
Quantum Service Selection

Matthias Klusch
German Research Center for Artificial Intelligence

Multiagent System Group
Saarbrücken, Germany

klusch@dfki.de

René Schubotz
Digital Enterprise Research Institute

National University of Ireland, Galway
Galway, Ireland

rene.schubotz@deri.org

Abstract

Quantum service selection facilitates matchmaking of
Web services and greatly benefits from quantum memory ex-
ponential in the number of its qubits as well as from com-
putational speedup by an order of magnitude. Key idea of
this work is the combination of Trugenberger’s algorithms
for associative quantum memories and the relaxation of se-
mantic matchmaking to syntactical matchmaking within a
graph space equipped with Hamming distance as its met-
ric.

1 Introduction

With the increasing growth in popularity of Web ser-
vices, Web service matchmaking becomes a significant
challenge. Commonly, Web services are described by
WSDL and published on UDDI registers. UDDI provides
limited search facilities allowing only a keyword-based
search.

Semantic Web services use OWL-S instead of WSDL
to represent their capabilities. OWL-S provides a set of
markup language constructs for an unambiguous, computer-
interpretable service description. OWL-S markup will fa-
cilitate the automation of Web service tasks including au-
tomated Web service discovery, execution, interoperation,
composition and execution monitoring. Classical software
agents or search engines are enabled to discover suitable
Web services via ontologies and reasoning methods.

In this paper, we develop a quantum computational
method which assesses the similarity of Web services to
achieve matchmaking. In particular, we present a concep-
tual model which combines quantum associative memories
and the relaxation of semantic matchmaking to syntactical
matchmaking within a graph space equipped with Ham-
ming distance as its metric.

In section 2, we shortly comment on Web services, their
representation in form of I/O signatures, and semantic sim-

ilarity. After providing a brief introduction to quantum
computing in section 3, we detail on quantum associative
memories in section 4, and give a quantum graph encoding
scheme in section 5. The last part (section 6) introduces the
concept of I/O signature graphs, and exposes our conceptual
model of quantum service selection.

2 Web Services

Inspired by Web service I/O matching that exploits solely
the parameter values of hasInput and hasOutput, a Web ser-
vice S is subsequently specified by its I/O signature

S : INS ∈ T m → OUTS ∈ T n

where T is the terminology of a Web service matchmaker
with concept subsumption hierarchy CTT ; service inputs
INS and outputs OUTS range over the concepts C ∈ T .

An I/O signature provides the information necessary for
a service-seeking agent to discover a suitable service. It in-
cludes a description of what is accomplished by the service
in terms of required inputs and generated outputs concepts,
but by no means instructs the agent how to use a discovered
service.

Several degrees of semantic similarity between a service
advertisement S and service request R have been identified
in [4]. For a concept C ∈ T we denote by LSC(C)
its immediate sub-concepts in CTT , i.e. the set of least
specific concepts of C.

EXACT A service S is said to be an exact match of a re-
quest R if the I/O signature of S perfectly matches with R
with respect to equivalence of their semantics.

∀INS∃INR : INS
.
= INR ∧ ∀OUTR∃OUTS : OUTR

.
= OUTS

PLUG-IN If a service S requires less input and is expected
to return more specific output than specified in the request
R, service S plugs into request R.

∀INS∃INR : INS ≥ INR∧∀OUTR∃OUTS : OUTS ∈ LSC(OUTR)

SUBSUMES If a request R subsumes a service S, the set
of eligible service advertisements is extended. Therefore, a
subsumes match is weaker than a plug-in match with respect
to the extent of the output’s specificity.

∀INS∃INR : INS ≥ INR ∧ ∀OUTR∃OUTS : OUTR ≥ OUTS

3 Quantum Computing In Very Brief

In the subsequent section we give some fundamental
concepts of quantum computation. For a comprehensive in-
troduction, we refer the reader to [5]. Quantum computation
is built on the concept of the qubit. Any isolated physical 2-
observable quantum system is appropriate to realize a single
qubit. In mathematical terms, a qubit ψ is associated to its
state space, a complex 2-dimensional Hilbert space H2 =
span{|0〉 , |1〉} with orthonormal computational standard
basis. Any quantum state |ψ〉 of ψ is described by a coher-
ent superposition, |ψ〉 = α0 |0〉+α1 |1〉 , |α0|2 + |α1|2 =
1. The state space H⊗n2 of a physical system composed of
n single qubits ψi is the n-folded tensor product of the state
spaces of its n constituting qubits H⊗n2 =

⊗n
H2. Such a

system can be regarded as n-qubit register Ψ with 2n com-
putational basis states. If a state |Ψ〉 of a n-qubit register
can be written as a product of its constituting qubits in the
form |Ψ〉 =

⊗
i(
∑
j αi,j |j〉), then |Ψ〉 is called separa-

ble. Non-separable composite states are known as entan-
gled states, allowing non-local effects of instantaneous state
changes between spatially separated but entangled quan-
tum states upon measurement. A projective measurement
of Ψ is described by a set of pairwise orthogonal subspaces
W1, . . . ,Wm satisfying H⊗n2 =

⊕m
k=1Wk and results in

j ∈ {1, . . . ,m}. Let {|Φjl 〉} define an orthonormal basis of
subspace Wj , then the operator Pj =

∑dim(Wj)
i=1 |Φji 〉 〈Φ

j
i |

projects Ψ onto the subspace Wj . The probability of mea-
suring j ∈ {1, . . . ,m} is given by 〈Ψ|Pj |Ψ〉. Time evolu-
tion of Ψ is described by unitary transformations in its state
space H⊗n2 . Any non-measuring quantum operation is in-
herently reversible since any unitary transformation U has
an inverse.

4 Quantum Associative Memories

Classical associative (or content-addressable) memories
recall incomplete or noisy information but suffer from se-
vere capacity shortages. Trugenberger [6] proposed a model
of a quantum memory with optimal storage capacity imple-
menting a retrieval mechanism for noisy or incomplete in-
formation. The number of binary patterns that can be stored
in such a quantum associative memory is exponential in the
number of qubits and thus optimal. In the following sub-
sections we detail the pattern storage and pattern retrieval
algorithm as given in [6].

4.1 Pattern Storage

A quantum associative memory for efficient storage and
retrieval of p ≤ 2n binary patterns pi of n bits is naturally
provided by the superposition |M〉 of n qubits

|M〉 =
1
√
p

p∑
i=1

|pi〉 (1)

Except for the unitary 1-qubit gate Si

Si =

 √ i−1
i

1√
i

−1√
i

√
i−1
i


and the unitary controlled 2-qubit gate CSi

CSi =


1 0 0 0
0 1 0 0

0 0
√

i−1
i

1√
i

0 0 −1√
i

√
i−1
i


the storage algorithm (algorithm 1) relies soley on the stan-
dard 1-qubit gates

X =
[

0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
as well as the standard 2-qubit gate

XOR =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


and its generalization nXor. For short hand notation, the
subscripts of the gates refer to the control, input and output
qubits on which they are applied.

In order to construct memory |M〉 from a simple initial
state of n qubits, three qubit registers are needed: a pattern
register |p〉 of n qubits into which the patterns pi are subse-
quently feeded, a utility register |u〉 of 2 qubits prepared in
state |01〉, and a register |m〉 of n qubits to hold the memory,
initially prepared in state |0〉.

|Ψ〉 = |p〉 ⊗ |u〉 ⊗ |m〉

By the state of the utility register |u〉, the state of register
|Ψ〉 is separated into two terms, one corresponding to the
already stored patterns, and another for processing further
patterns. The two terms are distinguished by the state of the
second utility qubit u2: |0〉 for the stored patterns, and |1〉
for the processing term.

Algorithm 1 Creation of a quantum associative memory

Input: p ≤ 2n binary n-bit patterns pi

Output: |M〉 ∈ H⊗n
2

Quantum Variables: |Ψ〉 ∈ H⊗2n+2
2 , |p〉 , |m〉 ∈ H⊗n

2 , |u〉 ∈ H⊗2
2

Classic Variables: p, i ∈ N

1: Set |m〉 = |0〉 and |u〉 = |01〉
2: for all i such that 1 ≤ i ≤ p do
3: Set |Ψi

0〉 = |pi〉 ⊗ |u〉 ⊗ |m〉
4: Set |Ψi

1〉 =
Qn

j=1 2XORpiju2mj
|Ψi

0〉

5: Set |Ψi
2〉 =

Qn
j=1 NOTmjXORpijmj

|Ψi
1〉

6: Set |Ψi
3〉 = nXORm1...mnu1 |Ψi

2〉
7: Set |Ψi

4〉 = CSp+1−i
u1u2 |Ψi

3〉
8: Set |Ψi

5〉 = nXORm1...mnu1 |Ψi
4〉

9: Set |Ψi
6〉 =

Qn
j=1 XORpijmj

NOTmj |Ψi
5〉

10: Set |Ψi+1
0 〉 = |Ψi

7〉 =
Qn

j=1 2XORpiju2mj
|Ψi

6〉
11: end for
12: return |M〉 = |m〉

In every iteration of the main loop, a new pattern pi is
loaded into the pattern register (step 3), and the central oper-
ation of the storage algorithm applies in step 7. It separates
out pi, and sets the correct normalization factor.

Storage of a first pattern p1 results in

|Ψ〉 =
√

1
p
|p1, 00, p1〉+

√
p− 1
p
|p1, 01, 0〉

and p − 1 further patterns can be processed as described
above. The overall storage algorithm terminates with mem-
ory register |m〉 in state |M〉 as defined in equation 1.

4.2 Pattern Retrieval

The retrieval algorithm is inherently probabilistic and
needs to be repeated until the measurement of a control
qubit yields a result or a certain treshold is reached. In the
former case, the output is determined by a amplitude distri-
bution that is peaked around the stored patterns closest in
Hamming distance to the input, while in the latter case, the
input is not recognized.

Assume being provided with a binary input, that might
be contained in a quantum associative memory |M〉. Since
any retrieval from a quantum associative memory is a mea-
surement and therefore reduces |M〉, the first step of re-
trieval produces a copy of |M〉. The no-cloning theorem
prohibits perfect copies of quantum states, but a sufficiently
faithful copy can be obtained with a probabilistic cloning
machine [1].

The retrieval algorithm (algorithm 2) requires three reg-
isters: a n-qubit input register |i〉, a n-qubit memory regis-
ter |m〉 containing the memory |M〉 and control register |c〉
initialized to |0〉. The full initial state (step 2) is thus given

Algorithm 2 Pattern retrieval from a quantum associative
memory

Input: binary n-bit pattern i, quantum associative memory |m〉 =
1√
p

Pp
k=1 |p

k〉, treshold T

Output: pattern pl such that dH(pl, i) = min {dH(pk, i), 1 ≤ k ≤ p}
Quantum Variables: |m〉 ∈ H⊗n

2 , |c〉 ∈ H2

Classical Variables: k

1: k = 1
2: |Ψ0〉 = |i, m, 0〉
3: repeat
4: |Ψ1〉 = Hc |Ψ0〉
5: |Ψ2〉 =

Qn
k=1 NOTmkXORikmk

|Ψ1〉
6: |Ψ3〉 = ei π2nUH |Ψ2〉
7: |Ψ4〉 =

Qn
k=1 XORikmk

NOTmk |Ψ3〉
8: |Ψ5〉 = Hc |Ψ4〉
9: Perform projective measurement of control qubit

10: if |c〉 = |0〉 then
11: |Ψ6〉 =

P0|Ψ5〉√
〈Ψ5|P0|Ψ5〉

12: else
13: |Ψ6〉 =

P1|Ψ5〉√
〈Ψ5|P1|Ψ5〉

14: |Ψ1〉 = NOTc |Ψ6〉
15: end if
16: k = k + 1
17: until |c〉 = |0〉 or k = T
18: if |c〉 = |0〉 then
19: input recognized, return measurement of memory register
20: else
21: input not recognized
22: end if

by

|Ψ0〉 =
1
√
p

p∑
k=1

|i〉 ⊗ |pk〉 ⊗ |0〉

The diagonal operator (Di
H) computes the Hamming dis-

tance between an input |i〉 and a stored pattern |pk〉 and is
defined as follows

(Di
H) =

p∑
k=1

(dH(i, pk)) |pk〉 〈pk|

In order to perform useful recognition, one accounts the
Hamming distance of a memory element additive if |c〉 =
|0〉 and subtractive if |c〉 = |1〉. This is done using

UH = (Di
H)m ⊗ Zc

= (Di
H)m ⊗

[
1 0
0 −1

]
c

Since operatorUH is not unitary, one uses the unitary matrix
ei

π
2nUH in step 6. By applying the Hadamard gate to the

control qubit in step 8, the quantum memory evolves to

|Ψ5〉 =
p∑
k=1

1
√
p

cos(
π

2n
dH(i, pk)) |i, pk, 0〉

+
p∑
k=1

1
√
p

sin(
π

2n
dH(i, pk)) |i, pk, 1〉

In order to determine if input i was recognized, one needs
to perform a projective measurement of the control qubit |c〉
in step 9. If |c〉 = |0〉, the input was recognized and a mea-
surement of the memory register |m〉 will retrieve a pattern
close to it in terms of Hamming distance. The probability
for |c〉 to be in state |0〉 after the first iteration is given by

P (|c〉 = |0〉) = 〈Ψ5|P0 |Ψ5〉 =
1
p

p∑
k=1

cos2(
π

2n
dH(i, pk))

with projector P0 defined by

P0 =

p
2−1∑
k=0

|2k〉 〈2k|

Hence, the probability of measuring pattern pk is given by

P (|m〉 = |pk〉) =
cos2(π2ndH(i, pk))∑p
k=1 cos2(π2ndH(i, pk))

If |c〉 = |1〉, the input was not recognized and the retrieval
algorithm needs to be repeated until a treshold T is reached.
The probability for |c〉 to be in state |1〉 is given by

P (|c〉 = |1〉) = 〈Ψ5|P1 |Ψ5〉 =
1
p

p∑
k=1

sin2(
π

2n
dH(i, pk))

with projector P1 defined by

P1 =

p
2−1∑
k=0

|2k + 1〉 〈2k + 1|

The post-measurement state for unrecognized input i is
given by

|Ψ6〉 =
P1 |Ψ5〉√
〈Ψ5|P1 |Ψ5〉

=
1√∑p
k=1 α

2

p∑
k=1

α |i, pk, 1〉

with
α = sin(

π

2n
dH(i, pk))

The post-measurement state goes subsequently through the
retrieval procedure until |c〉 = |0〉 or a predefined treshold
T is reached. This treshold determines the number of rep-
etitions of the retrieval algorithm and thus the recognition
and identification efficiency.

If T repetitions of the algorithm all lead to a measure-
ment |c〉 = |1〉, the input i is classified as non-recognized.
If one measures |c〉 = |0〉 before the treshold T is reached,
the input i is recognized and adjacent measurement of the
memory register |m〉 identifies the closest pattern.

Algorithm 3 Building a I/O signature graph from Web ser-
vice advertisement S
Input: inputs INS = {(i, Ci)}, outputs OUTS = {(i, Ci)}, treshold d
Output: I/O signature graph G = (T, E)

Set E = ∅
for (i, Ci) ∈ INS do

Set E = E ∪ (Ci, Inputi)
end for
for (i, Ci) ∈ OUTS do

Set E = E ∪ (Ci, Outputi)
end for
for (i, Ci) ∈ INS do

Set E = E ∪ (Ci, LGC(Ci))
Set INS = INS ∪ (i, LGC(Ci))

end for
for (i, Ci) ∈ OUTS do

if d ≥ 0 then
Set E = E ∪ (Outputi, Ci)

end if
Set E = E ∪ (Ci, LGC(Ci))
Set OUTS = OUTS ∪ (i, LGC(Ci))
Set d = d− 1

end for
return G = (T, E)

According to Trugenberger, the efficiency of algorithm
2 depends on the treshold T determining recognition and
on the distribution of stored patterns determining identifi-
cation. The overall complexity is bounded from above by
O(
√
p), basically the same result that can be obtained by

Grover’s search algorithm [2].

5 Graph Encoding and Quantum Graphs

By considering a trivial enumeration scheme for clas-
sical directed graphs, we now present a way to construct
quantum graphs, i.e. superpositions of classical directed
graphs.

Vertices of a directed graph G can be labelled with natu-
ral numbers ranging from 0, . . . , n−1, i.e. vertices reside in
a space of vertices V of size n. An edge e = (p, q) ∈ V ×V
over the space of vertices can be represented by

〈e〉 = pn+ q

resulting in a space of edges E of size n2.
Given that, graphs over a space E of edges are enumer-

ated using n2-bit words

〈G〉 =
∑
e∈EG

2〈e〉

and reside in the space of graphs with size 2n
2
. Each el-

ement of the space of graphs corresponds to a classical
directed graph with vertices and edges in the underlying
spaces.

Algorithm 4 Building a I/O signature graph from Web ser-
vice request R

Input: inputs INR = {(i, Ci)}, outputs OUTR = {(i, Ci)}, treshold d
Output: I/O signature graph G = (T, E)

Set E = ∅
for (i, Ci) ∈ INR do

Set E = E ∪ (Ci, Inputi)
end for
for (i, Ci) ∈ OUTR do

Set E = E ∪ (Ci, Outputi)
end for
for (i, Ci) ∈ INR do

if d ≥ 0 then
Set E = E ∪ (Inputi, Ci)

end if
Set E = E ∪ (Ci, LGC(Ci))
Set INR = INR ∪ (i, LGC(Ci))
Set d = d− 1

end for
for (i, Ci) ∈ OUTR do

Set E = E ∪ (Ci, LGC(Ci))
Set OUTR = OUTR ∪ (i, LGC(Ci))

end for
return G = (T, E)

The distance between two graphs G and H is naturally
given by the number of edges that one contains that the other
does not contain. Considering the proposed graph encoding,
the distance between G and H is defined as the Hamming
distance

d(G,H) = dH(〈G〉, 〈H〉) (2)

A n2-qubit quantum graph |G〉 can be thought of as a su-
perposition of classical directed graphs G1, . . . , Gk from a
space of graphs G with size 2n

2
and is given by

|G〉 =
k∑
i=1

αi〈Gi〉,
k∑
i=1

α2
i = 1

Hence, a quantum graph can store up to 2n
2

classical di-
rected graphs using only n2 qubits.

6 Quantum Service Selection

I/O signature graphs are canonical representations of
Web services specified by their I/O signatures. In terms
of graph theory, an I/O signature graph is a directed sub-
graph of a matchmaker’s concept subsumbtion hierarchy
CTT with additional information regarding the service in-
put and output parameters. Figure 1 provides simple exam-
ples of a concept subsumption hierarchy and an I/O signa-
ture graph.

Having introduced the basic concepts of our model of
quantum service selection, i.e. quantum associative mem-
ories, quantum graphs and I/O signature graphs, the re-
mainder of this section explicates the quantum storage and

Patient

Eye Doctor

Hospital
Physican

Emergency
Physican

Physican

Person

Surgeon

MASH Hospital Health
Ressort

Organisation
Medical

Beatuy Clinic Eye Clinic

Organisation

Thing

Physican

Hospital
Physican

Surgeon

Organisation

Organisation
Medical

Hospital

Thing

PersonInput 1

Output 1

Input 2

(a)

(b)

Figure 1. (a) Example of concept subsump-
tion hierarchy (b) I/O signature graph for ser-
vice advertisement S : Person × Hospital →
Surgeon

matchmaking of Web services and illustrates the matchmak-
ing procedure by an examplaric Web service request.

6.1 Web Service Storage

Given the I/O signature S : INadv ∈ Tm → OUTadv ∈
Tn of Web service advertisement adv, its input and output
concepts INadv , OUTadv are semantically integrated into
a matchmaker’s concept subsumption hierarchy CTT using
standard methods of ontology mapping. The correspond-
ing I/O signature graphGadv for Web service advertisement
adv is constructed using algorithm 3 in time

O((m+ n)depth(CTT))

In order to store the Web service advertisement adv
within a matchmaker’s quantum associative memory, the
I/O signature graph Gadv is binary encoding in time

O(m+ n)

according to the encoding scheme provided in section 5.
The resulting binary pattern 〈Gadv〉 representing I/O sig-

nature graphGadv is inserted into the provided quantum as-
sociative memory using algorithm 1 terminating with mem-
ory register |M〉 in state

|M〉 =
1√
N

N∑
i=1

|〈Gadvi〉〉

The overall storage procedure for Web service advertise-
ments is given by algorithm 5.

Algorithm 5 Quantum Storage of Service Advertisement

Constant: treshold d
Input: service advertisement adv : INadv → OUTadv

Output: void

1. Classify C ∈ INadv , C ∈ OUTadv into local taxonomy
2. Compute I/O signature graph Gadv for adv using algorithm 3
3. Encode Gadv using encoding scheme from section 5 resulting in
binary word 〈Gadv〉
4. Store 〈Gadv〉 in quantum associative memory using algorithm 1

6.2 Web Service Matchmaking

Given the I/O signature R : INreq ∈ Tm → OUTreq ∈
Tn of Web service request req, its input and output con-
cepts INreq, OUTreq are semantically integrated into a
matchmaker’s concept subsumption hierarchy CTT using
standard methods of ontology mapping. The correspond-
ing I/O signature graph Greq for Web service request req is
constructed using algorithm 4 in time

O((m+ n)depth(CTT))

Web service request I/O signature graph Greq is binary
encoded in time

O(m+ n)

and the corresponding binary word 〈Greq〉 is provided as
input for retrieval algorithm 2 of a matchmaker’s associative
quantum memory.

Assuming a matchmaker’s quantum associative memory
register |M〉 in state

|M〉 =
1√
N

N∑
i=1

|〈Gadvi〉〉

the retrieval algorithm 2 yields the encoded Web service ad-
vertisement 〈Gadvm〉 under the condition

dH(〈Gadvm〉, 〈Greq〉) =
N

min
i=1
{dH(〈Gadvi〉, 〈Greq〉)}

with highest probability in time

O(
√
N)

In terms of semantic similarity as defined in section 2,
one concludes that the most relevant service advertisement
with respect to the graph distance function (equation 2) is
expected to be EXACT matching. The overall matchmaking
procedure is given in algorithm 6.

6.3 Example

For the sake of illustration, we give an examplaric ser-
vice request

R : Person×Hospital→ Physican

Algorithm 6 Quantum Matchmaking for Service Request

Constant: treshold d
Input: service request req : INreq → OUTreq

Output: service proposal match

1. Classify C ∈ INreq , C ∈ OUTreq into local taxonomy
2. Compute I/O signature graph Greq for req using algorithm 4
3. Encode Greq using encoding scheme from section 5 resulting in
binary word 〈Greq〉
4. Retrieve encoded matching service 〈Gmatch〉 for req from quantum
associative memory using algorithm 2
return Decoded matching service match

and service advertisements of different matching degrees.

E : Person×Hospital→ Physican

P : Person×Organisation→ HospitalPhysican

S : Person×Organisation→ Surgeon

Input and output concepts of request and advertisements
range over the taxonomyCT drafted in figure 1(a). Figure 2
shows the respective I/O signature graphs, constructed with
treshold d = 1 using algorithms 3, 4.

For graph encoding according to section 5, terminology
T of CT is enumerated in a breadth-first manner, followed
by auxiliary concepts for input and output annotation. The
resulting binary I/O signature graph encodings are as fol-
lows.

〈R〉 =
X

i∈{15,18,22,36,73,89,91,106,167,178,270,271,293,297,319}
2i

〈E〉 =
X

i∈{18,33,35,36,73,89,91,167,178,271,297,307,310}
2i

〈P 〉 =
X

i∈{18,33,36,52,73,89,112,125,271,290,310,312}
2i

〈S〉 =
X

i∈{18,33,36,52,73,112,125,204,215,271,290,312,317}
2i

Given the binary encoded I/O signature graphs, we can
easily calculate graph space distances between service re-
quest R and the given service advertisements.

d(R,E) = dH(〈R〉, 〈E〉) = 4
d(R,P) = dH(〈R〉, 〈P 〉) = 7
d(R,S) = dH(〈R〉, 〈S〉) = 9

Considering the properties of quantum associative memo-
ries, the memory’s amplitude distribution is peaked around
the stored service advertisement I/O signature graph (E :
Person × Hospital → Physican) closest in Hamming
distance to the service request I/O signature graph. In terms
of semantic similarity, algorithm 2 returns an exact match-
ing service with highest probability.

Furthermore, I/O signature graphs created with tresh-
old d > 0 enforce quantum associtive memories to prefer

Physican

Organisation

Organisation
Medical

Hospital

Thing

PersonInput 1

Input 2

Physican

Organisation

Organisation
Medical

Hospital

Thing

PersonInput 1

Input 2

Output 1

Output 1

Physican

Hospital
Physican

Surgeon

Organisation

Thing

PersonInput 1

Output 1

Input 2

Physican

Hospital
Physican

Organisation

Thing

PersonInput 1

Output 1

Input 2

(b) EXACT service advertisement E

(a) Service request R

(c) PLUG−IN service advertisement P

(d) SUBSUMES service advertisement S

Figure 2. I/O signature graphs with treshold
d = 1 for service request R and service ad-
vertisements E, P , and S

PLUG-IN over a SUBSUMES service advertisements un-
der the condition that both have considerably similar input
concepts.

7 Related Work

To the best of our knowledge, the presented paper is
unique as there are no alternative conceptions of quantum
Web service matchmaking available yet.

Our work combines related work from quantum comput-
ing and Web service matchmaking, and builds upon existing
work on QC agents [3]. In particular, we exploit quantum
associative memories proposed in [6], and several degrees
of Web service semantic similarity identified in [4].

Furthermore, we give significant indication of quantum
matchmakers outperforming existing classical approaches
to Web services matchmaking based both on keyword
search and ontologies and reasoning methods by an order

of magnitude.

8 Conclusions

In this paper, we presented a first quantum computational
approach to Web service matchmaking.

Since several studies provide evidence in favor of the
proposition that building semantic Web service matchmak-
ers purely on reasoning methods may be insufficient, we
relaxed semantic matchmaking to syntactical matchmaking
within a graph space equipped with Hamming distance as
its metric.

Given N service advertisements, the proposed service
selection procedure of complexity O(

√
(N) outperforms

classical matchmaking approaches with complexityO(N ⊗
m), where m is the complexity of matchmaking. The the-
oretical performance of our approach over classical match-
making provides strong evidence for the expected signif-
icant speed up of service matchmaking processes on the
quantum internet.

However, the physical realization and computational
simulation of quantum Web service matchmaking remains
one open problem since current quantum computers are re-
stricted to a few qubits and available quantum simulators
severely suffer from computational complexity.

References

[1] L.-M. Duan and G.-C. Guo. Probabilistic cloning and iden-
tification of linearly independent quantum states. Phys. Rev.
Lett., 80(22):4999–5002, Jun 1998.

[2] L. K. Grover. From schrödinger’s equation to the quantum
search algorithm. American Journal of Physics, 69(7):769–
777, 2001.

[3] M. Klusch. Toward quantum computational agents. In
M. Nickles, M. Rovatsos, and G. Weiß, editors, Agents and
Computational Autonomy, volume 2969 of Lecture Notes in
Computer Science, pages 170–186. Springer, 2003.

[4] M. Klusch, B. Fries, and K. Sycara. Automated semantic web
service discovery with owls-mx. In AAMAS ’06: Proceed-
ings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 915–922, New York,
NY, USA, 2006. ACM Press.

[5] M. A. Nielsen and I. L. Chuang. Quantum computation and
quantum information. Cambridge Univ. Press, Cambridge,
2000.

[6] C. A. Trugenberger. Probabilistic quantum memories. Phys.
Rev. Lett., 87(6):067901, Jul 2001.

