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Abstract. The problem of generating an optimal coalition structure for
a given coalition game of rational agents is to find a partition that maxi-
mizes their social welfare and known to be NP-hard. Though there are al-
gorithmic solutions with high computational complexity available for this
combinatorial optimization problem, it is unknown whether quantum-
supported solutions may outperform classical algorithms.

In this paper, we propose a novel quantum-supported solution for coali-
tion structure generation in Induced Subgraph Games (ISGs). Our hy-
brid classical-quantum algorithm, called GCS-Q), iteratively splits a given
n-agent graph game into two nonempty subsets in order to obtain a coali-
tion structure with a higher coalition value. The GCS-Q solves the opti-
mal split problem O(n) times, exploring O(2") partitions at each step.
In particular, the optimal split problem is reformulated as a QUBO and
executed on a quantum annealer, which is capable of providing the solu-
tion in linear time with respect to n. We show that GCS-Q outperforms
the currently best classical and quantum solvers for coalition structure
generation in ISGs with its runtime in the order of n? and an expected
approximation ratio of 93% on standard benchmark datasets.

Keywords: Coalition Formation - Quantum Computing - Quantum Ar-
tificial Intelligence - Multi-Agent Systems

1 Introduction

One major challenge of rational cooperation in multi-agent systems is to solve
the coalition structure generation (CSG) problem. Given a coalition game (A, v)
with a set A of n agents and a characteristic function v : P(A4) — R for coalition
values v(C') for all non-empty coalitions C' in A, the problem is to find a coali-
tion structure C'S* of A that maximizes the social welfare ) .~g. v(C). This
combinatorial optimization (partitioning) problem is known to be NP-complete
[1] with an exponential number of possible coalition structures. Several solution
methods for the CSG problem exist, such as the currently best solver BOSS
[5] with run-time complexity of O(3™), that avoid exploring the complete search
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space to find an optimal solution. In the following, we focus on the CSG problem
for Induced Subgraph Games. In this case, the coalition game is induced by an
undirected weighted graph where the agents are denoted as nodes and the coali-
tion values are the sum of the weights of edges between coalition members in the
graph. However, the problem remains NP-complete [2] and therefore intractable
for large values of n in practice.

One open question is whether the usage of quantum computational means
may contribute to solve this problem faster than it is possible with the cur-
rently best state-of-the-art solvers. To this end, we developed a novel quantum-
supported solution, called GCS-Q, for solving the coalition structure generation
problem for Induced Subgraph Games. In particular, the GCS-Q leverages clas-
sical and quantum computation for an approximate, anytime solution of the
problem, and is inspired by divisive hierarchical clustering. The GCS-Q starts
with the grand coalition and iteratively splits it up until the coalitions are sin-
gleton sets such that it builds the hierarchy in n — 1 steps for a coalition game
with n agents and, at each step, explores O(2") partitions. However, the GCS-Q
identifies the optimal split for a given coalition using a quadratic unconstrained
binary optimization (QUBO) problem formulation, which can be solved exper-
imentally on a real quantum annealing device in linear time. As a result, the
overall time complexity of the GCS-Q is in the order of n2, significantly outper-
forming the currently approximate classical state-of-the-art solvers. We conduct
our comparative performance evaluation of the GCS-Q with selected classical
baselines on standard benchmark data using a D-Wave 2000Q) quantum annealer
and sufficient worst-case approximation ratio.

The remainder of the paper is structured as follows: The problem of coalition
structure generation for graph games is formalized in section [2] followed by a
discussion of related work in section 3] Our quantum-supported solution GCS-Q
is described in section [f] and its performance comparatively evaluated in section
Section [6] concludes with a summary of achievements and future work.

2 Problem Formulation

As mentioned above, the coalition structure generation problem is to find a
partition or coalition structure of a given set of rational agents whose value or
social welfare is maximal for a given coalition game. We focus on the Induced
Subgraph Games (ISGs) that are based on graph-restricted games, i.e., coalition
games induced by connected, undirected weighted graphs (cf. Definition 1) [17].

Definition 1. An Induced Subgraph Game (A,v) is induced by a connected,
undirected, weighted graph G(V,w): The set V = {i};cf1..n} of nodes in G rep-
resents the set A = {a1,as,....an} of n agents, and the real valued weights w; ;
of edges (i,7) in w denote the synergies of cooperation or joint utilities of agents
aj,a; € A in feasible coalitions C C A. A coalition C is feasible if and only
if it induces a connected subgraph of G. The coalition value v(C) of a feasible
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coalition C' is

v(C) = Z Wi j. (1)

(i,j)€w, 1,j€C

For given ISG (A,v), coalition structures C'S are partitions of A into mutually
disjoint, feasible coalitions C. The coalition structure generation problem for a
gwen ISG is to find the optimal coalition structure C'S*™ with maximal coalition
value (or social welfare) for (A,v):

cSs* = arg max Z v(C) (2)
cecs

In ISGs, the coalition values depend only on the pairwise interactions between
agents represented in the graph, but the set of possible solutions is not restricted
and the problem remains NP-complete [2]. However, if G(V,w) is a connected
graph and the edge weights are all positives, i.e., (w; ;) € R, the grand coalition
ge = A is always the optimal coalition structure [I].

In this paper, we refer to the CSG problem in ISG as the ISG problem and
we assume a fully connected graph with positive and negative edge weights.

3 Related works

There are two broad classes of solutions for solving a CSG problem. Ezact meth-
ods operate to find the global optimum by exploring a large number of possible
coalition structures. Contrarily, approzimate methods reformulate the original
problem to find near-optimal solutions. Any algorithmic solution (exact or ap-
proximate) can be characterized based on the minimum time required to provide
the solution. Anytime optimal algorithms (e.g., IP [I3]) generate an initial set of
possible solutions within a bound from the optimal and then improve their qual-
ity iteratively. The downside is that these algorithms might end up searching the
entire space of all possible coalition structures, which translates into a worst-case
time complexity of O(n™) for n agents. Nevertheless, such methods allow inter-
mediate solutions during execution, which can be critical for many real-world
scenarios. An alternative approach consists of using Dynamic Programming [12],
which avoids exploring the entire solution space without losing the guarantees
of finding the optimal coalition structure. However, these approaches must be
executed entirely to obtain the final solution. Nonetheless, algorithms within
this category represent state-of-the-art in terms of worst-case time complexity
(O(3™)) when considering any generic coalition game with no prior knowledge
of the nature of the characteristic function [I1I5]. The method DyCE (Dynamic
programming for optimal connected Coalition structure Evaluation) [18] is based
on IDP [12] and exact but not anytime. Its memory requirements are of the order
of O(2") with a reported limitation of application to up to 30 agents in practice.

Approximate methods such as C-link (Coalition-link) [6] solve the CSG prob-
lem based on agglomerative clustering. C-link considers only the values of coali-
tions up to size two as interaction scores between the two agents by discarding
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other coalition values in the input. C-Link scales as O(n3) with an estimated
worst-case approximation ratio of 80% on custom datasets.

In the context of ISGs, different approaches assume specific graph structures
to improve the runtime for the final solution. For example, CFSS [] is an any-
time solver for graph games that uses a branch-and-bound search technique in
the solution space. CFSS has been used for comparative evaluation with the
algorithms mentioned above and has shown excellent results for sparse graphs.
However, the worst-case computational complexity of CFSS is still of the order
O(n™). Lately, the idea of applying k-constrained Graph Clustering (KGC) for-
mulated as Integer Linear Programming (ILP) has been investigated [3]. This
approach allows efficient implementation when dealing with sparse graphs.

Recently, the first general hybrid quantum-classical algorithm for solving any
generic coalition game has been formulated. The algorithm, named BILP-Q [16],
is suitable for gate-based quantum computing and quantum annealing and shows
a complexity of the order of O(2") in the case of constrained CSG. However,
BILP-Q requires the number of logical qubits to be exponential in n, which is a
significant limitation considering near-term quantum technology.

4 Methods

In this section, we present GCS-Q (Quantum-supported solution for Graph-
restricted Coalition Structure generation), a novel quantum-supported anytime
approximate algorithm for CSG in the context of ISGs. GCS-Q starts from the
grand coalition as the initial coalition structure and recursively performs a split
to find the best bipartition of the agents based on the graph induced by the
coalition game. This approach’s primary source of complexity is given by finding
the optimal split at each step, which is NP-hard. However, properly formulating
this problem and delegating it to a quantum annealer allows for obtaining a
quantum-supported algorithm that runs quadratically in the number of agents
and can outperform state-of-the-art classical and quantum solutions.

4.1 Optimal Split

Given a coalition game (A,v), where A = {a1, az, ....an} is a set of agents of size
|A| =nand v:P(A) = R is a characteristic function, a split {C, C'} is defined
as the bipartition of A into two disjoint subsets C, C.

Definition 2. Finding the optimal split of a coalition game (A,v) is an opti-
mization problem of the form:

argmax v({C, C}) =v(C) +0(0) 3)
s.t. CUC=A and CNC =0. (4)

The exhaustive enumeration of all possible splits for a coalition game of n
agents is of the order O(2").
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For a given ISG, the optimal split into two mutually disjoint sets translates
into the minimum cut problem of the graph underlying the coalition game.

Definition 3. Let be G(A,w) a weighted undirected graph. A cut is a partition
of the vertices into two sets C' and C such that C = A — C. The value of a cut
5(S), where S = {C,C}, is defined as the sum of the edge weights connecting
the nodes of the two sets C and C':

5(0,6) = Z Wi, 5. (5)
i€C,jeC
The weighted minimum cut (min-cut) is an optimization problem that aims
to find a cut with minimum value:

min-cut (G) = arg mSiIl 5(9). (6)

Thus, we establish the equivalence between the optimal split (cf. Definition
2) and min-cut (cf. Definition [3]) in the context of ISGs.

Lemma 1. Given an ISG (A,v) with an underlying graph G(A,w), finding the
optimal split for (A, v) is equivalent to solving the min-cut for G(A,w).

Proof. The value of a coalition A for a given coalition game can be considered
constant and calculated as the sum of all the edge weights between the agents
into the coalition:

o) = 3w (7)
i,jEA

A cut §(S) on G(A,w), where S = {C,C}, produces two independent sets of
nodes representing two separate coalitions (cf. Deﬁnition. The sum of the cut
edge weights gives the value of §(5). Furthermore, the value of the split generated
by §(5) is given by the sum of the remaining interactions between agents within
the two coalitions C' and C. Thus, the following equivalence applies:

v(8) = v(A) = 4(5), (8)
where S = {C,C}, VC,C C A, s.t. C = A — C. As a consequence, we can write
the value of a cut as the difference between the value of A and S:

6(5) = v(A) —v(9). ()
Let S be the partition that minimizes §(S), i.e., 6(S) < §(S’) VS’, then the
following inequality always holds:

v(A) —6(8) > v(A) —§(S) = v(S) >v(S"). (10)
Therefore, finding the partition S which provides minimum value for 6(S) is
equivalent to finding the optimal split S = {C, C} which maximizes v(S).

This work considers the generic case for ISGs, assuming a complete graph
(i.e., fully connected) with positive and negative weights. In this case, the min-
cut problem is proven to be NP-hard [7] and requires an exponential number of
steps with respect to the number of input nodes/agents [9I8].
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4.2 QUBO formulation for Optimal Split

In this section, the min-cut problem (or, equivalently, the optimal split problem)

is reformulated as QUBO suitable to be executed on a real quantum annealer.
Let G(A,w) be a weighted undirected graph. The min-cut (cf. Definition [3)

can be formulated as a quadratic objective function of binary variables {z;};=1._n:

arg min Zwixl + Z w; jzi(1 — z5) = 2'Wa, (11)
i=1

1<i<j<n

where w; ; is the edge weight connecting the nodes i and j, w; is a self-loop on
node %, and the value x; indicates the membership of one of the two disjointed
sets generated by the cut. Therefore, the value of the binary string solution
allows differentiating the vertices belonging to the subsets C or C, as follows:

_ 12
0 ifz; €C ( )

VZEiGA, IZ{

where CNC =) and CUC = A. Given the QUBO formulation in Eq. , we
can easily define the corresponding optimization problem of an Ising Hamiltonian
with the assignment z; — (1 — Z;)/2, where Z; is the Pauli-Z operator.

4.3 GCS-Q Algorithm

The algorithm follows the strategy of divisive hierarchical clustering (DHC) and
applies it in the context of ISGs. Traditional DHC algorithms create a sequence of
partitions of a set of n elements, such that an optimality criterion that considers
the separation between groups is maximized. In particular, DHCs start with
all the elements in a unique group and generate a bipartition to minimize the
distance between intra-cluster elements at each step. The number of possible
bipartitions of a set of n elements is O(2"), and the complete exploration is highly
time-consuming. For this reason, standard DHC methods split up the groups
according to a distance matrix that explores n? different possibilities at each step.
This approach allows obtaining a method that scales polynomially (O(n?)) in the
number of elements by drastically reducing the number of partitions examined.

The idea behind GCS-Q is to adopt the top-down strategy of DHC for solving
any ISG problem. The algorithm starts initializing the current optimal coalition
structure C'S* with the grand coalition g. where all the agents belong to a single
coalition, i.e., CS* = {g.}. Thus, the optimal split problem for g. is formu-
lated in terms of min-cut (Section and solved using a quantum annealer.
In particular, the annealer evaluates all possible bipartitions of g. and provides
the binary encoding of the bipartition {C, C'} that maximizes the characteristic
function (Eq. ) Then, the coalition value of g. is compared with the value of
the coalition structure comprising C' and C, i.e.,

v(CS7) =v({g.}) > v({C,C}) = v(C) +v(C). (13)
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If the splitting produces a lower coalition value, g. is returned as the optimal
coalition structure and the algorithm stops. Otherwise, if the inequality
does not hold, the coalition structure {C,C} is assigned to C'S*. The second
step consists of the optimal bipartition for each coalition in the current coalition
structure, and the splitting is decided based on the criterion of Eq. . This
approach allows to generate, at each step and for each coalition , a partition of
the agents that has a higher coalition value for the characteristic function. This
process continues until none of the coalitions in C'S* can be split to produce a
bipartition with a higher coalition value.

Notice that the condition in Eq. provides an automatic stopping cri-
terion for GCS-Q: the algorithm stops if there is no advantage in splitting the
coalitions in C'S*. This is a key difference between standard DHC algorithms
that always start from a single group and end up with singletons. Furthermore,
the additive nature of the coalition value function in Eq. for ISGs allows
acting independently on the coalitions to maximize the value of the coalition
structure. The pseudocode of GCS-Q is shown in Algorithm

Algorithm 1 GCS-Q Algorithm

Input: Coalition game (A, v), with underlying graph G(A, w) where |A| = n and
w:AXA—-R

Output: Optimal coalition structure C'S™

1: CS* «+{} > initialize C'S™ with empty list
2: queue < gc > initialize queue with grand coalition g.
3: while queue # () do

4 S« queue.pop > Fetch a coalition from queue
5 Begin Optimal Split problem

6: Create a weight matrix W from edges in S > Eq.
7 Define the Ising Hamiltonian H for W

8: Solve Ising Hamiltonian H on a quantum annealer

9: Decode binary string to get C and C
10: End Optimal Split problem
11: if C =0 then > no further splitting of S is inefficient
12: add C to CS™
13: else > try further splitting C' and C
14: add C to queue
15: add C to queue
16: end if

17: end while
18: Return CS*

4.4 Discussion

In terms of runtime, the execution of GCS-Q using the classical computation
would be O(n2™). In particular, given an n-agent ISG, in the case of a superad-
ditive game, the algorithm needs to solve n times the min-cut problem for a fully
connected graph with positive and negative edge weights, which is NP-hard [9].
Nevertheless, we experimentally show that delegating the problem of finding the
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best bipartition on quantum annealing allows achieving a runtime that scales
in the order of n2. This represents a significant improvement with respect to
state-of-the-art quantum and classical algorithms.

The top-down strategy adopted by GCS-Q allows for obtaining several con-
venient properties: i) for an n-agent ISG, GCS-Q always converges in at most n
steps. In fact, the algorithm proceeds top-down, starting from a coalition struc-
ture containing all the agents into a single coalition (the grand coalition), and it
terminates (in the worst case) with a coalition structure containing the single-
tons. Therefore, the hierarchy is built in n — 1 steps; ) The proposed algorithm
is anytime: the splitting in terms of min-cut ensures that each coalition is split
into disjoint sets, which correspond to two separate coalitions. This approach
automatically considers the underlying graph of the coalition game while guar-
anteeing a valid solution at each time step. iii) for superadditive games, GCS-Q
always returns the best coalition structure (the grand coalition). Thanks to the
top-down approach, the algorithm is initialized with the grand coalition, which
has no subpartitions with higher coalition value; iv) GCS-Q is an approximate
solver which explores a larger portion of the solution space compared to existing
clustering-based approaches, such as C-Link [6]. Standard hierarchical cluster-
ing algorithms (agglomerative or divisive) examine n? bipartitions at each step,
leading to a time complexity cubic in the number of elements at the cost of
drastically reducing the number of partitions explored. In contrast, GCS-Q eval-
uates all possible 2™ bipartitions and selects the optimal one. This translates
into exploring O(2™) possible configurations for the coalition structure at each
step. This approach is usually avoided because extremely time-consuming. How-
ever, the reformulation as a QUBO allows leveraging a quantum annealer that
experimentally shows to solve the problem with an average runtime in the order
of n (Section . Figure [1| provides a small example of how the GCS-Q works.

Fig. 1: Graphical representation of how the GCS-Q algorithm works. The figure
represents the set of agents alongside the two steps of GCS-Q. The blue nodes in-
dicate the vertices affected by the current min-cut. The green nodes indicate the
nodes identified as belonging to the best possible coalition, and further splitting
is inefficient. The red edges are the ones that are cut. The green edge denotes
the ones which remain after the current optimal cut. Notice that, at each step,
the algorithm returns a valid sub-optimal coalition structure.
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5 Evaluation

In this section, we comparatively evaluate the GCS-Q in terms of approximation
ratio and runtime on synthetic benchmark datasets.

5.1 Experimental Settings

Dataset Generation The standard approach to evaluate algorithms for co-
operative games is to generate the values of the coalition function from several
probability distributions. In case of ISGs, the datasets refer to the interaction
score associated with the pairs of agents. Given n agents, a real value is assigned
for each pair of agents, i.e., a total (72’) values (unlike standard CSGs where 2"
values are independently generated). The coalitions of size greater than two are
assigned according to Eq. Specifically, the edge weights of the graph game
G(A,w) are drawn from the following two distributions:

w; j ~ L(j11,b) w; j ~ N(u2,0)

where £, N are the Laplace and Normal distribution respectively, with p; =
u2 = 0 and 0 = b = 5. The parameters are chosen to guarantee positive and
negative values for w; ;.

Metrics One of the requirements to estimate apriori the approximation error
of a CSG algorithm is to assume the value of any coalition to be positive [14].
Since we consider more generic coalition games where the value of a coalition
can also be negative, to assess the approximation ratio of GCS-QQ we evaluate
its performance on a standard benchmark dataset. Given a n-agent coalition
game (A, v), the approximation error is defined as the relative error between the
value of the optimal coalition structure C'S©°PY) and the value of a near-optimal
solution C'S™°PY) returned by a selected approximate solver:
|v(C'SPY)) — (S (-opt)))|

er = o(CS@r) € [0,1]. (14)

Implementation To find the optimal coalition structure, we run a python im-
plementation of the IDP algorithm [12], which always returns the best possible
coalition structure. However, this algorithm runs out of resources with more than
20 agents. Furthermore, rather than running the GCS-Q directly on a real quan-
tum device prone to errors, we evaluate its approximation error using classical
computation. In particular, we implement the Algorithm [I} with the optimal
split problem solved using a brute force strategy that explores all possible splits.
We refer to this approach as GCS-Q(©). In addition, we implement GCS-Q by
leveraging the D-Wave 2000Q to solve the sub-task of the optimal split problem.
We refer to this approach as GCS-Q(@).

3 Notice that to better fit standard graph games studied in the literature, we omit self-
loop, which would require sampling other n values. However, the GCS-Q formulation
is suitable for dealing with graphs containing self-loop.
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5.2 Results

GCS-Q Runtime In order to estimate the runtime of the quantum annealing
in solving the optimal split problem, we generate 64 ISGs, each with a different
number of agents for both distributions (from 2 to 65). Thus, the time-to-solution
is recorded for five different runs to obtain an estimation (alongside a variability
measure) of the runtime. Results are reported in Figure
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Fig.2: Runtime of the D-Wave 2000Q when solving the optimal split problem.
The same QUBO problem is solved 5 times for each number of agents. The blue
line is the average runtime of the 5 experiments. The yellow shaded area repre-
sents the maximum and minimum runtimes. The green shaded area is calculated
considering the mean and the standard deviation of the runtimes for each prob-
lem instance. The runtimes are reported in microseconds (us).

The order of runtime growth when increasing the number of agents is linear.
To confirm this hypothesis, we estimate a linear regression model of the form
T = By + f1n where T is the runtime of the quantum annealing, n is the number
of agents, and [y, B; are the parameters to be estimated from data. To assess
the quality of the linear fitting, we calculate the coefficient of determination R2,
which is equal to 1 in the case of a perfect deterministic linear function between
n and T. A value of 97% for both distributions indicates that the relationship
between T and n increases linearly. Thus, we can conclude that the average-
case complexity of the quantum annealing solution for solving the optimal split
problem is linear in the number of agents, i.e., ©(n).

Furthermore, to test the efficiency of GCS-Q@ against GCS-Q(®), we run
them on the two benchmark datasets described in Section [5.1] considering games
up to 27 agents. Results in terms of runtime are depicted in Figure [3] As ex-
pected, GCS-Q(@ runs polynomially in the number of agents, providing a prac-
tical quantum advantage over its classical counterpart.
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Fig. 3: Runtime of GCS-Q(®) and GCS-Q(®).

Quality Assessment of GCS-Q Although the advantage in terms of runtime,
the solution provided by the quantum annealing degrades rapidly due to the
limited precision of the quantum device in use. We perform experiments on the
two distributions mentioned in Section 5.1 with the number of agents up to 20. In
particular, we compare the quality of the solutions obtained with GCS-Q(®) and
GCS-Q@) with best possible coalition structure calculated running IDP. Results
are shown in Figure [

GCS—Q(C) GCS—Q(‘”
1.0 59
66%
0.8 1
0.6 p
iy Y . AGA
0.4 /e
7% Y

0.2 l
0.0] s—omomomombine 2N TNt || et v

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

n. of agents n. of agents
- Laplace Normal

Fig. 4: Assessment of GSC-Q quality in terms of approximation error calculated
on the two benchmark datasets described in Section

For both distributions, the GCS-Q(®) has a worst-case approximation ratio
of 7%. However, the GCS-Q(? produces the expected solution of the Algorithm
[ only for coalition games of size up to 10. In particular, the approximation
error suddenly increases for problems with more than 10 agents, which results
in a worst-case approximation error of 66% and 59%). The deterioration is also
observed for experiments up to 27 agents. In this case, we consider as baseline
CS©Pt) the coalition structure returned by the GCS-Q(®) and as approximate
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solution C'S™°Pt) the one returned by GCS-Q(@. The results of the quality
assessments are reported in Figure[5] The tendency for a decrease in performance
is due to the quality of the quantum annealer when solving the optimal split
problem. In fact, with n > 11 the error is cascaded through further executions
of the algorithm and the final solution is far from optimality

1.0 «— Laplace
0.8 Normal

0.6 A N
oy
0.4 . ¥
0.2
0.0

3 6 9 12 15 18 21 24 27
n. of agents

Fig. 5: Relative approximation error GCS-Q(® algorithm using as baseline the

GCS-Q),

The limitations of the D-Wave 2000Q have already been emphasized for
specific optimization tasks[I9]. Nonetheless, the latest generation of D-Wave
QPUs, named Advantage, outperforms D-Wave 2000Q for any problem size.
Furthermore, Advantage systems can solve larger problems with up to 120 logical
qubits. In some cases, not only the Advantage system can find better-quality
solutions but it also can find same quality solutions faster [15]@ However, each
problem Hamiltonian must be explicitly studied on the quantum device in use. In
this regard, several technical optimization strategies are still possible on the D-
Wave 2000Q. For instance, adopting different embedding strategies or leveraging
hybrid quantum annealing computation that can deliver better quality solutions
for large-size problems at the cost of worsening the runtime (for more details,
see D-Wave documentatiorﬂ}.

5.3 Performance analysis

In the case of subadditive games, the optimal coalition structure is given by
the singletons. This is the worst-case scenario for GCS-Q, which needs to solve
the optimal split problem n times. Therefore, considering a linear runtime of
the quantum annealing (Sec. , we obtain a quantum-supported solver which
scales quadratically with respect to the number of agents n.

% A comparison between Advantage with the D-Wave 2000Q is reported [10]
® https://docs.dwavesys.com/docs/latest /index.html
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Thus, we compare this runtime with state-of-the-art classical and quantum
solutions when considering ISGs with an underlying fully connected graph. Since
ISGs are a special case of general coalition games, we also consider the classic
solvers for CSG. The best classical exact solvers for any generic CSG problem
are represented by methods based on IDP [12], such as BOSS[5] and DyCE[IS],
having worst-case complexity of O(3™). In the context of ISGs, the CFSS [4] and
KGC algorithms [3] have shown excellent results with sparse graphs, but the
worst-case complexity for a complete graph remains O(n™). The best approxi-
mate solution in terms of the runtime is C-link [6], which is based on hierarchical
agglomerative clustering and has cubic complexity in the number of agents, i.e.,
O(n?). Finally, the only general quantum solution for CSG is BILP-Q[16], which
showed a runtime of O(2") using quantum annealing A graphical comparison of
state-of-the-art classical and quantum solutions is provided in Figure [f]
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Fig. 6: Cost complexity as a function of the number of agents n. Classical solu-
tions are indicated with blue lines, while quantum solutions are in green.

The ability of GCS-Q to be executed with a runtime quadratic in the number
of agents makes it the best solver for ISGs.

6 Conclusion and Future Work

In this work, we proposed GCS-Q, the first quantum-supported solution for
coalition structure generation in Induced Subgraph Games. The key idea is to
partition the graph underlying the coalition game into two subsets iteratively
in order to obtain a coalition structure with a better coalition value. By dele-
gating the task of finding the optimal split to a quantum annealer, we obtain
a solver capable of running faster than the state-of-the-art solutions (quantum
and classical). Given a n-agent coalition game, the ability of the D-Wave 2000Q
quantum device to solve the optimal split problem in linear time with respect
to n allows for conveying an overall runtime that scales in the order of n?. Fur-
thermore, by exploring all possible partitions of a given coalition, the GCS-Q
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examines a larger portion of the solution space compared with other approximate
solvers, such as C-Link[6]. In fact, this latter adopts a bottom-up strategy and
never considers the global distribution of the agents. Another important feature
of GCS-Q is the ability to provide sub-optimal solutions during its execution,
which makes it an anytime solver.

In addition, we provided a practical implementation of GCS-Q and evalu-
ated its performance on standard benchmark datasets. Specifically, we gener-
ated coalition games with fully connected graphs, sampling the edge weights of
the graph underlying the coalition games from two distributions (Laplace and
Normal). We implemented two variants of the GCS-Q (Algorithm: GCS-Q©
is executed entirely on a classical computer and served to estimate the expected
approximation ratio (93%) for the benchmark datasets. The second approach,
named GCS-Q(@, leverages the D-Wave 2000Q for solving the sub-task of the
optimal split. As expected, the GCS-Q(9) scales polynomially in the number of
agents and exponentially faster than GCS-Q(®). However, when calculating the
quality of the solutions, the performance deteriorates due to the limitations of
the quantum hardware in use. For this reason, the main challenge to tackle in
the near future is the investigation of alternative embedding strategies or the
adoption of hybrid quantum-classical solvers proposed by D-Wave.

Another natural follow-up is the execution of GCS-Q on better quantum
hardware, such as the D-Wave Advantage. This latest generation of quantum
devices has outperformed the D-Wave 2000Q in terms of both quality of solutions
obtained and runtime in several combinatorial optimization problems.

In conclusion, we showed the feasibility and the benefit of adopting quantum
computation in multi-agent systems with a novel quantum-supported solution
suitable for solving practical real-world AI problems.
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