Programming and Simulation of Quantum Search Agents

Matthias Klusch and RénSchubotz

Abstract— The extension of classical agents by the ability to and benchmarking results of the QPM based type-I quantum

perform quantum computation and communication provides an search agent simulated on different quantum simulators are
efficient and secure solution to applications such as information presented in sections IV-B and V.

search and service matchmaking. In this paper, we propose
a hybrid architecture for quantum computational agents, and

demonstrate its principles by means of a simple type-l quantum 1. QUANTUM COMPUTING IN VERY BRIEF

search agent based on quantum pattern matching. Finally,

we present preliminary results of the comparative evaluation Quantum computation is built on the concept of the
of its implementation using different quantum programming qubit Any isolated physical 2-observable quantum system
languages and simulators. is appropriate to realize a single qubit. In mathematical

I. INTRODUCTION terms, a qubit) is associated to its state space, a complex

Quantum computing technology based on quanturfrdimensional Hilbert spacel, = span{|0),[1)} with
physics promises to eliminate some of the problems asso@rthonormal computational standard basis. Any quantum
ated with the rapidly approaching ultimate limits to classicaptete [¢) of ¢ is descrlbeg by ac;)herent Superposition
computers imposed by the fundamental law of thermodynanh’%: o |0) +ar 1), |aol® +]en|® = 1. The state space
ics. Quantum computing (QC) devices have been physicalffz ~ 0f @ physical system composed wfsingle qubitsy;
implemented since the late 1990's by use of, for examplés the n-folded tensor productof the state spaces of its
nuclear magnetic resonance, and solid state technologi@sCONStituting qubitsH;’" = " H,. Such systems can
Rapid progress and current trends in nanoscale moleculdf regarded as-qubit register W with 2" computational
engineering, as well as quantum computing research carriBgSis states. If a statgl) of a n-qubit register can be
out at research labs across the globe could make it happ®ftten as a product of its constituting qubits in the form
to let us see increasingly sophisticated quantum computin) = &i(>_; @ij 7)), then|¥) is called separable. Non-
devices in the era 2020 to 2050. The implied major resear§¢Parable composite states are knowreagangled states
challenge of agent based computing in such environments340Wing non-local effects of instantaneous state changes be-
how to make the most of the potential of quantum computinEY"ee” spatially separated but entangled quantum states upon

and communication? We acknowledge that any answer fgéasurement. Aprojective measuremerdf ¥ is described

this question at the very moment will be, of course, highly?Y & Set 0; pairwise orthogonal subspaces, ..., Wn
speculative; though work in this direction already startedalistyingHy™ = 9, W, and results inj € {1,...,m}.
such as in [7]. We build upon this work and focus more on its€t {|®;)} define an orthonormal basis of subspéicg then
engineering aspects by means of programming and simule operator?; = ¢""V9) |§7) (®7| projects ¥ on the
tion of a special kind of quantum computational agents, th&ubspacéV;. The probability of measuring € {1,...,m}

is type-I quantum search agents. Key idea is to appropriately given by (¥| P; [¥). Time evolution of ¥ is described
extend one prominent generic agent architecture, namddy unitary transformationsin its state spacefs”". Any
InteRRap, to the case of a type-l QC agent that is supposB@n-measuring quantum operation itherently reversible

to run on a hybrid quantum computer, and to show it§ince any unitary transformatioti has an inverse. For a
feasibility by instantiating the respective QuantuminteRRagomprehensive introduction to quantum computation, we
architecture for a programmed quantum pattern matchirigfer the reader to [12].

(QPM) based type-l quantum search agent. The remainder of

the paper is structured as follows. After a brief introduction I1l. AGENTS ONQUANTUM COMPUTERS

to quantum computation in section I, we comment on a

recently proposed classification of QC agents and a quantum® quantum computational agerfQC agent) [7] is an
programming design flow in sections IlI-A, respectively, 1-intelligent software agent that is able to perform both
B. Based on this work, we present our quantum extension 6fassical and quantum computing to accomplish its goals
the InteRRap architecture for QC agents in section I1I-C, an#tdividually, or in joint interaction with other QC agents. The
describe a slightly improved version of the quantum patterfture quantum internet is expected to consist of networked

matching algorithm of [9] in section IV-A. The architectureclassical and quantum computers, and populated with QC
agents that operate on quantum computers and communicate

M. Klusch is with the German Research Center for Artificial Intelligenceyith each other according to the quantum communication
Multiagent System Group, Saailwken, Germanklusch@dfki.de

R. Schubotz is with the Saarland University, Computer Science DeparlmOdd of either phyS|caI direct quantum_transmlssmn, or
ment, Saarlircken, Germangchubotz@gmx.de guantum teleportation, or superdense coding.

A. Classification of QC Agents architecture is a four-phase computer-aided design flow (see

According to [8], QC agents can be classified based digure 2), that ensures an interoberable tool hierarchy by ap-
the used quantum communication modBlpe-1 QC agents propriate intermediate representations of quantum algorithms

communicate over classical channels and are restricted R§tween the different phases. The flow’s first three phases are
local quantum computing. Communication between typdi@ndled by ajuantum computer compil¢gQCC) residing on

| QC agents has to be additionally secured which is nét cla_ssmal machine, whereas the f|_nal phase mount_s the QDC
necessary in case of inherently secure type-ll QC agen@1d implements the quantum circuit on the underlying quan-

With respect to the classification of different typesagfent UM device. A top level quantum programming environment

autonomyin [4], it has been shown in [7] that the self-

autonomy of individual type-l QC agents remains intact.
The ability to autonomously reason about sets of goals,

[Quantum Programming Environment]
[
[QPL source of quantum algomhla

QPL

plans, and motivations for decision-making is not affected, i

since quantum computational effects are restricted to local § [Q”a"‘“""°°mp“'e"°°mp"e’F"’"“E""] Phase 1
guantum machine componenfBype-lIl QC agentsan be [QIR quantum circut]
distinguished depending on whether entangled qubits for i

[Technology-independant Optimizer] Phase 2

guantum communication are shared between communicating :

agents, or not. Communication betwetgpe-lla QC agents ([ossmerem |

is based on direct quantum particle transmission. In contrast [- d* do] -
echnology-dependant Optimizer Phase

to type-llb QC agents, entangled qubits are not shared. |
Using the entangled qubits at its disposaltyae-llb QC [falt-tolerant QASM circuit]

agentis able to transmit superdense coded information to its [QPOL mstuctions]
communication partner, alternatively messages can be tele- - i
ported. Type-Il QC agents greatly benefit from computational & [SIS O QT B] Phase 4

advantages of quantum computing and communication, but
at the cost of limited self-autonomy, due to non-local effects
of quantum entanglement.

Fig. 2. Quantum design flow phases on a classical computer

offers a high-level QPL, and thereby provides mathematical
B. Quantum Computing Design Flow abstractions of quantum mechanics and linear algebra in a
Quantum computers are highly fragile artifacts due télardware and technology-independent fashion. Such a QPL
their delicate machinery and require precise monitoring df €xpected to be based on familiar concepts from classi-
their state and operation. The proposal of a hybrid mastef@l Programming and software engineering, e.g., work-flow
slave architecture in [7] comes naturally, and casts a clagontrol, type systems, code reusablility and modularization.
sical machine (CM) to control the timing and sequeanP_L source programs _contalnlng h|gh_—level primitives for
of quantum operations carried out in a quantum machirj@gical quantum operations and classical work-flow state-

(QM). As depicted in figure 1, the CM consists of a CPUMeNts, are passed to the QCC during the first phase of the
design flow. The QCC maps QPL sources into a technology-

- non—quantum ops CPU

result of measurement

QDC

QPU - quantum ops

— QCC tool suite [
- classical comm.

QASM library

— |

- instructs QPU
- interface to CPU
= quantum comm.

=

=

stores synthesized

quantum circuits pioiesliocal

database
Classical Machine

==+
QPOL code
LDB

~ error correction

QMemory

- QPU workspace
~ exponential size

Quantum Machine

independentjuantum intermediate representati(@IR), i.e.,

a quantum circuit using gates from a universal set. Since
this process is similar to the front-end processes of classical
compilers, approved algorithms for lexical, syntactic and
semantic analysis can be used. During the second phase, a
technology-independent circuit optimizer translates the QIR

into a circuit of elementary quantum gates. The resulting
guantum assembly languag®ASM) representation is op-
timized according to various cost functions. QASM circuits
for high-level dynamic control and scheduling of the QMconsist solely of qubits, classical registers, single-qubit gates,
components. The CM provides quantum programming CNOT gates, and measurement operations. Any quantum
languag€l13], [2], [14] (QPL) compiler suite that translates circuit can be constructed in QASM, but efficient synthesis
guantum algorithms into low-level quantum device instrucalgorithms [15] are still a wide area of research. At the
tions. It interfaces to the quantum machine via the quantuemarliest in the third phase, knowledge of the physical layout
device controller (QDC), an instruction processing unit thaand technology-dependent limitations enters the design flow.
distributes technology-dependent machine code to a quanttithe third phase consists of two subphases. During the first
processing unit (QPU). subphase, a technology-specific optimizer maps the QASM
In [16], Aho et al. envision a layered software architectureepresentation from the second phase into a QASM circuit
for quantum computing design tools, and propose a simpleith gates drawn from a fault-tolerant discrete universal set.
hierarchy with interfaces between QPL, QPL compilers, opfhe second subphase outpuggsantum physical operations
timizers, simulators, and layout modules. Key concept of thimnguage(QPOL) and precisely describes the execution of a

Fig. 1. Master-slave hybrid quantum computer

given QASM circuit on a specific technology. QPOL includeskeletal plans from a plan library, and specific knowledge
physical operations and technology-specific modules. Durirfgr standard from-scratch planning. QuantuminteRRap rep-
the last phase, the QCC interfaces with the QDC. Utilizingesents plans as tree structures whose leaf nodes contain
device-specific tools and modules, the QDC translates anly (gq)PoB. QuantuminteRRap plan structures provide a
final QPOL program into quantum machine instructionsuitable high-level description of quantum algorithms ab-
and distributes them to a QPU or a quantum simulator. Istracting away from gquantum technology-specific details.
order to minimize quantum decoherence caused by imperfdeinally, the agent'scooperation knowledgeontains, i.e.,
control over qubit operations, measurement errors, numbjint plan structures, negotiation protocols, and cooperation-
of entangled qubits, and the physical limits of the quanturapecific partner information. In particular, type-llb Quantu-
system, fault tolerance and error correction can be addedratnteRRap agents possess knowledge about quantum co-
multiple phases of the design process. operation strategies, e.g., distribution of entangled qubits,
]] guantum leader election, or quantum distributed consens, and
C. Generic QC Agent Architecture QuantuminteRRap pigh.level quantum communication, e.g., superdense coding,
In [10], an architecture for multi-agent systems is prequantum teleportation, and direct qubit transmission.
sented. The proposed modeteRRapcombines both there- The ACU comprises theworld interface (WIF), the
active and the deliberate paradigm, and explicitly representehaviour-based laygBBL), thelocal planning layer(LPL)
knowledge, plans and strategies. Including a mechanisamd thecooperative planning laye(CPL). As adumbrated,
for devising joint plans, knowledge about protocols andhe control components exchange goals, plans and informa-
communication strategies, InteRRap is suitable for describirigpn via communication. In detail, th&VIF provides the
high-level interactions of autonomous and intelligent agentagent’s means for perception, actuation and communica-
In the following, the InteRRap architecture is embedded ition according to the classification in section IlI-A. Any
the context of QC multi-agent systems. Figure 3 shows thaformation the agent receives or perceives need to be
high-level components of thQuantuminteRRaprchitecture transformed into an explicit representation for storage in
and their basic interplay. Following the InteRRap model, ththe agent’s world model. In consequence of the deployed
basic building blocks of a QuantuminteRRap agent are @mmunicative facilitiestype-l QC agentsdo not suffer
hierarchical structure@tnowledge bas€éKB) and theagent from incomplete quantum knowledg@&ype-llb QC agents
control unit (ACU). The KB consists of the agentisorld may obtain quantum knowledge by classical communication
mode] the agent’docal goals the behavioural knowledge assuming a non-antagonistic agent scenario, whifse-Ila
the local planning knowledgend thecooperative planning QC agentsare inherently uninformed about received but not
knowledge The world modelis organized in a taxonomical yet measured quantum bits. TB8L implements the agent’s
fashion, and contains the agent’s beliefs and knowledd®asic behaviour, its execution and decision component. The
about the state of the world. Besides information about itBBL has access to a set of executable (quantum) patterns
macroscopic environment, a QuantuminteRRap agent hagbehaviour which can be activated by external stimuli or
beliefs and knowledge about the quantum realm. The agenby the LPL. The BBL has the task to select and execute
behavioural knowledgés defined bypatterns of behaviour suitable and applicable (q)PoB that contain activation calls
(PoB). PoB represent the elementary problem-solving facilto WIF modules, or to the LPL. In order to reasonably
ties of QC agents. On the one hand, PoB provide informatiachoose (q)PoB, the BBL needs to maintain a goal priorization
regarding their suitability, applicability, and expected utilityhierarchy. The goals of the agent are generated from its
under certain conditions. Inter alia, the declaration of aorld model, and correspond to (q)PoB. ThEL consists
PoB contains information concerning priori evaluation, of a plan generator , a plan evaluator, a resource handler, a
external preconditions and postconditions, termination comontrol component, and an interface to the BBL. The LPL
ditions, failure conditions, or execution of correspondinds able to generate and to control the execution of local
lower-level procedures, enabling the plan-based modules $tngle-agent plans, to interpret an incoming plan structure
reason about which PoB to perform, and which not. On thigom another agent, to return plan structures to the BBL in
other hand, there is a class of PoB that are not representadler to tell another agent a plan for a certain goal, and
in a declarative manner. These PoB can be considered tasdecide which plan to choose from a set of alternative
precondition-action-postcondition triples, and are linked tplans. The resource handler interfaces to planning-specific
precompiled procedures that can be activated in for routimesources, e.g., planning knowledge, and can be commi-
behaviour.Quantum patterns of behaviogPoB) declare sioned to provide a certain resource to a LPL component.
more or less complex quantum operations, e.g., error coFhe plan generator has access to a plan library and a standard
rection, specific quantum circuits, measurements in variodgom-scratch planning algorithm. The plan generator either
bases, etc. It is important to realize, that qPoB encapsulathooses a suitable plan from its library, or it devises a plan
guantum operations by mathematical abstractions of quantifnrem scratch. The plan evaluator associates plans with their
mechanics and linear algebra, and do not restrict quantuempected utilities, and therefor capacitates the plan interpreter
operations to a fixed word size. QPL source code attachéal decide amongst a set of alternative plans. By means of a
to a qPoB is transformed into device-specific instructionglan interpreter, the control component decomposes a devised
The agent'slocal planning knowledgerovides, i.e., local plan, and uses its interface to instruct the BBL to activate

. . i " Cooperation Knowledge
Cooperative Planning Layer (CPL) | } ~

Classical Cooperation Quantum Cooperation

|
— devises joint plans for goals passed by LPL _i ”(OV)’:
— access to joint plan library & protocols ﬂ* -t

|
— instructs LPL with local parts of joint plans 1 V)

- interprets/communicates/evaluates joint plans‘

- plan structures describing classicg| - plan structures describing
communication, cooperation and high-level quantum comm. and
negotiation strategies quantum cooperation strategies

- planning—specific information with non-local computational effects

0)
L
Social Context

— obtained knowledge about quantu

- Type-llb agents:
classical & quantum comm,

states by classical communication

T
|
|
|
1 — incomplete knowledge about not
I measured quantum states
|
\

evdaI(JCI;:’IaT) evaled(JPlan, Eval) ' ‘O _ _ _ o __________.
| o oal) done(Goal, Plan, Statqs)
c ~ plan(Goal) planned(Goal, JPlan) |
9 interpret(JPlan) interpret(Plan) [i e
® done(Plan, Status) I ! . !
P I ! Planning Knowledge !
2, £ : ! 1 : : — 2
g -] Local Planning Layer (LPL) ‘ V) o Classical Planning Quantum Deliberation S
— - =
~tri =
\ g mogereaibyiEoE f - *: — plan structures for single-agent tasks | — plan structures describing comple; 8 :
5 - access to plan library \rr(v) | = planning-specific information quantum algorithms with local =
| © - devises asingle-agent plan for a goal : ! computational effects = !
\ é’ - interprets/communicates/evaluates plans | : s
I < : I I
I |] 1
_ do(Goal) done(Goal) }
! plan(Goal) planned(Goal, Plan) el -
: eval(Plan) evaled(Plan, Eval) 1 | . \
i interpret(Plan) activate(PoB) ! i Behavioural Knowledge !
| done(PoB) | N
| ! | Classical PoB Quantum PoB |
\ I . | - elementary problem-solving — quantum superpositions |
i . - facilities - quantum measurements |
| Behaviour Based Layer (BBL) i | = rule based short term action - quantum error correction |
2 : ! — (elementary) quantum operations I
% \ - execution and decision component i \ I
| = |
\ _ o s ,
g | COOFdIha[IOn & pnonz_anon of PoB # - Local Goals é :
o . - PoB triggered by environment or LPL | - generated from world model 5
I
I } 1 — priorized by utility and feasibility % 1
I
: done(Action, Status) % ‘ execute(Action) : | A c :
I done(Msg, Status) send(Msg) | ! ! 2
! I @ 1
! T ! =]
! 5 Communication s | | World Model & |
= . Ol - 1
) g TGS Al il . gl | Classical Knowledge Quantum Knowledge !
| S| |_ Type-lla QI agents: ; =" - # | - perceived/sensed classical input - measured quantum states |
: < quantum communication ol - Input by classical communication — self-prepared quantum states :
|
I | I
| | |
I | I
| | |
I 1 I

World Interface

Fig. 3. QuantumInteRRap architecture

a (q)PoB. TheLPL consists of a plan generator , a planquantum systems. Th€PL implements mechanisms for
evaluator, a resource handler, a control component, and davising joint plans based on the goals of the agent. It
interface to the BBL. The LPL is able to generate and ttvas a notion of protocols and communication strategies and
control the execution of local single-agent plans, to interpretccess to a joint plan library. Similar to the LPL, the CPL
an incoming plan structure from another agent, to return plasonsists of a joint plan generator , a joint plan evaluator, a
structures to the BBL in order to tell another agent a plaresource handler, a control component, an interface to the
for a certain goal, and to decide which plan to choose frohPL, and in addition a joint plan translator. The CPL is able
a set of alternative plans. The resource handler interfacestto device and to execute joint plans for goals passed to it
planning-specific resources, e.g., planning knowledge, amy its next lower layer, to interpret an incoming joint plan
can be commisioned to provide a certain resource to a LRitructure from another agent, to return joint plan structures
component. The plan generator has access to a plan libraoythe LPL in order to tell other agents a joint plan for a
and a standard from-scratch planning algorithm. The placommon goal, and to decide which plan to choose from
generator either chooses a suitable plan from its library, @ set of alternative plans. The resource handler interfaces
it devises a plan from scratch. The plan evaluator associat&splanning-specific resources, e.g., planning knowledge, or
plans with their expected utilities, and therefor capacitatasegotiaton protocols, and can be commisioned to provide a
the plan interpreter to decide amongst a set of alternativertain resource to a CPL component. The resource handler
plans. By means of a plan interpreter, the control componelttoks up for cooperative planning knowledge in the agent’s
decomposes a devised plan, and uses its interface to instrlaetal KB or in appropriate parts of the knowledge bases of
the BBL to activate a (q)PoB. Again, in consequence of theooperating agents. The joint plan generator has access to
deployed communication facilitiesype-ll QC agentanmay a joint plan library and a standard from-scratch planning
perform quantum operations on received quantum systenagorithm. The plan generator either chooses a suitable plan
whereagype-l QC agentgan only operate on self-preparedfrom its library, or it devises a plan from scratch. The joint

plan generator is based on the agent’s local goals and on thattern followed by Grover’s amplitude amplification through
goals of agents participating in an interaction. The joint plapperator

evaluator evaluates a joint plan that has been generated by the | N

plan generator or that has been proposed by another agent, p V=21 W -1),)= T

and associates joint plans with their expected utilities. Since vbo =@ =10,) VN ;:0 =)

joint plans are subject to negotiation, agents need to argue .
about the appropriateness of joint plans. Depending on tgn order to apply the effects of),, to the correct starting

applied evaluation strategies, agents may commit to solutio %sitions k), 0 < k < N — M of matching database
o LU . rn 1), th) rr ndin
that maximize local or global utility. By means of the joint bstringS(wy....wi...wear-1), the stategi) corresponding

o to the positions ofw need to be permuted in each iteration.
plan translator, the control component translates a joint pl

into single-agent plans which guarantee satisfaction of joint Is can be done reversibly using

plan constraints during local plan execution. The CPL of 1 Nl 1 Nl

type-llb QC agentss able to devise joint plans involving Plx) = Pfrﬁ > iy = N > li+1 mod N)
guantum communication and quantum cooperation strategies. =0 =0

To this end, joint plan structures containing appropriatf M < N, sampling randomly oved/ elements will lead
(q)PoB are generated and executed on the participatitg searching with high probability over all symbols of the
QC agents’ hybrid machines. Since gPoB describe quantupattern. On average, a position with a partial matchBf<
operations in an abstract fashion, type-llb QC agents baséd individual symbols will experiencé’- phase shifts.

on different quantum technologies are enabled to cooperate.

Algorithm 1 Quantum pattern matching

IV. ATYPE-l QUANTUM SEARCH AGENT

Quantum computers can be of avail for certain searchiput: w € 2%, p € BM n = [log(N)]
problems. Exploiting the principles presented in chapter 1Qutput: m € N
efficient quantum algorithms can be composed of sequenc@¥antum Variables: |x) € H3"
unitary operations interleaved with classical work-flow stateClassic Variables:r,i,j € N
ments and a finalising measurement operation. Section IV-A
explicates aquantum pattern matching algorithii®] and ~ 1: Chooser € [0, [v/N — M + 1] uniformly

provides the grounding for type-lI quantum search ageint 2: Set|y) = #N Z,[f:_ol |k)

section IV-B. 3 for i=1tor do

A. Quantum Pattern Matching : gzto‘oiei %0',1;[~ 1 uniformly
The problem of determining thelosest matchwith a 6; Set\§> _ Q:Tx)

given patternp € XM of size M <« N in an un- . Set\x>:(P52)*1)

structured database string € ¥V of size N has been 8 Set|y) = PJ|X>

solved in [9] by extending Grover's quantum search al-4. and for

gorithm [S][6]. The query complexity of QPM has been ;4. gets, to the result of the measurement |f
proven to beD (/N — M) allowing for a significant speedup
by an order of magnitude compared to classical matching

approaches such agpproximate swapped matchidg in B. Type-1 Quantum Search Agent Architecture
O(N log(M) log(min(M, |X]))). Applying a compile once,
run manyapproach, the QPM algorithm enables to searcgf
for an arbitrary large number of distinct patterns in a giver|1II
database. To this end, theh position ofw is encoded by
iy € HEM9MNT Hence, the quantum state

How to model a type-I quantum search agent (QSA) by use
the QuantuminteRRap architecture presented in section
-C. According to section 1lI-B, the QSA is supposed to
run on a hybrid quantum computer which is, e.g., provided
with a unstructured classictdcal databasgLDB). For the
1 N1 sake of simplicity, we consider this LDB as a long static
Ix) = — Z i) stringw € XV of size N. Figure 4 illustrates how a@ype-I
VN i=0 QSA agentan be modeled as @QuantuminteRRapgent.

superposes all positions of database stringor the purpose The plan library of the QSA agent contains a plan structure
of actually generating this superposition from a simple initiafor database management given by
state, we propose to apply the methods proposed in [17]. Fﬂﬁdate db =

each symbob € X, a symbol oracle), is given by [rr(update(?w))
Qolx)=(1=2 >) Ghx) activate(store(w)),
1<G<N activate(parse(w, ?a)),

for positions;j of w satisfyingw; = o. The algorithm is activate(synth(w, a))]

constituted by iterating the phase shifts induced by a symb@ince a database setup or update is perceived, the BBL
oracle Q,, for a random symbob;, 0 < I < M of the asks the LPL to devise a local plan for this situation. The

World Interface

Classical Knowledge

- perceived/sensed classical input
— Input by classical communication

Quantum Knowledge

(— measured quantum states
- self-prepared quantum states

I — |
| Planning K nowledge 3
S . !
= | ,"E;")+ Classical Planning Quantum Deliberation % !
g 1 Local Planning Layer (LPL) - - -~ | plan: update_db pattern plan: process_req =i
= 1rr(v) ' | database update 5] |
2 | | : =
I I 1

| [
: E do(Goal) activate(PoB) : ! T T o
P2 done(PoB) done(Goal) : | Behavioural Knowledge }
= send(msg) ! ! Classical PoB Quantum PoB l
} g : : store() parse() synth() measure() rShift() oracle() :
L . <& - - | grover() random() init() IShift() diffuse() }
| é, Behaviour Based Layer (BBL) ‘ ! |
| __ 2
> & T u Local Goals g !
= | \ - requests for pattern matching - database updates 8 I
‘g } send(msg) ! | i < !
g I \ | c !
l Lo ‘ S
! Communication Perception | ' | World Model s
! classical_receive() peicerel [\ [
} classical_send() - - }
I | ! I
I | ! I
I | ! I
.) ! /

Fig. 4. QuantuminteRRap architecture of a QPM based type-l quantum search agent

LPL selects the appropriate plan structurgdate_db from

algorithm depend on database size and patterthe LPL

its plan library and extracts the new database string fromperforms respective requests to the world model. Now, the
the world model using its resource handler. Now, the LPILPL asks the BBL to compute the correct number of grover

instructs the BBL to update the LDB using PaoBore.

iterations using PoByrover, and afterwards commands the

When control comes back to the LPL, it asks the BBLBBL to initialize a quantum register of appropriate size via
to activate PoBparse that extracts the symbol alphabetgPoBinit. The plan interpreter of the LPL now decomposes
and further information for oracle synthesis from the LDBthe while-loop of the devised plan, and iteratively instructs
Finally, the LPL commands the BBL to synthesize oracléhe BBL the activate the specified (quantum) patterns of

circuits for each symbol from the database alphabet.

THeehaviour. Pattermandom uniformly chooses an index of

resulting QASM circuits are stored for further usage. Oraclthe query pattern for which the correct permutaticihi ft,

synthesis is executed by pattergnth.

A plan for query processing is given by

process_req =
[rr(database(?db)),
rr(pattern(?r)),
activate(grover(db, r, ?9)),
activate(init(db)),
while (i=0; i<g; i++) {
activate(random(r, ?p)),
activate(rShift(p)),
rr(pattern_symbol(r, p, ?s)),
activate(oracle(s)),
activate(IShift(p)),
activate(diffuse(db))
h
activate(measure, ?result),
rr(substring(result, ?match)),
send(match)]

Upon receipt of request containing some pattern ¢ %

and [Shift, and the correct precompiled symbol oracle
operationoracle need to be applied. The last step of a while-
loop iteration is the application of gPaB f fuse that imple-
ments Grover’s diffusion operation. The interaction with the
guantum machine is finalized by a projective measurement
of the quantum register resulting in the database index of the
closest matching substring to the requested pattern. Finally,
the LPL extracts the corresponding substring from the LDB,
and by passing the substring to the lower level of the WIF,
the requesting agem; receives the computed closest match
to its query string, or a failure message in case of the
unsuccessful search.

V. SIMULATION AND BENCHMARKING

Quantum computer simulatorsnable the simulation of
computational operations designed for quantum machines on
classical computing machinery. To demonstrate the operabil-
ity of our type-l QSA, we have programmed and simulated
it by use of open source quantum simulat@QsIDDPro 2.1
[20], [19], [18], QCL 0.6.1[13] and libquantum 0.2.43].

For extensive review of quantum computer simulators, we
refer the reader to [21]. Memory and runtime performances

from another agent;, the BBL asks the LPL to process for simulations on a classical computer with query patterns
the query. To this end, the LPL devises and controls thef size |p| = 4 and various database strings are displayed
execution of a local plan according to the plan structuran figure 5. We simulated the QSA for three different use
process_req from its plan library. Since aspects of the QPMcase scenarios: LDB set up with Matsuo Bashbi®g

(CY

QC agents on hybrid quantum computers, instantiated the
QuantuminteRRap architecture by concrete means of a quan-

32} Q“'D%Pcrﬁ i tum pattern matching based type-I quantum search agent,
g .} bquantury - § showed the results of comparative run time performance
2 8 testing of its simulation with different quantum simulators,
g 4+ 8 and demonstrated its functionality also by example. The
; 2r] theoretical performance of the QPM based quantum search
g e e T agent over classical edit based string matching provides
0.5 Fo . T strong evidence for the expected significant speed up of a
0'2§’asho Frost Blake service matchmaking process of type-l quantum matchmaker
agents compared to the classical case. However, the quantum
® realization of semantic service matchmaking remains one
1024 I IQuID%PCrE —7 open problem. Qur ongoing research focuses on soIvingl this
libquantum - 1 problem by feasible type-Il QC agents for service selection,
= 200 i that is the programming and simulation of type-Il quantum
E ear] matchmaker agents with QuantuminteRRap architecture and
g 167] by use of the same quantum simulators.
j /_ REFERENCES
0.25 .] [1] Amir. Approximate swapped matchingnf. Process. Lett.83(1):33—
Basho Frost Blake 39, 2002.

(2]
Fig. 5. Comparing peak memory (a) and runtime (b) of Qsa on selecteq3]
quantum computing simulators

(4]

Haiku encoded in6 qubits, LDB set up with Robert Frost’s [5]
Fire and Ice encoded in8 qubits, and LDB set up with
William Blake’s The Tygerencoded in0 qubits. We strongly [6]
highlight, that our comparative evaluation soley investigate%]
selected quantum computer simulators with respect to mem-
ory and runtime performance on classical machines. Usingfl
a not yet implemented quantum computing device, QPM'’s
quantum query complexity ad(v/N — M) will allow fora 9]

significant speedup of our QSA. (10]

VI. RELATED WORK
[11]

To the best of our knowledge, the presented architecture,
programming and simulation of a type-l quantum search?!
agent is unique as there are no alternative QC agent implgz,
mentations available yet. Our work combines related work
from quantum computing and agent based computing, aftf!
builds upon existing work on QC agents in [7]. In particulary;s)
we did exploit an improved version of the recently proposed
quantum pattern matching algorithm in [9] for speeding uft®!
the local search process of a type-l quantum search agent.
The architecture of such an agent on a hybrid quantuim?]
computer is then proposed to be an appropriately extendﬁgl
version of the classic InteRRap agent architecture in [10] for
QC agents on hybrid quantum computers. The programmiritp]
of this special kind of QC agent is given by means of three
different existing quantum simulators, and demonstrated Ry,
example.

VIl. CONCLUSION [21]

In this paper, we presented a hybrid generic architecture
for QC agents as an extension of the known InteRRap archi-
tecture, discussed basic engineering aspects of how to realize

Bettelli. Toward an architecture for quantum programming, eur. phys.
j., 25:181-200, 2003., 2003.

B. Butscher. Non-technical
enyo.de/libquantum/.

C. Carabelea, O. Boissier, and A. Florea. Autonomy in multi-agent
systems: A classification attempt. In Nickles et al. [11], pages 103—
113.

L. K. Grover. A fast quantum mechanical algorithm for database
search, arxiv.org/quant-ph/9605043, 1996.

L. K. Grover. From schidinger's equation to the quantum search
algorithm. American Journal of Physic$9(7):769-777, 2001.

M. Klusch. Toward quantum computational agents. In Nickles et al.
[11], pages 170-186.

M. Klusch. Coordination of quantum internet agents. In F. Dignum,
V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge,
editors,AAMAS pages 1221-1222. ACM, 2005.

P. Mateus and Y. Omar. Quantum pattern matching, arxiv.org/quant-
ph/0508237. 2005.

J. Mulller and M. Pischel. The agent architecture interrap: Concept and
application, technical report rr-93-26, dfki saarbrucken, 1993, 1993.
M. Nickles, M. Rovatsos, and G. Weil3, editorsgents and Compu-
tational Autonomy (AAMAS 200Q3)

M. A. Nielsen and I. L. ChuangQuantum computation and quantum
information Cambridge Univ. Press, Cambridge, 2000.

B. Oemer. Quantum programming in qcl, master thesis, technical
university of vienna, computer science department, 2000.

P. Selinger. Towards a quantum programming languligeghematical.
Structures in Comp. Scil4(4):527-586, 2004.

V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum
logic circuits, 2004.

K. M. Svore, A. V. Aho, A. W. Cross, |. Chuang, and I. L. Markov.

A layered software architecture for quantum computing design tools.
Computey 39(1):74-83, 2006.

C. A. Trugenberger. Phase transitions in quantum pattern recognition,
arxiv.org/quant-ph/0204115. 2002.

Viamontes. Gate-level simulation of quantum circuits, arxiv.org/quant-
ph/0208003, 2002.

G. F. Viamontes, |. L. Markov, and J. P. Hayes. Improving gate-level
simulation of quantum circuits. Quantum Information Processing
2:347, 2003.

G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-based simulation
of quantum computation in the density matrix representatirantum
Information and Computings:113, 2005.

J. Wallace. Quantum computer simulators - a review version 2.1,
citeseer.ist.psu.edu/wallace99quantum.html.

description of libquantum,

