
A Collaborative Virtual Workspace for Factory
Configuration and Evaluation

Ingo Zinnikus, Xiaoqi Cao, Matthias Klusch, Christopher Krauss,
Andreas Nonnengart, Torsten Spieldenner, Philipp Slusallek

Agents and Simulated Reality
German Research Center
for Artificial Intelligence
Saarbrücken, Germany

Email: {ingo.zinnikus,xiaoqi.cao,matthias.klusch,christopher.krauss,
andreas.nonnengart,torsten.spieldenner,philipp.slusallek}@dfki.de

Abstract—The convergence of information technologies (IT)
has enabled the Digital Enterprise in which engineering, produc-
tion planning, manufacturing and sales processes are supported
by IT-based collaboration, simulation and enactment. As a result,
borders between reality and its virtual representations become
increasingly blurred. Advanced tools need to support flexibility,
specialization and collaborative evolution of the design where
the exchange of knowledge between domain experts helps to
improve informed decision making. In this paper, we present
a collaborative, web-based framework to create 3D scenarios for
product design, simulation and training assisted by animated
avatars.

I. INTRODUCTION

In recent years the trend towards networked organizations
where businesses and companies are working (often remotely)
together has been intensified [1]. Activities in networked
organizations consist of distributed processes which include
communication, exchange of resources and joint production
of business artefacts. These artefacts now include assets such
as product designs which in the past were kept under control
of one company. The co-innovation and co-design of product
families and production plants with a large number of part
suppliers requires precise adjustment between contributing
partners.

Supporting this precise adjustment of products and produc-
tion facilities requires IT Systems for integrated product devel-
opment. Engineering these integrated and interactive systems
where interaction involves cooperation and collaboration of a
potentially large number of contributors with complementary
skills e.g in product assembly design. This is an inherently
collaborative process where multidisciplinary experts from
different areas and geographically remote locations contribute
to one product or resource.

Regarding collaborative engineering, Booch and Brown [2]
highlighted the importance of a Collaborative Development
Environment defined as: ’a virtual space wherein all the
stakeholders of a project - even if distributed by time or dis-
tance - may negotiate, brainstorm, discuss, share knowledge,
and generally labor together to carry out some task, most
often to create an executable deliverable and its supporting

artifacts’ (see especially [3]). Empirical investigations confirm
this importance [4], [5].

Another recent trend is the usage of virtual techniques for
product and production facility development which allows
designing 3D representations that capture selected traits of
products and production plants. 3D prototypes can be used
to evaluate products in advance e.g. in order to reduce costs
and time to market. Together with this trend towards virtual
prototyping based on 3D design and engineering, a combined
research area arises: collaborative virtual prototyping.

As cooperation, coordination and collaboration are often
used interchangeably, a more fine-grained distinction between
these concepts is required. There are two major lines of
research which differ in the details of defining the relation
of these concepts (contrasting vs. encompassing). One (older)
approach stemming from organisation science defines the
relation as continuum where cooperation falls on the low end
and collaboration on the high, with cooperation in-between
[6], [7]. Cooperation is defined as the least formal interaction,
based e.g. on a simple verbal agreement. In cooperative work,
the division of labour leads to processes where each person is
responsible for a portion of a problem solving [8]. Coopera-
tion becomes coordinated when the informal problem solving
process is following an explicit or implicit joint planning
where responsibilities and roles are assigned. Collaboration
in a contrasting and narrow sense is the most formal in-
terorganizational relationship involving shared authority and
responsibility for planning, implementation, and evaluation
of a joint effort and involves the “mutual engagement of
participants in a coordinated effort to solve the problem
together“ [8].

In contrast, the other main approach on which we base our
work defines collaboration as the encompassing process with
cooperation, coordination and communication as its ingredi-
ents. Ellis et al. describe collaborative work as an iterative
process of communication, coordination and cooperation (3C
model [9], see Fig. 1). Based on this model, Fuks et al.
describe collaborative work as an iterative, cyclic process [10]:
Communication describes spontaneous exchange of informa-
tion between team members, like for example in the planning

Fig. 1. Iteration cycle of collaborative work based on the 3C model as stated
by Fuks et al. [10] and required services for each step as stated by [11]

phase of a project. Based on the communication, future
work is coordinated in tasks which are then cooperatively
accomplished. During the cooperation step new issues will
arise. Those need to be discussed and therefore lead to a new
iteration cycle until the project work is finished.

In general, design tasks are often ill-structured problems
[12]. In contrast to well-structured problems, where options
and goals are clearly defined, in ill-structured problems the
options available and possibly even the goals are unclear
and vague. For many ill-structured problems, generic routines
and procedures for problem solving do not exist. Although
considerable amount of research has been devoted to identify
recurrent collaboration patterns (e.g. [13]), for ill-structured
problems, a normative approach prescribing sequences of
steps to solve the problem is not feasible. A collaborative
engineering system for design tasks should be open to support
different problem-solving activities and strategies.

Nevertheless, a common feature of design tasks is that they
involve an iterative process of interactive decision making
and model building [12], thus confirming the adequacy of
the 3C model. To support this iterative process, a ”wide
range of sophisticated communication and content services”
[11] are necessary. Examples include ”customized discussion
services, workflow and knowledge management systems,
and content creation, mining, and retrieval services. [..] To
create useful collaborative virtual working environments for
communities, collaboration requirements need to be linked to
services satisfying those requirements” [11].

Collaboration in 3D design and virtual environments has
additional and specific requirements. Traditional collaboration
systems already provide the possibility to jointly work on
designing artefacts. In 3D environments, the central artefact
is a visible virtual model of reality. As visible 3D artefact, the
model is intended to be (possibly jointly) looked at. As virtual
(in contrast to a physical mock-up) model, it is an archetype
which represents selected and supposedly relevant features of
the real resource(s) to be produced. In virtual prototyping of
products and factories, these features include functional inter-
dependencies and other aspects such as ergonomy which can
be simulated or even aesthetic qualities. As in using physical

mock-ups, these functional and non-functional features and
aspects in virtual models can be evaluated before the resource
is actually produced. The joint and simultaneous evaluation of
these visible virtual models is a possibility which needs to be
supported in a much more refined way, especially when the
visual experience should be shared in realtime.

Whereas many 3D systems present the final view of a
product, a collaborative virtual prototyping system allows
jointly creating, viewing, reviewing, modifying 3D artefacts
and discussing alternative designs at all stages of the design
process. The possibility to make changes in realtime as well
as support for content creation and distributed storage retrieval
are further requirements. In contrast to many commercial
systems which often are monolithic and oversized, the system
should be easily extendable and quickly adaptable to different
use cases and scenarios.

II. OBJECTIVES

We developed Collaborate3D, a web-based collaborative
development environment for virtual prototyping that supports
and realizes the three iteration steps based on the 3C model
by Ellis [9]. Collaborate3D provides collaborative workspaces
with native support for communication, cooperation and coor-
dination and enables a shared visual experience of the creation,
modification and evaluation of a virtual 3D design.

Since in different contexts and scenarios, a variety of
components and modules are needed, the system is intended
to be extendable and customizable. Instead of a one size fits
all approach (which is prevalent especially in the commer-
cial tools), we developed a service-oriented platform which
supports customizing and adding services as plugins when
required. The result is a modularized and configurable col-
laboration architecture for 3D scene editing, evaluation and
simulation.

Taking into account that design is an ill-structured problem,
a specific configuration of system modules and services is
open for different problem-solving strategies. The system is
designed to be adaptable to a changing collaboration and task
model and to support the whole continuum of cooperation and
collaboration.

Apart from these general objectives, for implementing an
effective collaborative workspace for virtual 3D prototyping,
further goals include in detail:

• Ubiquitous accessibility via Web Page like implementa-
tion (central point of access)

• Simple inclusion of new 3D content and fast attachment
of new code

• Attach established (open) project management including
issue tracker tools for asynchronous collaboration.

The application scenario is based on a factory production
line where collaborators design and evaluate a factory module.
Evaluation in this case consists of checking functional features
such as production capacities, velocities and safety properties.
Additionally, activities of workers can be modelled and their
performance simulated and evaluated according to different
criteria.

Fig. 2. Collaborate 3D architecture

The structure of the paper is as following. In section III
we give an overview of the architecture of the web-based
system for collaborative prototyping and the basic technologies
used. In sections III-A - III-D, the XML3D-based layer
for visualisation and content creation, the distributed search
technologies for content retrieval, as well as verification and
agent technologies for evaluation are presented. In section IV,
we describe technical details of the implementation of the
workspace components. Related work is discussed in section
V. We conclude in section VI.

III. 3D COLLABORATION FRAMEWORK: ARCHITECTURE

Collaborative virtual prototyping calls for a fusion of several
technologies in order to provide a shared visual experience of
the design artefacts. Web and Web service technology is the
up-to-date solution to enable distributed access and real-time
sharing of contents and resources.

The Collaborate3D architecture (see Fig. 2) reflects the idea
of introducing service orientation into the virtual environment.
Platform components needed for the realisation of the virtual
environment are encapsulated as services hosted in the Col-
laborate3D service cloud. The architecture consists of three
layers: a project related collaborative workspaces with a 3D
editor for creating and modifying content, a service cloud
with application specific services and a storage layer. The
3D editor is based on an web-based framework for render-
ing 3D graphics. In the current implementation the service
cloud consists of a verification component for evaluation of
functional properties and an agent platform for evaluating
dependencies when e.g. human workers are interacting with
devices in production plants. Other components could be a
physics engine, kinematics, etc. A distributed repository for
content storage and retrieval provides access to semantically
annotated 3D models which can be inserted into a scene.

A. XML3D World

The collaboratively created 3D artefacts are contained in
the data layer which is based on the XML3D specification.
XML3D is an open declarative XML format that extends
the set of HTML web page elements by additional nodes to
represent 3D graphics in a scene graph like structure [14]. All

nodes within this graph are also nodes in the web sites DOM
tree representation (Document Object Model, [15]) and can be
accessed and changed via JavaScript like any other common
DOM elements as well. On these DOM nodes, HTML events
can be registered similar to known HTML elements. Resources
for mesh data can be stored externally in either JSON or XML
format and referenced by their URL. The renderer that is used
by XML3D is based on WebGL.

In addition to XML3D, Xflow allows to combine the scene
graph with dataflows [16]. Xflow is a declarative data flow
representation that was designed for complex computations on
XML3D elements. These computations include for example
skinned meshes and key frame animations. In these cases, the
current key frame takes the role of a data source in the graph,
whereas mesh transformations are sinks in the dataflow. By
this, changing the value of a key frame leads to a change in
the posture of a mesh, and thus a continuous change of the
key frame over time results in an animated mesh.

By using XML3D with Xflow as foundation for data layer,
we achieve both ubiquitous accessibility and high customiz-
ability: all scripts needed to display and use the 3D editor are
automatically loaded by the browser as soon as the user opens
the page in any web browser that supports WebGL. Further-
more, 3D models used for the scenario can be referenced by
their URL from remote storage locations.

For evaluation services to be able to operate directly on the
artefacts created in the editor, they must be able to access
the data layer that contains the 3D artefacts. This access is
directly provided by having both Xflow parameters and the
3D scene graph represented as part of the DOM tree by
XML3D. External services can e.g. animate virtual characters
by changing key frame values of Xflow graphs (in the case
of the agent platform service), to generate the navigation
mesh (using the geometry information contained in the DOM
tree) or verifying the functional correctness of a module and
display the trace witness via Xflow animation. The guiding
principle for services such as the verification is that the
functional specification of a composite module is based on the
functional specifications of the parts contained which build up
the composite module. The formal specifications of the parts
are contained in the scene graph as annotations of objects.

B. XML3D Editor

The 3D artefact itself is created in the interactive 3D
editor which is a web-based tool for creating and editing 3D
scenarios. Those scenarios consist of a static base geometry
(e.g. an empty factory hall) and several sets of 3D assets.
Assets can be added, moved within or removed from the scene
with simple drag and drop operations. Figure 6 shows the user
interface of the editor: The interactive 3D scene is displayed
on the left-hand side. Next to it is the sidebar which contains
the selection of 3D assets that can be added, as well as already
placed assets in a second tab.

Scenarios that share a common static geometry and the
same set of assets are grouped in projects. In terms of the
factory example above, this allows to create and store different

Fig. 3. Editor tool

configurations (scenarios) for the same factory hall (with the
factory setting being the project in this case). The editor itself
is part of a collaborative work space which allows a group of
designers and domain experts to jointly construct and visit a
3D scene.

To provide seamless communication with collaborators dur-
ing content creation, a basic personal messaging system is
integrated into the editor. Using this system, team members
can send each others short pieces of text. New messages are
indicated as soon as a user enters the scenario in the scope of
which the message was sent.

In addition, third party ticket and bug tracker systems that
provide a REST API [17] for HTTP access (as for example
Mantis1 or Trac2) can be integrated into the work space. The
step of actually choosing and integrating the tracker system in
the overall application is not possible from the graphical user
interface of the work space yet. However, the editor code is
easily extendable via a provided API for third party services.
As the editor is entirely written in JavaScript, and both 2D
user interface as well as 3D elements are represented as DOM
elements within this website, this extension can also be done
by web designers with minor experience in website scripting.
Information from third party system is them displayed directly
in the work space’s user interface.

Whenever more than one collaborator logs into the same
scenario, the process of content creation turns into a syn-
chronous editing session. Changes done to the scene by one
user (including adding objects, moving existing objects or
deleting them) triggers an update of the scene state in all
connected clients. We employ two approaches to avoid update
conflicts during concurrent editing. On client side, we use a
locking mechanism: An object that is selected by one user
is locked for editing for all his collaborators. This lock is
indicated in both the 3D view of the scene by rendering the
object semi transparent, and in the list of placed assets next
to the editing window: list entries of locked objects carry a
lock icon and are highlighted in red. In addition, the database
performs a version control based on revision numbers for each

1http://www.mantisbt.org
2http://trac.edgewall.org/

object. If an update is performed on an object with outdated
revision, the update request is declined and the sending client
is informed about the conflict.

External services from the XML3D Service Cloud (see also
Section III-D) can be accessed directly from the editor’s user
interface.

C. Storage Layer

A collaborative work space is composed of different types of
data (see Figure 4): First, an abstract representation of a scene
that was created in the editor as described in the previous
section. Second, 3D assets that contain the actual geometry
and texture information of 3D objects from which the resulting
3D artefact is composed. Third, information for coordinated
collaboration like for example open tasks or deadlines. For
each type of data, we need a repository that provides the
respective data to the work space.

1) Scene Database: Data about projects and scenarios that
are created with the scenario editor are stored in a database
that is directly connected to the editor. This project data
includes projects and related scenarios, 3D asset sets and
abstract representations of placed 3D objects, including an
object’s position and the URI that references its 3D asset data
in XML3D format on the resource repository. Each object may
moreover carry configuration parameters for attached services.
Changes in data are automatically transmitted to all clients
that are currently connected to a scenario that is affected by
these changes to provide synchronous, collaborative editing of
a scenario.

2) Semantic 3D Asset Repository: 3D artefacts are
assembled from 3D assets, available in iRep3D [18]. iRep3D
is a repository for hybrid semantic indexing and retrieval
of annotated 3D scenes in X3D, XML3D and COLLADA
at any level of granularity, in near real-time and with high
precision. iRep3D comes with a web-based user interface
which supports the user in annotating 3D scenes with plain
text as well as appropriate ontology-based concepts and
services in order to describe the functionality of scenes and
their objects [19].

Fig. 4. Storage and Service Assembly serving the XML3D editor

iRep3D performs off-line semantic indexing and on-line
query processing. The indexing process determines the
relevant score of a stored 3D scene based on its semantic
annotation and geometric features for the (a) scene concept
index, (b) semantic service index, and (c) geometric index
of iRep3D. The semantic similarity between scene concepts
in standard OWL2 bases on their approximated logical
subsumption relation and its information-theoretic valuation.
The matching score for pairs of semantic services in OWL-S
each of which describing the functionality of scene objects
are computed with the currently most precise service selection
tool iSeM [20]. The geometric feature index of a scene is a
set of B+ trees each of which represents a standard feature-
attribute pair which is instantiated by the scene according
to the X3D, XML3D and COLLADA specifications, while
geometric feature matching by iRep3D relies on classical
approaches for this purpose. The repository applies a breadth-
first-traverse-based pruning heuristic to efficiently maintain
its scene indices in case the set of indexed scenes or their
annotations change.

A query is a scene (in X3D, XML3D) that is annotated
with the desired semantic scene concept, semantic services,
and geometric features. iRep3D answers such queries by
means of a parallel index-based subquery processing and final
aggregation of resulting rank lists with a classical threshold
algorithm. Besides, its search for relevant scene objects is
performed even within indexed 3D scenes at any level of
granularity while positive results are extracted and indexed
as new scenes for further re-use, while the top most relevant
scenes are then displayed to the user together with provenance
information.

Indexed 3D scenes in XML3D, X3D or COLLADA are
stored internally in a native XML database while the iRep3D
repository itself provides a web-based user interface including
a semantic annotation toolkit, and is also accessible via a
REST API. Our experimental evaluation based on a test
collection 3DS-TC 1.0 with more than 600 annotated XML-
based 3D scenes revealed that iRep3D is significantly more
precise and with the same average response time than its
relevant and open-source competitors like Trimble3D, ADL
and the Princeton3D search engine.

3) External project management systems: Data for work
coordination is provided by external project management
systems. This meta data includes user groups, messages that
were sent in the scope of a project, issues and bug trackers.
Those systems can also take the role of user authentication,
if provided by the tool. Project management or bug trackers
are connected to the work space via REST API. All data is
displayed directly in the editor GUI and thus available during
synchronous editing sessions. The benefit of using an external
tool instead of using the scene database to store the meta data
directly with the scene data is the asynchronous accessibility
of the data from outside the editor. Existing tools like Trac,
Mantis or Redmine come with a front-end GUI that can be
operated from a Web-browser. That allows to contribute to

project coordination steps without having to use the actual 3D
design tool.

D. XML3D Service Cloud

The XML3D service cloud contains several services which
provide scenario-related simulation and evaluation functional-
ity. The service cloud can be extended and new services can be
added as plugins. In the current implementation, a verification
service for functional evaluation of factory modules and an
agent platform for controlling avatars are included.

E. Collaborative Evaluation through Formal Analysis

Physical systems that are controlled by embedded software
like flight control systems, automatic breaking systems, and
production lines in factory environments are called hybrid sys-
tems as they involve both discrete and continuous behavior. A
major goal in the design and implementation of hybrid systems
is the ability to reliably verify functional properties of the
system at hand. Flaws in the design of such complex systems
occur regularly, especially when created in a collaboration
of many different specialists. If they remain undetected and
manifest themselves in the final implementation of the system
they may lead to severe malfunctioning resulting in loss of
money and reputation or even worse, injury or loss of life.
A solution to this problem is the use of formal methods for
a semantically unambiguous modeling of systems and their
verification.

In our implementation we included a verification module
that allows the collaborative evaluation of the system modeled
in the configuration tool (see section IV-A). In communication
with a collaborating specialist for formal methods and verifica-
tion the system designer can formulate and verify the require-
ments for the system at hand. A tight integration of the formal
and the 3D model allows a (partially) automatic generation
of the formal model. On the other hand, the tight integration
also enables the results from the formal analysis performed
by the verification specialist to be presented to the designer in
a generally understandable manner. The verification itself is
performed by the verification tool HAVLE3 provided through
a REST service. Figure 5 depicts the general workflow of the
evaluation of a system modeled in the 3D Editor.

1) Hybrid Automata: HAVLE uses Hybrid Automata as
they are a language particularly well suited to formally model
hybrid systems in that they allow to specify both the contin-
uous and discrete behavior parts of the system in one model.
Our version of hybrid automata is very similar to the language
of rectangular hybrid automata as they are known from [23],
however with some extensions to provide an easy to use
and extensive approach to model hybrid systems. Their main
contribution is the support of a high degree of modularity.
All possible system behaviors are defined by the composition
of the different components. Since the language of hybrid
automata is a formal one with formal semantics, verification is
possible on systems specified in this language. For a detailed
introduction into hybrid automata we refer to [22].

3Hybrid Automata Verification by Location Elimination [21], [22].

Verification Module

Properties
- propertry1,
- property2,
- ...

Functional
Requirements
- requirement1,
- requirement2,
- ...

Designer
 Verification

Specialist

3D Model of the System
Formal Model

Carriage

PickAnd
Place

Stopper

Press

...

...

Additional Automata

Stopper
Monitor

Main
Control

Carriage
Control...

...

Translation of
Requirements

Verification Result / Trace Witness

Car::Run
St::Up

Car::nrPills = 0;
Clack::nrPills = 1;
Car::pos = 0;
Clock::c = 0;
Clock::c' = 761;
Clack::nrPills' = 1;
Car::pos' = 761;
Car::nrPills' = 0;

Car::Run
St::Up

Car::pos = 761;
Car::nrPills = 0;
Clack::nrPills = 1;
Clock::c = 761;
Car::pos' = 761;
Clack::nrPills' = 1;
Clock::c' = 761;
Car::nrPills' = 0;

Car::Stop
St::Up

Car::Stop
St::Up

... ...

Car::pos = 761;
Clack::nrPills' = 0;
Car::nrPills = 0;
Clock::c = 800;
Car::pos' = 761;
Clack::nrPills = 1;
Car::nrPills' = 1;
Clock::c' = 800;

Car::Run
St::Down

Car::Run
St::Down

Car::nrPills = 1;
Clack::nrPills = 0;
Car::pos = 761;
Clock::c = 1000;
Clack::nrPills' = 0;
Car::nrPills' = 1;
Car::pos' = 1463;
Clock::c' = 1702;

...

Car::nrPills = 1;
Car::pos = 761;
Clack::nrPills = 0;
Clock::c = 1000;
Clack::nrPills' = 0;
Car::pos' = 761;
Car::nrPills' = 1;
Clock::c' = 1000;

Car::pos = 1463;
Car::pos' = 0;
Car::nrPills = 1;
Clack::nrPills = 0;
Clock::c = 1702;
Clack::nrPills' = 0;
Car::nrPills' = 1;
Clock::c' = 1702;

Animated 3D Visualization

Mapping of
3D and formal

 component models

Fig. 5. Collaborative evaluation

2) The Verification Module: Models of the system can be
constructed in the 3D editor by putting together component
parts coming from a library of components. To allow verifi-
cation and at the same time provide a seamless integration,
additionally to the 3D description of their looks and physical
dimension, they come with a formal description of their
possible behavior. Adding a component to the model in the
3D Editor implicitly also adds the hybrid automaton assigned
to this component to the formal model. A mapping that also
comes with the component describes how the parameters of
the 3D object correlate with the parameters and the initial
states of the formal model. It translates position and rotation
of the 3D object into values for the template parameters and
initial locations of the automaton template. Applying this for
all objects added to the system allows us to automatically
generate a projection of the formal model from the system
modeled in the 3D editor onto its visual parts.

After constructing the system the designer can ask the ver-
ification specialist using the available communication mecha-
nisms, e.g. the messaging system presented in section III-B, to
verify certain requirements given for the designed system. Due
to the shared workspace and the included seamless synchro-
nization the verification specialist can immediately access the
current model of the system. If required (or desired) she can
adapt the automatically generated formal model by, e.g. adding
automata describing the non-visual parts like controllers or
automata for the interrelation between the physical parts.
She then formalizes the required properties submitted by the
designer and verifies them.

Depending on the verification result (in case of the rejection
of a safety property or the approval of a reachability property)
HAVLE provides a trace witness (out of a constructive proof).
Essentially a trace is a formal description of the behavior that
the system has to show to reach a certain desired or undesired
state. However a formal trace is very hard to read and can
only be understood by specialists.

Due to the tight integration of the formal and the 3D model

through the verification module we are able to map such
traces to animated visualizations of the behavior4 described
by the trace in the 3D model of the system. Using basic mod-
ularized Xflow keyframe animations we perform a stepwise
interpretation of the formal trace as pictures in an animation
sequence. As soon as the verification has been performed by
the verification specialist the visualization is also available for
the designer and provides it with a tangible feedback of the
performed verification.

Apart from collaborating with a specialist the designer can
also formulate the properties to be proven by himself or choose
from an existing list of required properties5. This is especially
useful in case a previous version of the system that had already
been verified has been modified. Similar to the idea of unit
testing, by so called unit verification one can verify after every
modification whether the system is still correct. Modifications
like adding, removing, or moving of components are directly
reflected in the formal model and need no further adaptations.

A more detailed description of the 3D visualization of
verification results, the automatic generation of formal models
from 3D models can be found in [22].

3) Agent-based avatars: In order to simulate interactions
between workers and the production assets, the editor allows
positioning animated avatars into the scene. The behaviour of
avatars is controlled by an agent platform which is provided
as a service. Agents in our context are the abstract entities
representing the avatars in the scene. Agent models containing
the behaviour can be modelled in advance and assigned to
virtual characters. For modeling agent behavior, we use the
Jadex agent platform6. The agent platform is based on the BDI
(belief - desire - intention) [24], [25] approach for describing
agent behavior. The BDI approach with its incorporation of
reactive and goal-based behavior is especially appropriate for
controlling avatars, because avatars in a 3D scene need to
react quickly to a changing environment while exposing goal-
directed behavior at the same time.

When a user wants to place an avatar into the scene, first
the avatar asset is selected. After placing the avatar into the
scene, one or more behavior capabilities behavior can be
assigned to the avatar. The available capabilities are based on
the agent behaviors which are provided by the agent platform.
By asssigning concrete goals (the intention) to an agent, the
corresponding avatar tries to achieve this goal according to
the behavior description. Agent-controlled avatars can be used
to simulate workers, e.g. for evaluating the reachability of
modules, time constraints for production processes, etc.

Since the objects in the scene can be moved using the editor,
they constitute possible obstacles for avatars. Therefore, in
the framework, a navigation service is associated to the agent
platform which generates a navigation mesh on demand each
time the scene layout is changed and prevents collisions of the

4In fact the projection of the trace onto the physical components occurring
in the 3D system.

5Possibly formulated before the system was even constructed resulting from
a requirements analysis.

6http://jadex-agents.informatik.uni-hamburg.de

avatars with each other and objects in the scene. The editing
and simulation of agent activities can be done collaboratively
in the shared workspace.

Fig. 6. Editor for agent-controlled avatars

IV. IMPLEMENTATION

A. Configuration Tool

To fulfill the requirement of ubiquitous accessibility, the
implementation of the editor tool is completely based on
XML3D with Xflow and JavaScript. The implementation of
the web editor client uses the Backbone.js framework [26]
to render both the 2D and 3D content from the data in the
database. Backbone.js implements the Model-View-Controller
(MVC) pattern [27]. For each data object in the data base
(model), backbone creates DOM elements (view) to render for
example both the XML3D element of an asset instance in the
3D scene and the respective entry in the list of asset instances
on the right hand side of the editor view.

We chose Apache’s CouchDB7 as storage unit for scene
data. This NoSQL (”not only relational”) database stores data
as key-value-pairs with no fixed scheme. These values can
be hierarchical objects with a number of attributes, usually
accessed by a unique ID.

CouchDB adds a revision number for each object to avoid
update conflicts when data is accessed by numerous users [28].
When a request to save data is sent to CouchDB, the request
has to include the latest revision number of the updated data
set known to the submitting client. If the revision number is
different from the one stored in the database, the data update
is rejected to avoid conflicts from concurrent updates.

CouchDB provides a RESTful web service to query data.
It returns data as JSON (JavaScript Object Notation) objects.
These objects can directly be used in a browser application’s
JavaScript code, without any overhead to parse the data. We
keep the number of requests needed to keep in sync with the
database low by using long polls. Requests that are sent as long
polls do not return immediately, but remain at the receiving
entity (in our case, the database), until the requested data is
available. This approach reduces the work load in the browser

7http://couchdb.apache.org

by the reduced number of database polls. In addition, once
a long poll is returned, the delivered changes can directly
be used to change displayed data accordingly. This keeps the
displayed system state in the application consistent with the
actual data stored in the database. The database is accessed
by both editor and services from the XML3D service cloud.

3D assets are stored and managed by iRep3D. In order to
import a new 3D asset to a project in the editor, the user
opens iRep3D from within the editor GUI and queries for the
desired asset. Once he concludes the import by mouse click,
iRep3D adds the reference URL of the respective 3D asset to
the list of asset documents in the database. By synchronous
long poll updates as described above, the imported 3D asset
is immediately available for placement.

We included Redmine8 exemplary for existing project man-
agement systems to the work space. Redmine is a Web-based
project management system, implemented using the Ruby on
Rails framework9 and published under the GNU general public
license. Project descriptions as well as issues and issue trackers
for projects can be queried via a REST API. In the terms of
the introduced 3D editor tool, we map Redmine projects to
configuration projects and Redmine sub-projects to scenarios.
For personal messages, we introduced a respective tracker
in Redmine and model messages in the configuration tool
by issues in Redmine. The link between Redmine projects
and the 3D work space is realized by respective parameter
attributes for objects in the scene database. Redmine provides
moreover HTTP Basic Authentication [29] via REST and can
therefore be used for user login. By taking this step, the set of
projects provided to a user when entering the 3D work space
is determined by rights granted by the Redmine configuration.

B. HAVLE

HAVLE GUI
Graphical Editor (GMF-based)
Ecore Model (EMF)
Input Validation

Hybrid Automaton System
Property

HAVLE Verification Unit
(Java)

Verificaiton (Deductive
Modelchecking)
Trace Generation from Witness
Preparation for visualization
(Projection to visible parts)

Trace for animation

3D Editor
Verification Module
(Html, Javascript)

Verification Interface
TraceInterpretation

...

produces
uses

REST Service

Hybrid Automata Templates

Fig. 7. Components of the Verification Module

The verification tool used in the implementation is HAVLE.
The specification unit of HAVLE provides a graphical user
interface for modeling hybrid automata in a graph-like man-
ner. The graphical editor is a GMF10-based Eclipse plugin.

8http://www.redmine.org
9http://www.rubyonrails.org
10Graphical Modeling Framework, http://www.eclipse.org/modeling/gmp/

Automata entered in the graphical editor are transformed into
Ecore models using the Eclipse Modeling framework (EMF11).

The verification unit itself is written in plain Java. In the
verification process the automata that the system consists of
are composed and translated into a logic based representa-
tion. The algorithm that performs the actual verification is a
combination of deductive techniques and model checking and
produces additionally to the answer whether a property holds
or not, a witness (if possible). From this witness it computes
a formal description of behavior that leads to the desired or
undesired state.

The verification module of the collaboration environment
presented in this paper is implemented in Javascript with
HTML as GUI front end. It accesses HAVLE trough a REST
service sending the formal model extracted from the system
model designed in the 3D editor and the property to be
evaluated to HAVLE and receiving the formal trace as a result.
This trace is then processed by a trace interpreter written in
Javascript: it goes through the formal trace step by step12 and
produces the according state in the 3D model using the basic
(Xflow) animations and the mapping that describes how values
of variables and locations in the formal model correlate to
basic the animations and values of variables in the 3D Model.

The separate components and their functions are sketched
in Figure 7.

C. Agent platform and navigation service
As already outlined in Section III-D, the service for agent

simulation consists of an agent platform provided by Jadex
and an associated navigation service for navmesh generation
and agent positioning. The associated navigation service is
HumanSim. Jadex and HumanSim communicate with each
other by TCP Socket connections. HumanSim consists of two
parts: a service platform that is implemented in Java, and
a browser-side part written in JavaScript that interprets the
messages sent from the platform (see Figure 8). The browser-
side JavaScript implementation moreover provides an API to
access agents managed by Jadex, create new agents in Jadex,
or assign plans to existing agents directly from the browser
application, in our case, the 3D editor.

When an agent-based simulation is started, the geometry
of the scene that is stored in the XML3D data layer is
automatically collected and sent to the HumanSim platform.
Out of this geometry, a navmesh is created that is used to
check for collisions between Jadex agents and obstacles in the
3D environment during agent simulation.

This setup allows us to run a BDI engine for agent simula-
tion with taking the structure of the user generated 3D artefact
into account.

D. iRep3D
We have designed and implemented our first prototype

of iRep3D repository in Java based on Springframework13,

11Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
12Every time a new frame is demanded by the renderer an new step is

computed.
13http://www.springsource.org/spring-framework

Fig. 8. Agent platform and navigation service infrastructure

Fig. 9. Architecture of the iRep3D 2.0 scene repository.

Ehcache14 and JPA 2.015 with Hibernate 3.016. We briefly
introduce, in this subsection, the implemented facilities for in
particular the real-time semantic query processing. For this, the
syntactic, conceptual, semantic service and geometric features
of 3D scenes are extracted in advance during off-line indexing
creation phase. Each ranked list of scenes is persisted as a
disk file. The latter is further used for query processing by
a lazy-loading mechanism, which loads the top T entries (T
is configured with 50 in the prototype) into memory during
system initialization and reads the next T entries when they
are needed by rank merging process. Besides, the extracted
features of 3D scenes are organized as scene abstracts that are
further stored in a MySQL database for the purpose of showing
3D scene details (not scene selection) on demand. By means
of pooling the connections to database, this performs quicker
than the XML-based on-line query on 3D scene files.

Three layers of iRep3D repository are implemented in
a loose-coupled fashion. They can be deployed in separate

14http://ehcache.org/
15http://jcp.org/en/jsr/detail?id=338
16http://www.hibernate.org/

http://www.springsource.org/spring-framework
http://ehcache.org/
http://jcp.org/en/jsr/detail?id=338
http://www.hibernate.org/

servers. Each of them is able to communicate with the others
via IP sockets. To increase their throughput, each layer main-
tains a first-in-first-out request cache. Pooled acceptor threads
put their received requests from upper layer to the cache and
the processing threads serve the requests out of cache. A query
is processed by four joined threads in parallel. Each of them
responses to the searching of scenes in syntactic, conceptual,
semantic service or geometric aspect. In addition, we enabled
a result caching heuristics for storing selected scene files and
abstracts that would be used on demand. The list of selected
3D scene identifiers is also cached in query processing layer.
When a page is displayed on demand, the contents for the
next one are preloaded. For speeding up the simulation of
reality, 3D scene files are (pre-) cached if they were (will be)
requested (by the next page).

V. RELATED WORK

A. Research and Prototypes

A project that thoroughly dealt with collaboration in virtual
environments is the DiFac project as described by Sacco et
al [30]. They developed a factory design tool in VR, which
integrates additional services for communication and project
coordination. In addition, visualization of evaluation processes
on a factory setup helps to find drawbacks in a specific
factory setup. Information from all external services is directly
visualized in the virtual environment. In contrast to the work
presented in this paper, DiFac is run in a standalone VR
application and not integrated in any web browser. Moreover,
the set of additional services is fixed, whereas we aimed at
providing a flexible API to append services of users’ choice.

Pappas et al presented DiCoDev [31], a web-based collab-
orative editing tool for 3D data. It includes user management
with user roles, access management and provides file exchange
for documents and 3D data. The workspace is embedded into
a virtual reality application based on the commercial PTC
Division MockUp platform17. Within this VR environment,
multiple users can create 3D content in real-time in a collab-
orative session.

Based on DiCoDev, Smparounis et al. created a Collabora-
tive Prototype designer that adds functions for collaborative
review sessions to the original application [32]. In these
sessions, users can inspect created models by navigating freely
around them in 3D space, share their current view points with
others or navigate to previously defined fixed view points.
The review and evaluation process is supported by a decision
support module.

Menck et al. introduced a system for collaborative factory
planning in a virtual environment [33], implemented using
VRUI, a framework to implement VR applications in C++.
The system provides an immersive virtual factory environment
for several users. Users can add objects to the virtual factory,
change their positions and remove them again. Objects can be
annotated to point out open issues or as documentation of the

17http://www.ptc.com/product/division

design process. Moreover, virtual meetings can be held in the
virtual world, while the annotated 3D factory is explored.

While the latter examples make use of third party platforms
to display 3D content, we provide a web-based 3D scenario
editor that does not need any software or libraries installed but
the web browser itself.

Wan et. al presented WebMWorks, a browser-based tool
for collaborative design, modeling, simulation and knowledge
sharing [34], building upon Modelica, an object-oriented lan-
guage for modeling physical systems 18. While models in this
system are usually expressed by an equation based language,
there also exists a schematic, diagram-like visualization of
respective models. The WebMWorks system introduced by
Wan et. al allows to create these models collaboratively in a
Web-browser, and run simulations based on created systems.
The actual models are served from a cloud storage. In contrast
to the approach presented in this paper, WebMWorks does not
provide any 3D visualization of created systems. Moreover,
the system is built to work on Modelica, and does not provide
any possibility to extend the existing platform by additional
external services.

B. Commercial Applications

The topic of collaborative work on 3D visualizations is not
only topic in research. Many commercial CAD (Computer
Aided Design) and 3D modelling tools nowadays include
collaborative features: Autodesk’s AutoCAD 36019 provides
a collaborative 2D-workspace for CAD design. Work can be
saved to a cloud storage and shared with co-workers. There ex-
ist versions for desktop PCs, mobile devices and a prototypical
Web-browser-based frontend to allow ubiquitous access of the
data. By decoupling access of the data from a specific machine
and providing a browser-based implementation, designers are
no longer bound to a licensed machine. However, AutoCAD
360 does not provide 3D visualization of data, but is limited
to 2D sketches.

A popular tool for 3D CAD design is CATIA by Dassault
Systèmes20. With Instant Collaborative Design 1 (CD1)21,
CATIA is extended by capabilities of sharing a workspace
interactively with co-workers. Data transfer is realized either
via peer-to-peer or client-server connection. Communication
features are included by a real-time chat and personal mes-
sages for asynchronous collaboration. Whereas CD1 offers
sophisticated solutions for concurrent product design, its use
is limited by the fact that in order to participate in the work,
software for each participant has to be licensed and installed
on a specific machine. This obviously slows down the process
of introducing a new member to the team or to allow a remote
expert to temporarily participate in design decisions.

18https://www.modelica.org/
19https://www.autocad360.com/
20http://www.3ds.com/products/catia/
21http://www.3ds.com/products/catia/portfolio/catia-v5/all-

products/domain/Infrastructure/product/CD1/

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a web-based collaborative de-
velopment environment for virtual prototyping. Whereas com-
mercial systems often are monolithic, we developed a Web-
based, distributed, service-oriented and extendable collabora-
tion framework which provides a shared visual experience
for collaborators. We described the services included in the
framework that can be used for evaluation of the designed
artefact. The collaborative development environment has been
implemented and applied to a factory design scenario.

As future work, we will extend the framework to enable
mobile access to the collaborative workspaces, using tablets
and smartphones as devices. Furthermore, we plan to include
virtual reality devices, e.g. head-mounted displays in order to
provide a more immersive experience of the 3D scenes.

REFERENCES

[1] L. M. Camarinha-Matos, “Collaborative networked organizations: Status
and trends in manufacturing,” Annual Reviews in Control, vol. 33, no. 2,
pp. 199 – 208, 2009.

[2] G. Booch and A. W. Brown, “Collaborative development environments,”
Advances in Computers, vol. 59, pp. 1–27, 2003.

[3] K. Dullemond, B. van Gameren, and R. van Solingen, “Collaboration
should become a first-class citizen in support environments for software
engineers.” in CollaborateCom. IEEE, 2012, pp. 398–405.

[4] T. DeMarco and L. Timothy, Peopleware - productive projects and
teams, 1987.

[5] D. Perry, N. Staudenmayer, and L. Votta, “People, organizations, and
process improvement,” Software, IEEE, vol. 11, no. 4, pp. 36–45, Jul.
1994.

[6] P. W. Mattessich, B. R. Monsey, and M. Amherst H. Wilder Foundation,
St. Paul, Collaboration [microform] : What Makes It Work. A Review
of Research Literature on Factors Influencing Successful Collaboration
/ Paul W. Mattessich and Barbara R. Monsey. Distributed by ERIC
Clearinghouse [Washington, D.C.], 1992.

[7] J. M. Czajkowski, “Leading successful interinstitutional collaborations
using the collaboration success measurement model,” 2007. [Online].
Available: http://www.mc.maricopa.edu/community/chair/conference/
2007/papers/leading successful interinstitutional collaborations.pdf

[8] J. Roschelle and S. D. Teasley, “The construction of shared knowledge
in collaborative problem solving,” in Computer-Supported Collaborative
Learning, C. O’Malley, Ed. Berlin: Springer, 1995, pp. 69–97.

[9] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: some issues and
experiences,” Commun. ACM, vol. 34, no. 1, pp. 39–58, Jan. 1991.

[10] H. Fuks, A. B. Raposo, M. A. Gerosa, and C. J. P. Lucena, “Applying
the 3c model to groupware development,” International Journal of
Cooperative Information Systems, vol. 14, no. 02n03, pp. 299–328, 2005.

[11] A. de Moor, “Towards more effective collaborative workspaces: From
collaboration technologies to patterns,” in 4th Collaboration at Work
Experts Group Meeting, 2006.

[12] D. Jonassen, Learning to Solve Problems: A Handbook for Designing
Problem-Solving Learning Environments. Taylor & Francis, 2010.

[13] A. Schmeil and M. J. Eppler, “Knowledge sharing and collaborative
learning in second life: A classification of virtual 3d group interaction
scripts.”

[14] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek,
“XML3D: interactive 3D graphics for the web,” in Web3D ’10: Pro-
ceedings of the 15th International Conference on Web 3D Technology.
New York, NY, USA: ACM, 2010, pp. 175–184.

[15] W3C, “Document Object Model definition,” http://www.w3.org/DOM/,
2005.

[16] F. Klein, K. Sons, D. Rubinstein, S. Byelozyorov, S. John, and
P. Slusallek, “Xflow - declarative data processing for the web,” in Pro-
ceedings of the 17th International Conference on Web 3D Technology,
Los Angeles, California, 2012.

[17] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[18] X. Cao and M. Klusch, “irep3d: Efficient semantic 3d scene retrieval,”
in VISAPP (2), S. Battiato and J. Braz, Eds. SciTePress, 2013, pp.
19–28.

[19] P. Kapahnke, P. Liedtke, S. Nesbigall, S. Warwas, and M. Klusch,
“Isreal: an open platform for semantic-based 3d simulations in the
3d internet,” in Proceedings of the 9th international semantic web
conference on The semantic web - Volume Part II, ser. ISWC’10, 2010,
pp. 161–176.

[20] M. Klusch and P. Kapahnke, “The isem matchmaker: A flexible approach
for adaptive hybrid semantic service selection,” Web Semant., vol. 15,
pp. 1–14, Sep. 2012.

[21] A. Nonnengart, “A deductive model checking approach for hybrid
systems,” Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany, Research Report MPI-I-1999-2-006,
November 1999.

[22] C. Krauß and A. Nonnengart, “Formal analysis meets 3d-visualization,”
in Concurrent Engineering Approaches for Sustainable Product Devel-
opment in a Multi-Disciplinary Environment, J. Stjepandić, G. Rock,
and C. Bil, Eds. Springer London, 2013, pp. 145–156.

[23] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science, ser.
LICS ’96. Washington, DC, USA: IEEE Computer Society, pp. 278–.

[24] M. Bratman, Intention, Plans, and Practical Reason, ser. Center for the
Study of Language and Information - Lecture Notes Series.

[25] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” in Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning, J. Allen,
R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA, 1991, pp. 473–484.

[26] Backbone.js, “Backbone.js,” Project Web Page, 2013,
http://www.backbonejs.org.

[27] A. Goldberg, “Information models, views, and controllers,” Dr. Dobb’s
J., vol. 15, no. 7, pp. 54–61, May 1990.

[28] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The Definitive
Guide Time to Relax, 1st ed. O’Reilly Media, Inc., 2010.

[29] J. Franks, P. Hallam-Baker, J. Hosteler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stuart, “Http authentication: Basic and
digest access authentication,” June 1999. [Online]. Available: http:
//tools.ietf.org/html/rfc2617

[30] M. Sacco, C. Redaelli, C. Constantinescu, G. Lawson, M. D’Cruz,
and M. Pappas, “Difac: digital factory for human oriented production
system,” in Proceedings of the 12th international conference on Human-
computer interaction: applications and services, ser. HCI’07, 2007, pp.
1140–1149.

[31] M. Pappas, V. Karabatsou, D. Mavrikios, and G. Chryssolouris, “De-
velopment of a web-based collaboration platform for manufacturing
product and process design evaluation using virtual reality techniques,”
in International Journal of Computer Integrated Manufacturing, vol.
19(8), 2006, pp. 805–814.

[32] K. Smparounis, K. Alexopoulos, and V. Xanthakis, “A Web-based
Platform for Collaborative Product Design and Evaluation,” in 15th
International Conference on Concurrent Enterprising (ICE), 2009.

[33] “Collaborative Factory Planning in Virtual Reality,” Procedia {CIRP},
vol. 3, no. 0, pp. 317 – 322, 2012, 45th {CIRP} Conference on
Manufacturing Systems 2012.

[34] L. Wan, C. Wang, T. Xiong, and Q. Liu, “A Modelica-Based Model-
ing, Simulation and Knowledge Sharing Web Platform,” in 20th ISPE
International Conference on Concurrent Engineering, September 2013.

http://www.mc.maricopa.edu/community/chair/conference/2007/papers/leading_successful_interinstitutional_collaborations.pdf
http://www.mc.maricopa.edu/community/chair/conference/2007/papers/leading_successful_interinstitutional_collaborations.pdf
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

	Introduction
	Objectives
	3D Collaboration Framework: Architecture
	XML3D World
	XML3D Editor
	Storage Layer
	Scene Database
	Semantic 3D Asset Repository
	External project management systems

	XML3D Service Cloud
	Collaborative Evaluation through Formal Analysis
	Hybrid Automata
	The Verification Module
	Agent-based avatars

	Implementation
	Configuration Tool
	HAVLE
	Agent platform and navigation service
	iRep3D

	Related Work
	Research and Prototypes
	Commercial Applications

	Conclusion and Future Work
	References

