
Programming and Simulation of Quantum Search Agents

Matthias Klusch and René Schubotz

Abstract— The extension of classical agents by the ability to
perform quantum computation and communication provides an
efficient and secure solution to applications such as information
search and service matchmaking. In this paper, we propose
a hybrid architecture for quantum computational agents, and
demonstrate its principles by means of a simple type-I quantum
search agent based on quantum pattern matching. Finally,
we present preliminary results of the comparative evaluation
of its implementation using different quantum programming
languages and simulators.

I. INTRODUCTION

Quantum computing technology based on quantum
physics promises to eliminate some of the problems associ-
ated with the rapidly approaching ultimate limits to classical
computers imposed by the fundamental law of thermodynam-
ics. Quantum computing (QC) devices have been physically
implemented since the late 1990’s by use of, for example,
nuclear magnetic resonance, and solid state technologies.
Rapid progress and current trends in nanoscale molecular
engineering, as well as quantum computing research carried
out at research labs across the globe could make it happen
to let us see increasingly sophisticated quantum computing
devices in the era 2020 to 2050. The implied major research
challenge of agent based computing in such environments is
how to make the most of the potential of quantum computing
and communication? We acknowledge that any answer to
this question at the very moment will be, of course, highly
speculative; though work in this direction already started
such as in [7]. We build upon this work and focus more on its
engineering aspects by means of programming and simula-
tion of a special kind of quantum computational agents, that
is type-I quantum search agents. Key idea is to appropriately
extend one prominent generic agent architecture, namely
InteRRap, to the case of a type-I QC agent that is supposed
to run on a hybrid quantum computer, and to show its
feasibility by instantiating the respective QuantumInteRRap
architecture for a programmed quantum pattern matching
(QPM) based type-I quantum search agent. The remainder of
the paper is structured as follows. After a brief introduction
to quantum computation in section II, we comment on a
recently proposed classification of QC agents and a quantum
programming design flow in sections III-A, respectively, III-
B. Based on this work, we present our quantum extension of
the InteRRap architecture for QC agents in section III-C, and
describe a slightly improved version of the quantum pattern
matching algorithm of [9] in section IV-A. The architecture

M. Klusch is with the German Research Center for Artificial Intelligence,
Multiagent System Group, Saarbrücken, Germanyklusch@dfki.de

R. Schubotz is with the Saarland University, Computer Science Depart-
ment, Saarbr̈ucken, Germanyschubotz@gmx.de

and benchmarking results of the QPM based type-I quantum
search agent simulated on different quantum simulators are
presented in sections IV-B and V.

II. QUANTUM COMPUTING IN VERY BRIEF

Quantum computation is built on the concept of the
qubit. Any isolated physical 2-observable quantum system
is appropriate to realize a single qubit. In mathematical
terms, a qubitψ is associated to its state space, a complex
2-dimensional Hilbert spaceH2 = span{|0〉 , |1〉} with
orthonormal computational standard basis. Any quantum
state |ψ〉 of ψ is described by acoherent superposition,
|ψ〉 = α0 |0〉 + α1 |1〉 , |α0|2 + |α1|2 = 1. The state space
H⊗n

2 of a physical system composed ofn single qubitsψi
is the n-folded tensor productof the state spaces of its
n constituting qubitsH⊗n

2 =
⊗n

H2. Such systems can
be regarded asn-qubit register Ψ with 2n computational
basis states. If a state|Ψ〉 of a n-qubit register can be
written as a product of its constituting qubits in the form
|Ψ〉 =

⊗
i(

∑
j αi,j |j〉), then |Ψ〉 is called separable. Non-

separable composite states are known asentangled states,
allowing non-local effects of instantaneous state changes be-
tween spatially separated but entangled quantum states upon
measurement. Aprojective measurementof Ψ is described
by a set of pairwise orthogonal subspacesW1, . . . ,Wm

satisfyingH⊗n
2 =

⊕m
k=1Wk and results inj ∈ {1, . . . ,m}.

Let {|Φjl 〉} define an orthonormal basis of subspaceWj , then
the operatorPj =

∑dim(Wj)
i=1 |Φji 〉 〈Φ

j
i | projectsΨ on the

subspaceWj . The probability of measuringj ∈ {1, . . . ,m}
is given by 〈Ψ|Pj |Ψ〉. Time evolution ofΨ is described
by unitary transformationsin its state spaceH⊗n

2 . Any
non-measuring quantum operation isinherently reversible
since any unitary transformationU has an inverse. For a
comprehensive introduction to quantum computation, we
refer the reader to [12].

III. A GENTS ONQUANTUM COMPUTERS

A quantum computational agent(QC agent) [7] is an
intelligent software agent that is able to perform both
classical and quantum computing to accomplish its goals
individually, or in joint interaction with other QC agents. The
future quantum internet is expected to consist of networked
classical and quantum computers, and populated with QC
agents that operate on quantum computers and communicate
with each other according to the quantum communication
model of either physical direct quantum transmission, or
quantum teleportation, or superdense coding.

A. Classification of QC Agents

According to [8], QC agents can be classified based on
the used quantum communication model.Type-I QC agents
communicate over classical channels and are restricted to
local quantum computing. Communication between type-
I QC agents has to be additionally secured which is not
necessary in case of inherently secure type-II QC agents.
With respect to the classification of different types ofagent
autonomyin [4], it has been shown in [7] that the self-
autonomy of individual type-I QC agents remains intact.
The ability to autonomously reason about sets of goals,
plans, and motivations for decision-making is not affected,
since quantum computational effects are restricted to local
quantum machine components.Type-II QC agentscan be
distinguished depending on whether entangled qubits for
quantum communication are shared between communicating
agents, or not. Communication betweentype-IIa QC agents
is based on direct quantum particle transmission. In contrast
to type-IIb QC agents, entangled qubits are not shared.
Using the entangled qubits at its disposal, atype-IIb QC
agentis able to transmit superdense coded information to its
communication partner, alternatively messages can be tele-
ported. Type-II QC agents greatly benefit from computational
advantages of quantum computing and communication, but
at the cost of limited self-autonomy, due to non-local effects
of quantum entanglement.

B. Quantum Computing Design Flow

Quantum computers are highly fragile artifacts due to
their delicate machinery and require precise monitoring of
their state and operation. The proposal of a hybrid master-
slave architecture in [7] comes naturally, and casts a clas-
sical machine (CM) to control the timing and sequence
of quantum operations carried out in a quantum machine
(QM). As depicted in figure 1, the CM consists of a CPU

CPU

QPOL code

result of measurement QDC QPU − quantum ops
− measurements
− error correction

− instructs QPU
− interface to CPU
− quantum comm.

LDB

stores local
database

QMemory

− QPU workspace
− exponential size

Classical Machine Quantum Machine

stores synthesized

QASM library

− non−quantum ops
− QCC tool suite
− classical comm.

quantum circuits

Fig. 1. Master-slave hybrid quantum computer

for high-level dynamic control and scheduling of the QM
components. The CM provides aquantum programming
language[13], [2], [14] (QPL) compiler suite that translates
quantum algorithms into low-level quantum device instruc-
tions. It interfaces to the quantum machine via the quantum
device controller (QDC), an instruction processing unit that
distributes technology-dependent machine code to a quantum
processing unit (QPU).

In [16], Aho et al. envision a layered software architecture
for quantum computing design tools, and propose a simple
hierarchy with interfaces between QPL, QPL compilers, op-
timizers, simulators, and layout modules. Key concept of this

architecture is a four-phase computer-aided design flow (see
figure 2), that ensures an interoberable tool hierarchy by ap-
propriate intermediate representations of quantum algorithms
between the different phases. The flow’s first three phases are
handled by aquantum computer compiler(QCC) residing on
a classical machine, whereas the final phase mounts the QDC
and implements the quantum circuit on the underlying quan-
tum device. A top level quantum programming environment

Quantum Computer Compiler Front−End

Quantum Programming Environment

QPL source of quantum algorithm

Technology−independant Optimizer

Simulator or Quantum Device

QIR quantum circuit

Technology−dependant Optimizer

QASM circuit

fault−tolerant QASM circuit

QPOL instructions

Phase 4

Phase 2

Phase 3

Phase 1

Q
D

C
Q

C
C

Q
P

L

Fig. 2. Quantum design flow phases on a classical computer

offers a high-level QPL, and thereby provides mathematical
abstractions of quantum mechanics and linear algebra in a
hardware and technology-independent fashion. Such a QPL
is expected to be based on familiar concepts from classi-
cal programming and software engineering, e.g., work-flow
control, type systems, code reusablility and modularization.
QPL source programs containing high-level primitives for
logical quantum operations and classical work-flow state-
ments, are passed to the QCC during the first phase of the
design flow. The QCC maps QPL sources into a technology-
independentquantum intermediate representation(QIR), i.e.,
a quantum circuit using gates from a universal set. Since
this process is similar to the front-end processes of classical
compilers, approved algorithms for lexical, syntactic and
semantic analysis can be used. During the second phase, a
technology-independent circuit optimizer translates the QIR
into a circuit of elementary quantum gates. The resulting
quantum assembly language(QASM) representation is op-
timized according to various cost functions. QASM circuits
consist solely of qubits, classical registers, single-qubit gates,
CNOT gates, and measurement operations. Any quantum
circuit can be constructed in QASM, but efficient synthesis
algorithms [15] are still a wide area of research. At the
earliest in the third phase, knowledge of the physical layout
and technology-dependent limitations enters the design flow.
The third phase consists of two subphases. During the first
subphase, a technology-specific optimizer maps the QASM
representation from the second phase into a QASM circuit
with gates drawn from a fault-tolerant discrete universal set.
The second subphase outputsquantum physical operations
language(QPOL) and precisely describes the execution of a

given QASM circuit on a specific technology. QPOL includes
physical operations and technology-specific modules. During
the last phase, the QCC interfaces with the QDC. Utilizing
device-specific tools and modules, the QDC translates a
final QPOL program into quantum machine instructions
and distributes them to a QPU or a quantum simulator. In
order to minimize quantum decoherence caused by imperfect
control over qubit operations, measurement errors, number
of entangled qubits, and the physical limits of the quantum
system, fault tolerance and error correction can be added at
multiple phases of the design process.

C. Generic QC Agent Architecture QuantumInteRRap

In [10], an architecture for multi-agent systems is pre-
sented. The proposed modelInteRRapcombines both the re-
active and the deliberate paradigm, and explicitly represents
knowledge, plans and strategies. Including a mechanism
for devising joint plans, knowledge about protocols and
communication strategies, InteRRap is suitable for describing
high-level interactions of autonomous and intelligent agents.
In the following, the InteRRap architecture is embedded in
the context of QC multi-agent systems. Figure 3 shows the
high-level components of theQuantumInteRRaparchitecture
and their basic interplay. Following the InteRRap model, the
basic building blocks of a QuantumInteRRap agent are a
hierarchical structuredknowledge base(KB) and theagent
control unit (ACU). The KB consists of the agent’sworld
model, the agent’slocal goals, the behavioural knowledge,
the local planning knowledgeand thecooperative planning
knowledge. The world modelis organized in a taxonomical
fashion, and contains the agent’s beliefs and knowledge
about the state of the world. Besides information about its
macroscopic environment, a QuantumInteRRap agent has
beliefs and knowledge about the quantum realm. The agent’s
behavioural knowledgeis defined bypatterns of behaviour
(PoB). PoB represent the elementary problem-solving facili-
ties of QC agents. On the one hand, PoB provide information
regarding their suitability, applicability, and expected utility
under certain conditions. Inter alia, the declaration of a
PoB contains information concerninga priori evaluation,
external preconditions and postconditions, termination con-
ditions, failure conditions, or execution of corresponding
lower-level procedures, enabling the plan-based modules to
reason about which PoB to perform, and which not. On the
other hand, there is a class of PoB that are not represented
in a declarative manner. These PoB can be considered as
precondition-action-postcondition triples, and are linked to
precompiled procedures that can be activated in for routine
behaviour.Quantum patterns of behaviour(qPoB) declare
more or less complex quantum operations, e.g., error cor-
rection, specific quantum circuits, measurements in various
bases, etc. It is important to realize, that qPoB encapsulate
quantum operations by mathematical abstractions of quantum
mechanics and linear algebra, and do not restrict quantum
operations to a fixed word size. QPL source code attached
to a qPoB is transformed into device-specific instructions.
The agent’slocal planning knowledgeprovides, i.e., local

skeletal plans from a plan library, and specific knowledge
for standard from-scratch planning. QuantumInteRRap rep-
resents plans as tree structures whose leaf nodes contain
only (q)PoB. QuantumInteRRap plan structures provide a
suitable high-level description of quantum algorithms ab-
stracting away from quantum technology-specific details.
Finally, the agent’scooperation knowledgecontains, i.e.,
joint plan structures, negotiation protocols, and cooperation-
specific partner information. In particular, type-IIb Quantu-
mInteRRap agents possess knowledge about quantum co-
operation strategies, e.g., distribution of entangled qubits,
quantum leader election, or quantum distributed consens, and
high-level quantum communication, e.g., superdense coding,
quantum teleportation, and direct qubit transmission.

The ACU comprises theworld interface (WIF), the
behaviour-based layer(BBL), the local planning layer(LPL)
and thecooperative planning layer(CPL). As adumbrated,
the control components exchange goals, plans and informa-
tion via communication. In detail, theWIF provides the
agent’s means for perception, actuation and communica-
tion according to the classification in section III-A. Any
information the agent receives or perceives need to be
transformed into an explicit representation for storage in
the agent’s world model. In consequence of the deployed
communicative facilities,type-I QC agentsdo not suffer
from incomplete quantum knowledge.Type-IIb QC agents
may obtain quantum knowledge by classical communication
assuming a non-antagonistic agent scenario, whilsttype-IIa
QC agentsare inherently uninformed about received but not
yet measured quantum bits. TheBBL implements the agent’s
basic behaviour, its execution and decision component. The
BBL has access to a set of executable (quantum) patterns
of behaviour which can be activated by external stimuli or
by the LPL. The BBL has the task to select and execute
suitable and applicable (q)PoB that contain activation calls
to WIF modules, or to the LPL. In order to reasonably
choose (q)PoB, the BBL needs to maintain a goal priorization
hierarchy. The goals of the agent are generated from its
world model, and correspond to (q)PoB. TheLPL consists
of a plan generator , a plan evaluator, a resource handler, a
control component, and an interface to the BBL. The LPL
is able to generate and to control the execution of local
single-agent plans, to interpret an incoming plan structure
from another agent, to return plan structures to the BBL in
order to tell another agent a plan for a certain goal, and
to decide which plan to choose from a set of alternative
plans. The resource handler interfaces to planning-specific
resources, e.g., planning knowledge, and can be commi-
sioned to provide a certain resource to a LPL component.
The plan generator has access to a plan library and a standard
from-scratch planning algorithm. The plan generator either
chooses a suitable plan from its library, or it devises a plan
from scratch. The plan evaluator associates plans with their
expected utilities, and therefor capacitates the plan interpreter
to decide amongst a set of alternative plans. By means of a
plan interpreter, the control component decomposes a devised
plan, and uses its interface to instruct the BBL to activate

A
ge

nt
 C

on
tr

ol
 U

ni
t

World Interface

R
ea

ct
iv

ity
D

el
ib

er
at

io
n

− Type−I QI agents:
classical communication

classical & quantum comm.

− Type−IIa QI agents:

− Type−IIb agents:

quantum communication

− coordination & priorization of PoB

− execution and decision component

− PoB triggered by environment or LPL

Behaviour Based Layer (BBL)

− devises a single−agent plan for a goal

− triggered by PoB

− access to plan library

Local Planning Layer (LPL)

− interprets/communicates/evaluates plans

− instructs LPL with local parts of joint plans

− interprets/communicates/evaluates joint plans

− devises joint plans for goals passed by LPL

− access to joint plan library & protocols

Cooperative Planning Layer (CPL)
rr(?v)

rr(?v)

rr(v)

rr(v)

M
en

ta
l C

on
te

xt

Planning Knowledge

So
ci

al
 C

on
te

xt

Cooperation Knowledge

− generated from world model
− priorized by utility and feasibility

Local Goals

Si
tu

at
io

na
l C

on
te

xt

Behavioural Knowledge

World Model

− perceived/sensed classical input

Classical Knowledge

− input by classical communication

Quantum Knowledge

− self−prepared quantum states
− obtained knowledge about quantum
states by classical communication

− incomplete knowledge about not
measured quantum states

Classical Cooperation

Classical Planning

Quantum Cooperation

Quantum Deliberation

Classical PoB Quantum PoB
− quantum superpositions
− quantum measurements
− quantum error correction

− measured quantum states

− (elementary) quantum operations

− plan structures describing complex
quantum algorithms with local
computational effects

− plan structures for single−agent tasks

high−level quantum comm. and
− plan structures describing

quantum cooperation strategies
with non−local computational effects

− elementary problem−solving

− rule based short term action
facilities

communication, cooperation and
negotiation strategies

− plan structures describing classical

− planning−specific information

− planning−specific information

do(Goal)
plan(Goal)
eval(Plan)

interpret(Plan)

done(Goal)

activate(PoB)

planned(Goal, Plan)

execute(Action)done(Action, Status)
done(Msg, Status) send(Msg)

evaled(Plan, Eval)

done(Goal, Plan, Status)
planned(Goal, JPlan)

evaled(JPlan, Eval)eval(JPlan)
do(Goal)

plan(Goal)
interpret(JPlan)

done(Plan, Status)
interpret(Plan)

done(PoB)

A
ct

ua
ti

on

P
er

ce
pt

io
nCommunication

Fig. 3. QuantumInteRRap architecture

a (q)PoB. TheLPL consists of a plan generator , a plan
evaluator, a resource handler, a control component, and an
interface to the BBL. The LPL is able to generate and to
control the execution of local single-agent plans, to interpret
an incoming plan structure from another agent, to return plan
structures to the BBL in order to tell another agent a plan
for a certain goal, and to decide which plan to choose from
a set of alternative plans. The resource handler interfaces to
planning-specific resources, e.g., planning knowledge, and
can be commisioned to provide a certain resource to a LPL
component. The plan generator has access to a plan library
and a standard from-scratch planning algorithm. The plan
generator either chooses a suitable plan from its library, or
it devises a plan from scratch. The plan evaluator associates
plans with their expected utilities, and therefor capacitates
the plan interpreter to decide amongst a set of alternative
plans. By means of a plan interpreter, the control component
decomposes a devised plan, and uses its interface to instruct
the BBL to activate a (q)PoB. Again, in consequence of the
deployed communication facilities,type-II QC agentsmay
perform quantum operations on received quantum systems,
whereastype-I QC agentscan only operate on self-prepared

quantum systems. TheCPL implements mechanisms for
devising joint plans based on the goals of the agent. It
has a notion of protocols and communication strategies and
access to a joint plan library. Similar to the LPL, the CPL
consists of a joint plan generator , a joint plan evaluator, a
resource handler, a control component, an interface to the
LPL, and in addition a joint plan translator. The CPL is able
to device and to execute joint plans for goals passed to it
by its next lower layer, to interpret an incoming joint plan
structure from another agent, to return joint plan structures
to the LPL in order to tell other agents a joint plan for a
common goal, and to decide which plan to choose from
a set of alternative plans. The resource handler interfaces
to planning-specific resources, e.g., planning knowledge, or
negotiaton protocols, and can be commisioned to provide a
certain resource to a CPL component. The resource handler
looks up for cooperative planning knowledge in the agent’s
local KB or in appropriate parts of the knowledge bases of
cooperating agents. The joint plan generator has access to
a joint plan library and a standard from-scratch planning
algorithm. The plan generator either chooses a suitable plan
from its library, or it devises a plan from scratch. The joint

plan generator is based on the agent’s local goals and on the
goals of agents participating in an interaction. The joint plan
evaluator evaluates a joint plan that has been generated by the
plan generator or that has been proposed by another agent,
and associates joint plans with their expected utilities. Since
joint plans are subject to negotiation, agents need to argue
about the appropriateness of joint plans. Depending on the
applied evaluation strategies, agents may commit to solutions
that maximize local or global utility. By means of the joint
plan translator, the control component translates a joint plan
into single-agent plans which guarantee satisfaction of joint
plan constraints during local plan execution. The CPL of
type-IIb QC agentsis able to devise joint plans involving
quantum communication and quantum cooperation strategies.
To this end, joint plan structures containing appropriate
(q)PoB are generated and executed on the participating
QC agents’ hybrid machines. Since qPoB describe quantum
operations in an abstract fashion, type-IIb QC agents based
on different quantum technologies are enabled to cooperate.

IV. A T YPE-I QUANTUM SEARCH AGENT

Quantum computers can be of avail for certain search
problems. Exploiting the principles presented in chapter II,
efficient quantum algorithms can be composed of sequenced
unitary operations interleaved with classical work-flow state-
ments and a finalising measurement operation. Section IV-A
explicates aquantum pattern matching algorithm[9] and
provides the grounding for atype-I quantum search agentin
section IV-B.

A. Quantum Pattern Matching

The problem of determining theclosest matchwith a
given patternp ∈ ΣM of size M � N in an un-
structured database stringw ∈ ΣN of size N has been
solved in [9] by extending Grover’s quantum search al-
gorithm [5][6]. The query complexity of QPM has been
proven to beO(

√
N −M) allowing for a significant speedup

by an order of magnitude compared to classical matching
approaches such asapproximate swapped matching[1] in
O(N log(M) log(min(M, |Σ|))). Applying a compile once,
run manyapproach, the QPM algorithm enables to search
for an arbitrary large number of distinct patterns in a given
database. To this end, thei-th position ofw is encoded by
|i〉 ∈ H⊗dlog(N)e

2 . Hence, the quantum state

|χ〉 =
1√
N

N−1∑
i=0

|i〉

superposes all positions of database stringw. For the purpose
of actually generating this superposition from a simple initial
state, we propose to apply the methods proposed in [17]. For
each symbolσ ∈ Σ, a symbol oracleQσ is given by

Qσ |χ〉 = (1− 2
∑

1≤j≤N

|j〉 〈j|) |χ〉

for positionsj of w satisfyingwj = σ. The algorithm is
constituted by iterating the phase shifts induced by a symbol
oracleQσl

for a random symbolσl, 0 ≤ l < M of the

pattern followed by Grover’s amplitude amplification through
operator

Pψ |χ〉 = (2 |ψ〉 〈ψ| − 1) |χ〉 , |ψ〉 =
1√
N

N−1∑
x=0

|x〉

In order to apply the effects ofQσl
to the correct starting

positions |k〉, 0 ≤ k ≤ N − M of matching database
substrings〈wk...wl...wk+M−1〉, the states|i〉 corresponding
to the positions ofw need to be permuted in each iteration.
This can be done reversibly using

P lπ |χ〉 = P lπ
1√
N

N−1∑
i=0

|i〉 =
1√
N

N−1∑
i=0

|i+ l mod N〉

If M � N , sampling randomly overM elements will lead
to searching with high probability over all symbols of the
pattern. On average, a position with a partial match ofM ′ ≤
M individual symbols will experienceM

′

M phase shifts.

Algorithm 1 Quantum pattern matching

Input: w ∈ ΣN , p ∈ ΣM , n = dlog(N)e
Output: m ∈ N
Quantum Variables: |χ〉 ∈ H⊗n

2

Classic Variables:r, i, j ∈ N

1: Chooser ∈
[
0, b

√
N −M + 1c

]
uniformly

2: Set |χ〉 = 1√
N

∑N−1
k=0 |k〉

3: for i = 1 to r do
4: Choosej ∈ [0,M − 1] uniformly
5: Set |χ〉 = P jπ |χ〉
6: Set |χ〉 = Qσj

|χ〉
7: Set |χ〉 = (P jπ)−1 |χ〉
8: Set |χ〉 = Pψ |χ〉
9: end for

10: Setm to the result of the measurement of|χ〉

B. Type-I Quantum Search Agent Architecture

How to model a type-I quantum search agent (QSA) by use
of the QuantumInteRRap architecture presented in section
III-C. According to section III-B, the QSA is supposed to
run on a hybrid quantum computer which is, e.g., provided
with a unstructured classicallocal database(LDB). For the
sake of simplicity, we consider this LDB as a long static
stringw ∈ ΣN of sizeN . Figure 4 illustrates how aType-I
QSA agentcan be modeled as aQuantumInteRRapagent.

The plan library of the QSA agent contains a plan structure
for database management given by

update_db =
[rr(update(?w)),

activate(store(w)),
activate(parse(w, ?a)),
activate(synth(w, a))]

Once a database setup or update is perceived, the BBL
asks the LPL to devise a local plan for this situation. The

Local Goals

Si
tu

at
io

na
l C

on
te

xt

Behavioural Knowledge

M
en

ta
l C

on
te

xt

Classical Planning Quantum Deliberation

Planning Knowledge

− requests for pattern matching − database updates

World Model

− perceived/sensed classical input

Classical Knowledge

− input by classical communication
− measured quantum states

Quantum Knowledge

− self−prepared quantum states

Classical PoB Quantum PoB

grover() random()

measure()

init()

store() parse() synth()

lShift()

oracle()rShift()

diffuse()

plan: process_reqplan: update_db
database

pattern
update

Behaviour Based Layer (BBL)

A
ge

nt
 C

on
tr

ol
 U

ni
t

R
ea

ct
iv

ity
D

el
ib

er
at

io
n

World Interface

classical_receive()
classical_send()

Local Planning Layer (LPL)

perceive()

activate(PoB)
done(Goal)
send(msg)

send(msg)

do(Goal)
done(PoB)

rr(?v)

rr(v)

Communication Perception

Fig. 4. QuantumInteRRap architecture of a QPM based type-I quantum search agent

LPL selects the appropriate plan structureupdate db from
its plan library and extracts the new database string from
the world model using its resource handler. Now, the LPL
instructs the BBL to update the LDB using PoBstore.
When control comes back to the LPL, it asks the BBL
to activate PoBparse that extracts the symbol alphabet
and further information for oracle synthesis from the LDB.
Finally, the LPL commands the BBL to synthesize oracle
circuits for each symbol from the database alphabet. The
resulting QASM circuits are stored for further usage. Oracle
synthesis is executed by patternsynth.

A plan for query processing is given by

process_req =
[rr(database(?db)),

rr(pattern(?r)),
activate(grover(db, r, ?g)),
activate(init(db)),
while (i=0; i<g; i++) {

activate(random(r, ?p)),
activate(rShift(p)),
rr(pattern_symbol(r, p, ?s)),
activate(oracle(s)),
activate(lShift(p)),
activate(diffuse(db))

},
activate(measure, ?result),
rr(substring(result, ?match)),
send(match)]

Upon receipt of requests containing some patternr ∈ ΣM

from another agentA1, the BBL asks the LPL to process
the query. To this end, the LPL devises and controls the
execution of a local plan according to the plan structure
process req from its plan library. Since aspects of the QPM

algorithm depend on database size and patternp, the LPL
performs respective requests to the world model. Now, the
LPL asks the BBL to compute the correct number of grover
iterations using PoBgrover, and afterwards commands the
BBL to initialize a quantum register of appropriate size via
qPoBinit. The plan interpreter of the LPL now decomposes
the while-loop of the devised plan, and iteratively instructs
the BBL the activate the specified (quantum) patterns of
behaviour. Patternrandom uniformly chooses an index of
the query pattern for which the correct permutationrShift,
and lShift, and the correct precompiled symbol oracle
operationoracle need to be applied. The last step of a while-
loop iteration is the application of qPoBdiffuse that imple-
ments Grover’s diffusion operation. The interaction with the
quantum machine is finalized by a projective measurement
of the quantum register resulting in the database index of the
closest matching substring to the requested pattern. Finally,
the LPL extracts the corresponding substring from the LDB,
and by passing the substring to the lower level of the WIF,
the requesting agentA1 receives the computed closest match
to its query string, or a failure message in case of the
unsuccessful search.

V. SIMULATION AND BENCHMARKING

Quantum computer simulatorsenable the simulation of
computational operations designed for quantum machines on
classical computing machinery. To demonstrate the operabil-
ity of our type-I QSA, we have programmed and simulated
it by use of open source quantum simulatorsQuIDDPro 2.1
[20], [19], [18], QCL 0.6.1 [13] and libquantum 0.2.4[3].
For extensive review of quantum computer simulators, we
refer the reader to [21]. Memory and runtime performances
for simulations on a classical computer with query patterns
of size |p| = 4 and various database strings are displayed
in figure 5. We simulated the QSA for three different use
case scenarios: LDB set up with Matsuo Basho’sFrog

 0.25

 1

 4

 16

 64

 256

 1024

BlakeFrostBasho

ru
nt

im
e

(s
)

(b)

QuIDDPro
QCL

libquantum

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

BlakeFrostBasho

pe
ak

 m
em

or
y

(M
B

)

(a)

QuIDDPro
QCL

libquantum

Fig. 5. Comparing peak memory (a) and runtime (b) of Qsa on selected
quantum computing simulators

Haiku encoded in6 qubits, LDB set up with Robert Frost’s
Fire and Ice encoded in8 qubits, and LDB set up with
William Blake’sThe Tygerencoded in10 qubits. We strongly
highlight, that our comparative evaluation soley investigates
selected quantum computer simulators with respect to mem-
ory and runtime performance on classical machines. Using
a not yet implemented quantum computing device, QPM’s
quantum query complexity ofO(

√
N −M) will allow for a

significant speedup of our QSA.

VI. RELATED WORK

To the best of our knowledge, the presented architecture,
programming and simulation of a type-I quantum search
agent is unique as there are no alternative QC agent imple-
mentations available yet. Our work combines related work
from quantum computing and agent based computing, and
builds upon existing work on QC agents in [7]. In particular,
we did exploit an improved version of the recently proposed
quantum pattern matching algorithm in [9] for speeding up
the local search process of a type-I quantum search agent.
The architecture of such an agent on a hybrid quantum
computer is then proposed to be an appropriately extended
version of the classic InteRRap agent architecture in [10] for
QC agents on hybrid quantum computers. The programming
of this special kind of QC agent is given by means of three
different existing quantum simulators, and demonstrated by
example.

VII. C ONCLUSION

In this paper, we presented a hybrid generic architecture
for QC agents as an extension of the known InteRRap archi-
tecture, discussed basic engineering aspects of how to realize

QC agents on hybrid quantum computers, instantiated the
QuantumInteRRap architecture by concrete means of a quan-
tum pattern matching based type-I quantum search agent,
showed the results of comparative run time performance
testing of its simulation with different quantum simulators,
and demonstrated its functionality also by example. The
theoretical performance of the QPM based quantum search
agent over classical edit based string matching provides
strong evidence for the expected significant speed up of a
service matchmaking process of type-I quantum matchmaker
agents compared to the classical case. However, the quantum
realization of semantic service matchmaking remains one
open problem. Our ongoing research focuses on solving this
problem by feasible type-II QC agents for service selection,
that is the programming and simulation of type-II quantum
matchmaker agents with QuantumInteRRap architecture and
by use of the same quantum simulators.

REFERENCES

[1] Amir. Approximate swapped matching.Inf. Process. Lett., 83(1):33–
39, 2002.

[2] Bettelli. Toward an architecture for quantum programming, eur. phys.
j., 25:181–200, 2003., 2003.

[3] B. Butscher. Non-technical description of libquantum,
enyo.de/libquantum/.

[4] C. Carabelea, O. Boissier, and A. Florea. Autonomy in multi-agent
systems: A classification attempt. In Nickles et al. [11], pages 103–
113.

[5] L. K. Grover. A fast quantum mechanical algorithm for database
search, arxiv.org/quant-ph/9605043, 1996.

[6] L. K. Grover. From schr̈odinger’s equation to the quantum search
algorithm. American Journal of Physics, 69(7):769–777, 2001.

[7] M. Klusch. Toward quantum computational agents. In Nickles et al.
[11], pages 170–186.

[8] M. Klusch. Coordination of quantum internet agents. In F. Dignum,
V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge,
editors,AAMAS, pages 1221–1222. ACM, 2005.

[9] P. Mateus and Y. Omar. Quantum pattern matching, arxiv.org/quant-
ph/0508237. 2005.

[10] J. Müller and M. Pischel. The agent architecture interrap: Concept and
application, technical report rr-93-26, dfki saarbrucken, 1993, 1993.

[11] M. Nickles, M. Rovatsos, and G. Weiß, editors.Agents and Compu-
tational Autonomy (AAMAS 2003).

[12] M. A. Nielsen and I. L. Chuang.Quantum computation and quantum
information. Cambridge Univ. Press, Cambridge, 2000.

[13] B. Oemer. Quantum programming in qcl, master thesis, technical
university of vienna, computer science department, 2000.

[14] P. Selinger. Towards a quantum programming language.Mathematical.
Structures in Comp. Sci., 14(4):527–586, 2004.

[15] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum
logic circuits, 2004.

[16] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov.
A layered software architecture for quantum computing design tools.
Computer, 39(1):74–83, 2006.

[17] C. A. Trugenberger. Phase transitions in quantum pattern recognition,
arxiv.org/quant-ph/0204115. 2002.

[18] Viamontes. Gate-level simulation of quantum circuits, arxiv.org/quant-
ph/0208003, 2002.

[19] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Improving gate-level
simulation of quantum circuits.Quantum Information Processing,
2:347, 2003.

[20] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-based simulation
of quantum computation in the density matrix representation.Quantum
Information and Computing, 5:113, 2005.

[21] J. Wallace. Quantum computer simulators - a review version 2.1,
citeseer.ist.psu.edu/wallace99quantum.html.

