully sequential approach with

an interleaving consideration of the functional and non-functional

aspects, as we expect better result can be achieved (at least on the

efficiency side). We are also considering cases where the possible

combinations computed with a pure sequential approach are too

numerous to be manageable with a complete approach: in such a

case also the effectiveness of the solution can be affected by this

change. As for the usage of streamed data from the production

shop-floor, we are designing an extension of the ODERU control

flow, to allow proactive plan re-optimization triggering.

The current status of the code from the ODERU demonstrator is

available for download in form of a Docker self-contained image as

AGPLv3 public code at https://oderu.sourceforge.io/.

ACKNOWLEDGMENTS
This work was partially financed by the European Commission

H2020 RIA project called CREMA (http://www.crema-project.eu),

under the agreement 637066. and by the German Federal Ministry

of Education and Research (BMBF) in the project INVERSIV.

REFERENCES
[1] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE intelligent

systems, vol. 16, no. 2, pp. 46–53, 2001.
[2] I. Weber, J. Hoffmann, J. Mendling, and J. Nitzsche, “Towards a methodology

for semantic business process modeling and configuration,” in Service-Oriented
Computing-ICSOC 2007 Workshops. Springer, 2009, pp. 176–187.

[3] I. Weber, J. Hoffmann, and J. Mendling, “Beyond soundness: on the verification

of semantic business process models,” Distributed and Parallel Databases, vol. 27,
no. 3, pp. 271–343, 2010.

[4] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel, “Semantic business

process management: A vision towards using semantic web services for business

process management,” in IEEE International Conference on e-Business Engineering
(ICEBE) 2005. IEEE, 2005, pp. 535–540.

[5] W. Abramowicz, A. Filipowska, M. Kaczmarek, and T. Kaczmarek, “Semantically

enhanced business process modeling notation,” in Semantic Technologies for
Business and Information Systems Engineering: Concepts and Applications. IGI

Global, 2012, pp. 259–275.

[6] M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov, “A BPMN based semantic

business process modelling environment,” in Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle Management (SBPM-2007), vol.
251, 2007, pp. 1613–0073.

[7] M. Born, J. Hoffmann, T. Kaczmarek, M. Kowalkiewicz, I. Markovic, J. Scicluna,

I. Weber, and X. Zhou, “Semantic annotation and composition of business pro-

cesses with Maestro for BPMN,” in European Semantic Web Conference. Springer,

2008, pp. 772–776.

[8] D. Karastoyanova, T. van Lessen, F. Leymann, Z. Ma, J. Nitzche, and B. Wet-

zstein, “Semantic Business Process Management: Applying Ontologies in BPM,”

in Handbook of Research on Business Process Modeling. IGI Global, 2009, pp.

299–317.

[9] M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein, “Semantic web

service search: a brief survey,” KI-Künstliche Intelligenz, vol. 30, no. 2, pp. 139–147,
2016.

[10] M. L. Sbodio, “SPARQLent: A SPARQL based intelligent agent performing service

matchmaking,” in Semantic Web Services. Springer, 2012, pp. 83–105.

[11] L.-H. Vu, M. Hauswirth, F. Porto, and K. Aberer, “A search engine for QoS-enabled

discovery of semantic web services,” International Journal of Business Process
Integration and Management, vol. 1, no. 4, pp. 244–255, 2006.

[12] T. Pilioura and A. Tsalgatidou, “Unified publication and discovery of semantic

web services,” ACM Transactions on the Web (TWEB), vol. 3, no. 3, p. 11, 2009.
[13] Y. Zhang, H. Huang, D. Yang, H. Zhang, H.-C. Chao, and Y.-M. Huang, “Bring QoS

to P2P-based semantic service discovery for the Universal Network,” Personal
and Ubiquitous Computing, vol. 13, no. 7, pp. 471–477, 2009.

[14] C. Kiefer and A. Bernstein, “The creation and evaluation of iSPARQL strategies

for matchmaking,” in European Semantic Web Conference. Springer, 2008, pp.

463–477.

[15] V. Andrikopoulos and P. Plebani, “Retrieving compatible web services,” inWeb
Services (ICWS), 2011 IEEE International Conference on. IEEE, 2011, pp. 179–186.

[16] S. Schulte, U. Lampe, J. Eckert, and R. Steinmetz, “LOG4SWS. KOM: self-adapting

semantic web service discovery for SAWSDL,” in Services (SERVICES-1), 2010 6th
World Congress on. IEEE, 2010, pp. 511–518.

[17] M. Klusch and P. Kapahnke, “The iSeM matchmaker: A flexible approach for

adaptive hybrid semantic service selection,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 15, pp. 1–14, 2012.

[18] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An integrated

semantic Web service discovery and composition framework,” IEEE Transactions
on Services Computing, vol. 9, no. 4, pp. 537–550, 2016.

[19] M. Klusch and A. Gerber, “Fast composition planning of owl-s services and

application,” in ECOWS’06. 4th European Conference on Web Services, 2006. IEEE,

2006, pp. 181–190.

[20] A. Strunk, “QoS-aware service composition: A survey,” in 2010 IEEE 8th European
Conference on Web Services (ECOWS). IEEE, 2010, pp. 67–74.

[21] D. Schuller, A. Polyvyanyy, L. García-Bañuelos, and S. Schulte, “Optimization

of complex QoS-aware service compositions,” in International Conference on
Service-Oriented Computing. Springer, 2011, pp. 452–466.

[22] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, “Qos-aware dynamic com-

position of web services using numerical temporal planning,” IEEE Transactions
on Services Computing, vol. 7, no. 1, pp. 18–31, 2014.

[23] L. Mazzola, P. Kapahnke, M. Vujic, and M. Klusch, “CDM-Core: A Manufacturing

Domain Ontology in OWL2 for Production and Maintenance,” in Proceedings
of the 8th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management - Volume 2: KEOD, 2016, pp. 136–143.

[24] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith, S. Narayanan,

M. Paolucci, B. Parsia, T. Payne, E. Sirin et al., “OWL-S: Semantic markup for

web services,” W3C Member Submission, 2004.
[25] M. Klusch and P. Kapahnke, “isem: Approximated reasoning for adaptive hybrid

selection of semantic services,” in Extended Semantic Web Conference. Springer,

2010, pp. 30–44.

[26] M. Klusch, “Overview of the S3 contest: Performance evaluation of semantic

service matchmakers,” in Semantic web services. Springer, 2012, pp. 17–34.

[27] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An integrated

semantic Web service discovery and composition framework,” IEEE Transactions
on Services Computing, vol. 9, no. 4, pp. 537–550, 2016.

[28] C.-L. Hwang and K. Yoon, Multiple attribute decision making: methods and appli-
cations a state-of-the-art survey. Springer Science & Business Media, 2012, vol.

186.

[29] L. Mazzola, P. Kapahnke, P. Waibel, C. Hochreiner, and M. Klusch, “FCE4BPMN:

On-demand QoS-based Optimised Process Model Execution in the Cloud,” in

Proceedings of the 23rd ICE/IEEE ITMC conference. IEEE, 2017, pp. NN–NN.

[30] L. Mazzola, P. Kapahnke, and M. Klusch, “ODERU: Optimisation of Semantic

Service-Based Processes in Manufacturing,” in Knowledge Engineering and Se-
mantic Web - 8th International Conference, KESW 2017, Szczecin, Poland, November
08-10, 2017, Proceedings, forthcoming, pp. NN–NN.

https://oderu.sourceforge.io/
http://www.crema-project.eu

	Abstract
	1 Introduction
	2 Related Work
	3 ODERU: Overview
	3.1 Semantic Annotation of Tasks and Services
	3.2 Constraint Optimization Problem Definition
	3.3 Process Service Plan

	4 An Application
	5 Initial Evaluation
	6 Conclusions
	References

