
19

KI Fa c h b e i t r ä g e 1/06

Korrekturabzug: Künstliche Intelligenz, Heft 1/06, technische Hinweise unter www.kuenstliche-intelligenz.de/
per fax: +49 421 1630 1952 /Thema/HinweisefuerAutorInnenundGast-Herausgebe.htm

BSCA-P: Privacy Preserving Coalition
Forming Among Rational Web
Service Agents

Bastian Blankenburg, Matthias Klusch

In this paper, we propose a coalition formation protocol, called BSCA-P, that allows intelligent agents to negotiate
game-theoretically stable coalitions for Web service trading with a maximum of individual monetary profit, while
keeping certain kinds of financial data private. We show that no agent has to reveal its local service sales value and
final payoff, and can achieve a certain degree of both agent and service anonymity while still successfully participat-
ing in rational coalitions.

1 Introduction

In today’s increasingly networked and competitive world, the
appropriate utilization of pay per use Web services are con-
sidered as one major key to the success of commercial ser-
vice oriented business applications in domains such as e-
logistics, tourism, and entertainment. In the near future, in-
telligent service agents are not only supposed to search for,
interact with, and compose, but also negotiate access to, and
execute such Web services on behalf of its user, or other
agents. In fact, they may exhibit some form of economically
rational cooperation by forming coalitions to share the cre-
ated joint monetary value while at the same time maximizing
their own individual payoff. According to classical microeco-
nomics, means and concepts of cooperative game theory are
inherently well suited to this purpose.
However, the public revelation of quantity and value of local
service sales, and individual requests for particular services
required to play cooperative games with complete knowl-
edge could lead to an unsolicited competitive advantage in
web service oriented business. The problem is, how can cer-
tain kinds of local financial data be kept private while still
successfully participating in coalition negotiations to maxi-
mize individual profits? Research on privacy preserving coali-
tion formation is in its infancies; first solutions to this prob-
lem have been presented in [1, 2]1.

The remainder of this paper is organized as follows. In
section 2, we introduce basic notions of service agents, coali-
tion theory, and negotiation used throughout this paper.
Section 3 provides an analysis and examples of how cer-
tain types of financial information can be kept private dur-
ing negotiation of coalitions, whereas in section 4, we prove
that at the communication level, service requests can only
be anonymized by means of an anonymous routing proto-
col. Finally, the overall coalition formation protocol BSCA-P is
then presented with its computational and communication
complexity in section 5. We conclude in section 6.

1 This paper is an extended version of [2].

2 Coalitions of Service Agents

In this section, we introduce the basic notions of Web service
agents and cooperative game theory that are required to un-
derstand the approach proposed in subsequent sections.

2.1 Service Agents
We consider a Web service to be any kind of task-oriented,
XML-based business application software that is location
transparent, i.e., network accessible from anywhere with one
or multiple protocols of the IP suite, possibly enlarged with
additional descriptive metadata to describe its semantics for
service consumers, programmable via an API, and loosely
coupled with other software applications to implement pro-
cesses within, or across enterprises. It is supposed to be reg-
istered and located by means of web service registries, or in-
telligent middle agents [5]. Examples of ontology languages
for describing Web services range from WSDL for the con-
temporary Web, to WSDL-S, OWL-S, and WSMO for the future
semantic Web.

Unfortunately, in recent literature, the terms agent and
Web service are often used interchangeably. An autonomous
service agent is a special kind of intelligent information agent
[4] that is supposed to pro-actively search for, interact with,
and compose, but also negotiate access to, and execute
atomic, or composed Web services on behalf of its user, or
other agents. In contrast, Web services are considered pas-
sive in that they are not expected to be able to, for example,
autonomously decide upon its invocation, or intelligently (re-
)plan the composition of its own or other services either in-
dividually, or in joint cooperation with other services.

There are, in principle, three different ways of how an in-
dividual service consumer or provider agent can interact with
an network accessible Web service, that is via (1) the service
interface, or communication with another service agent that
either (2) provides this and possibly multiple other services,
or even (3) temporarily integrates parts of the service code
into its own on demand, thereby changing the individual re-
active agent behaviour accordingly. In this paper, we adopt
the second perspective of interaction, and do not differenti-
ate between the offering of atomic, or composite web ser-
vices WS by service agents.
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However, we do assume that each agent a is equipped
with an individual model of monetary valuation wa(WS) of
each local, or remote service WS it can deliver to its users.
Besides, the local execution of its own services does produce
a certain amount of costs ca(WS) per invocation. Any pair of
service agents a, a′ is interested to access or execute, respec-
tively, a particular service WS provided by a′ only if is possi-
bly profitable to do so, i.e., wa(WS) > ca′(WS). Since we fur-
ther assume an individual service agent to act economically
rational, it will try to negotiate a profitable joint agreement
for cooperation with other service agents in a coalition to
maximize its individual payoff. Such an agreement includes
the commitment of each coalition member to deliver both
relevant local services and those it is planning to compose
jointly with other members, as well as the implementation of
the negotiated payoff distribution among them. Such kind
of rational cooperation between Web service agents can be
described in terms of cooperative, or coalition games.

2.2 Coalition Games
According to microeconomics, a coalition game (A, v) is con-
stituted by a given set A of service agents, and the value v

of every possible joint coalition C ⊆ A among them. Each
coalition value v(C)

v(C) :=
�

a∈C

lwa(C) (1)

is the maximum monetary gain that can be achieved by co-
operation between the members of coalition C . This gain is
defined by the sum of the so called local worth lwa(C) of
each agent a ∈ A in C as its member.

Let Ea(C) denote the set of services that are executed by
a ∈ A, and Ra(C) the set of services of members of C which
are accessed by a. The local worth of a in C

lwa(C) :=
�

WS∈Ra(C)

wa(WS) −
�

WS∈Ea(C)

ca(WS) (2)

is its total monetary contribution to C (without sidepay-
ments), that is the difference between the local income of
the service agent by charging its users for relevant data pro-
duced by local, or remote services offered by another coali-
tion member, and the cost of executing its local services as
requested.

Example 1 Consider a 3-agent coalition game as shown in
figure 1. Service agent a1, for example, offers its own web ser-
vice ws1 to any other known agent of the game, that are ser-
vice agents a2 and a3. Each local execution of its service would
cost a1 an amount of 1ke, but produces no monetary income
as it is of no relevance for its own users. Hence, its self value is
zero.

Agent a3 is requesting access to service ws1 from a1, as
it can charge its local users with an total amount of 3ke per
use, but does not offer any service of interest for users of a1 in
turn. As a consequence, the local worth of a1 in a joint coali-
tion with a3 is lwa1(C1) = −ca1(ws1) = −1 whereas that
of a3 is lwa3(C1) = −ca3(ws1) = 3. Summing up the local
worths of all agents in every possible coalition yields the set of
coalition values which is the cooperative game to solve by ne-
gotiation: What coalitions shall the agents form, and how then
to distribute the coalition values to their members?

Figure 1: Example coalition game for three web service
agents.

2.3 Stable coalitions
A solution (S, u) of a cooperative game (A, v) is a partition
S of the set of agents, means a set of disjunct coalitions
that have been formed together with a distribution u of their
coalition values to each agent as member of respective coali-
tions. This payoff distribution is assumed to be efficient, that
is the joint benefit is distributed completely without any loss,
and individual rational, such that no agent gets less than it
could obtain by staying alone.

As soon as the coalitions have been formed, the com-
puted payoff distribution will be implemented by means of
certain side-payments that are to be exchanged among the
agents. In our case, each service agent a as a member of
a certain coalition C may only claim for some sidepayment
spu(a, C) by other agents, if the difference

spu(a, C) := u(a) − lwa(C); (3)

spu(C∗, C) :=
�

a∈C∗
spu(a, C), C∗ ⊆ C (4)

between its assigned payoff u(a), that is the money it shall
get, and its local worth lwa(C) in C , that is its local income
based on charging its own users, is positive. Otherwise, it
has to make a sidepayment of an amount of |spu(a, C)| to
other agents in C . If the payoffs u are distributed without
loss, the same holds for its implementation by exchange of
sidepayments between members of a coalition.

Corollary 1 Let C ∈ S , (S, u) be a solution of a game (A, v).
If C∗ = C , we write spu(C). Then spu(C) = 0, if an only if u

is efficient wrt. S .
A solution is called stable, in case no agent could have

an incentive to leave its coalition due to its assigned payoff.
There exist different stability concepts in game theory from
which we adopted, for the work reported in this paper,
an efficient variant of the Shapley value [7], the so called
bilateral Shapley value.

Definition 1 The union C of two disjoint coalitions C1, C2 ⊂
A \ ∅ is called a bilateral coalition, with C1 and C2 called
founders of C . A bilateral coalition C is called recursively bi-
lateral iff it is the root node of a binary tree denoted by TC for
which (a) every non-leaf node is a bilateral coalition, and its
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founders and sub-coalitions are its children, and (b) every leaf
is a single agent coalition. For the depth d(C∗, TC) of a node
C∗ in TC with either C∗ = C , or C∗ ⊂ C∗∗, C∗∗ ∈ TC it holds
that

d(C∗, TC) =

�
d(C∗, TC) = 0 if C∗ = C

d(C∗, TC) = d(C∗∗, TC) + 1 otherwise

A coalition structure S for (A, v) is called (recursively) bi-
lateral if ∀C ∈ S : C is (recursively) bilateral, or C = a, a ∈ A.
The bilateral Shapley value σb(C, Ci, v),Ci, i ∈ {1, 2} of the
bilateral coalition C is defined as the Shapley value of Ci in the
game ({C1, C2}, v):

σb(Ci, C, v) =
1

2
v(Ci) +

1

2
(v(C) − v(Ck)) (5)

with k ∈ {1, 2}, k �= i.
Given a recursively bilateral coalition structure S for a

game (A, v), a payoff distribution u is called recursively bi-
lateral Shapley value stable iff for each C ∈ S , every non-leaf
node C∗ in TC : u(C∗

i ) = σb(C
∗
i , C∗, vC∗), i ∈ 1, 2 with

∀C∗∗ ⊆ A :

vC∗(C∗∗) =

��
�

σb(C
p
k , Cp, vCp) if Cp ∈ TC ,

C∗ = C∗∗ = Cp
k , k ∈ 1, 2

v(C∗∗) otherwise
(6)

In other words, when merging two recursively bilateral
coalitions into one its value will be distributed down the cor-
responding coalition tree to its members by means of recur-
sively replacing the coalition value of the respective parent
coalition with its payoff, that is the bilateral Shapley value.
Example 2 Consider our example game, and the bilateral
coalition C1 = {a1} ∪ {a3}. Since v({a1}) = v({a3}) = 0,
it holds that σb({a1}, {a1} ∪ {a3}, v) = σb({a1}, {a1} ∪
{a3}, v) = 0 + 1

2 (2 − 0) = 1. Merging of C1 with C2 =

{a2} (C = C1 ∪ C2) yields v(C) = 4 and v(C2) = 0,
thus σb(C1, C, v) = 2 + 1

2 (4 − 2) = 3 and σb(C2, C, v) =

0 + 1
2 (4 − 2) = 1. Recursively replacing the coalition value

v(Ci) in (5) with the bilateral Shapley value of Ci then leads
to the following payoff distribution (cf. figure 2): u(a1) =

σb({a1}, {a1} ∪ {a3}, v∗) = 0 + 1
2 (3 − 0) = 1.5 and u(a3) =

σb({a3}, {a1} ∪ {a3}, v∗) = 0 + 1
2 (3 − 0) = 1.5.

2.4 Negotiation of stable coalitions
The BSCA protocol for negotiating such stable coalitions
does restrict negotiation to pairs of voted leaders of coali-
tions of given maximum size, thereby reducing the com-
munication complexity. Each coalition leader recursively dis-
tributes the potential joint coalition value to those agents
that are members of its current coalition according to the
bilateral Shapley values (cf. figure 2). Coalitions are formed
bilaterally per round based on coalition proposals that are
mutually accepted based on the expected maximum of in-
dividually rational payoffs for the agents involved. However,
to determine these potential payoffs, the BSCA protocol re-
quires each agent to reveal its local worth to every potential
coalition partner per round.

From the knowledge about the local worth of an agent
in some coalition, one could easily deduce, for example, its
monetary self value, that is the local income of the agent
from selling its own services exclusively to its own users. Fur-
ther, from the distribution of service requests, and the known

Figure 2: Binary tree of bilateral coalitions for the example
game.

set of local worth values, any third party could easily deduce
that some agent does apparently have a stronger interest in
certain services offered by some agents than by others. These
kinds of revelation could lead to an unsolicited competitive
advantage of these parties in web service oriented business
after, or in parallel to playing this particular coalition game.

In general, that is the problem of how to preserve data
privacy in cooperative games playing: To what extent an indi-
vidual service agent could keep its self values, and expected
final payoffs private to other agents such that all agents are
negotiating a solution of still the same game that is stable
according to the bilateral Shapley value? More general, what
is the trade off for any service agent between hiding certain
kinds of private financial data from potential collaboration
partners, and collectively rational profit making?

3 Non-Disclosure of Financial Data

The basic idea to solve this problem is that each agent should
not disclose its total local worth in a potential joint coalition
to any other agents but the amount resulting from collabora-
tion only. This so called additional local worth is the difference
between its local worth in the merger C and its current coali-
tion. In fact, any coalition (leader) C1 can locally compute
its bilateral Shapley value uC(C1) = v(C1) + 1

2av(C1, C2)

in a joint coalition C with some other coalition C2 simply
by means of its self value, and an equal distribution of the
additional joint coalition value av(C1, C2). The latter value is
computed by summing up the additional local worths of the
agents in each of the bilateral coalition founders. As a con-
sequence, coalition C1 could compute its expected payoff
without knowing anything about the total local worth of its
potential coalition partner C2.

In more detail, (5) can be rewritten as

σb(Ci, C, v) = v(Ci) +
1

2
· (v(C) − v(C1) − v(C2)) (7)
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with i ∈ {1, 2}. Thus, the additional coalition value

av(C1, C2) := v(C1 ∪ C2) − v(C1) − v(C2) (8)

produced by forming coalition C1 ∪ C2 is evenly distributed
among C1 and C2. For recursively bilateral Shapley value sta-
ble payoff distributions, this means that each child node in
the coalition tree gets half of the additional payoff of its par-
ent node. The share of the total payoff that a node gets is
thus directly dependent on its depth in the tree, which is
shown by the following lemma.
Lemma 1 Let (S1, u1) and (S2, u2) configurations for a game
(A, v), with u1 and u2 being recursively bilateral Shapley value
stable, and ∃C1, C2 ∈ S1 : C = C1 ∪ C2 ∈ S2. Then

∀C∗ ∈ TC : u2(C
∗) = u1(C

∗) +
av(C1, C2)

2d(C∗,TC)

Proof: Induction over d(C∗, TC). The case d(C∗, TC) = 0

is obvious because of the efficiency of σb and definition of
av. For d(C∗, TC) = 1, we have C∗ = Ci, i ∈ {1, 2} and
u2(Ci) = σb(Ci, C, v) = v(Ci) + 1

2av(C). Again because
of the efficiency of σb, v(Ci) = u1(Ci), and thus v(Ci) +
1
2av(C) = u1(Ci) +

av(C)

2d(C∗,TC ) . In case d(C∗, TC) = k > 1

and lemma 1 holds for all C∗∗ with d(C∗∗, TC) < k, we have
C∗ = Cp

i , i ∈ {1, 2}, Cp ∈ TC , d(Cp
i , TC) = d(Cp, TC) + 1

and u2(C
p
i ) = σb(C

p
i , Cp, vCi

) with vCp
i
(Cp) = u2(C

p) =

u1(C
p) +

av(C)

2d(Cp,TC ) . Applying 6 and 7, we get

u2(C
p
i ) = v(Cp

i ) +
1

2
(u2(C

p) − v(Cp
i ) − v(Cp

k))

= v(Cp
i ) +

1

2
(u1(C

p) +
av(C)

2d(Cp,TC)
− v(Cp

i ) − v(Cp
k))

= v(Cp
i ) +

1

2
(u1(C

p) − v(Cp
i ) − v(Cp

k))

+
av(C)

2d(Cp,TC)+1

= u1(C
p
i ) +

av(C)

2d(Cp
i ,TC)

For the merge of C1 and C2 to form C = C1 ∪ C2, we
further define the additional local worth of agent a ∈ Ci,
i ∈ {1, 2}:

alwa(Ci, C) := lwa(C) − lwa(Ci), (9)

and the summarized additional local worth for a subcoalition
C∗ ∈ TCi

alw(C∗, Ci, C) :=
�

a∈C∗
alwa(Ci, C) (10)

Also, note that

av(C1, C2) =
�

a∈C

lwa(C) −
�

a∈C1

lwa(C1) −
�

a∈C2

lwa(C2)

= alw(C1, C1, C) + alw(C2, C2, C) (11)

The following theorem shows that in order to compute
its sidepayment when merging coalitions C1 and C2, each
subcoalition C∗ ∈ TCi

only needs to consider its sidepay-
ment for the case without the merge and the additional local
worths of C1, C2 and C∗:

Figure 3: Privacy preserving negotiation of coalitions (round
1).

Theorem 1 Let (S1, u1) and (S2, u2) configurations for a
game (A, v), with u1 and u2 being recursively bilateral Shap-
ley value stable, and ∃C1, C2 ∈ S1 : C = C1 ∪ C2 ∈ S2. Then
∀C∗ ∈ TCi

, i ∈ {1, 2}:

spu2(C
∗, C) =spu1(C

∗, Ci) − alw(C∗, Ci, C)

+
alw(C1, C1, C) + alw(C2, C2, C)

2d(C∗,TC)

Proof: Remember that for any u, spu(C∗, C) =
�

a∈C∗ u(a)−
lwa(C) = u(C∗)−�a∈C∗ lwa(C) (see 4). Because of lemma 1,
9 , 10 and 11, we can rewrite

spu2(C
∗, C) = u1(C

∗) −
�

a∈C∗
lwa(C) +

av(C1, C2)

2d(C∗,TC)

= u1(C
∗) −
�

a∈C∗
(lwa(Ci) + alwa(Ci, C))

+
av(C1, C2)

2d(C∗,TC)

= spu1(C
∗, Ci) − alw(C∗, Ci, C) +

av(C1, C2)

2d(C∗,TC)

= spu1(C
∗, Ci) − alw(C∗, Ci, C)

+
alw(C1, C1, C) + alw(C2, C2, C)

2d(C∗,TC)

Please note that in case of C∗ = Ci, it holds that
spu1(C

∗, Ci) = 0, because of Ci ∈ S1 and corollary 1. Hence,
in order to obtain recursively bilateral Shapley value stable
payoff distributions by repeatedly merging coalitions, all sub-
coalitions have to inform each other only about their addi-
tional local worths. Absolute local worths as well as coalition
values do not have to be revealed at all. This is in contrast to
the traditional way of negotiating stable coalitions with com-
plete prior knowledge about local worth and coalition values
that constitute the game to be solved. We acknowledge that
this does hold in particular for the bilateral Shapley value but
not necessarily for other game-theoretic stability concepts.

Example 3 Consider, again, our example coalition game (cf.
fig. 1). During the first negotiation round, it turns out that
agents a1 and a3 would prefer each other as a coalition part-
ner, since both of them could obtain a higher individually ratio-
nal payoff in a joint coalition than each could get in a separate
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Figure 4: Privacy preserving negotiation of coalitions (round
2).

coalition with agent a2 (cf. figure 3). Agent a2 is even indifferent
in respect to the coalition it would prefer.

More concrete, {a1} and {a3} form a coalition C1, with
alwa1({a1}, C1) = −1 − 0 = −1 and alwa3({a3}, C1) = 3 −
0 = 3. According to theorem 1 we get

spu({a1}) = 0 +
(−1) + 3

21
− (−1) = 2

and

spu({a2}) = 0 +
(−1) + 3

21
− 3 = −2.

Thus, the net amount received by a1 and a3 are

u(a1) = lwa1(C1) + spu({a1}) = −1 + 2 = 1

= σb({a1}, {a1} ∪ {a3}, v)

and

u(a3) = lwa3(C1) + spu({a3}) = 3 − 2 = 1

= σb({a2}, {a1} ∪ {a2}, v).

In the second round, agent a2 negotiates with the leader
of the newly formed coalition C1 for joining as it is individu-
ally rational to do so: Its expected payoff in a potential grand
coalition amounts to 1ke, that is it may obtain more by means
of cooperation than it would by staying alone. On the other
hand, forming of coalition C1 is consent with this proposal for
the same reason: Its bilateral Shapley value of 3ke, recursively
distributed down the coalition tree to agents a1 and a3, yields
a rational expected payoff for both members.

More concrete, their additional local worths in the grand
coalition C are

alwa1({a1}, C) = 1 − (−1) = 2,

alwa3({a3}, C) = 2 − 3 = −1

alw(C1, C1, C) = alwa1({a1}, C) + alwa3({a2}, C) = 1

alw(C2, C2, C) = 1 − 0 = 1

The additional coalition value is thus

av(C1, C2) = alw(C1, C1, C) + alw(C2, C2, C) = 2

Applying theorem 1 again, we get the new payoff distribution
u∗ with

spu∗(C1) = 0 +
1 + 1

21
− 1 = 0

(= spu∗(C2))

The net payoffs of C1 and C2 are equal to their bilateral Shap-
ley values:

u∗(C1) = lwa1(C) + lwa3(C) + spu∗(C1)

= 1 + 2 + 0 = 3 = σb(C1, C, v)

u∗(C2) = lwa2(C) + spu∗(C2)

= 1 + 0 = 1 = σb(C2, C, v)

For sidepayments within C1, we again apply theorem 1:

spu∗({a1}, C) = spu({a1}, C1) +
1 + 1

22
− 2

= 2 + 0.5 − 2 = 0.5

spu∗({a3}, C) = spu({a3}, C1) +
1 + 1

22
+ 1

= −2 + 0.5 + 1 = −0.5

Consequently, the net payoffs of a1 and a3 are equal to their
recursively bilateral Shapley value stable payoffs:

u∗(a1) = lwa1(C) + spu∗(a1)

= 1 + 0.5 = 1.5 = σb({a1}, C, v)

u∗(a3) = lwa3(C) + spu∗(a2)

= 2 + (−0.5) = 1.5 = σb({a3}, C, v)

4 Anonymity of Service Requests

Another issue of privacy concerns the non-disclosure of pri-
vate non-financial information of an individual service agent
such as the number and kind of services it does request from
some other agent. Even if service agents were enforced to
negotiate stable coalitions based on the exchange of their
additional local worths only, the question is whether they
still would be able to deduce such kind of knowledge about
service oriented interests of potential competitors from the
set of additional local worths?

Unfortunately, it turns out that this indeed is possible.
For example, consider a bilateral coalition C = C1

�
C2 with

alw(C1, C) > 0. From this information, one can deduce that
lw(C1, C) > lw(C1, C1) = v(C1), which implies that agents
in C1 produce more value, and/or less costs than in C . That,
in turn, means that at least one agent in C1 did request ser-
vices that are offered by agents in C2. This kind of reasoning
chain can be recursively applied to every sub-coalition of C1

in the coalition tree. In particular, the first coalition partners
of an agent, that are its direct siblings in the coalition forma-
tion tree, know that it did request some services from them.
There is no way to hide this fact other than by committing
each of them to keep it private, and trust them to do so.

Though the existence of service requests of any individ-
ual agent in coalition C1 can be detected by other agents
in coalition C2, it turns out that they can be anonymized,
thus providing the agents with a weaker notion of privacy
at least. To measure degrees of anonymity, different no-
tions have been proposed in the literature, such as total, or
group anonymity, under possibilistic or probabilistic interpre-
tations [6, 3]. In fact, if some agent in C1 does request some
service offered by another agent in C2, the rest of the agents
in C1 could readily observe that, but do not know what kind
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Figure 5: Individual service request anonymities.

Figure 6: Options of encrypted service request message
"onion" routing from agent a2 to agent a3.

of service it is. Likewise, the service provider agent in C2,
with |C2| ≥ 2 knows that its service has been requested by
an agent in C1 but not which one (cf. figure 5).

We can quantify these kinds of possibilistic anonymity for
each service WS requested by an individual agent a ∈ C1 in
terms of

• service anonymity sa(WS, C1) = |�a∈C2
OSa| within C1

in terms of the number of services offered by members of
C2, such that, in the extreme, no agent knows which of its
coalition partners does access what specific service, and

• agent anonymity aa(WS, C2) = |C1| with respect to C2 in
terms of the size of its actual coalition C1, since from the
perspective of agents in C2, any agent in C1 might be the
originator of the service request.

Assuming that each agent specifies its desired (default) min-
imum degrees of service and agent anonymity for each web
service WS it is interested in, any request and coalition pro-
posal to potential cooperation partners will be submitted,
i.e., WS ∈ Ra(C), if and only if these requirements are met.

To maintain the above mentioned types of anonymity
also at the communication level, we adopt the simple onion
routing protocol [8] to anonymize the exchange of service
request messages between the service agents. In essence,
each service request message gets routed between sender
and receiver via randomly selected intermediate agents each
of which encrypting the message with its individual public
key (cf. figure 6). This way, for communication paths consist-
ing of at least three agents, no intermediate agent is able to
determine both the origin and the receiver of a service re-
quest message nor to decrypt its content to some extent as
guaranteed by the underlying encryption protocol.

5 Coalition Formation Protocol
BSCA-P

In this section, we finally propose the coalition formation
protocol BSCA-P that makes use of all concepts and means
that have been introduced in the previous sections. We as-
sume that service offers along with service execution costs
are known in prior.

Algorithm 1 For a game (A, v), S0 := {{a}|a ∈ A}, r := 0

and ∀C ∈ S0 : sp0(C) := 0. In every coalition C ∈ Sr , every
agent a ∈ C performs:
1. Let C ∈ Sr, a ∈ C and S∗ := S \ C .
2. Communication:

(a) For all C∗ ∈ S∗ do:
i. Determine set Ra(C∗) of requests, subject to the sets

OSa∗ of offers for each a∗ ∈ C∗, costs and minimum
anonymity degrees.

ii. For each service request which is in Ra(C) ∩ Ra(C∗)
keep the one with minimum costs.

iii. Set alwsa(C∗) := alwa(C, C∗).
iv. For each bilateral coalition Ca, Ca ∈ TC , a ∈

Ca, a = Rep(Ca), wait for a message from
Rep(Ca

i ), i ∈ 1, 2, a /∈ Ca
i containing

alwsRep(C)(C
∗) and set alwsa(C∗) := alwsa(C∗) +

alwsRep(C)(C
∗).

v. If a = Rep(C) then send alwsa(C∗) to Rep(C∗); else
send alwsa(C∗) to Rep(C+) with C+ ∈ TC , a =

Rep(C+
i ), i ∈ 1, 2, a �= Rep(C+).

(b) If a = Rep(C) then receive alwsRep(C∗)(C) and set
alws(C∗) := alwsRep(C∗)(C) + alwsa(C∗) for all C∗ ∈
S∗; else go to step 3i.

3. Coalition Proposals:
(a) Set Candidates := S∗, New := ∅ and Obs := ∅
(b) Determine a coalition C+ ∈ Candidates with ∀C∗ ∈

Candidates : alwsa(C+) ≥ alwsa(C∗).
(c) Send a proposal to Rep(C+) to form coalition C ∪ C+.
(d) Receive all coalition proposals from other agents.
(e) If no proposal from Rep(C+) is received and

Candidates �= ∅,
set Candidates := Candidates\{C+} and go to step 3b.

(f) If a proposal from Rep(C+) is received, then form the
coalition C ∪ C+:
i. If o(Rep(C)) < o(Rep(C+)) then set Rep(C ∪C+) :=

Rep(C); else set Rep(C ∪ C+) := Rep(C+).
ii. Inform all other Rep(C∗), C∗ ∈ S∗ \ C+ and all a∗ ∈

C, a∗ �= a about the new coalition and Rep(C ∪ C+)

iii. New :=
�
C ∪ C+�, Obs :=

�
C, C+�

(g) Receive all messages about new coalitions. For each new
coalition C1 ∪ C2 and RepC1∪C2 , set Candidates :=

Candidates \ {C1, C2}, New := New ∪ {C1 ∪ C2} and
Obs := Obs ∪ {C1, C2}.

(h) Send the sets New and Obs to all other coalition mem-
bers a∗ ∈ C, a∗ �= a

(i) If a �= Rep(C) then receive the sets New and Obs from
Rep(C).

(j) Set r := r + 1, Sr := (Sr−1 \ Obs) ∪ New.
(k) For each (sub-)coalition C∗ ∈ TC with Rep(C∗) =

a, determine spr(C
∗) according to theorem 1 (using

spr−1(C
∗) instead of spu(C∗)).

(l) If Cr = Cr−1then stop; else go to step 2
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Theorem 2 Let n = |A| and m := maxa∈A{|Ra|}. The com-
putational complexity of the protocol BSCA-P is in O(n3m2).
The communication complexity in terms of the number of ex-
changed messages per agent is in O(n2).

Proof: cf. [2]
After stable coalition configurations have been negoti-

ated among service agents following the BSCA-P protocol,
it will be implemented by exchange of actual sidepayments.
For this purpose, each leader of a (sub-)coalition C makes or
receives payments sp to, or from other leaders of immediate
parent and child coalitions in the binary coalition tree. this
way, only leaders of 2-agent coalitions get informed about in-
dividual sidepayments, that are its own, and that of the other
agent. As a consequence, only the very first coalition partner
of an individual agent a, that is its direct neighbour leaf in
the coalition tree, might ever know a’s exact sidepayment,
though its individual utility value still remains private. To en-
sure anonymous service requests and access, we require each
agent to follow the simple onion routing protocol.

6 Conclusions

We proposed a protocol for privacy preserving and stable
coalition formation among rational web service agents.
In particular, the payoffs and utilities of these agents can
almost or even completely be kept private, respectively,
during bilateral negotiations of recursively bilateral Shapley
value stable coalitions. Further, following the BSCA-P pro-
tocol, there is no need to reveal absolute coalition values
to successfully participate in coalition negotiations at all.
However, we showed that the existence of service requests
might not be hidden in general but anonymized to a spec-
ified degree. In summary, the negotiation protocol BSCA-P
allows service agents in the Internet to keep personal
financial data private, while increasing their individual prof-
its by means of rational cooperation with others in coalitions.
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