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ABSTRACT
We present the first system, called iCM-Hydraulic, for in-
telligent condition monitoring (CM) of hydraulic machines
that combines statistical, probabilistic and semantic data
analysis for fault detection and diagnosis with semantic ex-
planations. The modelling of the domain ontology in OWL2
and the probabilistic domain belief network is based on CM
standards and domain expert interviews. Fast fault detec-
tion and diagnosis online is performed by the system over
a multi-variate sensor data feature stream with statistical
fault state classification, semantic symptom detection and
diagnosis query answering with C-SPARQL, semantic and
probabilistic reasoning in the continously updated belief net-
work. Condition diagnosis queries are also answered offline
over the central SwiftOWLIM store with history data. The
system prototype was developed for our customer HYDAC
Filter Systems GmbH and successfully tested for typical hy-
draulic aggregates and sensors.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation-
Semantic Networks

Keywords
RDF stream processing, condition monitoring, statistical
classification, belief network

1. INTRODUCTION
Hydraulic machines generate and utilize hydraulic power

as hydraulic drive systems of various kinds such as for hy-
draulic driven heavy equipment, metal presses, automobile
brakes, aircraft flight controls, and wind turbine genera-
tors. Today, the major strategy of operators of hydraulic
driven machinery to ensure its reliable and safe operation
is to maintain in particular the embedded hydraulic drive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEMANTiCS ’15, September 15-17, 2015, Vienna, Austria
c© 2015 ACM. ISBN 978-1-4503-3462-4/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2814864.2814865

system based on its actual condition, rather than by a fixed
scheduled, preventive replacement or mere reactive main-
tenance. An open-loop hydraulic drive system consists of
a hydraulic aggregate which realizes a valve-controlled flow
of gas-pressurized oil with a pump from an oil tank through
tubes to a hydraulic actuator like a piston that is moved with
the generated hydraulic force, and back to the tank. The
condition-based maintenance of a hydraulic drive system re-
quires a specific condition monitoring (CM) process which,
in general, encompasses continuous data collection, fault
recognition and fault diagnosis [12]. There are quite sophis-
ticated condition monitoring systems (CMS) for this purpose
from many vendors like Siemens, SKF, Bosch-Rexroth, and
HYDAC.

However, current approaches and systems to CM of hy-
draulic machines [7, 11, 15] perform a quantitative, statisti-
cal analysis of measured multi-variate sensor data for various
relevant physical and hydraulic fluid parameters. In partic-
ular, they require a human engineer with extensive domain
expertise to manually interpret the highly complex interde-
pendencies between measured sensor and operational data
and various system conditions for failure recognition and di-
agnosis. The indication of the onset of failures together with
knowledge-based failure diagnosis support to non-experts
goes far beyond current CMS in the field. Only very few
approaches to intelligent CM exist which employ means of
AI and semantic technologies for semantic data analysis of-
fline [10, 8] but not online, and not for CM of hydraulic
machines at all.

To this end, we developed the first intelligent CMS for
hydraulic machines, called iCM-Hydraulic, that combines
statistical, semantic and probabilistic data analysis for fault
detection and diagnosis with customized and understandable
explanations to the user. The system was developed for our
customer HYDAC Filter Systems GmbH and successfully
tested for a given typical hydraulic aggregate and sensors.

The remainder of the paper is structured as follows. After
an overview of the system architecture and its components in
section 2, we describe the iCM-Hydraulic domain ontology
and Bayesian network in section 3. The fault detection and
diagnosis query processing by the semantic data analysis
component and results of the system performance evaluation
are presented in sections 4 and 5. We discuss related work
in section 6 before we conclude the paper.



2. SYSTEM ARCHITECTURE
Requirements and architecture. The main iCM-Hydraulic

system requirements which were given to us by our customer
HYDAC are as follows. The system shall monitor the con-
dition of a typical hydraulic aggregate with sensors in or-
der to detect and diagnose four specific types of component
failures. It shall provide knowledge-based explanations of
detected conditions and faults to experts and non-experts.
In particular, the system shall answer a customer-given set
of informal, high-level detection and diagnosis queries online
over a multi-variate sensor data stream within two minutes,
and offline over a central data store for two days of sensor
data recordings within one hour.

Figure 1: iCM-Hydraulic system components

These user requirements are satisfied by our iCM-Hydraulic
system, which component-based architecture (cf. figure 1)
is briefly described in the following. In this paper, we focus
on the semantics-empowered fault detection and diagnosis
with semantic explanation to the user, and refer the inter-
ested reader for more details on the statistical data analysis
component to [4].

Hydraulic aggregate and sensor data. For testing
purposes, our customer provided us with a typical hydraulic
aggregate that consists of an oil tank and electric motor
pump, which supplies the aggregate with oil as hydraulic
fluid, four different gas accumulators with compressed gas
for pressurizing the oil, one pressure control valve for con-
trolling the oil flow through the tubes of the aggregate, one
proportional pressure relief valve simulating a hydraulic ac-
tuator like a piston of a hydraulic drive system, which is
driven up and down by the generated hydraulic force, and a
cooling unit of the aggregate. In short, the hydraulic aggre-
gate realizes a typical valve-controlled flow of gas-pressurized
hydraulic fluid from its tank by its pump in order to move,
for example, a piston with hydraulic pressure and back to
the tank. This open-loop circuit of the aggregate with its
sensors is shown in figure 2; one working cycle of this aggre-
gate lasts one minute.

There are 18 sensors attached to the aggregate, which
monitor different physical parameters such as oil pressure
and flow rate, vibration, air and oil temperature, metal-
lic and solid particle contamination of the oil, and electric
power of the oil pump in the aggregate. These sensors are
connected with one Beckhoff PLC (programmable logic con-
troller), which acts as a central data sink and is installed di-
rectly on the hydraulic aggregate. The multi-variate sensor
data stream is accessible to the iCM-Hydraulic system server
from the PLC via a wired EtherCAT connection with a rate
of one bucket of raw sensor data of size 694KB per minute.
Each data bucket contains 30 measurements from 18 sensors

Figure 2: Circuit of hydraulic aggregate with sensors

with in total 50.000 data values per constant working cycle
period of one minute of the hydraulic aggregate. The PLC is
ordering the time-stamped sensor data stream according to
the given stream scheme in JSON. The following fault sce-
narios for the four main components of the aggregate were
manually introduced by an engineer to the aggregate in or-
der to test the performance of the iCM-Hydraulic system:
Oil leakage of the pump, gas leakage of gas accumulators,
switching faults of the control valve, and decrease of cooling
power of the cooling unit.

Statistical fault state classification online. This com-
ponent determines the fault state of each of the aggregate
components with an offline learned kNN (k-Nearest Neigh-
bor) classifier on feature-reduced sensor data. In particular,
for each sensor and working cycle, the component extracts
the most significant features for fault detection of different
components. For this purpose, the feature values of sensor
data are computed with respect to signal shape (slope, min,
max, position of max) and statistical values (median, vari-
ance, skewness, kurtosis). A correlation analysis (Pearson,
Spearman) was used to identify those features that are most
significant for the studied fault scenarios. The maximal sep-
aration of fault grades or fault state classes is done with a
supervised linear discriminant analysis (LDA), which per-
forms a linear projection from previously selected features
to one discriminant function that allows the quantification
of fault severity grades. For fault state classification, the
trained LDA-based kNN classifier returns a record with the
classified state level for each of the four component fault
types but without any explanation of these faults or corre-
sponding component condition.

Semantic analysis online and offline. This compo-
nent performs a semantic analysis of the sensor data stream
from the PLC online and offline and provides the user with
specific explanation of detected faults and conditions. For
this purpose, it transforms the sensor data stream into a se-
mantic feature stream by means of statistical feature com-
putation and semantic annotation according to a specific
domain ontology in OWL2 (cf. Sect. 3). In particular, the
size of each stream feature data bucket per minute is 326KB
containing about 660 RDF triples. This semantic feature
stream is stored by the component in (a) the fact base of
its central in-memory SwiftOWLIM triple store, and (b) the
fact base of its RDF stream processing engine C-SPARQL.
The first is used for history-based fault diagnosis offline and
on-demand, while the second is used for the online detection



of fault symptoms and external factors, and fault diagnosis.
Depending on the type of analysis query, the query process-
ing workflow employs C-SPARQL or SPARQL query an-
swering either individually or in combination with semantic
reasoning. The semantic diagnosis results with probabilities
are explained to the user in form of text and/or tables ac-
cording to query-specific templates, which were desgined in
collaboration with our customer.

Probabilistic analysis online. This component deter-
mines the most likely component faults and conditions for
given states of symptoms and faults as evidences provided by
the semantic and statistical analysis components. For this
purpose, it maintains and employs the probabilistic knowl-
edge about the semantic relations between conditions, faults
and symptoms of the hydraulic aggregate components in
a domain-specific bayesian network (BN). The conditional
probabilities of these relations are initially computed for the
given training data set of the statistical fault state classifier,
and updated after each symptom and fault detection by the
system with or without external (binary) feedback by the
user. In addition, the results of probabilistic fault detection
and diagnosis are added to the central triple store of the se-
mantic analysis component. The BN component is realized
with the open-source BN tool GeNIe.

The iCM-Hydraulic system answers the customer-given
set of informal analysis queries by means of query-specific
processing workflows, which appropriately make use of dif-
ferent methods of semantic (stream) processing, probabilis-
tic, and statistical data analysis. The knowledge-based ex-
planations are generated according to query-specific expla-
nation templates and displayed in the customized, web-based
user interface.

3. SEMANTIC MODEL
The semantic model of the iCM-Hydraulic system consists

of two parts: The iCM-Hydraulic domain ontology formally
represents knowledge on the condition monitoring domain
and its adoption for typical hydraulic aggregates and sensors
in OWL2, and the iCM-Hydraulic bayesian network, which
represents probabilistic knowledge on the semantic cause-
effect relations that are modeled in the domain ontology.

iCM-Hydraulic domain ontology. In particular, the
domain knowledge is specified in a formal ontogy in OWL2
under (fully RDFS compatible) OWL-Horst semantics [13]
based on the standard vocabularies ISO-2041, ISO-13372,
and ISO-17359:2011 for condition monitoring, the results of
interviews of domain experts at HYDAC, and a respective
extension of the standard W3C SSN (semantic sensor net-
work) ontology. In particular, the concept base of the iCM-
Hydraulic domain ontology consists of in total 279 concepts
and 184 relations (and 4 XSD data types), which define
the semantics of typical hydraulic aggregate components,
sensors, measured properties, component faults, symptoms,
and conditions, as well as external factors and condition-
fault-symptom relations; parts of this domain ontology are
shown in figure 3. In support of semantic symptom detec-
tion online, the system indexes C-SPARQL queries for in-
stance retrieval of the 20 concepts of fault symptoms, and
the state of 6 external factors such as the operational state
of the pump or control valve of the aggregate with respective
value integrity constraints in the FILTER clauses. The cho-
sen OWL2 fragment was expressive enough for our modeling
of the domain, and efficiently implemented with material-

Figure 3: Part of domain ontology with concepts of
sensors, faults and symptoms

ization by the in-memory triple store SwiftOWLIM, as well
as supported by the RDFS-object-relational reasoner STAR
and the reasoner HermiT, which are employed for semantic
analysis. The fact base of the central triple store contains
the instances of components and sensors, which are partic-
ular to the HYDAC hydraulic aggregate along with RDF
encoded historical data of sensor measurement and detected
conditions, faults, symptoms and probability values as a re-
sult of the semantic data analysis online and offline. Seman-
tic fault diagnosis queries in SPARQL are processed offline
over this central fact base with history data, while semantic
fault symptom detection and diagnosis online is performed
over the internal stream fact base of the C-SPARQL stream
processing engine (cf. section 4).

iCM-Hydraulic bayesian network. The probabilistic
knowledge about causal relations between component condi-
tions, faults, and symptoms are compactly represented in the
Bayesian network (BN) of the probabilistic analysis compo-
nent (in short: BN component) of the system. In particular,
the directed acyclic graph maintained by the BN component
consists of 36 nodes and 60 relations with conditional prob-
ability tables (CPT) attached to them (cf. figure 4).

Figure 4: Part of iCM-Hydraulic Bayesian network.

The set of random variable nodes is concerned with 4 com-
ponent conditions, 4 faults, 20 symptoms, 6 external factors
like operational state of the pump, and 4 statistical fault
state classifications, while a directed edge denotes the causal
influence between two nodes. For example, the various con-
ditions of the pump (ok, poor, defective, failure) influence



the conditional probabilities of pump leakage states (no, on-
set, severe). These, in turn, influence the probabilities of
occurrences of various pump leakage symptom states such
as the pressure (high, normal, low) at the control valve af-
ter load. For example, the BN can be used to determine
the most likely state fs of an aggregate component fault F
for a given symptom S in state s as evidence by computing
max(F,fs)P (F = fs|S = s), while for an initial diagnosis
of the detected condition C = c of a user-selected compo-
nent the system is expected to return the component fault
state and the list of symptoms with conditional probabili-
ties P (C = c|S = s) (cf. figure 7). As mentioned above, the
initial CPT values of the BN are computed from the given
training data set of the statistical fault state classifier, and
updated by means of a very fast (1K nodes per minute) ex-
act belief propagation through the BN by the BN tool GeNIe
after a detection of symptoms and faults per working cycle.

4. SEMANTIC DATA ANALYSIS
The semantic analysis component of the iCM-Hydraulic

system supports the fault detection and, in particular, the
online and offline diagnosis and explanation of detected con-
ditions and faults of a typical hydraulic aggregate For this
purpose, it makes use of RDF stream processing with C-
SPARQL, semantic query answering with SPARQL and rea-
sonig with STAR. For fault detection online the semantic-
based symptom detection is combined with statistical fault
state classification and probabilistic reasoning, while the sta-
tistical analysis is not required for semantic fault diagnosis
online and offline.

The analysis query-specific patterns for generating seman-
tic explanations for the user were designed in collabora-
tion with and their instantiation by the system successfully
checked by our customer for correctness and usefulness for
their personell (cf. Sect. 5).

4.1 Online Fault Detection and Diagnosis
Semantic-based fault symptom detection. The de-

tection of fault symptoms is performed by the parallel pro-
cessing of 24 symptom and external factor detection queries
in C-SPARQL (cf. section 3) over the semantic data feature
stream per working cycle of the aggregate. In particular,
the symptom and external factor concepts in the domain
ontology are reflected in corresponding C-SPARQL queries
for their instance detection over the stream fact base.

For example, the operational state of the oil pump is mod-
elled as an external factor and is checked online against the
semantic feature stream by evaluating a C-SPARQL query
with a respective integrity constraint for relevant sensor data
features in the FILTER clause ”if vibration-in-system >
0.2 and electric-power-of-pump > 200 and accumulator-

gas-pressure > 20) then pump = active else pump = in-
active”. The C-SPARQL query for checking the state (low,
normal, high) of the symptom static-pressure-after-load,
which is indicating a pump leakage and its evaluation result
for a stream fact base example is shown in figure 5. Since the
open-source C-SPARQL engine used by the semantic analy-
sis component does not provide incremental materialization
yet, for each symptom concept definition in the domain on-
tology, the component maintains and uses a special look-up
table to identify the required role fillers such as for isSta-

tisticalFeatureOf and hasWorkingCycleInterval in the
example. The created facts for a detected symptom state

Figure 5: Online detection of symptom

are added to the stream fact base for subsequent fault de-
tection online and the central fact base in SwiftOWLIM for
on-demand diagnosis offline.

Hybrid semantic fault detection. The semantic-based
detection of symptom states and the statistical fault state
classification are performed in parallel over the multi-variate
sensor data stream per minute. As mentioned above, the BN
component validates the detected fault state classes with
the detected symptom state and external factors as given
evidences. More concrete, for each fault type, it determines
the evidentially most probable fault state max(F,fs)P (F =
fs|S = s), which are ideally equal to those reported by the
statistical fault state classifier.

For example, the fault state classifier provides the BN
component with the (F,fs)-record [pump leakage = onset,
valve operation degradation = no, cooling unit operation
degradation = no, gas accumulator leakage = no] while the
semantic analysis component detected the symptom static-

pressure-after-load (SPAL) with state ”low” and the ex-
ternal factor Pump-operational-state (POS) with state ”ac-
tive”. If the probabilistic validation yields the value for
P(PumpLeakage = onset | SPAL = low, POS = active) as
the maximum evidential probability of this fault state with
likewisely computed values for the remaining fault types,
then the result of the statistical classification is considered
as correct, and the semantically detected symptoms and ex-
ternal factors are used to create an explanation to the user.
The RDF-encoded result of this online analysis is also added
to the central fact base for later offline diagnosis with history
data.

In fact, the actual result of this online process combining
semantic, statistical and probabilistic data analysis serves as
an answer of the condition diagnosis query issued by a user
for a selected component such as ”What is the most likely
explanation of the detected condition of the pump?”. The
semantic explanation to the user is given as required by our
customer in terms of visualized marking (red or green) of
the fault state of the pump in the circuit together with its
evidential probability and list of related symptoms as shown
in figure 6. In particular, the semantic analysis component
processes one instance of this query type [Q1] for each of the
four components of the hydraulic aggregate in parallel over
the semantic feature stream.

Under the assumption that the domain ontology and symp-
tom (and external factors) detection rules are sufficiently
fine-grained and correctly modeled for their purpose in prac-
tice, this hybrid fault detection process can also compensate



Figure 6: Explanation of pump condition with re-
lated symptoms

possible statistical misclassifications with presumably cor-
rect semantic symptom detection. Suppose that the fault
state classifier has been trained offline for fault scenarios of
the hydraulic aggregate with oil of certain viscosity, but then
oil with a different viscosity is added to the oil tank during
regular maintenance. In this example, there is now wrong oil
in the system, which is an instance of the respective exter-
nal factor concept WOIS in the domain ontology, but there is
no fault of any aggregate component: The statistically mis-
classified fault state (PumpLeakage = severe) has a lower
conditional probability value than the orthogonal but cor-
rect fault state (PumpLeakage = no) with the maximum
P(PumpLeakage = no | SPAL = low, WOIS = present) for
detected symptom and external factor as evidences.

Semantic diagnosis. Other examples of query types
for semantic fault diagnosis that were given to us by our
customer are ”What is the semantic relation between detected
component faults?” [Q2] and ”, which other components are
affected by the detected component fault?” [Q3]. In addition
to those four queries of type Q1, the eight queries of type Q2
and Q3 are concurrently processed by the semantic analysis
component over the semantic feature stream according to
their query-specific processing workflows.

For example, regarding queries of type Q1, the online di-
agnosis of some detected pump leakage and gas accumulator
leakage during one working cycle of the hydraulic aggregate
is performed by the semantic analysis component with a
combination of C-SPARQL query answering and STAR rea-
soning. The STAR reasoner [9] creates an internal graph
representation of the domain ontology with a non-materialized
fact base it then utilizes to process RDF object-relational
queries by searching for the shortest paths in this graph
between all given objects (query). In general, STAR com-
putes an approximated solution to the corresponding NP-
hard Steiner tree problem. The returned property paths
between the component fault objects in the ontology are
analysed with simple location rules to identify the relative
positions of the components in the circuit of the hydraulic
aggregate.

Figure 7 shows an example of the shortest property path
in the domain ontology between two fault instances of type
internal pump leakage and gas accumulator leakage. The
result of the path analysis with the following location rules

Figure 7: Semantic relation path between faults of
pump and gas accumulator

for components X,Y: {X hasOutputPort a, a ... b, Y has-

InputPort b} ⇒ (X before Y) and {X hasInputPort a, a ...
b, Y hasOutputPort b} ⇒ (X after Y), is then used to fill in
the query-specific template for the explanation text that is
displayed to the user. In this example, the explanation text
is ”The pump pump123 with internal pump leakage ipl234
is located before the faulty component accumulator accu3457
with gas leakage agl456 detected at time 12.03.2015 23:00:09.
Therefore, the detected internal pump leakage might have
caused the accumulator gas leakage.”.

The queries of type Q3 are concerned with checking, which
of the actual aggregate components may be affected by a
given fault: For each component X the semantic analy-
sis component checks whether there is a shortest seman-
tic relation path in the ontology between X and the given
fault instance Y via fault related symptoms S1, S2 with
shared property P that is measured by, which sensors Z.
The aggregate components X are retrieved with a simple
C-SPARQL query and the existence of paths to the fault
is checked with STAR queries. These paths from respec-
tively affected components C to Y are matched against the
pattern [X..S1, S1 hasMonitoredProperty P, S2 hasMoni-

toredProperty P, S2..Y]. The results (P, S1,S2) are used to
create and classify concepts of involved types Z of sensors in
OWL2 (QC ≡ Sensor u
∃observes.(P u∃monitorsSymptom(S1uS2)) ) into the on-
tology and to retrieve their instances with the reasoner Her-
miT. Finally, the most likely condition cs for each affected
component C with given fault state Y = fs are computed
with maxC=csPr(C = cs|Y = fs).

For example, a detected pump leakage may have affected
the actual condition of gas accumulator accu345 and con-
trol valve valve987 according to the domain ontology with
respective probabilities based on the actual fault symptom
related pressure and temperature measurements by sensors
of type PSensorValve and TSensorAccu. This explanation
is given in form of the following table as requested by our
customer:



4.2 Offline Diagnosis
The semantic analysis component also offers the on-demand

processing of different types of offline analysis queries over
its central triple store SwiftOWLIM with history data. The
first three of these types [Q4, Q5, Q6] are reformulations of
the three types of queries for online diagnosis for given work-
ing cycle periods in the past. In addition, the component
processes diagnosis queries of the following types: ”What
were the conditions and respective probabilities of given com-
ponent in the past?” [Q7] ”What is the frequency of fault type
occurrence for a given component and criterias in the past?”
[Q8]. For example, the four (component related) queries of
type Q7 are rewritten as instances of the SPARQL query
type:

Another example is the offline analysis with queries of
type [Q8]. The result of the respective SPARQL query over
the central triple store is the set of all fault states of the
selected component for given criterias, which is used by the
analysis component to calculate the frequency of their oc-
currences. Currently supported criterias are high fluid tem-
perature level, and high (4nm, 6nm, 14nm) metallic contam-
ination level.

5. EVALUATION
Implementation and setting. The system is imple-

mented as a client-server Java web application using Google
web toolkit. It employs the C-SPARQL engine (R0.9.5.1)
for RDF stream processing, GeNIe 2.0 for probabilistic in-
ferencing, MATLAB MCR (compiler runtime) 8.3 for ex-
ecuting statistical data feature functions packaged as Java
class methods, SwiftOWLIM (owlimlite5.4) triple store as a
central semantic repository, STAR and HermiT as seman-
tic reasoners, and the OWL-API 4.0. The evaluation ex-
periments were performed on a desktop PC with following
configuration: Intel(R)Core(TM) i7-2600K CPU@3.40 GHz
with 16.0 GB RAM, JDK 1.7 with14 GB Max JVM Heap
Space, and Windows 7 Enterprise Service Pack 1 OS.

Test data and queries. The stream of raw data of 50K
values of 30 measurements from 18 sensors per minute is
transformed by the PLC at the hydraulic aggregate into a
multi-variate stream of ordered, time-stamped data buck-
ets according to a given stream scheme in JSON. This data
stream is directed by the PLC to the iCM-Hydraulic system
via Internet connection. Both statistic and semantic com-
ponents of the system perform the same feature reduction of
the data stream, while the latter component also annotates
the feature stream according to the domain ontology. Each
feature-reduced stream data bucket per minute consists of
660 triples and is of size 326KB instead of originally 694kb.
The stream data rate from the PLC to the iCM-Hydraulic

system is fixed and can without feature reduction increase
up to 2,000 triples per minute. For semantic offline analysis,
the raw sensor data set for periods of one day and two days
for 1440, respectively, 2880 working cycles of the hydraulic
aggregate with introduced four component fault scenarios,
is semantically encoded and materialized in the central fact
base with in total 1,067,453, respectively 2,134,906 triples.

For testing the system performance in terms of query
response time and accuracy, we have been given the fol-
lowing representative, informal queries by our customer for
semantics-empowered analysis online (Q1-Q3) and offline
(Q4-Q8) that are processed by the system as indicated above:

• Q1: ”What is the most likely explanation of the con-
dition of the pump?”. (StatClass, C-SPARQL, BN)

• Q2: ”What is the semantic relation between detected
component faults of pump and gas accumulator?”(STAR)

• Q3: ”Which other components are affected by these
detected faults?” (C-SPARQL, STAR, DL, BN)

• Q4: ”What is the most likely explanation of each oc-
currence of the pump’s condition in the past?”(SPARQL,
BN)

• Q5: ”What are the semantic relations between these
faults detected in the same working cycle in the past?”
(STAR)

• Q6: ”Which other components are affected by every
detected fault in the past?”(SPARQL, STAR, DL, BN)

• Q7: ”What are the pump’s condition and its faults,
which have occurred in the past.” (SPARQL)

• Q8: ”What is the frequency of pump’s fault occur-
rence w.r.t. high fluid temperature level in system?”
(SPARQL)

Performance measures. The average query response
time (AQRT) is measured as the average time taken by the
system to answer an instance of a given query type over
different data sets. Loading time of sensor data recordings
into the central fact base is measured as time needed by
different modules of the system to be ready for query an-
swering: That includes time needed (a) for the triple store
to materialize the data set, (b) the DL reasoner HermiT
to prepare the same and its internal pre-computations, and
(c) the STAR reasoner to generate its internal graph rep-
resentation of the non-materialized data set. The accuracy
of statistical fault detection, and average precision (AP) of
fault diagnosis query answering by the system is measured.

Statistical analysis performance. The fault state clas-
sifier of the statistical analysis component has been trained
with a set of about 120 million raw sensor data values for
1,250 working cycles and given 4 fault setpoints of the aggre-
gate; the training with leave-one-out cross-validation took
about 5 minutes: feature extraction in 5 minutes, feature
selection in 0.8 seconds (0.2 seconds per fault), LDA in 0.4
seconds (0.1 seconds per fault). The accuracy of statistical
fault state classification was maximal, which is an improve-
ment over previous results reported in [4], and the whole
LDA-based kNN classification of fault states took on aver-
age 0.5 seconds (query type Q1) and 0.42 seconds (query
type Q4) per working cycle of the aggregate.



Semantics-empowered analysis performance. The
average time needed to transform one data bucket in the
sensor data stream to a semantic feature data bucket in the
semantic feature stream by statistical feature computation
and semantic annotation per minute is 0.3 seconds. The
time for generating the explanation text or table as results
of the query-specific processing workflows displayed to the
user is only one second on average. In summary, each of the
given test queries for semantic online analysis (Q1-Q3) can
be answered by the system within one minute on average
(cf. table 1).

AQRT StatC C-SPARQL STAR DL BN
Q1 25.5s 0.5s 23s - - 1s
Q2 1.6s - - 0.6s - -
Q3 41s - 1s 13s 26s 1s

Table 1: Processing times for online diagnosis

The informal query Q1 is processed over the raw sensor
data stream and semantic feature stream to detect faults
combining different components of the system: Statistical
classification (StatC) is performed in less than one second
using MATLAB functions, while the stream processing com-
ponent of system takes most of the remaining time. There
are 24 C-SPARQL queries in total to detect 20 symptoms
and 4 external factors: on average each C-SPARQL query
execution takes less than a second. The probabilistic analy-
sis (BN) takes only one second to update the BN of 38 nodes.
With result display, the system takes about 25 seconds on
average to answer the informal query Q1. Answering query
Q2 takes even less than two seconds on average due to the
fast search for semantic paths between detected component
faults.

For Q3 evaluation, C-SPARQL query retrieves the com-
ponent instances of the aggregate from the static part of the
stream fact base in one second followed by the STAR reason-
ing and pattern matching of the resulting paths within 13
seconds. The respective instantiation of the abstract sensor
concept template, the classification of these concepts into
the ontology and instance retrieval by HermiT takes 26 sec-
onds on average. The computation of the probable condi-
tions of the affected components given the fault as evidence
takes the BN component just one second.

The loading time of the system with respect to sensor data
recordings of one day is 15 minutes, and 35 minutes for two
days recording. However, the response time for each of the
given test queries for semantic offline analysis (Q4-Q8) by
the system over the materialized central fact base is well
below one minute on average (cf. table 2). The processing

StatC SPARQL STAR DL BN
Q4 1-day 0.43s 23s - - 1s

2-days 0.43s 25s - - 1s
Q5 1-day - 0.32s 0.81s - -

2-days - 0.36s 0.83s - -
Q6 1-day - 0.12s 12s 26s 1s

2-days - 0.13s 12s 27s 1s
Q7 1-day - 0.30s - - -

2-days - 0.35s - - -
Q8 1-day - 0.21s - - -

2-days - 0.29s - - -

Table 2: Processing times for offline diagnosis

of the informal query Q4 is the offline execution of Q1 on
history data. The maximum time taken by the system for
Q4 is during the corresponding SPARQL query evaluation
to detect symptoms and external factors, while the BN eval-
uation remains one second as in the online analysis. Q5 is
the offline version of Q2 for which a SPARQL query is used
to retrieve all occurrences of component faults at the same
time (working cycle time stamp) and each STAR query eval-
uation takes approximately same time as in the Q2 online
analysis. Q6 is the offline version of Q3 for which the respec-
tive average response times for STAR and BN remain the
same, just the SPARQL query evaluation over the central
fact base takes less time than for the C-SPARQL query over
the stream. The average query response time of Q4, Q5 and
Q6 are similar over different data sizes. Processing of Q7
and Q8 is very fast in retrieving historical information from
triple store in less than half a second on different data sizes.

The system achieved a maximum average precision (AP =
1) and recall for the above online fault detection and diagno-
sis queries over random samples of test data of 1,250 working
cycles with simulated different fault grades for the consid-
ered four component faults. All results of the processing of
the semantic symptom detection and diagnosis queries re-
turned by the system for the correctly classified fault states
(see above) were found to be correct and complete by the do-
main experts from our customer. We assume, that the used
implementations of STAR, Hermit, GeNIe, C-SPARQL and
SPARQL (SwiftOWLIM) are correct, the C-SPARQL query
answering is correct for the fixed data rate and complete
data bucket per fixed working cycle (window size).

The system can handle the required 1-/2-days of observed
multi-sensor data of a typical hydraulic aggregate with sen-
sors while maintaining a reasonable runtime for online and
offline semantic analysis. The reported runtimes and diag-
nosis results with explanations were approved by HYDAC
CM experts and met their requirements regarding such a
system. In general, the processing of the set of informal
analysis queries given by our customer might have been in
part also realized with a combination of other traditional
database, data stream management and information system
technologies. However, the flexible answering of declarative
diagnosis queries in case of certain ontology changes, and,
in particular, the offline and online reasoning on semantic
relations between a given set of machine components, sen-
sors and fault types is crucial for answering these queries.
For this purpose, semantic technologies in combination with
probabilistic reasoning are first-class candidates to adopt.
Besides, none of the current CMS in the domain (cf. section
6) supports the engineer by answering the set of analysis
queries given by our customer and with semantic explana-
tions as shown for simple examples above.

6. RELATED WORK
In general, our work on the iCM-Hydraulic system for in-

telligent condition monitoring of hydraulic machines is most
related to work on intelligent CM in this and other engi-
neering domains. For example, [11] presents a signal-based
and model-based approach for online condition monitoring
of hydraulic machines. The CMS in [15] performs signal
analysis and probabilistic reasoning with BN for offline con-
dition monitoring and root cause assessment in pump pro-
cess operations of hydraulic machines, and utilizes explicit
user feedback for sequential learning to increase its perfor-



mance. [7] presents a first brake fault diagnosis based on
a statistical analysis of vibration signals with decision-tree
based feature selection and trained SVM-based fault classi-
fier with high accuracy. However, to the best of our knowl-
edge, none of the current CMS for hydraulic machines per-
forms semantics-empowered condition and fault diagnosis.
On the other hand, there are a few approaches to iCM in
other domains that make use of semantic technologies for
fault detection and diagnosis. For example, our prototyped
system ICM-Wind [10] for intelligent fluid condition moni-
toring of wind turbine gears performs semantic sensor data
analysis offline by applying semantic technologies for inter-
preting the state of turbine parts and answering questions
related to their maintenance. Similar to iCM-Hydraulic, the
specific domain knowledge is encoded in OWL2 and with
SPIN rules; given fault detection and diagnosis queries are
answered by use of the semantic reasoners Fact++, STAR,
TopSPIN rule engine over a central SwiftOWLIM store. Be-
sides, [8] proposed to use semantic technologies in support
of condition monitoring and maintenance of machinery in
general. An upper level ontology for CM in OWL and an
abstract system architecture for semantic query answering
with SPARQL and rule reasoning with Jena is described.
Though the functionality is, in principle, similar to the of-
fline semantic diagnosis performed by our iCM-Hydraulic
system, to the best of our knowledge, the proposal has nei-
ther been fully implemented, nor used for any CM appli-
cation in practice yet. Further, the large body of work on
semantic sensor networks (SSN), stream reasoning or RDF
stream processing (RSP) is related to our work. For exam-
ple, [1] describes an approach to ontology-based sensor data
and metadata querying in large-scale sensor network using
the GSN middleware and SPARQLstream, while the group
of O. Corcho et al. investigates the scalability of seman-
tic stream query answering in the cloud based on Apache
STORM and Lambda architecture. However, to the best
of our knowledge, none of them combines statistical and se-
mantic feature stream analysis with probabilistic reasoning
in particular, and for the purpose of intelligent online con-
dition monitoring of hydraulic machines in general.

7. CONCLUSION
This paper presented the first system, called iCM-Hydraulic,

for semantics-empowered condition monitoring (CM) of hy-
draulic machines, with particular focus on its employment
of semantic technologies. The system combines statistical,
probabilistic and semantic data analysis for fault detection
and diagnosis with semantic explanations to the user. We
showed how the semantic analysis component exploits RDF
stream processing with C-SPARQL, semantic query answer-
ing offline with SPARQL, and semantic reasoning online
with STAR and HermiT either individually or in combina-
tion in order to answer a given set of CM-related analysis
queries as required and with reasonable response times. The
system prototype was developed for our customer HYDAC
Filter Systems GmbH, successfully tested for a typical hy-
draulic aggregate and sensors, and demonstrated at the Han-
nover industry fair 2015. Ongoing work is concerned with
its commercial deployment and exploitation by HYDAC.
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