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Abstract. In the area of autonomous driving there is a need to flexi-
bly configure and simulate more complex individual pedestrian behavior
in critical traffic scenes which goes beyond predefined behavior simula-
tion. This paper presents a novel human-oriented, agent-based pedestrian
simulation framework, named HAIL, that addresses this challenge. HAIL
allows to simulate human pedestrian behavior through means of imita-
tion learning by virtual agents. For this purpose, HAIL combines the
3D traffic simulation environment OpenDS with an integrated imitation
learning environment and hybrid agents with AJAN. For predictive be-
havior planning on the tactical and strategical level, AJAN is extended
with Answer Set Programming. For pedestrian behavior imitation learn-
ing on the operational level, HAIL utilizes the module InfoSalGAIL for
generation of pedestrian paths learned from demonstration by its human
counterpart as expert. Among others, an application example has been
demonstrated that HAIL can be applied to solve a common challenge
in the Neural Network domain, namely the out-of-distribution (OOD),
e.g. never shown scenarios would raise an uncertainty prediction level,
by unison work of the two different behavior generation frameworks.

Keywords: Pedestrian Simulation Framework - Multi-Agent System -
Imitation Learning

1 Introduction

Pedestrian simulations are mostly considered in crowd scenarios. In such sim-
ulations the individual pedestrians are mathematical functions called particles,
that can implement only a limited variety of emerging behavior. In state-of-the-
art traffic simulation frameworks like Carla! or LGSVL?2 pedestrians follow only
predefined trajectories. However, if higher-order behavior is to be simulated be-
cause the focus is set on the individual pedestrian, these models are no longer
suitable, since various aspects of a pedestrian, such as activity planning through
to actual movement, are no longer covered. In general (cf. [10]), a distinction
is made between three layers of pedestrian behavior: the strategic level includes

! Carla: https://carla.org/
2 LGSVL: https://www.lgsvlsimulator.com/
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high-level decision-making, e.g. activity or trip planning based on interests; the
tactical level, which divides the high-level activity plan into intermediate tar-
gets and tries to achieve them using atomic actions; and the operational level,
which implements the actual action like a walking task and adjusts pedestrian
speed, gait, and alignment. The agent paradigm is suitable for encapsulating
these layers into a single autonomous entity. Especially the fields of video games
or robotics have successfully used this model. In these areas, the simulation en-
vironment is represented abstractly in the Strategic and Tactical layer of the
agent and is often processed via Behavior Trees. Instead, the Operational layer
works directly with environmental properties, like its geometry or physics. Nev-
ertheless, all simulation systems either use pre-modelled approximations of real
human behavior [12] ,[18], or only certain aspects of the behavior model are con-
sidered but hardly transferable to other simulation scenarios due to their lack of
modularity [11], [19].

To this end, we developed a novel approach called HAIL (human-oriented
agent-based imitation learning) for the simulation of pedestrians in virtual traffic
scenes. The resulting framework follows the above mentioned pedestrian behav-
ior model, and combines modular predictive agents with imitated real pedestrian
behavior in order to simulate more realistic traffic situations. With HAIL, it is
possible to imitate demonstrated expert behavior of on-street walking on the op-
erational level. For this purpose, HAIL leverages the imitation learning approach
InfoSalGAIL [20] and the 3D driving simulation software OpenDS? (version 6.0)
to set up traffic environment and visualize imitated pedestrian behavior in it.
Finally, the agent system AJAN [2] is used in HAIL to represent more complex
pedestrian behaviors on the strategic and tactical level based on both intrinsic
and extrinsic pedestrian needs. The behavior model in AJAN relies on so called
SPARQL-BTSs, which was extended by means of Answer Set Programming (ASP)
to realize utility-based foresighted activity planning.

The paper is structured as follows. Section 2 gives a brief introduction into
the background required and discusses relevant state of the art on pedestrian
agent engineering and pedestrian imitation learning. In Section 3, we present
our contribution HAIL, the interplay of its components and describe how ASP is
integrated for foresighted action planning. In Section 4, an application example
in the context of simulated pedestrians is presented. Finally, we conclude the
paper in Section 5.

2 Related Work

2.1 Pedestrian Agent Engineering

In the field of pedestrian simulation we mainly find solutions to simulate crowds,
see PTV Viswalk*, VADERE ® or PEDSIM®. According to [18], these solutions

3 OpenDS - open source driving simulation: https://opends.dfki.de/

4 PTV Viswalk: https://www.ptvgroup.com/de/loesungen/produkte/ptv-viswalk/
® VADERE Crowd simulation: http://www.vadere.org/

5 PDESIM - pedestrian crowd simulation: http://pedsim.silmaril.org/
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are often based on social force, cellular or magnetic force models and are inspired
as well by the work of [16]. The individuals of a crowd are purely reactive agents
who do not pursue their own goals. The direct interaction between individu-
als is usually not considered in these approaches and the individual modeling
of a autonomous higher order behavior is not given. However, if, for example,
critical situations in road traffic are to be simulated in which the vehicle gains
a “close” view of individual pedestrian behavior, these solutions are no longer
useful. Due to the immense efforts that have recently been made in the field of
autonomous driving, the need for individual pedestrian behavior simulation has
increased. Prominent traffic simulation environments available in this context
are Carla and LGSVL. These solutions only have primitive pedestrian models
that usually follow a predefined path. Since Carla is based on the Unreal Engine
it is possible to model the individual pedestrian behavior with Behavior Trees”
(BT). BTs are widely used in the gaming industry and in robotics (see [15]) to
realize deliberative agents. However, a predictive utility-based behavior covering
intrinsic and extrinsic needs is hard to be implemented with BTs.

Modular agent engineering with AJAN. AJAN (Accessible Java Agent
Nucleus) is an agent engineering framework, in which SPARQL-enhanced BTs,
so called SPARQL-BTs (SBT) are used as an agent behavior model and agent
models are defined in RDF (Resource Description Framework). Beside of dic-
tionaries with key value pairs, which are often used in other BT solutions, the
RDF data model is domain-independent and thus a more flexible and in com-
bination with SPARQL a powerful alternative [5]. For an intuitive modeling of
AJAN agents, a web editor is provided. AJAN has already been used to control
virtual humans, see [2]. AJAN is available as open-source software® and is used
in our approach to control single virtual pedestrians. An AJAN agent has one
or more behaviors, each consisting of a SBT and a corresponding RDF-based
execution knowledge (EKB), which stores internal behavior knowledge (e.g. pro-
cedural variables); one agent specific RDF-based knowledge base (AKB), storing
internal agent knowledge, which can be accessed by all agent behaviors®; one or
more events and goals, each holding RDF data; and one or more agent end-
points, which are the agent’s interfaces to its domain and forward incoming
RDF messages as events. Behaviors are linked to such events or goals but can
also create these. If an event occurs, the behaviors linked to it are executed.
SBTs are used to perform contextual SPARQL queries for state checking (e.g.
realized with a SPARQL-ASK query), updating, constructing RDF data used
for action executions, or to control the internal execution of an AJAN agent be-
havior. Furthermore, SBTs are defined in RDF, whereby a semantic description
of the behaviors they implement is available. SBTs use standard BT primitives
(see [7]) and are processed like typical BTs!C.

" Unreal - BTs: https://docs.unrealengine.com/InteractiveExperiences/BehaviorTrees
8 AJAN-service: https://github.com/aantakli/AJAN-service
AJAN-editor: https://github.com/aantakli/AJAN-editor
9 Not like EKs, where only the corresponding agent behavior has access to.
10 AJAN uses LibGDX-BTs: https://github.com/libgdx/gdx-ai/wiki/Behavior-Trees



A. Antakli et al.

2.2 Imitation of Pedestrians in Simulated Environment

Behavior Cloning (BC) and Apprenticeship Learning (AL) are common ap-
proaches to address imitation learning challenges. Considering BC it suffers from
moderate generalization due to compounding errors and covariant shift [17]. In
contrary, AL tends to reconstruct the reward function [1] at high computational
costs because of solving a reinforcement learning problem in the training loop.
Generative Adversarial Imitation Learning (GAIL) [8], is a prominent approach
in solving AL problems. The objective of which is to learn the optimal strategy
for a given task without estimating an explicit reward function. An extension
of GAIL was introduced in InfoGAIL [13], where the policy of a simulated car
agent is estimated based on the mixture of expert trajectories, adding a direct
relationship to the latent variables as in [6].

Pedestrian imitation learning with InfoSalGAIL. For the imitation learn-
ing module of HAIL, we selected the InfoSalGAIL [20] system. In particular, this
system uses saliency maps of experts (recorded during a comprehensive study)
for a more human-like imitation of virtual pedestrian walking behavior. It was
shown that visual attention, represented in the form of saliency maps, indeed
plays an important role in trajectory generation. However, the service-oriented

architecture of HAIL also allows to integrate other imitation learning modules
than InfoSalGAIL.

In InfoSalGAIL, the imitated behavior of a simulated pedestrian is considered
safe or risky. This classification is based on the learned expert trajectories and
the traffic areas entered with them, such as streets (risky) or crosswalks (safe)
(cf. Fig. 3). In the context of a visual attention model, the task is to identify
the most probable area of interest at any given point in time, which can be
seen as a set of highlighted pixels as shown in Fig. 1. The training objective or
loss function (cf. Equation 1) is defined as follows and has been experimentally
shown to be efficiently working for the generation of different types of pedestrian
walking behaviors:

Hq})lri m‘?x ]Em; [Dw (Svis,sala Cl)] + ]ETrE [Dw (Svis,sala a)] - /\07](71-0)_

¥

)\1L1(7T,Q)—AE(S)—)\H(7T) (1)

where 7 stands for the agent‘s policy, mg the policy of the subject, D is the
discriminative classifier with the overall goal to distinguish state-action pairs
(synthetic vs. real). H(r) £ E [~logn(a|s)] denotes the 7 - discount casual
entropy of the policy mp as defined by [4]. A1 is the hyper-parameter for the
information maximization regularization term L; as in [13]. The term n(mg) =
Esr,[sr] reflects the tendency towards learning of the desired behavior, thus,
stands for the main reinforcement learning component which is obtained directly
from the simulator. Ag is the pixel-wise loss based on the binary cross-entropy
function, which helps to optimize the saliency map generation objective.
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3 HAIL Framework

3.1 Overview

The HAIL framework is designed to imitate fore-sighted human-like behavior of
pedestrians in previously unseen virtual traffic scenarios based on prior knowl-
edge of prerecorded expert demonstrations, e.g. walking in virtual environment.
HAIL can also be used to simulate pedestrians in traffic scenarios for which no
prior training data exist. Fig. 1 shows the high-level architecture of HAIL, which
consists of three main components, namely OpenDS as the simulation software,
AJAN for controlling pedestrian agents, and InfoSalGAIL as Imitation Learning
framework to account for the human-like trajectories learned during the training
given the ground truth data of recorded subjects.

AJAN

e . FoV - SalGen
2 o Service (2)
g ko) RGB Agent |
Memory

v — Saliency
X 3
FoV, Memory, Saliency Map % » |Context U Contexi' B
%\ P </ ] —
. Latent
+
b 3
“ Realtime B Action (IL)
Eye-Tracking t} AND/OR XOR
u Action
Human user Path Planning (A*)
(a) Training setup based on [16] (b) Simulation setup

Fig.1: HAIL framework overview. (a) Setup (cf. [20]) to learn from expert demonstra-
tions. (b): Field of View (FoV) is the input image from OpenDS, where the memory
contains current and previous simulation information. Path planning (A*) is supported
within OpenDS to deliver a path if no imitation model in a OOD situation. SalGen
generates saliency maps for the FoV images, where the context and latent variable are
used as input information for the policy generator. The 4d action vector comes from
InfoSalGAIL to control the pedestrian.

The starting component of HAIL is the open-source driving simulation software
OpenDS (cf. Fig. 1 b(1)), which is used to simulate and visualize virtual traf-
fic scenarios. OpenDS manages a scenario with a three-dimensional scene with
semantic information about objects like traffic lights but also points-of-interest
(POI), simulated vehicles, integrated path planning (A*) and atomic actions on
the operational level. Such actions include performing animations like waving
or operating a traffic light, navigating a pedestrian agent to a given destination
via path planning and directly setting the steering vector of a pedestrian agent.
In addition, it provides a training environment (cf. Fig. 1 (a)) for the imita-
tion learning used in HAIL [20]. Moreover, it manages AJAN agents controlling
simulated pedestrians and provides them with dynamic scenario information.

AJAN (cf. Section 2.1), the ”man-in-the-middle” component of HAIL (cf. Fig.
1 b(2)), is used for decision-making of the pedestrian agent, to execute OpenDS
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atomic actions, and to obtain new avatar transformations for it via the imitation
learning service InfoSalGAIL. In this context, two strategies can be applied:
Either (i) AJAN controls the virtual pedestrian using input from InfoSalGAIL,
if an imitation model is available for a given agent state; or (ii) AJAN controls the
pedestrian directly via OpenDS actions, if no such model exists. Which strategy
is chosen actually depends on the SBTs and goals of the particular agent and
its beliefs. When the beliefs are updated by OpenDS, the decision-making with
SBTs is triggered. This involves evaluating which capabilities are available in
the current state to achieve an existing goal.

InfoSalGAIL (cf. Section 2.2), the imitation learning component of HAIL (cf. Fig.
1 b(3)), allows to bring human-like behavior into the simulation through means
of learning an optimal navigation policy by means of expert demonstrations.
Unlike [20], where the latent code was manually set throughout the simulation,
AJAN is responsible for dynamically defining the latent code based on its initial
knowledge and knowledge gained throughout the run, therefore makes the overall
simulation system more flexible.

3.2 Integration

For the integration of the HAIL components or services, RDF-based information
is exchanged over HTTP between these; the interaction between components is
summarized in the following.

OpenDS to AJAN: OpenDS initializes an AJAN-controlled pedestrian agent
and defines its initial beliefs and goals. This includes the pedestrian agent posi-
tion and information about the given traffic scene at time = 0. After initializa-
tion, updates on scene changes are sent to the agent, after which OpenDS listens
for calls to perform atomic actions. An update includes ”seen” POls, positions
of dynamic objects such as simulated vehicles and other pedestrians, but also
states of virtual objects such as traffic lights. In order to simulate a human-like
perception module, OpenDS has been extended with an additional visual mod-
ule to cover the POIs only and the distances to the same, if they fall within the
field of view (FoV) of the pedestrian agent. For the use of InfoSalGAIL, addi-
tional information about the current body orientation of the pedestrian agent,
its speed and ”view” (RGB image in combination with yaw and pitch angles
for the head) as well as historical information about previously executed actions
is also broadcast. The agent receives these updates and sends them to an SBT
which updates the agent knowledge base and decides which navigation strategy
to use. When it is recognized that an InfoSalGAIL model exists!! in the current
situation to perform a navigation task, the input data required by InfoSalGAIL
is forwarded by the agent, otherwise OpenDS-based navigation is used.

AJAN to InfoSalGAIL: An important aspect of AJAN, besides to which des-
tination to navigate for a given goal, is to determine the latent variable used in
InfoSalGAIL. The latent variable specifies how risky a pedestrian should navi-
gate. For example (cf. Fig. 3, Scenario A), a simulated pedestrian may initially

11 Upon initialization, an AJAN agent receives RDF descriptions of available InfoSal-
GAIL models defining trained street configurations.
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try to cross the street because of an approaching car. However, if the pedestrian
agent realizes that the potential danger has passed, it decides to riskily cross
the street. To execute InfoSalGAIL, the data received from OpenDS is merged
with the adapted latent variable and forwarded by AJAN. After receiving the
information, InfoSalGAIL responds immediately with a new action input for the
pedestrian agent, which is forwarded by AJAN to OpenDS. The 4d-input vector
consists of turning angle, speed, and head orientation (pitch and yaw angles).
Execution in OpenDS: OpenDS provides multiple HTTP/RDF endpoints to
perform pedestrian agent actions, such as ”set transformation” in case we use
InfoSalGAIL, or "walk to target” in case we use the path planner. During sim-
ulation, these endpoints listen for incoming action commands from AJAN. For
example, if a target (a 3D-vector) is received to which the pedestrian agent
should walk to, a path to the target is generated using A* and applied to the
avatar. However, if the avatar transformation based on the output of InfoSal-
GAIL is to be adjusted directly, this action input is applied to the avatar and
its history and the RGB image of the FoV are updated accordingly.

3.3 AJAN Extensions

AJAN is used in HAIL to realize the strategic and tactical layers of a simulated
pedestrian and therefore to control its navigation. For this purpose, a destina-
tion is selected and, depending on the strategy, performed directly via OpenDS
navigation or with InfoSalGAIL. A set of destinations to be reached sequentially
can be manually defined using SBTs. In order to implement more complex sce-
narios in which the agent dynamically creates navigation sequences based on
intrinsic or extrinsic needs, we implemented an ASP-SBT node'? for reasoning,
problem solving or to plan intention sequences. For this purpose, we adapted the
RDF-to-ASP translation approach in [9] to translate RDF-based AJAN agent
beliefs into ASP rules. Table 1 shows the five most important transformation
rules with an example in Fig. 2 left.

Table 1: Basic RDF-to-ASP transformation rules.

[ [ RDF Version: [e] ASP Version: |
Triple: <S> <P> <O> & t(’S”,"P?,70”)
Graph: | <IRI> { <S> <P> <0O> } | & | _g(-t(’S?,”P”?,”0”), "IRI"”)
IRI: IRI & VIRT”

Literal: ‘T’ AN <XSD> & _1("T”, ”XSD”)
Blank: _:blank123 & _b(”blank123”)
Prefix: Qprefix react: <IRI> < _p("react”, “IRI”)

If beliefs are available for solving navigation problems, then additional ASP rules
(e.g., planning rules, see Fig. 4 and [3] section 2) need to be added. Pedestrian
behavior could also integrate the social context of the environment (e.g., traffic
norms modeled ins ASP [14]) such that the trajectories that are generated by
the ASP planner can be evaluated from a normative point of view. The specified
problem can then be solved using an ASP solver!'3. If no stable model is found

12 ASP-SBT-node: netps://github.com /aantakli/AJAN-service/tree /master/pluginsystem /plugins/ ASPPlugin
13 Tn AJAN we use the Potassco clingo solver: https://potassco.org/clingo/
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then the ASP-SBT node returns FAILED as status otherwise SUCCEEDED;
each model is stored by the agent as a RDF named graph (cf. Fig. 2 right).

RDF Example: H
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema# > . Stable Model RDF Example:
@prefix opends: <http://www.react.de/opends-nst>. : @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
_WP11 opends:position "WP11" **xsd:string. @prefix opends: <http://wvaw.react.de/opends-nst>.
H @prefix asp: <http:/fwww.ajan.de/behavior/asp-ns#>.
ASP Example: H asp:SML{
H asp:SM1 rdf:type asp:StableModel .
_pl,xsd”, http://www.w3.org/2001/XMLSchema# ) . # further RDF statements based on one stable model
_pl.open”, hitp://www.react.defopends-ns#") . }
_t{_b(,WP11"), ,0pen:position”, _I{"WP1L,,“xsd:string”)) . :

Fig. 2: Left: RDF-to-ASP example. Right: RDF representation of a stable model.

4 Application Example

This section outlines two applications of HAIL for using learned pedestrian street
crossing behavior with a foresighted agent. AJAN is used to detect these situa-
tions during simulation and to send appropriate requests based on the configured
agent model to InfoSalGAIL. The situations that the imitation learning model
cannot mimic due to an unevenly balanced training dataset, e.g., navigating in
an "unseen” street configurations, are handled by built-in actions in AJAN and
OpenDS and meant to solve the OOD challenge of imitation learning.

4.1 Scenarios Description

. ® Starting point
B O LTI TN B e e T eas

".' Y [ ] '.‘ ] Sub Target
5 A [J Final Goal
-E. / 'E.' v O Sreet (unsafe)
/ IR R O s . B Crossings (safe)

g N A
\ 7% ' [ Pavement
o P 1 — = Riskytrajectory (L)
d / 7 (e Sot IS N SN S RN "_ - Safe trajectory (IL)
s - — - Safe trajectory (A"
PN * 8 o ctory (A7)
‘ ------ Upcoming path
* AJAN BT Decision

Scenario A Scenario B Legend

Fig.3: Chosen use-case scenarios. Left: Scenario A - stands for the use-case shown
to IL framework in the form of experts demonstrations. Right: Scenario B - out-of-
distribution (OOD) scenario that only partially is known (”seen”) to the IL framework.
In scenario B, only part of the path (red trajectory) can be guided by the trained model,
with the remaining path (blue trajectory) being realized by A* path planner.

Fig. 3 shows the traffic scenarios in which a pedestrian agent shall navigate from a
given starting point to a destination like its human counterpart. In the considered
scenarios A and B multiple strategies are possible, e.g., risky crossing of the road
directly to the destination. Which strategy is finally chosen depends on different
parameters like configured maximum time to reach the target, degree of risk
aversion and interests. Strategies can also be dynamically switched in response
to events, such as an approaching vehicle. In scenario A, e.g., the pedestrian
agent initially walks safely because it has seen an approaching vehicle; if there
is no longer any potential danger, the agent changes its strategy and crosses the
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road directly and riskily to the intermediate destination and then walks on to
its final location. In scenario B, however, the pedestrian first behaves riskily and
then also safely. During the simulation, the pedestrian agent must dynamically
decide whether to reach the respective destinations with InfoSalGAIL or A*.

4.2 Agent Model

HAIL enables to configure different pedestrian agents by setting their behavioral
parameters like the available definitions of InfoSalGAIL imitation models, the
degree of risk taking, and individual interests. These parameters are taken into
account during execution of the pedestrian agent SBTs, hence affect its behavior
in the scene and are set while agent initialization and updated in runtime.

The application SBT defines the processing of strategy or rout choices depending
on the given pedestrian agent state. In each simulation step the agent receives
input from OpenDS with which this SBT is executed. While in one sub-tree of
the SBT incoming information is saved and the will to take risks is adapted, the
simulated behavior is implemented in parallel in another sub-tree as follows. If
a critical event occurs, then the SBT is aborted, otherwise, the first step of the
iteration is to use an ASP SBT-node to create multiple weighted routes to the
agent goal. Then, a strategy is selected based on the agent risk-taking and the
rout costs. Further, it is checked whether an InfoSalGAIL model exists for the
selected strategy, and if positive, this model is used next; otherwise, the path
planning in OpenDS is used.

For planning weighted routes the agent parameters, the ASP SBT-node (see Sec.
3.3), the scene configuration graph, which is stored in the agent knowledge and
transformed into ASP, and the rules shown in Fig. 4 are used. These rules are
using the RDF/ASP scene configuration to plan possible strategies. The result
after solving the ASP problem are 0 to n routes with their costs, which are
available to the SBT as named graphs.

1 cost (0,0) .
2 time (1..steps) .
3 edge(I,0,C) :- _t(E,"rdf:type","opends:Edge"), _t(E,"opends:out",0), _t(E,"cost",C), _t(I,"opends:risky",0), not risky.
4 number (C) :- C = #count{N : node(N)}.
5 1 { walktTo(G,T) : node(G) } 1 :- time(T).
at(G,T) :- walktTo(G,T), at(a,T-1), edge(a,G,_).
cost(T,C1+C2) :- walktTo(X,T), at(y,T-1), edge(Y,X,Cl), cost(T-1,C2), Y!=X.
cost(Max) :i- Max = #max{C : cost(T,C)}.
9 :- walktTo(G,T), not edge(a,G,_), at(a,T-1).
10 i~ not at(x,T), T = steps, goal (X).
Fig.4: ASP navigation planning rules, generating 0 to n stable models each contain-
ing one weighted walkTo-action sequence. In line 3 RDF based edges are defined and
possible edges are removed, if risk-taking is not considered. In 5 a search space is built

and filtered by constraints in lines 9 and 10. In lines 7 and 8 costs are calculated.

Fig. 5 depicts several views of scenario A: (A) shows the scene configuration
as a graph available to the agent in RDF. Red edges are marked as risky and
green edges as safe. Based on this graph, a route is calculated via ASP in which
interests (green node) are taken into account by decreasing the route costs. (B)
is a partially risky route to an intermediate destination at time 0 of scenario
A. Instead, (C) is a safe route of the same scenario and time. (D) displays the
graphical representation of the semantic description of an available InfoSalGAIL
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model. Both routs or strategies (B) and (C) are matching this model. InfoSal-
GAIL is used then, by the presented SBT for navigation. The same model can
be used in scenario B, if the pedestrian wants to riskily reach the intermediate
destination. If it is to be reached safely, the navigation planning in OpenDS
must be used instead, if no matching imitation model is available. The choice of
a strategy depends mainly on the agent’s willingness to take risks. This depends
on the current agent state and is based on its initial configuration and incoming
events. If, as in scenarios A and B, such an event is received, the originally safely
(scenario A) or risky (scenario B) strategy is discarded (star in Fig. 3) by AJAN
and a new route is computed and executed by HAIL or A*.

? ? ® Starting point
: : ® Sub Targst
o) Q ° Final Goal
s H (o] Risky node
] ‘ o] Safe node
: ® Crosswalk node
H 0 Street (unsafe)
L . =) Crossings (safe)
o [ Pavement
0 0 0 - Risky edge
: - Safe edge
: : : -— Crosswalk 2dge

é e ®

(A) Scenario A Configuration (B) Risky  (C) Safe (D) Learned Configuration Legend

Fig.5: (A) street configuration in OpenDS. (B) and (C) generated ASP plans for risky
and safe behavior. (D) street definition for available imitation models.

4.3 Imitation Model

For the application scenarios, we train imitation models given the training data
(see [20]), e.g., pairs consisting of the FoV images and saliency maps, including
memory information of six human subjects on nine different scenarios (~140K
pairs) in accordance to German-in-Depth-Accident-Study (GIDAS), excluding
the safe part of the use-case scenario B (special OOD scenario). Each model
represents a single street configuration (for which there is an RDF representa-
tion). Here, the risk-free and high-risk navigation was considered in a scene with
a zebra crossing. As input signals, InfoSalGAIL accepts an RGB image of size
224222423 and prior information from frames ¢t — 1 and t — 2, respectively. This
information comes from OpenDS and is passed to InfoSalGAIL via AJAN with
a scenario-dependent latent code (safe or risky) for a given trained model. The
resulting 4d action (turn, speed, yaw, pitch) is then passed back to OpenDS.

4.4 Experimental Evaluation

For training, validation and testing purposes with OpenDS and InfoSalGAIL,
we utilized a Tesla V100 (32GB vRAM) GPU under ~14GB of vRAM due to
usage of a pre-trained model for the saliency generator provided in [20], and a
2018 MacBook with Windows 10 to control the pedestrian agent with AJAN.
For the processing of incoming data from OpenDS, the forwarding of information
required by InfoSalGAIL, and the passing of resulting 4d-actions, AJAN needs
no more than ~17ms. If a navigation plan needs to be created with the ASP-
SBT node, no more than ~94ms are additionally required for the application
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scenarios. A detailed evaluation of ASP based action planning is presented in
[3]. The generated pedestrian agent trajectories for the application scenarios A'*
and B are shown in Fig. 6.
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Fig. 6: (a): Plots of generated pedestrian agent trajectories of Scenario A, where the
change from safe to risky behavior is triggered by AJAN depending on the road situa-
tion, e.g. potential dangerous collisions by an arriving car. (b): Plots of the trajectories
of scenario B, where the agent is faced with the OOD problem (new street layout).
Accordingly, navigation path is taken from A*-planning, where less variation is seen.
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5 Conclusion

We presented a novel approach, named HAIL, for modular agent-based pedes-
trian imitation learning in traffic scenarios to generate human-like trajectories
under the constraints of previously unseen traffic scenarios. HAIL combines the
AJAN, OpenDS and InfoSalGAIL subsystems to realize the tactical and strate-
gic as well as the operational level of pedestrian behavior, making HAIL suitable
for the generation of critical traffic scenarios and tests. We presented an appli-
cation example to show how HAIL virtually imitates real pedestrian trajectories
on the one hand and how OOD scenarios are solved on the other hand. For
this, ASP is used to decide whether an imitation model is available for partial
execution of navigation plans and to dynamically create these plans.
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