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Abstract. In this paper, we present an adaptive, hybrid semantic match-
maker for SAWSDL services, called SAWSDL-MX2. It determines three
kinds of semantic service similarity with a given service request, that are
logic-based, text-based and structural similarity. In particular, the degree
of structural service similarity is computed by the WSDL-Analyzer tool
[12] by means of XMLS tree edit distance measurement, string-based
and lexical comparison of the respective XML-based WSDL services.
SAWSDL-MX2 then learns the optimal aggregation of these different
matching degrees over a subset of a test collection SAWSDL-TC1 based
on a binary support vector machine-based classifier. Finally, we compare
the retrieval performance of SAWSDL-MX2 with a non-adaptive match-
maker variant SAWSDL-MX1 [1] and the straight forward combination
of its logic-based only variant SAWSDL-M0 with WSDL-Analyzer.

1 Introduction

As a W3C recommendation dated August 28, 2007, the SAWSDL1 specification
proposes mechanisms to enrich Web services described in WSDL2 (Web Service
Description Language) with semantic annotations. Among others, one goal of
these additional descriptions is to support intelligent agents in automated service
selection, a task which is hard to accomplish using pure syntactic information
of service profiles based mainly on XML-Schema definitions. Typical application
scenarios that require or benefit from a service matchmaking component include
for example negotiation and coalition forming among agents and automated
or assisted service composition. The first hybrid semantic service matchmaker
SAWSDL-MX1 for SAWSDL we proposed in [1] adopted the ideas of our hybrid
matchmakers OWLS-MX and WSMO-MX (see [5, 3]) for OWL-S, respectively,
WSML.
However, SAWSDL-MX1 focused on semantic annotations of the signature but
not on the XML structure of the Web service as a whole. This is taken into
account by the WSDL-Analyzer tool presented in [12] by means of measuring

1 http://www.w3.org/TR/sawsdl/
2 http://www.w3.org/TR/wsdl/,

http://www.w3.org/TR/wsdl20/



the XML tree edit distances between given pair of services through XML type
compatibility, token-based text and lexical similarity measurements. Besides,
SAWSDL-MX1 combines logic-based and text-similarity based matching in a
fixed manner: It applies five logical matching filters and ranks service offers that
share the same logical matching degree with respect to a given request according
to their text similarity value. The hybrid variant SAWSDL-M0+WA does the
same as SAWSDL-MX1 except that its ranking of services with the same logical
matching degree is according to their structural similarity value as computed by
the WSDL-Analyzer. Finally, the adaptive hybrid variant SAWSDL-MX2 com-
putes three kinds of semantic matching, logical, text and structural similarity-
based. In addition, it learns the optimal aggregation of these different types of
semantic matching to decide on the semantic relevance of a service to a given
request.
One major question concerns the practical applicability of these different match-
makers in general, not restricted to some given domain-specific and/or very
small-sized scenario, by means of their retrieval performance over a given initial
test collection, SAWSDL-TC1, that consists of more than 900 SAWSDL services
from different application domains. The results of our experiments shows that
all hybrid matchmaker variants outperform the single matching type variants
(logic-based or text or structural only) in terms of precision, while the perfor-
mance of all three hybrid variants do not significantly differ with respect to
SAWSDL-TC1.
The remainder of the paper is structured as follows. After a brief introduction to
SAWSDL in section 2, the matching approach of the non-adaptive matchmaker
SAWSDL-MX1 is recapitulated in section 3. Section 4 presents the structural
matching of WSDL services performed by the WSDL-Analyzer tool. The adap-
tive aggregation of matching results based on a binary SVM-based classifier by
our new adaptive matchmaker SAWSDL-MX2 is described in section 5. Results
of our experimental evaluation over the given test collection SAWSDL-TC1 in
terms of recall, (macro-)averaged precision and average query response time are
shown in section 6. We comment on related work in section 7, and conclude in
section 8.

2 Service Descriptions in SAWSDL

SAWSDL is designed as an extension of WSDL enabling service providers to
enrich their service descriptions with additional semantic information. For this
purpose, the notions of model reference and schema mapping have been intro-
duced in terms of XML attributes (tags) that can be added to already existing
WSDL service description elements as depicted in figure 1.

Semantic annotation of WSDL services. More precisely, the following ex-
tensions are used for semantic annotations of WSDL services:

– modelReference: A modelReference points to one ore more concepts with
equally intended meaning expressed in an arbitrary semantic representation



Fig. 1. SAWSDL extensions of WSDL interface components

language. They are allowed to be defined for every WSDL and XML Schema
element, though the SAWSDL specification defines their occurrence only
in WSDL interfaces, operations, faults as well as XML Schema elements,
complex types, simple types and attributes. The purpose of a model reference
is mainly to support automated service discovery.

– liftingSchemaMapping: Schema mappings are intended to support automated
service execution by providing rules specifying the correspondences between
semantic annotation concepts defined in a given ontology (the ”upper” level)
to the XML Schema representation of data actually required to invoke the
Web service (the ”lower” level), and vice versa. A liftingSchemaMapping

describes the transformation from the ”lower” level in XML Schema up to
the ontology language used for semantic annotation.

– loweringSchemaMapping: The attribute loweringSchemaMapping describes
the transformation from the ”upper” level of a given ontology to the ”lower”
level in XML Schema.

However, the current specification of SAWSDL model references imposes quite
some problems for semantic service matchmaking as follows.

No uniform, formal ontology language. Unlike OWL-S or WSML, the spec-
ification of SAWSDL does not restrict the developer to any uniform, formal
ontology langage like OWL or WSMO. As a result, any mean of automated se-
mantic service selection has to cope with the semantic interoperability problems
of heterogeneous domain ontologies and ontology languages. While this problem
could be resolved in some cases by means of syntactic and semantic transforma-
tions - such as for OWL-DL and WSML-DL - it remains hard in general.

Multiple references to different ontologies. The same holds especially for
references to different kinds of ontologies like plain or structured text files, anno-



tated image archive, or logic theories. In fact, SAWSDL allows multiple references
to different kinds of ontologies for annotating even the same service description
element. How shall any semantic service matchmaker know how to process them
to understand the semantics of that single element? Are its annotations meant
to be complementary or equivalent? If complementary, how to aggregate them,
if equivalent, which one to select best for further processing? This opens up a
wide range of pragmatic solutions for SAWSDL service matching.

Top-level vs bottom-level annotations. According to the SAWSDL spec-
ification, semantic annotation by means of so-called top-level annotation and
bottom-level annotation shall be considered both independent from each other
and applicable at the same time. While top-level annotation refers to the anno-
tation of a complex type or element definition of a message parameter by means
of a model reference as a whole, any bottom-level annotation focuses only on a
single (atomic) XML element. Unfortunately, it remains unclear how to evalu-
ate a matching between top-level and low-level annotated parameters, or which
one to prefer if both levels of annotation are available for a complex service de-
scription element. In addition, element and type definition specifying a message
component can be annotated at the same time.

Pragmatic assumptions for SAWSDL service matching. Regarding the
above mentioned problems of SAWSDL service matching, the following prag-
matic assumptions were made for using our SAWSDL-MX matchmaker variants
SAWSDL-M0+WA, SAWSDL-MX1, and SAWSDL-MX2:

– References to formal ontologies in description logics only. The current imple-
mentation of SAWSDL-MX performs reasoning on logic-based annotations
in OWL-DL3 but is not restricted to it: It supports other description logics
(DL) if they are translated into the standard DIG 1.14 interface representa-
tion format.

– Only top-level semantic annotations of service parameters are considered
for service matching. However, any direct top-level annotation of a WSDL
message part has priority over the top-level annotation of the respectively
referenced (and likewisely annotated) XML-Schema element or type.

– In case of multiple annotations of a single element at the same level, one of
them is selected uniformly at random. Only semantic annotations of service
(IO) parameters are considered, but not annotations of entire operations or
interfaces. However, the proposed matching variants could easily be adopted
for this purpose.

In the following sections, we describe each of these different SAWSDL match-
maker variants and results of their comparative experimental evaluation of per-
formance.

3 http://www.w3.org/2004/OWL/
4 http://dig.sourceforge.net/



3 SAWSDL-MX: Logic and Text Similarity-Based

Signature Matching

In this section, we describe the hybrid service signature matching performed
by both SAWSDL-MX matchmaker variants, the non-adaptive SAWSDL-MX1
and the adaptive SAWSDL-MX2. The logic-based only variant of SAWSDL-MX
is called SAWSDL-M0. Service requests and offers are presumed to be formu-
lated in SAWSDL, each comprising one or multiple operations with semantically
annotated signatures.

3.1 Hybrid Service Interface Matching

For each pair of service offer O and service request R, the matchmaker determines
their semantic similarity by evaluating every combination of their operations in
terms of either logic-based only (SAWSDL-M0) or text similarity-based only
operation matching, or both (SAWSDL-MX1, SAWSDL-MX2). The process of
logic-based and text similarity-based (service) operation matching is described
in more detail below.
To determine an injective mapping between service offer and request operations
that is optimal regarding their matching degrees, SAWSDL-MX applies bipartite
operation graph matching. Nodes in the graph represent the operations and the
weighted edges are built from possible one-to-one assignments with their weights
derived from the computed degree of (logical/text/hybrid) operation match. If
there exists such a mapping, then it is guaranteed that there exists an operation
of the service offer for every requested operation, disregarding the quality of
their matching at this point.
For example, consider the service request and service offer given in figure 2. Every
request operation ROi (with i ∈ {1, 2}) is compared to every advertisement
operation Oj (with j ∈ {1, 2, 3}) with respect to logic-based filters defined in
the next section. In this example, RO1 exactly matches with O1, but fails for
O2 and O3. O3 is a weaker plug-in match for RO2 (the subsumed-by match of
RO2 with O2 is even weaker than a plug-in match). The best (max) assignment
of matching operations is {〈RO1, O1〉, 〈RO2, O3〉}.
One conservative (min-max) option of determining the matching degree between
service offer and request based on their pairwise operation matchings is to assume
the worst result of the best operation matchings. In other words, we guarantee
a fixed lower bound of similarity for every requested operation - which is what
SAWSDL-MX is doing. In the example shown in figure 2, the service offer is
considered a plug-in match for the request. Other not yet implemented possibil-
ities would be to merge the operation matching results based on their average
syntactic similarity values and to provide more detailed feedback to the user on
the operation matchings involved.

3.2 Logic-based Operation Matching

The logic-based operation matching by SAWSDL-MX bases on the successive
application of the following four filters of increasing degree of relaxation to a



Fig. 2. Interface level matching of SAWSDL-MX

given pair service offer operation OO and service request OR: Exact, Plug-in,
Subsumes and Subsumed-by. These filters have been originally developed for the
matchmaker OWLS-MX but extended with bipartite concept graph matching to
ensure an injective mapping between I/O concepts of service offer and request,
whenever possible. As an overview to description logic and DL reasoning, we
refer to [9]. The sets lgc(c) and lsc(c) contain the least generic concepts of c

(direct parent) and the least specific concepts of c (direct child), respectively.

Exact match: Service operation OO exactly matches service operation OR ⇔ (∃
injective assignment Min : ∀m ∈ Min : m1 ∈ in(OO) ∧ m2 ∈ in(OR) ∧ m1 ≡
m2) ∧ (∃ injective assignment Mout : ∀m ∈ Mout : m1 ∈ out(OR) ∧ m2 ∈
out(OO) ∧ m1 ≡ m2). There exist a one-to-one mapping of perfectly matching
inputs as well as perfectly matching outputs. Assuming that an operation fullfills
a requesters need if every input can be satisfied and every requested output is
provided, the assignments only require to be injective (but not bijective), thus
additional available information not required for service invocation and addi-
tional provided outputs not explicitly requested are tolerated.

Plug-in match: Service operation OO plugs into service operation OR ⇔ (∃ in-
jective assignment Min : ∀m ∈ Min : m1 ∈ in(OO)∧m2 ∈ in(OR)∧m1 w m2)∧(∃
injective assignment Mout : ∀m ∈ Mout : m1 ∈ out(OR) ∧ m2 ∈ out(OO) ∧ m2 ∈
lsc(m1)). The filter relaxes the constraints of the exact matching filter by addi-
tionally allowing input concepts of the service offer to be arbitrarily more general
than those of the service request, and advertisement output concepts to be direct
child concepts of the queried ones.

Subsumes match: Service operation OO subsumes service operation OR ⇔ (∃
injective assignment Min : ∀m ∈ Min : m1 ∈ in(OO) ∧ m2 ∈ in(OR) ∧ m1 w



m2) ∧ (∃ injective assignment Mout : ∀m ∈ Mout : m1 ∈ out(OR) ∧ m2 ∈
out(OO) ∧ m1 w m2). This filter further relaxes constraints by allowing service
offer outputs to be arbitrarily more specific than the request outputs (as opposed
to the plug-in filter, where they have to be direct children). Thus, a plug-in can
be seen as special case of a subsumes match resulting in a more fine-grained view
at the overall service ranking.

Subsumed-by match: Service operation OO is subsumed by service opera-
tion OR ⇔ (∃ injective assignment Min : ∀m ∈ Min : m1 ∈ in(OO) ∧ m2 ∈
in(OR) ∧ m1 w m2) ∧ (∃ injective assignment Mout : ∀m ∈ Mout : m1 ∈
out(OR)∧m2 ∈ out(OO)∧m2 ∈ lgc(m1)). The idea of the subsumed-by matching
filter is to determine the service offers that the requester is able to provide with
all required inputs and at the same time deliver outputs that are at least closely
related to the requested outputs in terms of the inferred concept classification.

The matching degree of fail is true if and only if none of the matching filters
defined above succeed. As a result, services are ranked according to their match-
ing degree in the following decreasing order: exact > plug-in > subsumes >

subsumed-by > fail.

SAWSDL-M0. The logic-based only matchmaker variant SAWSDL-M0 applies
the above logical matching filters only, and ranks service offers that share the
same logical matching degree with respect to a given request uniformly at ran-
dom.

3.3 Text Similarity-Based Operation Matching

The hybrid variants of SAWSDL-MX also perform complementary text similarity-
based matching by means of classical token-based text similarity measures Loss-

of-Information, Extended Jaccard, Cosine and Jensen-Shannon as implemented,
for example, in SimPack5. For this purpose, the signatures of both request and
offer are considered as text such that the degree of semantic similarity is mea-
sured in terms of their averaged text similarity.
More concrete, each semantic service signature is transformed into a pair of
weighted keyword vectors for input, respectively, output - according to the clas-
sical vector space model of information retrieval. For this purpose, each input
concept is logically unfolded in the shared ontology (as defined for standard
tableaux reasoning algorithms) and concatenated with all others to a complex
logical expression containing only primitive components and logical operators.
This expression is treated as mere text string being processed to a TFIDF
weighted keyword vector; the same is done with service output concepts. The
TFIDF term weighting values are computed over two distinct text indices de-
pending on whether service inputs or outputs are compared.

5 http://www.ifi.uzh.ch/ddis/research/semweb/simpack/



SAWSDL-MX1. The hybrid semantic service matchmaker SAWSDL-MX1 ap-
plies the logical matching filters mentioned above and ranks service offers that
share the same logical matching degree with respect to a given request according
to their text similarity value.

4 WSDL-Analyzer: Structural WSDL Matching

The WSDL-Analyzer (WA) tool introduced in [12] performs a strucrual only
matching of WSDL 1.1 services. In fact, it ignores the semantic annotations of
SAWSDL descriptions and treats a SAWSDL description as a mere WSDL de-
scription. The WA tool detects similarities and differences between WSDL files
and can be used to find a list of non-logic-based semantically relevant Web ser-
vices. Since its similarity algorithm produces a mapping between WSDL service
descriptions, the tool can also be used for supporting mediation between services.
More concrete, the WA tool exploits various types of schema information such
as element names, datatypes and structural properties, and characteristics of
data instances, as well as background knowledge from dictionaries and thesauri.
The similarity algorithm calculates the similarity between the XML structures
of a requested and a candidate services, respects the structural information of
complex datatypes and is flexible enough to allow for relaxed matching as well as
matching between parameters that come in different orders in service parameter
lists.
The comparison of two WSDL services is a multi-step process. It starts off with
(1) the comparison of the operation sets offered by the services, which is based
on (2) the comparison of the structures of the operations input and output
messages, which, in turn, is based on (3) the comparison of the datatypes of the
objects communicated by these messages. The recursive structural matching of
two XML-based WSDL service descriptions is performed as follows.
A WSDL description is represented as a labelled tree where leaf nodes are the
basic built-in datatypes provided by the XML schema specification6. Let L =
{l1, l2, ..., ln} be a set of labels.
A labelled tree T = (N, E, root(T ), ϕ) is an acyclic, connected graph with:

– N = {n1, n2, ..., nn} is a set of nodes.
– E ⊂ N × N is a set of edges.
– root(T ) the root of the tree.
– ϕ : N → L is a function which assigns a label to each node with basic

datatypes D ⊂ L.

The process of calculating the similarity of two trees T1 and T2 starts with the
roots root(T1) and root(T2), and traverses these trees recursively:

For a ∈ NT1
and b ∈ NT2

do compute,

sim(a, b) =







ωname ∗ simname(ϕ(a), ϕ(b))
+ωstruct ∗ max(⊕i,j(sim(ni, mj))), ϕ(a), ϕ(b) 6∈ D

simtype(ϕ(a), ϕ(b)), ϕ(a), ϕ(b) ∈ D

.

6 http://www.w3c.org/TR/xmlschema-2/



where (a, ni) ∈ ET1
, (b, mj) ∈ ET2

and ⊕i,j(ni, mj) denotes the sum of pairs
sim(ni, mj) for 1 ≤ i ≤ card(n) and 1 ≤ j ≤ card(m) such that each ni and
mj occur at most once in the sum. If card(n) 6= card(m), some of the nodes
cannot be matched. Weights ωname and ωstruct are used to either increase or de-
crease the effect of element (label) name or structural similarity. Computation of
type similarity simtype bases on a given type compatibility table which assigns a
value to each combination of basic data types. The similarity of labels simname

can be calculated with different measures such as string edit distance, substring
containment or WordNet7 similarity (semantic proximity). In order to improve
the mapping results, we used substring matching and WordNet. Experiments
showed that especially in rather standardized areas the results are better than
with pure data type mapping.

SAWSDL-M0+WA. The hybrid semantic service matchmaker
SAWSDL-M0+WA applies the logical matching filters only, and ranks service of-
fers that share the same logical matching degree with respect to a given request
according to their degree of structural similarity as computed by the WSDL-
Analyzer.

5 SAWSDL-MX2: Adaptive Matching Aggregation

Inspired by [2, 4], we developed an adaptive, hybrid semantic service matchmaker
SAWSDL-MX2. This matchmaker (a) separately computes three different kinds
of semantic service matching degrees, that are logical, text and structural match-
ing (each of them as described in previous sections), and then (b) learns over a
given traing set how to best aggregate them to decide on the semantic relevance
(ranking) of a service to a given request. For the latter purpose, SAWSDL-MX2
exploits a Support Vector Machine (SVM) to learn a binary classification func-
tion, which is characterized by a hyperplane in a given feature space. This clas-
sification function evaluates for any given pair of service offer and request, their
binary relevance class membership, i.e. relevant or irrelevant, for the matching
problem at hand. For result ranking, the distances of training samples to this
plane are computed, and then taken as reference similarity values for deciding
on the relevance of unknown services.
More concrete, let X = {0, 1}5 × [0, 1] × [0, 1] feature space with feature vec-
tors xi = (f1, f2, f3, f4, f5, f6, f7) feature vectors where each feature f1 to f5

represents the logic-based matching result for a service query/offer pair includ-
ing fail, feature f6 stands for the text-based similarity value, and f7 for the
structural similarity value computed by the WSDL-Analyzer. For example, the
feature vector (0, 0, 1, 0, 0, 0.6, 0.7) represents the hybrid semantic matching re-
sult computed by SAWSDL-MX as follows: A logical subsumes match with text
similarity of 0.6 and structural similarity of 0.7. The yi values of the training
samples equal −1 for an irrelevant service offer given a query, and 1 for the rele-
vant case. As usual, relevance sets in the test collection are subjectively defined

7 http://wordnet.princeton.edu/



by domain experts. Eventually, the input to the SVM of SAWSDL-MX2 is a set
of training examples {(x1, y1), . . . , (xm, ym)} with xi ∈ X and yi ∈ {−1, 1}.
The result of running a SVM on such input is a hyperplane, possibly in a higher
dimensional space, which separates training examples in the feature space as
good as possible while the distance of the nearest points of each category is
maximized to avoid biased categorization. This is expressed in the following
optimization problem:

minimize w,b,ζ:
1

2
wT w + C

N
∑

i=1

ζi

subject to ∀1 ≤ i ≤ N : yi(w
T φ(xi) + b) ≥ 1 − ζi, ζi ≥ 0,

where w and b define the optimal hyperplane according to the previously men-
tioned characteristics. The error term C

∑N
i=1 ζi is introduced to allow for out-

liers in a non-linear separable training set, where the error penalty parameter
C must be specified beforehand. φ is a predefined function which maps fea-
tures into a higher dimensional space. There exists also a dual problem de-
scription, which utilizes Lagrange multipliers to express the hyperplane as linear
combination of support vectors. This form allows for the introduction of a ker-

nel function K, which implicitly defines the original function φ of the primal
problem. For our experiments, the radial basis function (RBF) has been used
as kernel. It is controlled by a second parameter γ and is defined as follows:
K(xi, xj) = e−γ‖xi−xj‖

2

. To find a good parameter setting (C, γ), the n-fold
cross validation and grid-search approach proposed in [13] has been conducted.
For more details on SVM’s in general and on the dual problem solving, we refer
the interested reader for example to [14].

Implementation of SAWSDL-MX2. SAWSDL-MX2 has been fully imple-
mented in Java using the sawsdl4j8 API (handling SAWSDL for WSDL 1.1) and
the OWL API9 for access to SAWSDL and OWL files, the DIG 1.1 as standard
interface to handle SHOIQ knowledge base queries, and the Pellet10 reasoner
as inference engine for logic-based matchmaking. As SVM implementation, we
used libSVM11.

6 Evaluation of Performance

For the adaptive integration of SAWSDL-MX and WSDL Analyzer by SAWSDL-
MX2, a retrieval performance evaluation based on the well known measures recall
and precision has been conducted. To prove the statistical significance of different
matching variants, we applied the Friedman Test. In the following, we focus

8 http://knoesis.wright.edu/opensource/sawsdl4j/
9 http://owlapi.sourceforge.net/

10 http://pellet.owldl.com/
11 http://www.csie.ntu.edu.tw/ cjlin/libsvm/



on the comparative evaluation of the three SAWSDL-MX variants described in
previous sections: the non-adaptive SAWSDL-M0+WA, SAWSDL-MX1 and the
adaptive SAWSDL-MX2. For more detailed results on SAWSDL-MX1 alone, we
refer to [1].

6.1 Evaluation Setup

The experimental evaluation of service retrieval performance is based on the first
SAWSDL test collection SAWSDL-TC1. It is semi-automatically derived from
OWLS-TC 2.212 using the OWLS2WSDL13 tool, as there is currently no other
standard test collection for SAWSDL available. OWLS2WSDL transforms OWL-
S service descriptions (and concept definitions relevant for parameter descrip-
tion) to WSDL through syntactic transformation. Top-level annotations taken
from the original OWL-S descriptions have been added for XML Schema type
definitions used to describe message inputs and output. The collection consists of
around 900 Web services covering different application domains: education, med-
ical care, food, travel, communication, economy and weaponry. It also includes a
set of queries and binary relevance sets subjectively specified by domain experts.
As one result, each service in SAWSDL-TC1 contains only a single interface with
one operation. All automatically derived model references point to OWL ontolo-
gies. Therefore, this test collection can only be seen as a first attempt towards
a commonly agreed testing environment for SAWSDL service discovery and our
evaluation has to be considered as preliminary. The performance tests have been
conducted on a machine with Windows 2000, Java 6, 1,7 GHz CPU and 2 GB
RAM using the SME2 tool14 for automated evaluation.

6.2 Performance Tests

For retrieval performance evaluation, we measured precision and recall: Prec =
|A∩B|
|B| and Rec = |A∩B|

|A| , where A is the set of all relevant documents, and

B the set of all retrieved documents for a request. Further, we measured the
macro-averaged precision: Preci = 1

|Q| ·
∑

q∈Q max{Po|Ro ≥ Reci ∧ (Ro, Po) ∈

Oq}, where Oq denotes the set of observed pairs of recall/precision values for
query q when scanning the ranked services in the answer set for q stepwise
for true positives in the relevance sets of the test collection. For evaluation,
the answer sets are the sets of all services registered at the matchmaker which
are ranked with respect to their (totally ordered) matching degree. In other
words, we computed the mean of precision values for answer sets returned by
the matchmaker for all queries in the test collection at standard recall levels
Reci (0 ≤ i < λ). Ceiling interpolation is used to estimate precision values that
are not observed in the answer sets for some queries at these levels; that is, if for
some query there is no precision value at some recall level (due to the ranking of

12 http://projects.semwebcentral.org/projects/owls-tc/
13 http://projects.semwebcentral.org/projects/owls2wsdl/
14 http://projects.semwebcentral.org/projects/sme2/



(a) integration vs. basic strategies (b) different integration variants

Fig. 3. Performance of matching variants

services in the returned answer set by the matchmaker) the maximum precision
of the following recall levels is assumed for this value. The number of recall levels
from 0 to 1 (in equidistant steps n

λ
, n = 1 . . . λ) we used for our experiments is

λ = 20. The Average Precision (AP) measure produces a single-valued rating of

a matchmaker for a single query result: AP = 1
|R|

∑|L|
r=1 isrel(r) count(r)

r
, where R

is the set of relevant items previously defined by domain experts for the examined
query, L the ranking of returned items for that query, isrel(r) = 1 if the item
at rank r is relevant and 0 otherwise and count(r) the number of relevant items
found in the ranking when scanning top-down, i.e. count(r) =

∑r
i=1 isrel(i).

The AP measure is independent from the way and size of ranking.

As a first experiment, we compared the retrieval performance of SAWSDL-
M0+WA to that of both approaches applied solely. This experiment was con-
ducted mainly to check, whether even such a simple hybrid combination of logic-
based and non-logic-based semantic matching as in SAWSDL-M0+WA can im-
prove upon the performance of each of both (SAWSDL-M0 and Text-IR) in-
dividually. As shown in figure 3(a), the combination of both performs best at
almost every recall level except towards full recall. This is in perfect line with our
experimental results on SAWSDL-MX1 reported in [1]. As we already pointed
out there, ontologies currently found in the Web are merely inclusion hierarchies
or taxonomies rarely making use of elaborated logical concept definitions for
service annotation, which still dampens the benefit of any logic-based semantic
matching approach.

To compare the performance of the adaptive hybrid matchmaker SAWSDL-
MX2 (logic, text, structural similarity) with that of the non-adaptive variants
SAWSDL-M0+WA (logic and structural similarity) and SAWSDL-MX1 (logic
and text similarity), we conducted a second evaluation experiment. As shown
figure in 3(b), the adaptive SAWSDL-MX2 performs better than SAWSDL-M0



SAWSDL-M0+WA SAWSDL-MX1 SAWSDL-MX2

AP 0.61 0.66 0.65

AQRT 15.48s 8.17s 18.8s

Table 1. Average precision and query response time (in seconds) of SAWSDL-MX
matchmaker variants

(logic-based only) but is as good as the non-adaptive variant SAWSDL-MX1 uti-
lizing logic-based matching and extended Jaccard text similarity-based match-
ing.
This is mainly to the fact, that text similarity computation as described in sec-
tion 3.3 is closely related to structural matching when applied to mere is-a on-
tologies (inclusion hierarchies, taxonomies). In fact, for the given test collection,
where SAWSDL files have been semi-automatically derived from OWL-S and
the XML Schema parameters origin from OWL concept definitions, the WSDL-
Analyzer (WA) indirectly performs both structural and text similarity-based
concept matching which makes it partly redundant to SAWSDL-MX2 in such
cases. Nevertheless, for the general case, the adaptive approach of SAWSDL-MX2
enables an easy and well-defined integration of arbitrary matching mechanisms
to improve result rankings.
Table 1 summarizes the averaged precision (AP) and query response time of
the discussed SAWSDL matchmakers. We emphasize that these results strongly
depend on the test collection used. In summary, the non-adaptive SAWSDL-MX1
(logic + text) still performs best even over the adaptive variant SAWSDL-MX2
which exhibits a longer response time in average due to its comparatively most
complex matching (logic + text + structural).

6.3 Statistical Significance Tests

The differences in the performance evaluation results can be shown to be statis-
tically significant or insignificant by means of the so-called Friedman test. This is
a non-parametric test for simultaneously analyzing ranked result sets of at least
two different (service matching) methods and has been shown in [11] to be a
vital explanatory component of a comparative retrieval performance evaluation.
We are using the Friedman Test variant proposed in [10] as FN = MSR

MSE
, where

MSR is the mean-squared difference between the different matching variants
and MSE the mean-squared error. The resulting value can be compared to
the F-distribution with m − 1 and (n − 1)(m − 1) degrees of freedom, where
n is the number of queries anf m the number of tested matching variants. The
resulting p-value indicates, if there is a significant difference between the variants
which one can not interpret as being an implication of the null hypothesis, i.e.
that variations of the matchmaker rankings per query are insignificant. As a
threshold value for p, we rely on α = 0.05, which is frequently used for tests like
this. To produce the rankings for the test, averaged AP values have been used.
The test resulted in a value of p = 0.026 for SAWSDL-M0+WA compared to the
WSDL-Analyzer, and p = 0.0028 compared to SAWSDL-M0. Both values are



below the threshold α which means that the recall/precision results are a signif-
icant improvement at 5% level. However, the test returned a value of p = 0.331
for the second evaluation experiment which means that none of the evaluated
matchmaker variants performs significantly better than any of the others regard-
ing the used test collection. As already meantioned before, this is mainly due
to the fact, that the additional structural comparison implicitly performs partly
redundant matching, as the semi-automatically derived test collection services
mainly differ with respect to the XML Schema parameter definitions derived
from the original OWL concepts used in the original test collection OWLS-TC
2.1.

7 Related Work

To the best of our knowledge, there exist only very few implemented seman-
tic service discovery systems for SAWSDL. In FUSION [7], any SAWSDL ser-
vice description is classified at the time of its publishing and then mapped
to UDDI to allow for fast lookups. In case of unknown semantic service re-
quests reasoning has to be done at query time. In contrast to SAWSDL-MX,
the FUSION discovery relies on one infered logical matching degree only, Like
SAWSDL-MX, FUSION is strictly bound to OWL-DL. Lumina [8] developed
in the METEOR-S project15 follows a similar approach based on mapping of
WSDL-S (and later on SAWSDL respectively) to UDDI but performs syntactic
(structural and text similarity-based) service matching only. Finally, the URBE
matchmaker by Plebani16 performs non-logic-based matching in terms of text
similarity and structural comparisons. Unfortunately, no public information is
available on this matchmaker yet. For a survey of semantic service matchmakers
in general, we refer the interested reader to [6].

8 Conclusion

We discussed three different hybrid SAWSDL service matchmakers all of which
outperforming the individual types of matching they combine for detecting the
semantic relevance of a service with interfaces with multiple operations to a
given request. The combination with structural service matching by the WSDL-
Analyzer tool turned out to be of benefit compared to logic-based only matching
but not with respect to logical and text similarity-based matching. In addi-
tion, applied to the given test collection SAWSDL-TC1, the adaptive hybrid
approach combining all three types of matching did not outperform the non-
adaptive variant in [1] yet. We are currently working on a new hybrid match-
maker variant SAWSDL-MX3 that also supports different knowledge represen-
tation formalisms. SAWSDL-MX1 and SAWSDL-TC1 are publicly available at
semwebcentral.org.

15 http://lsdis.cs.uga.edu/projects/meteor-s/
16 http://www-ags.dfki.uni-sb.de/ klusch/s3/html/2008.html
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