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Abstract. A growing number of applications in distributed environment involve very large data sets that are inherently distributed
among a large number of autonomous sources over a network. The demand to extend data mining technology to such distributed
data sets has motivated the development of several approaches to distributed data mining and knowledge discovery, of which only
a few make use of agents. We briefly review existing approaches and argue for the potential added value of using agent technology
in the domain of knowledge discovery, discussing both issues and benefits. We also propose an approach to distributed data
clustering, outline its agent-oriented implementation, and examine potential privacy violating attacks which agents may incur.
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1. Introduction

Mining information and knowledge from huge data
sources such as weather databases, financial data por-
tals, or emerging disease information systems has been
recognized by industrial companies as an important
area with an opportunity of major revenues from appli-
cations such as business data warehousing,process con-
trol, and personalised on-line customer services over
the Internet and Web.Knowledge discovery (KD) is a
process aiming at the extraction of previously unknown
and implicit knowledge out of large databases which
may potentially be of added value for some given ap-
plication [7]. The automated extraction of unknown
patterns, ordata mining (DM), is a central element
of the KD process. The large variety of DM tech-
niques which have been developed over the past decade
includes methods for pattern-based similarity search,
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cluster analysis, decision-tree based classification, gen-
eralization taking the data cube or attribute-oriented in-
duction approach, and mining of association rules [2].
One classical application of data mining is the market-
based or basket analysis of customer transactions, via
offline methods for partitioning,discovery of sequential
patterns, including tecniques to efficiently reduce the
set of potential candidates for the selection of relevant
items, such as hashing and sampling.

The increasing demand to scale up to massive data
sets inherently distributed over a network, with limited
bandwidth and available computational resources, mo-
tivated the development of methods for parallel (PKD)
and distributed knowledge discovery (DKD) [17]. The
related pattern extraction problem in DKD is referred
to asdistributed data mining (DDM). DDM is expected
to perform partial analysis of data at individual sites
and then to send the outcome as a partial result to other
sites, where it is sometimes required to be aggregated to
the global result. The principal problems any approach
to DDM must cope with concern issues of autonomy,
privacy, and scalability.
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Most of the existing DM techniques were originally
developed for centralized data and need to be modified
for handling the distributed case. As a consequence,
one of the most widely used approaches to DDM in
business applications is to apply traditional DM tech-
niques to data which have been retrieved from differ-
ent sources and stored in a centraldata warehouse,
i.e., a collection of integrated data from distributed data
sources in a single repository [23]. However, despite
its commercial success, such a solution may be imprac-
tical or even impossible for some business settings in
distributed environments. For example, when data can
be viewed at the data warehouse from many different
perspectives and at different levels of abstraction, it
may threaten the goal of protecting individual data and
guarding against invasion of privacy. Requirements
to respect strict, or a certain degree of, autonomy of
given data sources, as well as privacy restrictions on
individual data, may make monolithic DM unfeasible.

Another problem arises with the need to scale up
to massive data sets which are distributed over a large
number of sites. For example, the NASA Earth Observ-
ing System (EOS) is a data collector for satellites pro-
ducing 1450 data sets of about 350GB per day and per
pair of satellites at a very high rate which are stored and
managed by different systems, geographically located
all over the USA. Any online mining of such huge and
distributed data sets in a central data warehouse may
be prohibitively expensive in terms of costs for both
communication and computation.

To date, most work on DDM and PDM use dis-
tributed processing and the decomposability of data
mining problems to scale up to large data sources. One
lesson from the recent research work on DDM is that co-
operation among distributed DM processes may allow
effective mining even without centralized control [16].
This in turn leads us to the question of whether there
is any real added value in using concepts from agent
technology [18,35] for the development of advanced
DDM systems. A number of DDM solutions are avail-
able using various techniques such as distributed asso-
ciation rules, distributed clustering, Bayesian learning,
classification (regression), and compression, but only
a few of them make use of intelligent agents at all. In
general, the inherent feature of software agents, as be-
ing autonomous and capable of adaptive and delibera-
tive reasoning, seems to fit quite well with the require-
ments of coping with the above mentioned problems
and challenges of DDM. An autonomous data mining
agent, as a special kind of information agent [18], may
perform various kinds of mining operations on behalf

of its user(s) or in collaboration with other agents. Sys-
tems of cooperative information agents for data mining
tasks in distributed massive data environments, such
as multidimensional peer-to-peer networks [22,25,28]
and grid computing systems [9], appear to be quite a
natural vision for the near future.

In this paper we briefly review and classify existing
DDM systems and frameworks according to some cri-
teria in Section 2. This is followed by a brief discussion
on the benefits of using agents for DDM in Section 3.
We introduce in Section 4 an agent-based, distributed
data clustering scheme and discuss the threats to data
privacy which potentially arise in its application. We
conclude the paper in Section 6 with an outline of on-
going and future research work.

2. State of the art

In this section we provide a brief review of the most
representative agent-based DDM systems to date, ac-
cording to (a) the kind, type, and used means for se-
curity of data processed; (b) used DM techniques, im-
plementation of the system and agents; and (c) the ar-
chitecture with respect to the main coordination and
control, execution of data processing, and transmission
of agents, data, and models in due course of the DM
tasks to be pursued by the system.

BODHI [17] has been designed according to a frame-
work for collective DM tasks on heterogeneous data
sites such as supervised inductive distributed function
learning and regression. This framework guarantees a
correct local and global data model with low network
communication load. BODHI is implemented in Java;
it offers message exchange and runtime environments
(agent stations) for the execution of mobile agents at
each local site. The mining process is distributed to
the local agent stations and agents that are moving be-
tween them on demand each carrying its state, data and
knowledge. A central facilitator agent is responsible
for initializing and coordinating DM tasks to be pur-
sued within the system by the agents and agent sta-
tions, as well as the communication and control flow
between the agents. Inter-agent communication bases
on KQML [8].

PADMA [16] deals with the problem of DDM from
homogeneous data sites. Partial data cluster models are
first computed by stationary agents locally at different
sites. All local models are collected to a central site that
performs a second-level clustering algorithm to gener-
ate the global cluster model. Individual agents perform
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hierarchical clustering in text document classification,
and web based information visualization.

JAM [32] is a Java-based multi-agent system de-
signed to be used for meta-learning DDM. Different
learning classifiers such as Ripper, CART, ID3, C4.5,
Bayes, and WPEBLS can be executed on heteroge-
neous (relational) databases by any JAM agent that is
either residing on one site or is being imported from
other peer sites in the system. Each site agent builds
a classification model and different agents build clas-
sifiers using different techniques. JAM also provides
a set of meta-learning agents for combining multiple
models, learnt at different sites, into a meta-classifier
that in many cases improves the overall predictive ac-
curacy. Once the combined classifiers are computed,
the central JAM system coordinates the execution of
these modules to classify data sets of interest at all data
sites simultaneously and independently.

Papyrus [1] is a Java-based system addressing wide-
area DDM over clusters of heterogeneous data sites
and meta-clusters. It supports different task and pre-
dictive model strategies including C4.5. Mobile DM
agents move data, intermediate results, and models be-
tween clusters to perform all computation locally and
reduce network load, or from local sites to a central
root which produces the final result. Each cluster has
one distinguished node which acts as its cluster access
and control point for the agents. Coordination of the
overall clustering task is either done by a central root
site or distributed to the (peer-to-peer) network of clus-
ter access points. Papyrus supports various methods
for combining and exchanging the locally mined pre-
dictive models and metadata required to describe them
by using a special markup language.

Common to all approaches, is that they aim at in-
tegrating the knowledge discovered from data at dif-
ferent geographically distributed network sites, with
a minimum amount of network communication and a
maximum of local computation.

3. Why agents for DDM?

Looking at the state of the art of agent-based DDM
systems presented in the previous section we may iden-
tify the following arguments in favor or against the use
of intelligent agents for distributed data mining.

Autonomy of data sources. A DM agent may be
considered as a modular extension of a data manage-
ment system to deliberatively handle the access to the
data source in accordance with constraints on the re-

quired autonomy of the system, data and model. This
is in full compliance with the paradigm of cooperative
information systems [26].

Interactive DDM. Pro-actively assisting agents may
drastically limit the amount a human user has to su-
pervise and interfere with the running data mining pro-
cess [39]. For example, DM agents may anticipate the
individual limits of the potentially large search space
and proper intermediate results particularly driven by
their individual users’ preferences with respect to the
particular type of DM task at hand.

Dynamic selection of sources and data gathering.
One challenge for intelligent DM agents acting in open
distributed data environments in which, for example,
the DM tasks to pursue, the availability of data sites and
their content may change at any time, is to discover and
select relevant sources. In such settings DM agents may
be applied to adaptively select data sources according
to given criteria such as the expected amount, type
and quality of data at the considered source, actual
network and DM server load [30]. Such DM agents
may be used, for example, to dynamically control and
manage the process of data gathering to support any
OLAP (online analytical processing) and business data
warehouse application.

Scalability of DM to massive distributed data.
One option to reduce network and DM application
server load may be to let DM agents migrate to each of
the local data sites in a DDM system on which they may
perform mining tasks locally, and then either return
with or send relevant pre-selected data to their originat-
ing server for further processing. Experiments in using
mobile information filtering agents in distributed data
environments are encouraging [34].

Multi-strategy DDM. For some complex applica-
tion settings an appropriate combination of multiple
data mining techniques may be more beneficial than
applying just one particular one. DM agents may learn
in the due course of their deliberative actions which
one to choose, depending on the type of data retrieved
from the different sites and the mining tasks to be pur-
sued. The learning process of the multi-strategy selec-
tion of DM methods is similar to the adaptive selection
of coordination strategies in a multi-agent system as
proposed, for example, in [27].

Collaborative DM. DM agents may operate inde-
pendently on data they have gathered at local sites,
and then combine their respective models. Or they
may agree to share potential knowledge as it is discov-
ered, in order to benefit from the additional opinions
of other DM agents. Meta-learning techniques may be
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used to mine homogeneous, distributed data. However,
naive approaches to local data analysis may produce
an ambiguous and incorrect global data model if differ-
ent heterogeneous data sites are involved which store
data for different sets of features, possibly with some
common features among the sites. Collaborative DM
agents may negotiate among each other and jointly plan
a solution for the above mentioned problems at hand.
The need for DM agents to collaborate is prominent,
for example, in cases where credit card frauds have to
be detected by scanning, analysing, and partially inte-
grating world-wide distributed data records in differ-
ent, autonomous sources. Other applications of poten-
tial added value include the pro-active re-collection of
geographically distributed patient records and mining
of the corresponding data space on demand to infer im-
plicit knowledge to support an advanced treatment of
patients, regardless of which, and how many hospitals
they have been taken into in the past. However, frame-
works for agent-based collective data mining, such as
BODHI, are still more than rare to date.

Security and trustworthiness. In fact, this may
be an argument against the use of agents for DDM.
Of course, any agent-based DDM system has to cope
with the problem of ensuring data security and privacy.
However, any failure to implement the minimal privi-
lege at a data source, which means endowing subjects
with only enough permission to discharge their duties,
could give any mining agent unsolicited access to sen-
sitive data. Moreover, any mining operation performed
by agents of a DDM system lacking a sound security
architecture could be subject to eavesdropping, data
tampering, or denial of service attacks. Agent code and
data integrity is a crucial issue in secure DDM: Sub-
verting or hijacking a DM agent places a trusted piece
of (mobile) software – thus any sensitive data carried
or transmitted by the agent – under the control of an
intruder. In cases where DM agents are even allowed
to migrate to remote computing environments of the
distributed data sites of the DDM system methods to
ensure confidentiality and integrity of a mobile agent
have to be applied. Regarding agent availability there
is certainly no way to prevent malicious hosts from
simply blocking or destroying the temporarily resid-
ing DM agents but selective replication in a fault tol-
erant DDM agent architecture may help. In addition,
data integration or aggregation in a DDM process in-
troduces concern regarding inference attacks as a po-
tential security threat. Data mining agents may infer
sensitive information even from partial integration to a
certain extent and with some probability. This problem,

known as the so called inference problem, occurs espe-
cially in settings where agents may access data sources
across trust boundaries which enable them to integrate
implicit knowledge from different sources using com-
monly held rules of thumb. None of the existing DDM
systems, agent-based or not, is capable of coping with
this inference problem in the domain of secure DDM.

In the following sections we investigate how agents
may be used to perform a special kind of distributed
data mining, that is clustering of data at different ho-
mogeneous data sites. For this purpose, we present
an approach to distributed cluster analysis based on
density estimation, and then briefly discuss issues of
implementing the resulting scheme for distributed data
clustering in an agent-based DDM system, including
data privacy and trustworthiness.

4. A scheme for distributed data clustering

4.1. Density estimation based clustering

Cluster analysis is a descriptive data mining task
which aims at partitioning a data set into groups such
that the data objects in one group are similar to each
other and are as different as possible from those in
other groups. As dense regions of the data space are
more likely to be populated by similar data objects,
one popular clustering technique is based on reducing
the search for clusters to the search for such regions.
In density estimation (DE) based clustering the search
for densely populated regions is accomplished by esti-
mating a probability density function from which the
given data set is assumed to have arisen [5,15,31]. One
important family of methods requires the computation
of a non-parametric density estimate known askernel
estimator.

Let us assume a setD = {xi|i = 1, . . . , N} ⊆ R
d

of data objects. Kernel estimators originate from the
intuition that the higher the number of neighbouring
data objectsxi of some given space objectx ∈ R

d, the
higher the density at this objectx. However, there can
be many ways of computing the influence of neighbour-
ing data objects. Kernel estimators use a so calledker-
nel function K(x) : R

d → R which integrates to unity
overRd. A kernel estimator ϕ̂K,h[D](·) : R

d → R+

is defined as the sum over all data objectsxi in D of
the differences betweenx andxi, scaled by a factor
h, calledwindow width, and weighted by the kernel
functionK:
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ϕ̂K,h[D](x) =
1

Nhd

N∑
i=1

K

(
1
h

(x − xi)
)

. (1)

A kernel estimator can be considered as a sum of
“bumps” placed at the observations. The window width
h controls the smoothness of the estimate, whereasK
determines the shape of the bumps.

Usually,K is radially symmetric and non-negative
with a unique maximum in the origin; in this case,K
formalizes the decay of the influence of a data object
according to its distance. In the following, we will
consider only kernels of this kind.

Prominent examples of kernel functions are the stan-
dard multivariate normal density (2π)−d/2

exp(− 1
2xT x), the multivariate uniform kernelw(x),

defined by

w(x) =
{

c−1
d if xT x < 1,
0 otherwise,

and the multivariate Epanechnikov kernelK e(x), de-
fined by

Ke(x) =
{

1
2c

−1
d (d + 2) if xT x < 1,

0 otherwise,

where cd is the volume of the unitd-dimensional
sphere. An example of kernel estimate inR showing
the normal component kernels is shown in Fig. 1.

Whend � 2, it may be advisable to linearly trans-
form the data, in order to avoid large differences of
spread in the dimensions, and transform inversely after
applying the estimate [11]. In an equivalent manner,
this is accomplished by the estimate:

ϕ̂K,h[D](x) =
(detS)−1/2

Nhd

N∑
i=1

k

(2)(
1
h2

(x − xi)T S−1(x − xi)
)

whereS is the sample covariance matrix ofD, andk
satisfiesk(xT x) = K(x).

The criteria to optimally chooseK and h have
been extensively dealt with in the literature on non-
parametric density estimates, whereK and h are
deemed optimal if they minimize the expected value
of the integrated squared pointwise difference between
the estimate and the true densityϕ of the data, ormean
integrated square error (MISE). It has been shown that
the performance of the Epanechnikovkernel, measured
by the MISE criterion, is optimal; however, the perfor-
mances of commonly used kernels do not differ sub-
stantially from the performance of an optimal kernel.

Therefore, the choice of a kernel may be based on com-
putational or differentiability properties, rather than on
its MISE. The optimal value of the window widthh can
be approximated as

hopt = A(K)N−1/(d+4) (3)

whereA(K) depends also on the unknown true density
ϕ. The value ofA(K) has been tabulated for com-
monly used kernels whenϕ is a unit multivariate nor-
mal density [31]. The resulting values ofhopt can be
used directly in Eq. (2). Alternatively, if Eq. (1) is used,
the value ofh can be defined by

h =
(
d−1

∑
i

sii

)1/2

hopt (4)

taking thus into account the average variance of the
data over all dimensions [31].

In DE-clustering, the kernel estimate of a data set has
been used for the discovery of many types of density-
based clusters [5,15,31]. One simple type is the so-
calledcenter-defined cluster: every local maximum of
ϕ̂ corresponds to a cluster including all data objects
which can be connected to the maximum by a continu-
ous, uphill path in the graph of̂ϕ. It is apparent that, for
every data object, an uphill climbing procedure driven
by the kernel estimate will find the local maximum
representing the object’s cluster [15,19,31].

4.2. KDEC-based distributed data clustering

We define the problem ofhomogeneous distributed
data clustering (homogeneous DDC) as follows. Let
D = {xi|i = 1, . . . , N} ⊆ R

d be a data set of objects.
Let Lj , j = 1, . . . ,M be a finite set ofsites. Each
site Lj stores one data setDj of sizeNj . It will be
assumed thatD =

⋃M
j=1 Dj . Let C = {Ck} ⊆ 2D

be a clustering ofD, whose elements are pairwise dis-
joint. The homogeneous DDC problem is to find for
j = 1, . . . ,M , a site clusteringC residing in the data
space ofLj, such thatCj = {Ck ∩Dj |k = 1, . . . , |C|}
(correctness requirement), time and communications
costs are minimized (efficiency requirement), and, at
the end of the computation, the size of the subset of
D which has been transferred out of the data space of
any siteLj is minimized (privacy requirement). The
traditional solution to the homogeneous DDC prob-
lem is to simply collect all the distributed data sets
Dj into one centralized repository where the cluster-
ing of their union is computed and transmitted to the
sites. Such an approach, however, does not satisfy
our problem’s requirements both in terms of privacy
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Fig. 1. Kernel estimate and its normal component kernels (h = 0.25, N = 32).

and efficiency. Therefore, in [19] a different approach
has been proposed yielding a kernel density estimation
based clustering scheme, called KDEC, which may be
implemented by appropriately designed DM agents of
an agent-based DDM system. Before examining the
issues and benefits of an agent-based implementation,
we briefly review the KDEC scheme.

The KDEC scheme is based on three simple obser-
vations: density estimates are (i) additive for homoge-
neous distributed data sets, (ii) sufficient for computing
DE-clustering, and (iii) provide a more compact rep-
resentation of the data set for the purpose of transmis-
sion. In the sequel, we tacitly assume that all sitesLj

agree on using a global kernel functionK and a global
window widthh. We will therefore omitK andh from
our notation, and writêϕ[D](x) for ϕ̂K,h[D](x).

The global density estimatêϕ[D](x) can be written
as the sum of the site density estimates, one estimate
for every data setDj :

ϕ̂[D](x) =
M∑

j=1

∑
x∈Dj

K

(
1
h

(x − xi)
)

(5)

=
M∑

j=1

ϕ̂[Dj ](x).

Thus, the local density estimates can be transmitted
to and summed up at a distinguished helper site yield-
ing the global estimate which can be returned to all
sites. Each siteLj then may apply to its local data
space a hill-climbing technique to assign clusters to its
local data objects. Note however that Eq. (1) explic-

itly refers to the data objectsxi. Hence, transmitting
a naive coding of the estimate entails transmitting the
data objects which contradicts the privacy requirement.
Multi-dimensional sampling provides an alternative ex-
tensional representation of the estimate which makes
no explicit reference to the data objects.

For x ∈ R
d, let x1, . . . , xd be its components. Let

τ = [τ1, . . . , τd]T ∈ R
d be a vector ofsampling pe-

riods, and letz • τ denote[z1τ1, . . . , zdτd]T , where
z ∈ Z

d. A function f : R
d → R is band-limited to

a boundedB ⊂ R
d if and only if the support of its

Fourier transform is contained inB. If B is a subset of
a rectangle[−π/τ1, π/τ1)× · · · × [−π/τd, π/τd), it is
well-known that thesampling series

∑
z∈Zd

f(z • τ )sinc
(

x1

τ1
− z1

)

(6)

· · · sinc
(

xd

τd
− zd

)
,

where

sinc(x) =
{

1 if x = 0,
sin πx

πx otherwise,

converges tof under mild conditions onf (see, e.g. [14,
p.155]). If we letf(·) = ϕ̂[Dj](·) in Eq. (6), and
truncate the series to a finited-dimensional rectangle
R(z1, z2) having diagonal(z1, z2) we obtain an inter-
polation formula:

∑
z∈R(z1,z2)

M∑
j=1

ϕ̂[Dj ](z • τ )sinc
(

x1

τ1
− z1

)
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· · · sinc
(

xd

τd
− zd

)
(7)

Notice that the function represented by Eq. (7) is
not extensionally equal to the kernel global estimate
ϕ̂[D](x) both because kernel estimates are not band-
limited on any region, and because of the truncation in
the series. However, as argued in [19], the approxima-
tion introduces only a small error. In fact, both a den-
sity estimate and its Fourier transform vanish rapidly
when the norm of the argument→ ∞; therefore, we
may takeτ in such a way that the transform is negligi-
ble inR

d \ [−π/τ1, π/τ1)× · · · × [−π/τd, π/τd), and
by selecting(z1, z2) so that the estimate is negligible
in R

d \ R(z1, z2).
Therefore, Eq. (7) gives an approximation of the

global density estimate that can be exploited to devise
a distributed clustering scheme: Forj = 1, . . . ,M , the
samples{ϕ̂[Dj ](z • τ ) : z ∈ R(z1, z2)} of the j-th
local density estimate are transmitted to and summed
up at a distinguished helper site yielding the samples of
the global estimate which can be returned to all sites,
which then use Eq. (7) as the global density estimate to
which the hill-climbing technique is applied.

Algorithm 1 KDEC: distributed clustering based on density
estimation

func Interpolate (x, τ , z1, z2, Sam[ ]) ≡
foreach z ∈ R(z1, z2) do

r := r + Sam[z]Πd
i=1Sinc

(
xi
τi

− zi

)
od;
r.

proc DataOwner(D[ ],H, Clus[ ]) ≡
Negotiate (H, τ, z1, z2,K, h);
Send (Sample (D, τ, z1, z2,K, h));
Sam := Receive (H)
for i := 1 to Length (D) do

Clus [i] := Nearest(
FindLocalMax (xi, τ , z1, z2, Sam,

∇ Interpolate( )));
od.

proc Helper (L[ ]) ≡
Negotiate (L); SetZero(Sam);
for j := 1 to Length (L) do

Sam := Sam + Receive (L[j])
od;
for j := 1 to Length (L) do

Send(Sam, L[j])
od.

A distributed implementation of the KDEC scheme
is sketched as Algorithm1. Local sites runDataOwner,
whereas the helper site runsHelper, whereH , D[ ],
L[ ], reference the helper, the local data set, a list of
local sites, respectively, andClus[ ] is the result (an
object-cluster look-up table).Negotiate sets up a fo-

rum where the local sites can reach an agreement onτ ,
R(z1, z2), the kernelK and the window widthh. Lo-
cal sites send the samples of the local estimate ofD[ ]
to H which sums them orderly. Finally, each local site
receives the global samples and uses them in procedure
Interpolate to compute the values of the global density
estimate and applies the gradient-driven, hill-climbing
procedureFindLocalMax to compute the correspond-
ing local data clusters (see [19] for more details).

Example. Figure 2 shows a dataset of100 2-
dimensional objects containing two clusters, which
were randomly generated with a bivariate normal dis-
tribution, and the contour plot of its kernel estimate,
computed for a normal kernel withh = hopt = 1/

√
5

by means of Eq. (2). Figure 3 illustrates the clusters
computed by the KDEC scheme on the dataset, divided
between two sites in such a way that each local dataset
spans across both clusters. Objects plotted with equal
symbol shapes belong to the same cluster and viceversa.
The figure also shows the contours of the sampling se-
ries of the whole dataset, computed withh = 1/

√
5,

τ = [h, h]T . As the local maxima of the estimate are
preserved, the clusters are correctly recovered. Fig-
ure 4 shows the output of KDEC and the contours of
the series on the same datasets, settingh = 1/

√
5,

τ = [5h, 5h]T . In this case, the sampling series is
clearly a poor approximation of the estimate. Never-
theless, the local maxima are preserved, and KDEC
returns the correct clusters.

Algorithm 1 is abstract, in that it only specifies the
flow of information between processes, and it ignores
actual running locations in the network and the tech-
nology of distributed computation. In the following
section we will describe various options to make the
KDEC scheme more concrete, and some pitfalls to data
privacy and security.

4.3. Agents for KDEC-based homogeneous DDC

The KDEC scheme may be modified in several ways
to generate protocols for stationary or mobile agents.
We assume a DDM system consisting of a set{Ln|1 �
n � M,M > 1} of networked homogeneousdata sites
and a set{Ln|M +1 � n � M ′} of helpers. Both data
sites and helpers provide support for local and external,
visiting agents. Each site respects its local autonomy
by individually granting read-only access to external
data mining agents.

M ′ data mining agentsAn have been designed and
deployed at the data sites and helpers. AgentAn is
assumed to be associated to siteLn, for 1 � n � M ′.
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Fig. 2. Scatter plot of a 2-dimensional dataset and contour plot of its kernel estimate,h = 1/
√

5.

The data site agent interested in starting a data mining
initiative, named theinitiator, collects a list of possi-
ble participants by using search techniques commonly
adopted in peer-to-peer systems, whose complexity is
logarithmic in the number of peers in the network. The
initiator agent searches for all peers able to interact ac-
cording to a given data clustering service, which cor-
responds in this case to our algorithm, executed with
a protocol specified by the initiator itself. When the
list has been fixed, the initiator selects amaster helper
and, possibly, a set of auxiliary helpers, depending on
the protocol. The initiator sends the master helper the
list of peer data sites, the list of auxiliary helpers, and
the protocol specifications. The helper takes care of
arranging the data sites and the auxiliary helpers ac-
cording to the topology specified in the protocol, and
starts the mining activity. Forn � M ′, An carries out
the initial negotiations of the protocol on behalf ofLn

as stationary agent. Later,An, n > M , may proceed
as either stationary or mobile agent, depending on the
protocol.

To illustrate the negotiation and the protocols we
introduce the following scenario.

Example. It has been announced that an interna-
tional insurance company will soon enter the national

market. As a consequence of the announcement, eight
national insurers decide to combine and analyse their
policy data by clustering. Their goal is to achieve a
better understanding of the national market, and to plan
strategies for keeping their share. Therefore, each in-
surer creates a view with the following dimensions:
Latitude, Longitude, Indemnity, whereLatitude

andLongitude are computed from the address of the
policyholder.

For simplicity we assume the datasets of the eight
insurers follow three distribution patterns. Distribu-
tion 1 (sites 1–3): The policies have high indem-
nity and are held by inhabitants of large cities in
the north-east; distribution 2 (site 4–6): The policies
have very high indemnity, their holders live in the
south; distribution 3 (sites 7 and 8): The policies have
small indemnity and the holders live in the west. Fig-
ures 5(a), 5(b), and 5(c) show the scatter plots of
the dataset, in the hyperplanes(Longitude, Latitude),
(Longitude, Indemnity), and(Latitude, Indemnity),
respectively. Objects belonging to the first, second, and
third distribution have been plotted in light gray, dark
gray and black, respectively.
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Fig. 3. Clusters computed by KDEC forh = 1/
√

5, = [h, h]T .

4.3.1. Negotiation of parameters
According to the KDEC scheme, the master helper

engages the other site agents in a negotiation to agree
what kernel function to use for computing the local
density estimate samples, an optimal value of the pa-
rametersh andτ , and the data space hyper-rectangle
delimiting the data clustering area of interest.

The negotiationprocedure is made up of three phases
which can be implemented according to the commu-
nicative acts of ACL FIPA [10]. The interactions are
based on the primitives of such a standard (e.g.call-for-
proposal, accept, inform, . . . ) which give a first level
of semantics to messages exchanged among agents.

The helper agent in the first phase asks each partici-
pant, using thequery-ref ACL primitive, for the number
of its local objects, the linear sums and sums of squares
of all its local objects along each dimension (i.e. ob-
ject attribute), and finally the corners of the smallest
hyper-rectangle covering its data space domain.

In the second phase, when all participant agents have
replied with the requested data (using the primitivein-
form), the helper sends them acall-for-proposal con-
taining (1) a set of possible kernel functions from which
each participant should select its preferred one, (2) the
cornersl, r ∈ R

d of a hyper-rectangle containing the
union of all hyper-rectangulardata spaces, (3) for every
kernel functionK, a recommended valuehr for h, and

the parameterβK , which will be explained below, and
(4) a possible value forh−1 τ .

The helper computes the recommended values of the
window widthh for each kernel function using Eq. (4),
the marginal variances of the whole dataset, and the
values ofhopt. The marginal variances of the data
can be easily computed by the helper from the total
number of objects in the dataset, their vector sum, the
sums of squares of dimensions, which in turn can be
computed as the sum of their local values at each site.
The values ofhopt for each kernel function are given
by Eq. (3). Although more sophisticated and accurate
ways to choosehopt automatically have been studied
in the literature, the value given by Eq. (3) will be suf-
ficiently accurate as a starting point for the negotiation.
Moreover, it can be computed by the helper from the
total number of objects only. The helper setsl, r to
the cornersl′, r′ of the smallest hyper-rectangle con-
taining the union of all hyper-rectangular data spaces,
randomly extended in order to prevent the disclosure
of the coordinates of extremal data objects. That is,
l = l′ + vl, r = r′ + vr, where the components of
vl, vr are uniformly distributed in[−hr, 0] and[0, hr],
respectively. The parameterβK is used to delimit how
far beyond the border of the data space hyper-rectangle
the estimate is not negligible and must be sampled.
We assumeβK to be equal to the smallest multiple
of 10−2 greater thansup{‖x‖ : K(x) > 10−2}.
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Fig. 4. Clusters computed by KDEC forh = 1/
√

5, = [5h, 5h]T .

With the exception of the normal kernel, popular ker-
nels have bounded support and their value is zero for
‖x‖ � 1; thusβK = 1. For the normal kernel, we
haveβK = 3.04.

Each proposal returned to the master helper shall in-
clude a kernel function, an interval forh, and an inter-
val forh−1 τ . The choice of both the kernel andh have
an impact on data privacy. The regularity of the kernel
increases privacy (see Section 4.4.1). Isolated maxima
centered at the data objects tend to become more and
more evident in the density estimate ash decreases. On
the other hand, choosing too large a value forh may re-
sult in an oversmoothed estimate and merging of some
natural cluster. Each participant proposes an interval
for h−1 τ such that the resulting time and transmis-
sion complexities are compatible with its application
constraints. To this purpose, each agent assumes that
the estimate is negligible outside the hyper-rectangle of
cornersl+[−βhr, . . . ,−βhr]T , r+[βhr, . . . , βhr]T .
The parameterβ is equal to the largestβK over all
kernelsK contained in thecall-for-proposal.

In the third phase the helper site, after collecting
all proposals from the interested participants, defines
the final proposal including the most selected kernel
function by participants, the besth andτ with respect
to all possible counterproposal values and the definitive
hyper-rectangular data space. The helper sends the

final proposal and only agents who accept it will be
involved in the distributed data clustering initiative.

All communications between the helper and partici-
pants are carried out using the digital sign mechanism,
moreover each agent involved knows the digital iden-
tity of the helper, therefore no one may alter a message
or impersonate the helper.

We illustrate the negotiation of parameters with our
example.

Example. After sending aquery-ref, the helper is
informed of the aggregate statistics of the sites, com-
putes the total count of data objects, the marginal vari-
ances of the data, and the corners of the hyper-rectangle
covering the data spacel′ = [−29.11,−16.07, 1.89]T,
r′ = [105.49, 97.14, 161.99]T. The eligible kernels
are the normal kernel and the Epanechnikov kernel,
corresponding tohopt = 0.36, hopt = 1.09. The av-
erage marginal variance isσ = 29.83. As all sites
are concerned about the potential disclosure of their
data, their agents choose the most regular kernel, i.e.,
the normal kernel corresponding to a recommended
valuehr = σhopt = 10.80. SitesL1, L2, L3 pro-
pose the interval[hr/2, hr], whereas the remaining
sitesL4, . . . , L8 propose[hr, 2hr]. L1, L2, L3 pro-
pose a smaller lower bound because the maximum dis-
tance between data objects in their datasets is smaller.
Thus, forh = hr/2, the density estimate has no iso-
lated “bump” which would reveal the location of an



Galley Proof 15/05/2006; 11:30 File: wia88.tex; BOKCTP/wyy p. 11

J.C. da Silva, M. Klusch, S. Lodi and G. Moro / Privacy-preserving agent-based distributed data clustering 11

-20 0 20 40 60 80 100

0

20

40

60

80

(a)

-20 0 20 40 60 80 100

0

25

50

75

100

125

150

(b)

0 20 40 60 80

0

25

50

75

100

125

150

(c)

Fig. 5. Scatter plots of example data in the hyperplanes(Longitude, Latitude), (Longitude, Indemnity), and(Latitude, Indemnity).

object, whereas the structure of the three clusters cor-
responding to their combined local datasets is visible.
In contrast, forh < hr, in the region whereIndemnity
is high, some maxima corresponding to objects stored
at sitesL4 or L5 are evident. The insurers owningL4

andL5 would be deeply concerned about the possibil-
ity that geographical information and high indemnity
could be exploited to narrow the search for the identities
of the policyholders. Figure 6(a) shows the marginal
estimate in the hyperplane(Longitude, Indemnity)
for h = hr/2, and Fig. 6(b) is an inset showing the
local maxima. Assumingβ = 3.04 (only the normal
kernel and the Epanechnikov kernel are contained in
thecall-for-proposal), the number of required samples
is about 5000 forτ = hr/2, which is modest and ac-
ceptable for all agents. Thus, all participants propose
h−1τ = 1/2. The final proposal of the helper con-
tains the normal kernel,h = hr and the hyper-rectangle
l + 3.04[−hr,−hr,−hr]T , r + 3.04[hr, hr, hr]

T .

4.3.2. Protocols
We classify potential implementations and variations

of the remaining steps of Algorithm 1 according to two
directions: The path of samples, or partial sums of
samples, in the network of sites, and the protocol to
compute the sums. We consider the following three
basic partial orders of the network of sites.

Sequence The data sites are arranged into a se-
quence{Lπ(n)}1�n�M . For all z ∈ R(z1, z2),
the valuesn−1(z) =

∑n−1
k=1 ϕ̂[Dπ(k)](z • τ ) is

known at siteLπ(n), wheresn(z) = sn−1(z) +
ϕ̂[Dπ(n)](z • τ ) is computed and moved to
Lπ(n+1).

Star For all z ∈ R(z1, z2), at site Ln, the value
ϕ̂[Dn](z • τ ) is computed and moved to a single
helper.

Tree The master helper, the auxiliary helpers and the
data sites are organized into a tree of orderb, sat-
isfying the following: the master helper is the root
of the tree, theM data sites are exactly the leaves
of the tree, the depths of any two leaves differ at
most by one, and all internal nodes have exactly
b children, except possibly one internal node of
maximal depth, which has at least2 and at most
b − 1 children. A tree satisfying the properties
above can be computed straightforwardly in lin-
ear time inM : Create a perfect tree of depth
�logb M�, consisting of the master helper as root,
�(M − 1)/(b − 1)� − 1 auxiliary helpers, and
�(b�logb M�+1 − M)/(b − 1)� data sites at depth
�logb M�; then, add the remaining data sites (if
any) as children of the auxiliary helpers at depth
�logb M�, leaving at most one helper with less
thanb children. The minimum value ofb is cho-
sen by the initiator, which therefore knows in ad-
vance the maximum number of auxiliary helpers
needed. At data siteLn, 1 � n � M , for all
z ∈ R(z1, z2), the valueϕ̂[Dn](z • τ ) is com-
puted and moved to the parent. At any helper site
(except the tree root)Ln, n > M , the value

sn(z) =
∑

1 � k � M
Lk ∈ subtree(Ln)

ϕ̂[Dk](z • τ )

is computed.

In any of the partial orders above, the actual protocol
among the sites can be implemented by stationary or
mobile agents. In the following, assumeAM+1 is the
master helper’s agent.
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Fig. 6. Marginal kernel estimate (h = hr/2) in the hyperplaneLongitude, Indemnity and inset showing isolated local maxima.

Sequence AM+1 selects an arrangementπ such that
π(1), . . . , π(M) is a random permutation of
1, . . . ,M , andπ(M + 1) = M + 1.

Stationary agents For 2 � n � M , AM+1

sendsAπ(n) the addresses of sitesLπ(n−1),
Lπ(n+1). ToAπ(1), the master sends its own
address, the address ofLπ(2), and an empty
list of samples.Aπ(1) waits for a list of sam-
ples from the master, adds its local list of
samples to it and sends the result toAπ(2).
EachAπ(n) waits for a list of samples from
Aπ(n−1), 2 � n � M , adds its local list of
samples to it and sends the result toAπ(n+1).
The master waits for the list of samples from
Aπ(M), and sends it toAn, for 1 � n � M .

Mobile agents AgentAM+1 initializes an empty
list of samples and moves toLπ(1). When
residing at siteLπ(n) (1 � n � M ), AM+1

requests the local agentAπ(n) to locally send
the list of samples, adds it to the sum in its
data space, and moves toLπ(n+1). Finally
AM+1 sends the sum to all agentsAn, 1 �
n � M .

Star Assume agentAM+1 was designated as master.

Stationary agents AM+1 waits for the list of lo-
cal samples from each of theAn, 1 � n �
M , adds the lists and sends the result toAn,
for 1 � n � M .

Mobile agents For n = 1, . . . ,M agentAM+1

moves to siteLn, requests the local agent

An to locally send the list of samples, adds it
to the sum in its data space, and moves back
to LM+1.

Tree Assume site agentsAM+2, . . . , AM+H were des-
ignated as auxiliary helpers.AM+1 receives the
listLM+2, . . . , LM+H of helper sites and arranges
it into a tree, as described earlier in this section.
To minimize collusions,AM+1 sends each helper
agentAM+k only the references to its parent and
its children. If the agents are mobile,AM+1 also
sends each helper agentAM+k the references to
its siblings.

Stationary agents Every agentAM+k, 1 � k �
H , waits for the list of local samples from
all Aj residing at the children ofLM+k, and
adds the lists. ThenAM+k sends the result
to its parent, ifk > 1; the masterAM+1

sends the list toAn, for 1 � n � M .
Mobile agents Fork = 1, . . . , H, for every child

Lj of LM+k, agentAM+k moves toLj and
requests the local agentAj to locally send
the list of samples. It adds the list to the sum
in its data space, and moves back toLM+k.

The transmission complexity of KDEC under any
of the protocols above isO(hops · |{z ∈ Z

n ∩
R(z1, z2)}|), wherehops is the total number of hops
of the network.
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4.4. Issues of data security in KDEC

The various KDEC protocols transmit only density
estimates outside the physical data space of a site. How-
ever, avoiding network data transmission does not guar-
antee that data cannot be disclosed by appropriate tech-
niques. In fact, a large body of research in statistical
databases has been motivated by the observation that
many types of aggregates contain implicit information
that allows for data reconstruction, possibly obtained
by posing carefully designed sequences of aggregate
queries [6]. To the best of our knowledge, the problem
of data reconstruction from kernel density estimates has
not been investigated. Moreover, sites in open environ-
ments can be guaranteed neither to run provably correct
code nor to be secure, and they can release information
the protocol has been designed to hide. Finally, unse-
cured mobile agents are vulnerable to malicious servers
which attempt to tamper with their code and data to
their advantage [29,36]. Therefore, the security of the
approach must be carefully evaluated. In particular, the
following questions must be answered:

1. Are kernel density estimates secure, i.e., is it pos-
sible to disclose the original dataset from a kernel
density estimate computed on that dataset?

2. Can a site improve the accuracy of the data dis-
closure by exploiting knowledge available to all
sites taking part in the protocol?

3. Can a subset of the sites participating to an ex-
ecution of the protocol improve the accuracy of
their disclosure attempt by forming a coalition?

In the following, we will try to answer the questions
above and discuss the strengths and weaknesses of po-
tential countermeasures. Discussing security issues in
agent platforms is outside the scope of this work. We
assume authorization and authentication mechanisms
to run mobile code are secure and authenticated and se-
cure communication protocols between sites are used.
Consequently, a site always knows the sender or re-
ceiver of any message.

4.4.1. Inference attacks on kernel density estimates
In any of the proposed protocol, all parties learn

the global kernel density estimate. Even if all parties
strictly follow the protocol, the privacy of data is not
guaranteed unless it can be argued that density esti-
mates do not contain enough implicit information to
allow for reconstructing the data. Two techniques may
apply: Iterative disclosure and non-linear system solv-
ing.

Iterative disclosure A simple form of attack consists
in searching the density estimate or its derivatives for
discontinuities. For example, ifK(x) equalsw(x),
then the distance between discontinuities of the esti-
mate on the same axis equals the distance between data
objects on that axis. Therefore the relative positions of
objects are known. If the window widthh is known,
then all objects are known since every discontinuity is
determined by an object lying at distanceh from the
discontinuity, on the side where the estimate is greater.
Kernels whose derivative is not continuous, such as the
Epanechnikov kernel, allow for similar inferences. For
the general case, in [4] a simple algorithm has been
presented, which partially discloses the data by recon-
structing one object at the time.

Non-linear system solving Let g : R
d → R be ex-

tensionally equal to a kernel estimateϕ̂[D](x), that is,
(∀x ∈ R

d) g(x) = ϕ̂[D](x) holds, and letK andh be
known. The problem is to computexi, i = 1, . . . , N .
In an inference attack to a KDEC-based clustering,
g(x) will be a reconstructed estimate effectively com-
puted by the interpolation formula Eq. (7).

An attacker can selectNd space objectsyj and at-
tempt to solve a system of equations

N∑
i=1

K

(
1
h

(yj − xi)T (yj − xi)
)

= g(yi),

(8)
j = 1, . . . , Nd.

Although the resulting system of equations is non-
linear (assuming the normal kernel) and contains a large
number of unknowns, several efficient methods to solve
non-linear systems of equations have been proposed
in the literature [24]; therefore solving system Eq. (8)
is not necessarily unfeasible even for large datasets.
On the other hand, the accuracy and speed of conver-
gence of such methods still depend on the structure of
the problem at hand. Preliminary investigations have
shown that an attacker is likely to incur slow speed of
convergence or a large number of spurious solutions
when trying to solve systems like Eq. (8).

4.4.2. Protocol attacks
Even if one of the agents could disclose all data ob-

jects, by inference alone it could not discover at which
site a given reconstructed object resides. However, in
each of the protocols of Section 4.3, semi-honest [12]
or malicious behaviours by one agent or a coalition of
agents could substantially reduce the uncertainty about
the location of disclosed objects. In the following we
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describe potential attack scenarios in each of the pro-
tocols.

Sequence protocol In the sequence protocol with sta-
tionary agents, then-th agent in the arrangement
Aπ(n) knows the density estimate of the data at sites
Lπ(1), . . . , Lπ(n−1) and, by difference, the density es-
timate of the data atLπ(n+1), . . . , Lπ(M). Therefore
a semi-honest agent can infer the data objects but the
amount of information that is learned byAπ(n) on the
location of the objects depends on the position ofLπ(n)

in the arrangement. In particular, ifπ(n) = M − 1
or π(n) = 2, objects can be assigned toLπ(M) or
Lπ(1). To refine their knowledge, two malicious agents
Aπ(n−p), Aπ(n+1), 0 < p < n < M can collude and,
by difference, calculate the estimate of the union of
the datasets atLπ(n−p+1), . . . , Lπ(n). If p = 1, the
reconstructed objects can be assigned toLπ(n).

In the mobile agent case, the protocol is secure if
agents are assumed semi-honest, as the partial density
estimates are stored in the mobile agent’s data space
only. If local agents are potentially malicious, then
data and code of the mobile agent can be tampered
with and virtually all information that is learned by
the mobile agent at any site could be learned by some
malicious agent. For example, the malicious agent, say
Aπ(e), could read the summation of samples of already
visited sitesse−1(z) =

∑
1�k<e ϕ̂[Dπ(k)](z • τ ) for

all z ∈ R(z1, z2). Worse, the agent’s code could be
modified to forward toAπ(e) any local density estimate
obtained after visiting its site.

Example. Suppose the sequence protocol with mo-
bile agents is used. The master helper’s agentA9 ran-
domly selects the permutation5, 1, 4, 2, 6, 8, 3, 7 and
starts its navigation in the sequence. AssumeA1, A2,
A3 are malicious, i.e., they actively attempt to read the
data space ofA9 and tamper with its code, exploiting
privileged accounts in their respective sites.A1 reads
the samples ofL5 from A9’s data. Then, it forwards
the sum of its samples andL5 to A2. A2 reads the
cumulative samples of sitesL5, L1, L4 fromA9’s data,
and, by difference, learns the samples ofL4. Then,A2

forwards toA3 the sum of samples ofL5, L1, L4, L2,
and tampers with the code of the mobile agent, repro-
gramming it to keep a separate copy of the current sum
of samples, before adding the samples ofL8. A3 reads
the sum of samples of preceding sites fromA9 and the
separate copy, and learns the samples ofL6 andL8.
When the global sum is transmitted to all parties,A3

learns the samples ofL7.
Star protocol In the stationary case, the helper has
complete knowledge of the global density estimate and

the local density estimates. One or more data sites
could collude with the helper and have it send them
the local density estimates of each of the remaining
sites, from which local data could be inferred and cor-
rectly assigned. Without the collusion of the helper,
the malicious sites can only obtain the density estimate
of the remaining sites and infer the data without any
assignment (unless there are only two data sites).

In the mobile agent case, code tampering is use-
less as the agent code is loaded once and returns to
the originator immediately after collecting the samples.
As communications are assumed authenticated, a mali-
cious data site cannot impersonate the helper and send
the agent to another data site to collect the samples of its
local estimate. The attack scenario is therefore similar
to the stationary case.
Tree protocol In the stationary case, a helper site and
its children data sites form a star and the collusion
scenario of the previous paragraph applies. To infer
and assign data objects outside the local star, the mali-
cious agents must collude with other helper agents. For
instance, the malicious agents could collude with the
master helper to learn the structure of the tree, which is
not published, and thus attempt to collude with helpers
having data sites as children of their sites. Alterna-
tively, the malicious agents could attempt to set up a
path of colluded agents until a helper agent having data
sites as children of its site is encountered, by iteratively
asking the last colluded agent a reference to the parent
or a child. The scenarios in the mobile case are similar
(see the paragraph on the Star protocol).

Example. Assume the initiator has set the mini-
mum tree orderb to 3, and, therefore, has collected
3 auxiliary helpers:L10, L11, andL12. The master
helper’s agentA9 computes the tree and finds out that
one of the auxiliary helpers has exactly two children.
As b = 3, reassigning any data site is useless. Theref-
ere,A9 sets the tree orderb to 4 and recomputes the
tree. The tree has now the following edges:(L9, L10),
(L9, L11), (L9, L3), (L9, L7), (L10, L5), (L10, L1),
(L10, L4), (L10, L2), (L11, L6), (L11, L8). Again, an
auxiliary helper,L11, has exactly two children. In
this case, however, the parent of a data site, other than
L6, L8, can be changed toL11. Assume(L10, L2) is
changed to(L11, L2). Let us supposeA1, A2, A3 are
malicious. IfA1 andA2 collude withA10 andA11,
they learn the sample sums

∑
k∈{1,4,5} ϕ̂[Dk](z • τ ),∑

k∈{2,6,8} ϕ̂[Dk](z • τ ). By difference, the sample
sums

∑
k∈{4,5} ϕ̂(z•τ ),

∑
k∈{6,8} ϕ̂(z•τ ) are learned

by malicious agentsA1 andA2, respectively. When the
global sum of samples is returned to every agent, mali-
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cious agentA3 learns by difference the samples ofL7,
i.e.,ϕ̂[D7](z • τ ), for all z ∈ R(z1, z2). Therefore, if
the data objects can be reconstructed from the sample
sums above,D7, D4 ∪ D5, andD6 ∪ D8 are known
to the malicious agents. The agents cannot however
decide whether a reconstructed data object inD4 ∪D5

belongs toL4 or L5, and whether a reconstructed data
object inD6 ∪ D8 belongs toL6 or L8.

4.4.3. Countermeasures
The attacks in Sections 4.4.1 and 4.4.2 exploit two

types of vulnerabilities: (i) given a kernel density es-
timate, data objects are reconstructible and (ii) partial
density estimates are not secured against semi-honest
or malicious agents. Countermeasures to these attacks
which may apply have been investigated in the litera-
ture on both Secure Multiparty Computation and Mo-
bile Cryptography.
Secure multiparty computation The goal ofSecure
Multiparty Computation (SMC) [12] is to allow two
or more parties to compute the value of a function on
an input which is distributed among the parties in such
a way that at the end of the computation each party
knows nothing except the value of the function and its
own input. A simple SMC technique which can be
applied to KDEC with the sequential protocol isSecure
Sum [3]: For allz ∈ R(z1, z2), the helper agentAM+1

generates randomlyr(z) ∈ [0, 1] and sendsr(z) to
Aπ(1). For1 � n � M , agentAπ(n) receivesvn−1 =(
r(z)+sn−1(z)) mod 1 and sends toAπ(n+1) the value

vn =
(
r(z) + sn(z)

)
mod 1=

(
r(z) + sn−1(z) +

ϕ̂[Dπ(n)](z • τ )
)

mod 1=
(
vn−1 + ϕ̂[Dπ(n)](z • τ )

)
mod 1. Finally,AM+1 sends toAπ(n), 1 � n �
M , the differencevM − r(z). Both in the stationary
and mobile protocol,Aπ(n), 1 � n � M + 1, learns
nothing about the density estimate of the other sites or
group of sites, even if agents are malicious, since the
samples of partial estimates that are moved between
sites are uniformly distributed in[0, 1]. (The list of
samples of the global density estimate is the result of the
computation and is known by all sites, independent of
the way it is computed.) Consequently, in the stationary
case a semi-honest agent cannot assign reconstructed
objects, independent of its position in the arrangement.

The secure sum is vulnerable to collusion attacks.
Agents can easily learn their relative positions in the
arrangement by comparing successors and predeces-
sors, and colluded agentsAπ(n−1) andAπ(n+1) can
easily computêϕ[Dπ(n)](z • τ ) by comparingvn an
vn−1. Dividing eachr(z) into shares and permut-
ing the arrangement for each share prevents malicious

agents from having the same neighbour [3]. Obviously,
since the crucial secretsr(z) are generated by the mas-
ter helper’s agent, any security failure of the master
helper or collusion of its agent makes the Secure Sum
approach useless.

In the mobile agent case, the above type of collusion
is not possible as long as the mobile agent keeps its
path secret. However, when the mobile agent moves to
a new site, the destination address must be shared with
the host.
Mobile cryptography In [29] Sander and Tschudin in-
troduce the term “mobile cryptography” to denote fully
software based cryptographic solutions to the prob-
lem of designing secure mobile programs, and de-
fine two basic scenarios: Computing with Encrypted
Data (CED) and Computing with Encrypted Functions
(CEF). In the CED scenario, Alice wants to know the
output of Bob’s private algorithm for functionf on her
private inputx; nothing else must be learned by Alice
or Bob. In the CEF scenario, Alice wants to know the
output of her private algorithm for functionf at Bob’s
private inputx; nothing else must be learned by Alice
or Bob. It turns out that, whenf is a polynomial, both
CED and CEF can be implemented using aHomomor-
phic Encryption Scheme (HES). An algebraic HES is
an encryption functionE : R → S, whereR andS are
rings, such thatE(x♦y) can be efficiently computed
from E(x) andE(y), where♦ is a ring operation.

As density estimate samples are summed, in the se-
quel we assumeE to be only additively homomorphic,
that is, there exists an efficient algorithmPlus to com-
puteE(x + y) fromE(x) andE(y). A CED approach
in KDEC applies naturally both to the sequential pro-
tocol with mobile agents and the star protocol with sta-
tionary agents, as follows. AgentAn, 1 � n � M ,
sendsE

(
ϕ̂[Dn](z•τ )

)
to the agent which computes the

partial sum of samples, i.e.AM+1. Algorithm Plus
must be made known toAM+1 in advance, e.g. by
A1. The helperAM+1 usesPlus to sum encrypted
samples: E

(
sM (z)

)
= E

(∑M
k=1 ϕ̂[Dk](z • τ )

)
=

Plus
(
E(ϕ̂[D1](z•τ )), Plus(. . . , E(ϕ̂[DM ](z•τ )))

)
.

Finally AM+1 sendsE
(
sM (z)

)
to all agentsAn,

1 � n � M . Such implementation of CED in KDEC
effectively hides the samples from the helper agent,
however it is not effective against collusions between
the helper and malicious agents, asE must be known
by all An, which could decrypt any set of samples ma-
liciously forwarded byAM+1.

4.4.4. Untrustworthy helpers
Recently, we have witnessed increasing interest to-

wards trustworthiness and referrals as a means to ascer-
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Fig. 7. Graph of the upper bound onP (m, b) (p = 0.2, M = 1024).

tain the degree of trustworthiness of an agent [37,38].
In the following we assume the agent community sup-
ports referrals about an agent’s reputation as a helper.
We model a helper’sreputation as a binary random
variable with probabilityp and1 − p, wherep is the
probability that the helper will behave as untrustworthy
in the forthcoming interaction. We assume thatp can
be derived from referrals during the initial negotiation
phase.

One way to measure the risk of data privacy infringe-
ment in KDEC is the probabilityP (m) that an agent’s
local data are not protected against at leastm other par-
ticipating agents. If only one helper is used, it is appar-
ent thatP (m) = p, for everym. If the helpers and the
site agents are arranged to form a completeb-ary tree,
it is not difficult to see thatP (m, b) � p�logb(m+1)	.
Such an upper bound decreases withm and increases
with b according to intuition (see Fig. 7), however, it is
worth noting that the lowerb, the higher the chance that
an agent could incur coalition attacks. Notably, the best
performance against untrustworthiness is obtained by
a binary tree, which should always be rejected by any
site agent since it gives complete information to each
member of any pair of siblings in the tree about the
other member’s density estimate. Techniques to find a
trade-off are under investigation.

5. Related work

Only a few approaches to solve the problem of ho-
mogeneous distributed data clustering are available to
date.

In [21] a solution to the problem of homogeneous
distributed clustering under an information theoretic
privacy constraint is proposed.

A global probabilistic model of the data is built
by combining the parameters of the models computed
at the different sources. The approach differs from
ours in that a particular parametric family of models
must be assumed, whereas the KDEC scheme is non-
parametric.

In [33] thek-windows approach to data clustering is
extended to handle the distributed case. Initially, the
k-windows algorithm is executed locally at every data
site. Then the generated windows are sent to a central
node which is responsible for the final merging of the
windows and the construction of global clusters.

In [19] the abstract KDEC scheme is described in
more detail. However, its agent implementations and
their security issues are not discussed. A shorter ver-
sion of the present paper is contained in [20]. Possi-
ble agent implementations of the KDEC scheme are
briefly sketched and the possibility of inference attacks
on kernel estimates is suggested. The impact of un-
trustworthy helpers is also considered. However, no
countermeasures have been proposed. An algorithm
to perform an inference attack on a kernel estimate is
presented in [4]. It has been experimentally proven that
the algorithm effectively recovers objects located in the
tails of a kernel estimate.

6. Conclusion and future work

The ever growing amount of data that are stored
in distributed form over networks of heterogeneous
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and autonomous sources poses several problems to re-
search in knowledgediscovery and data mining, such as
communication minimization, autonomy preservation,
scalability, and privacy protection. In this paper, we
have reviewed prominent approaches in the literature
and discussed the benefits that agent-based data min-
ing architectures provide in coping with such problems,
and the related issues of data security and trustwor-
thiness. We have presented a scheme for agent-based
distributed data clustering based on density estimation,
which exploits information theoretic sampling to min-
imize communications between sites and protect data
privacy by transmitting density estimation samples in-
stead of data values outside the site of origin. Potential
privacy violations due to inference and coalition attacks
and issues of trustworthiness have been discussed. On-
going research will focus in particular on the investi-
gation of inference attacks on kernel density estimates
exploiting recent advances in numerical methods for
the solution of non-linear systems of equations, and the
analysis of risks of security and privacy violations in
DDM environments. Finally, it is planned to imple-
ment a multiagent system for KDEC-based homoge-
neous DDC able to work in peer-to-peer networks and
grid computing systems.
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