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ABSTRACT
Accurate prediction of the future position of pedestrians in traffic
scenarios is required for safe navigation of an autonomous vehicle
but remains a challenge. This concerns, in particular, the effective
and efficient multimodal prediction of most likely trajectories of
tracked pedestrians from egocentric view of self-driving car. In this
paper, we present a novel solution, named M2P3, which combines a
conditional variational autoencoder with recurrent neural network
encoder-decoder architecture in order to predict a set of possible
future locations of each pedestrian in a traffic scene. The M2P3
system uses a sequence of RGB images delivered through an internal
vehicle-mounted camera for egocentric vision. It takes as an input
only two modes, that are past trajectories and scales of pedestrians,
and delivers as an output the threemost likely paths for each tracked
pedestrian. Experimental evaluation of the proposed architecture
on the JAAD and ETH/UCY datasets reveal that the M2P3 system
is significantly superior to selected state-of-the-art solutions.
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1 INTRODUCTION
Despite recent advances in autonomous driving, the achievement of
pedestrian-safe navigation of autonomous vehicles (AVs) remains a
challenge [47]. One prerequisite of collision-free navigation is an
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effective and efficient multi-pedestrian path prediction in traffic
scenes by AVs. In fact, there is a plethora of solution approaches
for this problem [65] to be employed in advanced driver assistance
systems of AVs. Currently, these systems enable an AV to detect if
a pedestrian is actually in the direction of travel, warn the control
driver and even stop automatically. Other approaches would allow
ADAS to predict whether the pedestrian is going to step on the
street, or not [46].
The multimodality of multi-pedestrian path prediction in ego-view
is a challenge and hard to handle by many deep learning (DL) mod-
els for many-to-one mappings. Given past trajectories of tracked
pedestrians in a traffic scene, the distribution of future trajecto-
ries as outcomes has not a single but multiple modes. Each pedes-
trian has unique dynamics and individual goals to reach, and many
different trajectory predictions are equally possible for the same
traffic scene context with pedestrians. Conditional variational auto-
encoders (CVAE) for output representation learning and structured
prediction may be applied to cope with this problem in principle
[15]. A CVAE models the distribution of a high-dimensional output
space as a generative model conditioned on input modes, which
modulate the prior on lower dimensional, randomly sampled Gauss-
ian latent variables that are then decoded into a set of probabilistic
input reconstructions as outputs [35, 39, 55]. Though, the benefit
of using a CVAE-based system for multimodal prediction of most
likely pedestrian paths from egocentric vision of a self-driving car
remains to be shown. It is not known for which set of input modes
or factors of pedestrian dynamics, scene context and social context
what kind of CVAE-based system architecture performs best for
this purpose [47, 50].

To this end, we propose a novel CVAE-based system, named M2P3,
for multimodal multi-pedestrian path prediction by self-driving cars
in ego-view. It combines a conditional variational autoencoder as
generative model with a recurrent neural network (RNN) encoder-
decoder architecture in order to output a set of possible future paths
of each pedestrian in a traffic scene tracked by a self-driving car with
egocentric vision. The M2P3 system uses a RGB vehicle-mounted
camera for egocentric vision and takes as input only two basic
modes, that are past trajectories and scales of tracked pedestrians
in traffic scene video. It k-means clusters the set of their trajectories
predicted for 1 second into the future and outputs these k future
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pedestrian paths together with their probability of occurrence. Re-
sults of our comparative evaluation on the publicly available JAAD
(joint attention for autonomous driving) ego-view video dataset
reveal that the M2P3 system performance is significantly superior
to selected state-of-the-art solutions.

Figure 1: Example of M2P3 prediction of three most likely
trajectories of tracked pedestrian in car ego-view video
taken from the JAAD dataset.

The remainder of the paper is structured as follows. In Section 2,
we briefly summarize related work and describe our novel solution
M2P3 to the multi-pedestrian path prediction problem in Section 3.
Results of our comparative experimental evaluation of M2P3 are
discussed in Section 4 before we conclude in Section 5.

2 RELATEDWORK
Egocentric vision. First-person video or egocentric vision is a sub-
field of computer vision which tries to analyze images or videos
from a wearable camera (typically on a person’s head) or from a
mounted camera in car, looking forward. This is a challenging task
due to the perspective view of the camera, the narrow field of view,
as well as the introduced ego-motion. Most of the works in literature
have focused on object detection [4, 29], activity recognition [13,
33, 36, 44],person identification [2, 11, 19, 60], activity forecasting
[10, 16, 48], video summarization [28], gaze anticipation [32, 64],
and grasp recognition [3, 6, 31, 52]. Recent work [41] also focuses
on egocentric future localization but predicts the future location of
the camera wearer and not the people around. Another example
is the approach presented in [57], which uses a Siamese network
to estimate future behaviors of basketball players in first-person
videos. However, unlike our M2P3 approach, this method requires
multiple cameras to reconstruct the scene.
Recent work that is more related to our M2P3 solution is presented
in, for example, Bhattacharyya et al. [5]. The authors propose a
Bayesian LSTM to predict the future locations of people by taking
into account the car’s ego-motion as well.
Yagi et al. [61] predict future locations of people observed in first-
person videos by using the person’s pose, past movement and
ego-motion in a multi-stream convolution-deconvolution network.
However, the method only predicts one possible future location,
thus fails to capture multi-modality of the pedestrian motion.
Yao et al. [62] proposes a RNN encoder-decoder model that can
predict future vehicle locations from ego-view in traffic scenarios.
The approach employs scene optical flow as well as future ego-
motion prediction but fails to model the probabilistic nature of the
problem and takes no pedestrians into account.

Ma et al. [37] predicts the motion of heterogeneous traffic-agents
from ego-view perspective using an LSTM-based realtime traffic
prediction algorithm. They model the problem as a 4D graph and
treat traffic agents as points and only take into account their past
motions.

Trajectory prediction. The problem of human trajectory predic-
tion has been researched extensively. Most of the works focus of
static scenes and crowds. There are many classical approaches to
the problem such as a Bayesian formulation [30, 53], Monte Carlo
Simulation [8, 40, 49], Hidden Markov Models [14, 38], Kalman
Filters [21], linear and non-linear Gaussian models [9, 45], Markov
jump process [22]. These methods try to model objects based on
their past movements but cannot work reliably in real-world traffic
scenarios where uncertainty and multi-modality should be taken
into account as well.
Other works explicitly model the interaction between pedestrians
for collision avoidance. For example, in [43] the authors propose
a linear trajectory avoidance model, and in [58] the social force
model is utilized. These approaches are designed for homogenous
interactions in crowds and rely on predetermined models of inter-
action.
In [1], a "Social LSTM" network is introduced, which predicts the
future path of multiple people in a crowd by means of connected
neighboring LSTMs in a social pooling layer. Recently, the authors
of [17] propose to generate socially compliant set of trajectories
by utilizing a GAN and training against a recurrent discriminator.
However, their method is applied to a static crowd scene only.
Some recent work on pedestrian path prediction employ some vari-
ant of a recurrent neural network (RNN) and/or combine it with
other deep learning models such as convolutional neural networks,
generative adversarial networks (GANs), and variational autoen-
coders (VAE). For example, the DESIRE framework [27] consists of a
CVAE-based RNN encoder-decoder architecture, which can output
multiple path predictions to be refined further. However, the likeli-
hood of each future path prediction per pedestrian is not estimated.
The latter is achieved in M2P3 by means of k-means clustering
to approximate the likelihood of future trajectories. Furthermore,
according to our experiments the prior of DESIRE’s CVAE appears
too restrictive for modelling of multimodal trajectory distributions
(cf. Table 2). More recent, the NEXT model [34] proposes a LSTM
and focal attention-based approach to the prediction of trajectory
and future activity of pedestrians. In particular, it combines visual
features of person (appearance, pose), person-scene (segmentation
of scene around person) and geometric person-object relations in a
visual feature for separate trajectory generation with focal attention
and action label prediction per pedestrian. However, in contrast
to M2P3, NEXT does not address the above mentioned stochastic
nature of the human trajectory prediction.
In [15], the use of conditional stochastic networks for multimodal
prediction of object future motion trajectory in top-view with sin-
gle frame as input from the drone Stanford dataset is investigated.
However, our CVAE-based M2P3 system architecture and loss func-
tion are different, and implements a complete processing pipeline
for self-driving car in ego-view.
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3 M2P3 SOLUTION
As mentioned above, future prediction of pedestrian movement can
be very ambiguous because given the same input state, multiple
future states are possible. For example, a pedestrian heading to-
wards a t-intersection, has an equal probability of going either left
or right. Moreover, a model which simply learns a deterministic
input/output mapping f : X→ Y will under-represent the predic-
tion space and possibly average out all possible outcomes, if a naive
loss function is used. In order to tackle this problem, we adopt a
generative model, especially a conditional variational auto-encoder
(CVAE) based on gated recurrent neural networks for encoding and
decoding, which generates a set of future pedestrian trajectories,
hence allowing one-to-many input/output mappings.

3.1 Architecture
The architecture of the M2P3 approach is summarized in Figure 2.
The pedestrian trajectory prediction problem is modeled with a gen-
erative model, a CVAE, where the posterior distribution P (Y | X ) is
learned with the help of a latent variable Z [55]. Our model allows
for conditional generation of pedestrian trajectories while taking
into account the uncertainty of the future prediction.
The M2P3 gets as an input the trajectory and scale (represented as
X ) of each detected pedestrian in ego-view and predicts for each
input for about two third of one second (n = 10 frames) the three
most likely future trajectories Ŷ for one second into the future
(m = 15 frames). During training M2P3 is also provided with the
ground truth of future pedestrian trajectories (given asY ). Its CVAE
network learns to map the joint input H of RNN-based encodings
of Y and X to latent Z with prior normal distribution in order to
generate a model of P(Y |X ) which maximizes the probability of Y
conditioned on input X . During testing, the processing of ground
truthY is removed such that only random samplesZ from prior nor-
mal N(0, I ) extended with encoded input X are used for prediction
of Y with approximated posterior P(Y |Z ,X ). For given number of
N such predictions, the system eventually returns k most likely tra-
jectories based on k-means clustering. The whole M2P3 processing
pipeline allows to realize many-to-many mappings for multimodal
multi-pedestrian path prediction in ego-view.

Training. The training architecture of M2P3 is shown in Figure
2. During training the time-dependent features of two basic input
modes, that are pedestrian location l and scale s (see Sect. 3.2) of X ,
and the ground truth of future trajectory Y of the pedestrian are en-
coded through gated recurrent neural networks inHX , respectively,
HY . These encodings are concatenated in the joint input vector H
for the variational module, which, in turn, learns estimating the
mean µH and co-variance ΣH of normal distribution N(µH , ΣH ),
mapping the joint inputH to latent Z with conditional normal prior
P(Z |X ) ∼ N(0, I ) as reference for sampling. A random sample of Z
from normal distribution together with condition HX is then fed
into the following RNN decoder. The latter decodes this extended
sample into a predicted future trajectory with approximated con-
ditional normal posterior distribution P(Y |Z ,X ).

Each of the encoding of inputs X and Y into HY and HX is done by
a RNN encoder using the following recurrent (GRU) computation:

zt = σ (Wz · xt + Uz · ht−1 + bz ),

rt = σ (Wr · xt + Ur · ht−1 + br ),

ht = (1 − zt )ht−1 + ztσ (Wh · xt + Uh (rtht−1) + bh )
(1)

where W, U and b are learnable weights, z and r are update and
reset gates; x and h are input and output vectors accordingly. σ is
a nonlinear function such as tanh. Initially, for t = 0, the output
vector is h0 = 0.
The outputs HY ,HX of both encoders are then concatenated into
a joint input vector H . This vector is fed into two fully-connected
layers for mean µH and co-variance ΣH , which are learned to model
the latentZ distributionQ(Z |H ) as normal distributionN(µH , ΣH )

with Z = µH + ΣH ⊙ ϵ and ϵ ∼ N(0, I). In other words, it learns to
map the joint input H to latent Z with normal distribution N(0, I)
as reference for sampling; P(Z |X ) is N(0, I), because we assume Z
is sampled independently of X at test time. This processing part of
the M2P3-CVAE network during learning requires the minimiza-
tion of the Kullback-Leibler divergence (DKL) between the esti-
mated distribution Q(Z |H ) and the reference distribution N(0, I),
i.e. DKL(N(µH , ΣH )| |N(0, I)).
In order to allow for backpropagation of errors through a layer
that samples Z from Q(Z |H ), which is a non-continuous operation
without gradient, the standard reparameterization trick to move the
sampling to an input layer as introduced in [24] is applied. That is,
sampling from N(µH , ΣH ) is done by first randomly sampling ϵ ∼

N(0, I) and then computing Z with these parameters (ϵ, µH , ΣH ) as
mentioned above.
Eventually, the RNN decoder gets a sample of Z extended with
condition HX , performs the recurrent operation (1) on it, and feeds
the result into a final dense layer that produces the future trajectory
prediction Ŷ . This processing part of the M2P3-CVAE network
during learning requires the minimization of the error between
ground truth future trajectory Y and its prediction Ŷ according to
the L2 loss (Euclidean distance)



Y − Ŷ


2.

The whole M2P3-CVAE network architecture is trained with sto-
chastic gradient descent method to minimize the total loss L defined
as

L =


Y − Ŷ



2 + DKL(N(µH , ΣH )| |N(0, I)) (2)

That is, the latent distribution Q is learned by the M2P3-CVAE
network such that it gives a higher probability to Z with which it is
more likely to produce predictions Ŷ that are close to ground truth
Y in the context of X .

Testing. The M2P3 test architecture is shown in Figure 3. At test
time, the ground truth of future trajectories Y is not available such
that the respective part of the encoding pathway in theM2P3 system
is not used (see Figure 3). Besides, we can now sample from distri-
bution P(Y |X ) by sampling Z ∼ N(0, I) In fact, the RNN decoder of
M2P3 only receives the RNN-encoded condition HX together with
a random sample Z drawn from the prior distribution N(0, I). This
enables probabilistic inference allowing to handle multimodality in
the prediction space.
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Figure 2: M2P3 system architecture (training) overview. For each tracked pedestrian, the system processes the ground-truth
future trajectory (Y ) from JAAD dataset, and observed past trajectory (X ) by means of encoding, mapping of joint input H
to latent Z with normal prior as reference for sampling, and decoding of random sample Z with X into prediction of future
pedestrian trajectory Ŷ as output.

For each input X the test network is run with N = 1000 random
samples Z , thereby generating N possible trajectories of the consid-
ered pedestrian, which are then clustered into k = 3 clusters using
k-means. Since we do not have explicit access to the posterior tra-
jectory distribution, we choose a large number for N, which allows
the future trajectory distribution to be closely approximated. The
value of k is chosen arbitrary, such that the output trajectories are
not under or over-clustered. In particular, each of the generated
trajectories is assigned to the closest cluster based on 2D Euclidean
distance. The number of assigned trajectories in each cluster is
divided by the total number N of generated trajectories to obtain
a probability distribution over the clusters (see Figure 1). In con-
crete terms, given the set of output trajectories from the model
Y = {Y1,Y2, ...,YN } and the set S = {S1, S2, S3} of clusters, M2P3
assigns each output trajectory Yp , 1 ≤ p ≤ N, to exactly one cluster
Si , 1 ≤ i ≤ 3, whose mean mi has the least squared Euclidean
distance:

Si = {Yp :


Yp −mi



2 ≤


Yp −mj



2 , 1 ≤ j ≤ 3, i , j} (3)

This is followed by the calculation of (k=3) cluster probabilities
as P(Si ) = |Si |/|Y|, where |Si | and |Y| denote the cardinality of
respective sets. These cluster probabilities are then displayed by
the M2P3 system as probabilities of occurrence of predicted future
pedestrian positions.

Implementation. Our M2P3 implementation bases on Keras [7]
with Tensorflow as backend. For pedestrian tracking, M2P3 can
utilize DeepSORT [59] with underlying mask R-CNN [18] for pedes-
trian detection. In the implemented M2P3 system, all CVAE input
data first passes through a fully-connected embedding layer of size

128 before being fed into an encoder. The hidden size of all en-
coders and decoder layers is set to 256. The latent dimension of
the fully-connected (fc) layer in the CVAE is set to 24. The two
latent fc layers are concatenated before deriving latent distribution,
that is to match the unknown latent distribution to a known, prior
distribution. In order to simplify the training process, in contrast
to Long-Short-Term-Memory (LSTM) networks, Gated Recurrent
Units (GRU) have been adopted for the RNN-encoders/-decoder.

3.2 Pedestrian Trajectory and Scale
One obvious clue about future pedestrian motions is their motion in
the past. Thus,M2P3 also tracks each pedestrian’s 2D image location
(x,y coordinates) for n frames. For each detected pedestrian in the
scene, M2P3 collects the following feature vector:

Xl = {xT−n, yT−n, xT−(n−1), yT−(n−1), ..., xT, yT},
where T is the current time frame. 2D image distances correspond
to different physical distances depending on where the person is
situated in the frame. Therefore, M2P3 learns the width and the
height (scale) of the pedestrian in order to take the perspective
effect of the ego camera into account. In particular, it records the
width w and height h in pixels of each pedestrian for the past n
frames into the following vector:

Xs = {wT−n, hT−n,wT−(n−1), hT−(n−1), ...,wT, hT}
The final input Xl,s to the underlying M2P3 model (cf. Sect. 3.1)
then is: Xl,s = Xl ⊕Xs, where ⊕ denotes the concatenation operator.
This input is normalized in the range [0,1] relative to the image
resolution. The output Y of the M2P3 model is modeled as the 2D
displacement from the last observed frame T:

Y = {xT+1–xT, yT+1–yT, ..., xT+m–xT, yT+m–yT},
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Figure 3:M2P3 architecture (testing) overview. The input only consists ofX for observed pedestrian trajectory and scale, which
RNN-based encoding combined with random sample of Z from normal distribution is decoded into trajectory prediction Ŷ as
output.

where m is the number of frames in the future. By using a displace-
ment vector rather than absolute coordinates, the M2P3 model is
able to learn how a pedestrian moves in the future relative to his
starting position. This helps with the generalization of the model
to new scenes with different resolution and positions of the pedes-
trians.

4 EXPERIMENTS
For comparative performance evaluation of our M2P3 system, we
conducted experiments based on the publicly available datasets
JAAD, ETH, andUCY against selected state-of-the-artmulti-pedestrian
path predictors as baselines.

4.1 JAAD
Dataset. For our first comparative performance evaluation exper-
iments, we use the publicly available JAAD (Joint Attention for
Autonomous Driving) dataset [25]. This dataset contains an anno-
tated collection of short video clips, capturing typical urban traffic
scenarios in various weather conditions. The clips are taken from a
single RGB camera, mounted behind the windshield of a moving
car. All pedestrians are manually annotated with bounding boxes
and unique tracking identifier. The resolution of all videos is set to
a constant value of 1280 × 720. The frame rate is also re-scaled to a
constant value of n = 15 frames per second. All pedestrians which
are either too far away from the car (less than 50 pixels in size), or
occluded, or tracked for less than 25 frames, are ignored.

Implementation. The JAAD dataset is split into training (videos
0-250) and testing (videos 251-346) as done in [12, 56]. The ratio
between training and validation videos is 80% to 20% for fine-tuning
the hyper-parameters of the implementedM2P3model. After hyper-
parameters are fixed, we train the M2P3 on the full training set of
JAAD (videos 0-250).
For all experiments, ground truth bounding boxes provided by
the JAAD dataset are used for extracting past trajectory and scale
of pedestrian. The numbers of past and future frames are set to
n = 15,m = 10. The ADAM [23] optimizer is used with learning
rate of 1e-4 and trained the M2P3 for 6000 epochs. The model has
948,914 trainable parameters in total. The training takes approxi-
mately 2 hours on desktop machine with NVIDIA GTX 1080ti GPU
and Intel i7-7800X CPU. The average inference time is 29ms per
pedestrian.

Baselines and Metrics. For the comparative performance evalua-
tion, we selected the following five state-of-the-art solution models
as baselines.

(1) CV (Constant Velocity) model. The CV model as in [54]
assumes that the pedestrian maintains constant velocity
through time. The horizontal and vertical components of
the velocity at time t are denoted as υxt and υyt and defined as
υxt =

xt-xt-n
n and υyt =

yt-yt-n
n for the past n observed frames.

Therefore, the future position of a pedestrian is defined as
x̃t+m = xt + υxt · m and ỹt+m = yt + υ

y
t · m in the next m

frames.
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(2) CA (Constant Acceleration) model. The implemented CA
model is the same as the CVmodel above but the acceleration
of a pedestrian is assumed to be constant.

(3) RNN Encoder-decoder model in [62] is the same as theM2P3
model but without the CVAE module.

(4) MSCD model. The MSCD model proposed in [61] uses a
multi-stream convolution-deconvolution framework.

(5) DTP model. The DTP model proposed in [56] utilizes the
optical flow of the pedestrians and a residual network.

For reasons of comparability of the results, we applied the same
evaluation scheme as in [56]. The M2P3 model observes n = 10
frames (2/3 of a second) and predicts m = 15 frames (1 second)
into the future. The following performance evaluation metrics for
pedestrian path prediction are computed for all systems on the test
set of the JAAD dataset:

• The mean squared error (MSE) in pixels (1280x720 resolu-
tion)is defined as 1

N
1
m

∑N
i=1

∑m
t=1(Ŷ

i
t−Y

i
t)
2, where Ŷ denotes

the prediction, Y the ground truth, and N the number of test
sequences.

• The displacement error (DE) in pixels (1280x720 resolution)
at last time step m = 15 (1 second) is defined as
1
N

∑N
i=1



Ŷ im − Y im



2.

Results and Analysis. The results of the comparative perfor-
mance evaluation over the JAAD dataset are given in Table 1.

Method MSE DE
CA[54] 1426 52.8
CV 1148 47.5
RNN [62] 983 49.1
MSCD [61] 881 ± 44 41.3 ± 1.2
DTP [56] 610 ± 21 34.6 ± 0.5
M2P3 (1 sample) 584 ± 5 35.9 ± 0.15
M2P3 483 ± 2 29.02 ± 0.06
(1000 samples, k=3 clusters)

Table 1: Experimental results for M2P3 and baselines over
the JAAD dataset

The results reveal that with just a single random sample (predic-
tion) our CVAE-RNN based model M2P3 is already able to reach
a performance comparable to that of the selected state-of-the-art
baselines. When the number of samples is increased to 1000, clus-
tered into 3 clusters, where the cluster closest to the ground truth is
chosen, our model notably even outperforms all selected baselines.
This confirms the multi-modal nature of the prediction problem,
which is not captured by the selected alternative methods. Having
access to the ground truth of pedestrian path prediction in the real
world of autonomous driving is, of course, not possible, hence one
cannot simply pick the best prediction. This case is handled by the
M2P3 by means of clustering of and probability assignment to the
predictions in the output set. These clusters can then be considered
one by one in a decreasing probability fashion by an AV navigation
algorithm. Besides, the M2P3 also implicitly learns both pedestrian

and ego motion instead of ego motion-free trajectories for learning
individual motion patterns of pedestrians.

4.2 ETH/UCY
Dataset. For our second comparative performance evaluation, we
used two prominent, publicly available datasets for trajectory pre-
diction: ETH [57] and UCY [26]. Both datasets are converted to
world coordinates (meters) and pedestrian positions are obtained
every 0.4 seconds (1 timeframe). The data is split into 5 sets (ETH -
2, UCY - 3) and we follow the standard leave-one-scene-out data
split as in [17] for evaluation, such that training is performed on 4
sets and test on the remaining one. Past trajectories are observed
for 8 timesteps (3.2 seconds) and predicted for the next 12 timesteps
(4.8 seconds).

Implementation. Here, we experimented with a more powerful
prior, that is the Mixture-of-Gaussians (MoG), which can capture
more modes of the trajectory distribution compared to just a unit
Gaussian. The loss function L for M2P3-MoG training is as follows:

L =


Y − Ŷ



2 + DKL(q(z, c|X,Y)| |p(z, c|X)) (4)
This essentially means that the variational encoder of the M2P3
now learns a posterior distribution q(z,c|X,Y), where the latent
embedding z is regularized by the prior p(z,c|X) to lie on Mixture-
of-Gaussians manifold, where z ∼ N(µc , σ

2
c I) and c ∼ Category(π )

such that K is a predefined number of components of the mixture
and π=[π1, π2,...,πK ] is the prior probability of the Gaussianmixture
components. More details for the derivation of the loss function
can be seen in [20], where a variational autoencoder with MoG was
originally used for the task of clustering.
Since the ETH/UCY dataset is captured from a fixed top-down
view, we do not use the person’s scale anymore but the normalized
past trajectory in meters. For a stable training, the model gets first
pre-trained based on just the first term of the loss in (4) for a few
epochs. After that a gaussian mixture from the latent space (Z)
of the model is initialized for continued training with the full loss
for 100 epochs and the ADAMoptimizer with a learning rate of 1e-5.

Baselines and Metrics. For the evaluation, 20 predictions are gen-
erated for each observed trajectory and the closest one to the ground
truth is chosen. This allows us to test the multi-modality and di-
versity of the predictions. We compare our model to the following
state-of-the-art baselines:

(1) Social GAN [17] uses a recurrent sequence-to-sequence
model with a novel social pooling mechanism and a genera-
tive adversarial network.

(2) Sophie [51] uses a generative adversarial network to gener-
ate realistic trajectory by utilizing social and physical scene
constraints.

(3) NEXT [34] uses a LSTM encoder-decoder architecture to
predict persons’ movements and utilizes rich visual features
about human behavioral information and interaction with
their surroundings.

(4) DESIRE [27] combines a RNN encoder-decoder with a CVAE
and uses the person’s past trajectory and scene context to
predict the future trajectory.
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ADE/FDE in meters (20 samples)
Method ETH HOTEL UNIV ZARA1 ZARA2 Average
Social GAN [17] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
Sophie [51] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
NEXT [34] 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.60 0.46/1.00
DESIRE [27] 0.93/1.94 0.52/1.03 0.59/1.27 0.41/0.86 0.33/0.72 0.53/1.11
SGN LSTM [63] 0.75/1.63 0.63/1.01 0.48/1.08 0.30/0.65 0.26/0.57 0.48/0.99
FSGAN [42] 0.68/1.16 0.43/0.89 0.54/1.14 0.35/0.71 0.32/0.67 0.46/0.91
M2P3 (Ours) 1.04/2.16 0.54/1.13 0.64/1.34 0.45/0.95 0.37/0.79 0.60/1.27
M2P3 MoG (Ours) 0.57/1.01 0.40/0.87 0.61/1.31 0.33/0.70 0.21/0.42 0.42/0.86

Table 2: Experimental results forM2P3 and baselines over the ETH/UCY dataset. For eachmethod the best out of 20 predictions
(samples) is chosen.

(5) SGN LSTM [63] is a stochastic trajectory predictor which
uses LSTM and directed social graph which is dynamically
constructed on timely location and speed direction.

(6) FSGAN [42] extends Social GAN [17] by incorporating ad-
versarial loss in the trajectory prediction task.

For comparison, we adopt the error metrics from prior work [1, 27]:
(1) Average Displacement Error (ADE) is the average L2 distance

between the prediction and the ground truth over all time
steps.

(2) Final Displacement Error (FDE) is the L2 distance between
the prediction and the ground truth at the last time step (in
our experiments: 4.8 seconds).

Results and Analysis. The results for the ETH/UCY dataset are
summarized in Table 2. Our M2P3 model with a unit Gaussian
prior performs the worst as it is unable to fully capture all of the
modes of trajectory distribution. Its predictions are simply forced
around the mean of this single Gaussian. However, by exchanging
the prior with a Mixture-of-Gaussians one, the M2P3-MoG was able
to successfully capture multiple modes of the data. Even though the
M2P3-MoG uses only the past trajectory as an input, it achieved
the lowest prediction error in our experiments. This suggests that
a generative model with a diverse prior is crucial for achieving
state-of-the-art results on this particular dataset. A disadvantage of
the MoG prior is that one needs to manually choose the amount of
mixture components (in this case 5) but that can be addressed by
hyper-parameter tuning on a validation set.

5 CONCLUSIONS
In this paper, we presented a novel solution M2P3 for the egocen-
tric multi-modal multi-pedestrian path prediction problem. M2P3
combines a conditional variational autoencoder with a recurrent
neural network encoder-decoder architecture. It uses a RGB vehicle-
mounted camera for egocentric vision, takes two inputs by comput-
ing past trajectories and scales of tracked pedestrians in the field
of car perception with egocentric vision and then outputs diverse
trajectories together with their probability of occurrence. Results of
comparative experimental evaluation on the JAAD dataset showed
that the M2P3 model can outperform selected state-of-the-art solu-
tions. Furthermore, the M2P3 with a simple change of the prior to
a Mixture-of-Gaussians already showed comparable performance

to that of more complex state-of-the-art path predictors over the
prominent ETH/UCY dataset. Ongoing work is concerned with
the separation of car ego motion from pedestrian motion, and the
ablative investigation of integrating additional factors of pedestrian
intention estimation and interaction. Additionally, increasing the
diversity of the output as well as incorporating even more sophisti-
cated prior, will be further investigated.

Acknowledgement. This research was supported by iMotion Ger-
many GmbH and the German Federal Ministry for Education and
Research (BMB+F) in the project REACT.

REFERENCES
[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese.

2016. Social LSTM: Human Trajectory Prediction in Crowded Spaces. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 961–971.
https://doi.org/10.1109/CVPR.2016.110

[2] Shervin Ardeshir and Ali Borji. 2016. Ego2Top: Matching Viewers in Egocentric
and Top-view Videos. In ECCV.

[3] Sven Bambach, Stefan Lee, David J. Crandall, and Chen Yu. 2015. Lending A Hand:
Detecting Hands and Recognizing Activities in Complex Egocentric Interactions.
2015 IEEE International Conference on Computer Vision (ICCV) (2015), 1949–1957.

[4] Gedas Bertasius, Hyun Soo Park, Stella X. Yu, and Jianbo Shi. 2017. First-Person
Action-Object Detection with EgoNet. ArXiv abs/1603.04908 (2017).

[5] Apratim Bhattacharyya, Mario Fritz, and Bernt Schiele. 2018. Long-Term On-
board Prediction of People in Traffic Scenes Under Uncertainty. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), 4194–4202.

[6] Minjie Cai, Kris Makoto Kitani, and Yoichi Sato. 2015. A scalable approach for
understanding the visual structures of hand grasps. 2015 IEEE International
Conference on Robotics and Automation (ICRA) (2015), 1360–1366.

[7] François Chollet et al. 2015. Keras. https://keras.io.
[8] S. Danielsson, L. Petersson, and A. Eidehall. 2007. Monte Carlo based Threat

Assessment: Analysis and Improvements. In 2007 IEEE Intelligent Vehicles Sympo-
sium. 233–238. https://doi.org/10.1109/IVS.2007.4290120

[9] D. Ellis, E. Sommerlade, and I. Reid. 2009. Modelling pedestrian trajectory patterns
with Gaussian processes. In 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops. 1229–1234. https://doi.org/10.1109/ICCVW.
2009.5457470

[10] Chenyou Fan, Jangwon Lee, and Michael S. Ryoo. 2017. Forecasting Hand and
Object Locations in Future Frames. CoRR abs/1705.07328 (2017). arXiv:1705.07328
http://arxiv.org/abs/1705.07328

[11] C. Fan, J. Lee, M. Xu, K. K. Singh, Y. J. Lee, D. J. Crandall, and M. S. Ryoo.
2017. Identifying First-Person Camera Wearers in Third-Person Videos. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4734–4742.
https://doi.org/10.1109/CVPR.2017.503

[12] Zhijie Fang and Antonio M. López. 2018. Is the Pedestrian going to Cross?
Answering by 2D Pose Estimation. 2018 IEEE Intelligent Vehicles Symposium (IV)
(2018), 1271–1276.

[13] Alireza Fathi, Ali Farhadi, and James M. Rehg. 2011. Understanding egocentric
activities. 2011 International Conference on Computer Vision (2011), 407–414.

[14] J. Firl, H. StÃĳbing, S. A. Huss, and C. Stiller. 2012. Predictivemaneuver evaluation
for enhancement of Car-to-X mobility data. In 2012 IEEE Intelligent Vehicles
Symposium. 558–564. https://doi.org/10.1109/IVS.2012.6232217

https://doi.org/10.1109/CVPR.2016.110
https://keras.io
https://doi.org/10.1109/IVS.2007.4290120
https://doi.org/10.1109/ICCVW.2009.5457470
https://doi.org/10.1109/ICCVW.2009.5457470
http://arxiv.org/abs/1705.07328
http://arxiv.org/abs/1705.07328
https://doi.org/10.1109/CVPR.2017.503
https://doi.org/10.1109/IVS.2012.6232217


SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Atanas Poibrenski, Matthias Klusch, Igor Vozniak, and Christian Müller

[15] Katerina Fragkiadaki, Jonathan Huang, Alex Alemi, Sudheendra Vijaya-
narasimhan, Susanna Ricco, and Rahul Sukthankar. 2017. Motion prediction
under multimodality with conditional stochastic networks. arXiv preprint
arXiv:1705.02082 (2017).

[16] Antonino Furnari, Sebastiano Battiato, Kristen Grauman, and Giovanni Maria
Farinella. 2017. Next-Active-Object prediction from Egocentric Videos. ArXiv
abs/1904.05250 (2017).

[17] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
2018. Social GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks. CoRR abs/1803.10892 (2018). http://dblp.uni-trier.de/db/journals/corr/
corr1803.html#abs-1803-10892

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask
R-CNN. CoRR abs/1703.06870 (2017). arXiv:1703.06870 http://arxiv.org/abs/1703.
06870

[19] Yedid Hoshen and Shmuel Peleg. 2014. Egocentric Video Biometrics. CoRR
abs/1411.7591 (2014). arXiv:1411.7591 http://arxiv.org/abs/1411.7591

[20] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou.
2016. Variational Deep Embedding: An Unsupervised and Generative Approach
to Clustering. In IJCAI.

[21] Rudolf E. Kálmán. 1960. A New Approach to Linear Filtering and Prediction.
[22] Vasiliy Karasev, Alper Ayvaci, Bernd Heisele, and Stefano Soatto. 2016. Intent-

aware long-term prediction of pedestrian motion. 2016 IEEE International Con-
ference on Robotics and Automation (ICRA) (2016), 2543–2549.

[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[24] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
CoRR abs/1312.6114 (2014).

[25] Iuliia Kotseruba, Amir Rasouli, and John K. Tsotsos. 2016. Joint Attention in
Autonomous Driving (JAAD). arXiv e-prints, Article arXiv:1609.04741 (Sep 2016),
arXiv:1609.04741 pages. arXiv:cs.RO/1609.04741

[26] Laura Leal-TaixÃľ, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn, and Silvio
Savarese. 2014. Learning an Image-Based Motion Context for Multiple People
Tracking. https://doi.org/10.1109/CVPR.2014.453

[27] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher Bongsoo Choy, Philip
H. S. Torr, and Manmohan Krishna Chandraker. 2017. DESIRE: Distant Future
Prediction in Dynamic Scenes with Interacting Agents. CoRR abs/1704.04394
(2017). arXiv:1704.04394 http://arxiv.org/abs/1704.04394

[28] Yong Jin Lee, Joydeep Ghosh, and Kristen Grauman. 2012. Discovering important
people and objects for egocentric video summarization. 2012 IEEE Conference on
Computer Vision and Pattern Recognition (2012), 1346–1353.

[29] Yong Jin Lee and Kristen Grauman. 2014. Predicting Important Objects for
Egocentric Video Summarization. International Journal of Computer Vision 114
(2014), 38–55.

[30] S. LefÃĺvre, C. Laugier, and J. IbaÃśez-GuzmÃąn. 2011. Exploiting map informa-
tion for driver intention estimation at road intersections. In 2011 IEEE Intelligent
Vehicles Symposium (IV). 583–588. https://doi.org/10.1109/IVS.2011.5940452

[31] Cheng Yen Li and Kris M. Kitani. 2013. Pixel-Level Hand Detection in Ego-centric
Videos. 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013),
3570–3577.

[32] Yin Li, Alireza Fathi, and James M. Rehg. 2013. Learning to Predict Gaze in
Egocentric Video. In Proceedings of the 2013 IEEE International Conference on
Computer Vision (ICCV ’13). IEEE Computer Society, Washington, DC, USA,
3216–3223. https://doi.org/10.1109/ICCV.2013.399

[33] Yin Li, Zhefan Ye, and James M. Rehg. 2015. Delving into egocentric actions.
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015),
287–295.

[34] Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander G. Hauptmann, and
Li Fei-Fei. 2019. Peeking into the Future: Predicting Future Person Activities
and Locations in Videos. CoRR abs/1902.03748 (2019). arXiv:1902.03748 http:
//arxiv.org/abs/1902.03748

[35] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime
Lloret. 2017. Conditional variational autoencoder for prediction and feature
recovery applied to intrusion detection in iot. Sensors 17, 9 (2017), 1967.

[36] Minghuang Ma, Haoqi Fan, and Kris Makoto Kitani. 2016. Going Deeper into
First-Person Activity Recognition. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016), 1894–1903.

[37] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh
Manocha. 2019. TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-
Agents. ArXiv abs/1811.02146 (2019).

[38] Dimitrios Makris and Tim J. Ellis. 2002. Spatial and Probabilistic Modelling of
Pedestrian Behaviour. In BMVC.

[39] Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. 2018.
A generative model for zero shot learning using conditional variational autoen-
coders. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2188–2196.

[40] Sang Min Oh, James M. Rehg, Tucker R. Balch, and Frank Dellaert. 2007. Learning
and Inferring Motion Patterns using Parametric Segmental Switching Linear

Dynamic Systems. International Journal of Computer Vision 77 (2007), 103–124.
[41] Hyun Soo Park, Jyh-Jing Hwang, Yedong Niu, and Jianbo Shi. 2016. Egocentric

Future Localization. (June 2016).
[42] Alexandre Alahi Parth Kothari. 2019. Human Trajectory Prediction using Adver-

sarial Loss.
[43] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. 2009. You’ll

never walk alone: Modeling social behavior for multi-target tracking. 2009 IEEE
12th International Conference on Computer Vision (2009), 261–268.

[44] Hamed Pirsiavash and Deva Ramanan. 2012. Detecting activities of daily living in
first-person camera views. 2012 IEEE Conference on Computer Vision and Pattern
Recognition (2012), 2847–2854.

[45] Carl Edward Rasmussen and Christopher K. I. Williams. 2005. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press.

[46] Amir Rasouli, Iuliia Kotseruba, and John K. Tsotsos. 2017. Agreeing to cross: How
drivers and pedestrians communicate. 2017 IEEE Intelligent Vehicles Symposium
(IV) (2017), 264–269.

[47] A. Rasouli and J. K. Tsotsos. 2019. Autonomous Vehicles That Interact With
Pedestrians: A Survey of Theory and Practice. IEEE Transactions on Intelligent
Transportation Systems (2019), 1–19. https://doi.org/10.1109/TITS.2019.2901817

[48] Nicholas Rhinehart and Kris Makoto Kitani. 2017. First-Person Activity Fore-
casting with Online Inverse Reinforcement Learning. 2017 IEEE International
Conference on Computer Vision (ICCV) (2017), 3716–3725.

[49] A. V. I. Rosti and M. J. F. Gales. 2004. Rao-Blackwellised Gibbs sampling for
switching linear dynamical systems. In 2004 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Vol. 1. I–809. https://doi.org/10.1109/
ICASSP.2004.1326109

[50] A. Rudenko and et al. 2019. Human Motion Trajectory Prediction: A Survey. In
arXiv preprint arXiv:1905.06113.

[51] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, and Silvio
Savarese. 2018. SoPhie: An Attentive GAN for Predicting Paths Compliant to
Social and Physical Constraints. CoRR abs/1806.01482 (2018). arXiv:1806.01482
http://arxiv.org/abs/1806.01482

[52] A. Saran, D. Teney, and K. M. Kitani. 2015. Hand parsing for fine-grained
recognition of human grasps in monocular images. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 5052–5058. https:
//doi.org/10.1109/IROS.2015.7354088

[53] Nicolas Schneider and Dariu M. Gavrila. 2013. Pedestrian Path Prediction with
Recursive Bayesian Filters: A Comparative Study. In Pattern Recognition, Joachim
Weickert, Matthias Hein, and Bernt Schiele (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 174–183.

[54] Christoph Schöller, Vincent Aravantinos, Florian Lay, and Alois Knoll. 2019. The
Simpler the Better: Constant Velocity for Pedestrian Motion Prediction. ArXiv
abs/1903.07933 (2019).

[55] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output
representation using deep conditional generative models. In Advances in neural
information processing systems. 3483–3491.

[56] Olly Styles, Arun Ross, and Víctor Rojo Sánchez. 2019. Forecasting Pedestrian
Trajectory with Machine-Annotated Training Data. ArXiv abs/1905.03681 (2019).

[57] Shan Su, Jung Pyo Hong, Jianbo Shi, and Hyun Soo Park. 2017. Predicting
Behaviors of Basketball Players from First Person Videos. 1206–1215. https:
//doi.org/10.1109/CVPR.2017.133

[58] Jur P. van den Berg, Stephen J. Guy, Ming C. Lin, and Dinesh Manocha. 2009.
Reciprocal n-Body Collision Avoidance. In ISRR.

[59] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple Online and
Realtime Tracking with a Deep Association Metric. CoRR abs/1703.07402 (2017).
arXiv:1703.07402 http://arxiv.org/abs/1703.07402

[60] Mingze Xu, Chenyou Fan, Yuchen Wang, Michael S. Ryoo, and David J. Crandall.
2018. Joint Person Segmentation and Identification in Synchronized First- and
Third-Person Videos. In ECCV.

[61] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato. 2018. Fu-
ture Person Localization in First-Person Videos. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018), 7593–7602.

[62] Yu Yao, Mingze Xu, Chiho Choi, David J. Crandall, Ella M. Atkins, and Behzad
Dariush. 2018. Egocentric Vision-based Future Vehicle Localization for Intelligent
Driving Assistance Systems. CoRR abs/1809.07408 (2018). arXiv:1809.07408
http://arxiv.org/abs/1809.07408

[63] Lidan Zhang, Qi She, and Ping Guo. 2019. Stochastic trajectory prediction with
social graph network. CoRR abs/1907.10233 (2019). arXiv:1907.10233 http:
//arxiv.org/abs/1907.10233

[64] M. Zhang, K. T. Ma, J. H. Lim, Q. Zhao, and J. Feng. 2017. Deep Future Gaze:
Gaze Anticipation on Egocentric Videos Using Adversarial Networks. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3539–3548.
https://doi.org/10.1109/CVPR.2017.377

[65] Yue Zhang, Yonggang Qi, Jun Liu, and Yanyan Wang. 2018. Decade of Vision-
Based Pedestrian Detection for Self-Driving: An Experimental Survey and Evalu-
ation, In SAE Technical Paper. https://doi.org/10.4271/2018-01-1603

http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-10892
http://dblp.uni-trier.de/db/journals/corr/corr1803.html#abs-1803-10892
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1411.7591
http://arxiv.org/abs/1411.7591
http://arxiv.org/abs/cs.RO/1609.04741
https://doi.org/10.1109/CVPR.2014.453
http://arxiv.org/abs/1704.04394
http://arxiv.org/abs/1704.04394
https://doi.org/10.1109/IVS.2011.5940452
https://doi.org/10.1109/ICCV.2013.399
http://arxiv.org/abs/1902.03748
http://arxiv.org/abs/1902.03748
http://arxiv.org/abs/1902.03748
https://doi.org/10.1109/TITS.2019.2901817
https://doi.org/10.1109/ICASSP.2004.1326109
https://doi.org/10.1109/ICASSP.2004.1326109
http://arxiv.org/abs/1806.01482
http://arxiv.org/abs/1806.01482
https://doi.org/10.1109/IROS.2015.7354088
https://doi.org/10.1109/IROS.2015.7354088
https://doi.org/10.1109/CVPR.2017.133
https://doi.org/10.1109/CVPR.2017.133
http://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1809.07408
http://arxiv.org/abs/1809.07408
http://arxiv.org/abs/1907.10233
http://arxiv.org/abs/1907.10233
http://arxiv.org/abs/1907.10233
https://doi.org/10.1109/CVPR.2017.377
https://doi.org/10.4271/2018-01-1603

	Abstract
	1 Introduction
	2 Related Work
	3 M2P3 Solution
	3.1 Architecture
	3.2 Pedestrian Trajectory and Scale

	4 Experiments
	4.1 JAAD
	4.2 ETH/UCY

	5 Conclusions
	References

