Making Multiagent System Designs Reusable:
A Model-driven Approach

Stefan Warwas, Matthias Klusch
German Research Center for Artificial Intelligence (DFKI)
Saarbriicken, Germany
{stefan.warwas, matthias.klusch} @dfki.de

Abstract—Software engineers usually approach complex
problems by separating them into sub-problems. In multiagent
systems, sub-problems are solved by autonomous agents that
build organizational structures. Each agent internally further
decomposes a problem by goal and plan hierarchies. The
underlying design of a system reflects an engineers experience
with approaching complex problems. It is desirable to reuse
patterns and structures that proved their practical use and
were validated (e.g. interaction protocols, goal hierarchies, be-
havior templates, organizational structures, etc.). This improves
software quality and reduces development time and costs in
the long run. Model-driven software engineering enables the
separation of the platform independent design of the system
under consideration and the actual implementation for a
concrete execution platform. The gap between the different
levels of abstraction is closed by model transformations. In
this paper we propose a model-driven reverse engineering
approach for lifting the underlying design of implemented
multiagent systems to a platform independent level. For this
purpose we specify conceptual mappings from the platform to
our platform independent modeling language. The extracted
structures have to be refined (e.g. by using existing platform
independent artifacts) and can be re-used as blue print for
solving similar problems on similar execution platforms. We
evaluated our approach for the BDI agent platform Jadex and
a real-world scenario.

Keywords-Agent-oriented Software Engineering, Model-

driven Reverse Engineering, PIM4Agents, Jadex

I. INTRODUCTION

Today’s software systems are becoming increasingly com-
plex. Software engineers have to deal with heterogeneous,
dynamic, and distributed IT environments. At the same
time reducing development costs and increasing software
quality are two of the main challenges. Model-driven Soft-
ware Development (MDSD) is driven by industry needs to
deal with complex software systems. The underlying idea
of MDSD is to model the system under considerations
(SUC) on different levels of abstractions and use model
transformations to gradually refine them from requirements
specification, to system design, and finally concrete code.
Several core aspects of MDSD were standardized by the
Object Management Group (OMG) as Model-driven Archi-
tecture! (MDA). Even if MDSD made much progress, most

Uhttp://www.omg.org/mda/specs.htm

code has already been written without MDSD in mind and
very often models and code diverge over time.

Agent-oriented Software Engineering (AOSE) is a novel
software engineering paradigm which promises to tackle the
complexity of problems in distributed environments more
elegantly than established approaches. However, AOSE is
still driven by research and has not reached the same
level of maturity than Object-Oriented Software Engineering
(OOSE). To make AOSE a real alternative to OOSE new
methods and tools have to be developed. In this paper
we propose a Model-Driven Reverse Engineering (MDRE)
approach for making the underlying design of Belief, Desire,
Intention (BDI) [1] agents reusable on a platform indepen-
dent layer. We use a domain specific modeling language
for representing the different artifacts and storing them in a
model repository (see Figure 1). For this purpose we specify
mappings between the platform concepts and the platform
independent language. Finally, we apply manual refinements
to the lifted models. We evaluated our approach for the BDI
agent platform Jadex?. We chose Jadex because it is open
source and has an active community.

refinement validation

* import

e R

Nodel >*°! (" Development Env.
IIIHIIIIIIIII -

Spostiory PIM4Agents

« interaction protocols « forward
« organizational structures * reverse
« goal hierarchies
« behavior patterns
« capabilities
... Jack Jadex

[psm || |[_psm ||[Psm |

‘ Code ‘ ‘ Code ‘ ‘ Code ‘

Figure 1. Overview of our approach for reusing multiagent system designs.

This paper is structured as follows: Section II provides
background on our language-driven approach in general.
Section III introduces the metamodels which build the basis
for our MDRE approach. Section IV presents the conceptual
mappings from Jadex to PIM4AAGENTS. Section V shows

Zhttp://jadex.sourceforge.net

how to manually refine the lifted models. Afterwards, Sec-
tion VI evaluates the approach on a real world Jadex system.
Section VII provides an overview of related work and finally
Section VIII concludes this paper.

II. DOMAIN SPECIFIC LANGUAGES

Domain Specific Languages (DSLs) - in opposite to Gen-
eral Purpose Languages (GPLs) - are designed for a certain
domain and purpose. Thus, they usually cover this domain
more efficiently than GPLs (e.g. UML or Java). DSLs can
be on different levels of abstraction. In opposite to platform
specific languages, platform independent languages neglect
certain details which are not necessary for the considered
level of abstraction. Abstraction is necessary for handling the
steadily increasing complexity of today’s software systems
[2]. In general, a DSL is defined by (i) an abstract syntax,
(ii) concrete syntax, and (iii) semantics.

Our approach is based on the Domain Specific Model-
ing Language for Multiagent Systems (DSML4MAS) [3].
DsSML4MAS is a platform independent graphical modeling
language and covers the core aspects of multiagent systems
(MAS), such as agents and organizations, interaction proto-
cols, goals, behaviors, deployment aspects, etc. Its abstract
syntax is defined by the Platform Independent Metamodel
for Agents (PIM4AGENTS). The concrete syntax is specified
by mappings between PIM4 AGENTS concepts and graphical
symbols. The semantics of the language has been formally
defined in Object-Z and was manually transferred to Object
Constraint Language® (OCL)-based constraints for validat-
ing PIMAAGENTS models. Model validation on a platform
independent level already prevents many errors in early
phases of a project. It is also important for building model
repositories with validated artifacts which can be reused. In
previous work we specified conceptual mappings between
PIM4 AGENTS and the concepts of the execution platforms
Jack* and Jade® which are used for forward engineering [3].

As already mentioned, PIMA4AGENTS is platform inde-
pendent but it possesses different degrees of abstraction (see
Figure 2). The requirements layer is the most abstract degree
and covers abstract goals, roles, interactions, and organiza-
tions. The system design degree contains (i) agent types,
(ii) behavior templates, (iii) concrete goals, etc. The lowest
degree is the deployment layer which specifies concrete de-
ployment configurations (e.g. agent instances and resources).
Our development environment also offers specialized views
for modeling the various aspects and their interdependencies.
Although PIM4AGENTS is platform independent, it is not
architecture independent. What differs agents from objects,
services, etc. is their internal architecture (the underlying
mental model). Thus, to exploit the benefit of AOSE, an
agent-oriented modeling language has to consider the agent

3http://www.omg.org/spec/OCL/2.0/PDF/
“http://aosgrp.com/products/jack/index.html
Shttp://jade.tilab.com/

Requwements

Orgamzatlon
[Protocol |

System De5|gn ‘ Goals
Plan:

* Roles
« Abstract Goals (G)
‘ « Interactions

« Organizations

« Concrete Goals (G)
@ « Agent Types
: « Behaviors
Collaboration « Collaborations
R El « Capabilities

« Instances
« Configurations
* Resources

Methodology

« Executable
System

%ﬁ %/

Figure 2. The bottom layer represents the execution platform. The upper
layers are the degrees of abstractions in DSML4MAS.

architecture as first class object. To summarize all properties:
DSML4MAS is a platform and methodology independent,
(BDI) architecture aware, graphical modeling language with
several inherent degrees of abstraction and aims on main
stream large scale agent-oriented software development.
Those properties make DSML4MAS the perfect language for
reusing BDI designs.

III. METAMODELS

Metamodels specify the concepts and their relations which
are available for modeling a SUC. Now, we introduce
the metamodels which are necessary for MDRE of Jadex
applications. The Jadex metamodel is introduced in Section
III-A. Afterwards, Section III-B presents the PIM4AGENTS
metamodel. Due to the limited space we can only introduce
representative parts.

A. Jadex

A Jadex application is implemented using XML files
which specify agents, capabilities, etc. and Java-based be-
haviors (see Figure 3). To enable Jadex for model-driven
development, we created a Jadex metamodel which is based
on the official Jadex XML schema files®. Furthermore, we
used a Java metamodel for lifting Java-based Jadex plans to
the model level. Finally, we created a Jadex Project meta-
model which aggregates all resources of a Jadex application
(e.g. agents, capabilities, and plans).

Jadex Application Metamodel. The concept Applica-
tiontype is the main container of a Jadex application and

%Qur Jadex metamodel covers all aspects of Jadex. Due to space
restrictions we neglect the agrs- and envspace metamodels.

Movement.capability.xml

<agent
name="Production"

MWC. applicatj.‘an .xml

<applicationtype ...>
<componenttypes>
<componenttype }

name="Producer* i

'{filename="..A/Production.agent.xml"{>

3 <capability
m e"

Production.agent.xml L

package="...producer">

import>...producer. *

<goals> <achievegoal

name="move_dest" exported="true">
H <parameter name="destination" .. />
/import> </achievegoal> .. </goals> H
= S

a o
file="...Movement"

| <components>
*~~{<component type="Producer"}/>

</:;|;plicationtype>

<waitqueue>
nt

{ :/cor:_popentt)ypes> [name="request_production"” P " .proddce,{.;
applications: Type="Fipa" .) 4 .
<application name="1 Sentry, ..."> </mg§sagee$ent> public class ProduceOrgPlan

.. <plan name="produce_ore">
“.. <b =

*{"ProduceOreplan" >

“.extends Plan {
public void body() { %

IGoal go_dest = H
go_dest.getParameter("destination").

[ref="request production"}>"

setValue(target.getLocation());

</waitqueue>
</plan>

</agent>

dispatchSubgoalAndWait(go_dest);

] 1} [}

Figure 3.

This figure visualizes the basic structure of a Jadex project. The code is taken from the “Mars World Classic” example of the official Jadex

distribution. The arrows highlight the interdependencies between XML-based application, agent, and capability files and Java-based plans.

E component | 0..* [E componentsType

0.1 E Application

components 0.*
application

componen

[E componenttype

’ [E Applicationtype| 0.1 | ApplicationsType|

0..* |componenttype
componentty|

’g ComponenttypesType| 0-1 | [ServicesType

applications

services
0.1

H importsType

Figure 4. Main concepts of the Jadex application metamodel.

possesses a name and package (see Figure 4). Resources
that are not in the current scope have to be imported by the
Import concept. All components (such as agents) have to
be declared by the concept Componenttype which has
a filename attribute to reference Jadex agent XML files.
The concept Application defines a single Jadex appli-
cation and contains a set of Component declarations. A
Component is an instance of the declared Compenttype
and can refer to a certain configuration (initialization of
beliefs, goals, etc.) that should be used. Configurations are
declared in a component’s XML file.

Jadex BDI Metamodel. The Jadex BDI metamodel spe-
cifies the concepts which are necessary to define agents
and capabilities (see Figure 5). The main concepts are
MBDIAgent and MCapability. The only difference be-
tween Jadex agents and capabilities is that agents pos-
sess an own execution thread. A MCapability im-
ports several resources by the concept ImportsType.
Moreover, the MCapability declares several events (e.g.
MInternalEvent and MMessageEvent) which are
contained by MEventbase. Likewise, goal declarations
are contained by the concept MGoalbase. The top-most
concept for all goals is MGoal. There are four concrete
goal types in Jadex: MAchieveGoal, MPerformGoal,

E| MEventbase E| MConfigurationbas E MPlan

0.1 0.1

events -)
configurations

0..*
plan

[MGoalbase |0..1 B Mcapability [E MPlanbase

goals 0.1

\
. imports
Capabl\ltl% Zﬁ 0.1

[H capabilitiesType (MBDIAgent E 1mportsType

plans
o>

Figure 5. Main concepts of the Jadex BDI metamodel.

MMaintainGoal, and MQueryGoal. Used plans are
declared by the concept MPlan which is contained by
MPlanbase. A MPlan contains a MPlanBody which
refers to a Java-based Jadex plan. The MPlanTrigger
concepts refers to the triggering event of the plan. Finally, a
MCapability can contain several MConfigurations
which are contained by MConfigurationbase. A con-
figuration initializes an agent with certain beliefs and goals.

Java Metamodel. Since we want to map Jadex plans
and information models (which are implemented in Java)
to PIM4AAGENTS, we need a metamodel for Java. Because
the creation of a Java metamodel and the lifting from code
to model is a big endeavour on its own, we rely on the
Java metamodel and tool support provided by the Eclipse
MoDisco Project’. MoDisco is part of the Eclipse Modeling
Framework® (EMF) which is a framework for MDSD based
on MDA standards and Eclipse technology.

The top-most container for a set of Java files is the
concept Model (see Figure 6). The type of a ClassFile
is specified by an AbstractTypeDeclaration. An
AbstractTypeDeclaration contains a set of Body—

Thttp://wiki.eclipse.org/MoDisco/Java
8http://www.eclipse.org/emf

Figure 6. Main concepts of the MoDisco Java metamodel.

Declarations which consists of a (code-) Block.
Statements are contained by Block. There are
many different kinds of Statements. For example, a
ForStatement has a (condition-) expression, an
initializer expression, and an updater expression. A
MethodInvocation is also an Expression. In order
to use the generic Java metamodel for reverse engineering
Jadex behaviors the Jadex API has to be taken into consid-
eration. For example, sending a message in Jadex is done
by invoking the sendMessage method of the APIL. The
implementation of a mapping rule has to check whether a
generic Java MethodInvocation is a call to the Jadex
API for sending a message. Thus, the Java metamodel plus
the knowledge of the Jadex API is the conceptual basis for
the mapping rules.

Project Metamodel. Since each XML file (agent, capa-
bility, etc.) will be lifted to a Jadex model, we have to deal
with a set of models. Thus, we introduce a new Jadex project
metamodel. The Project concept is a container which
aggregates the different root elements of the imported meta-
models (e.g. Applicationtype, MBDIAgent, Model).

B. PIM4Agents

The PIM4 AGENTS metamodel is the target metamodel for
our reverse engineering approach. We focus on the multi-
agentsystem, behavior, and goal aspects of PIM4AGENTS
because they are central for the understanding of the
conceptual mappings presented later. For a comprehensive
introduction to PIM4A4AGENTS we refer to [3]. Figure 7
depicts the MAS aspect of PIM4AGENTS. The concept
MultiagentSystem is the top-most container and con-
sists of agent and organization specifications, interaction
protocols, behaviors, goals, capabilities, etc.

PIM4Agents Behavior Metamodel. A PIM4AGENTS
Plan consists of a set of Activities that are connected
by ControlFlows. There are two types of activities:
(i) StructuredAcitivities (e.g. loop or decision)
consists of a set of sub-Activities and (ii) Tasks
are atomic activities that cannot be further decomposed.
For example, sending and receiving messages (concepts

[Agentinstance[#]
(from deployment)

[Agent [7]

(from agent)

[H Organizatio[#]

<l {from organization)

or

instance 1.* | agent interaction o

] interaction -
5 DomainRale[#] | 0-* H MultiagentSystem . H interaction[#]
{from role) Me—3 (from interaction)

rale
[} .
o.* goal behaviar
i *

[Capability[#] |0.." H Goal [2] 0.. B Behavior [#]

(from goal) (from behavior)

(from agent) capability

Figure 7. The central concepts of the PIM4Agents metamodel.

SendTask and ReceiveTask), posting goals (concept
AssumeGoal) are Tasks. InternalTasks are used to
encapsulate algorithms or library calls that are not consid-
ered at the platform independent layer. ControlFlows de-
termine the execution order of Activities. Information
is stored by the Knowledge concept. Knowledge has a
name and type.

PIM4Agents Goal Metamodel. A PIM4AGENTS Goal
can be either of type AbstractGoal or ConcreteGoal.
AbstractGoals are used to support a gradual re-
finement from abstract requirements to the concrete
MAS design. An AbstractGoal is realized by a
ConcreteGoal which inherits from Event. There

are five types for concrete goals: AchieveGoal,
PerformGoal, QueryGoal, MaintainGoal, and
MetaGoal. The goal hierarchy is explicitly repre-

sented through DecompositionLinks which can be
AndDecompositionLink or OrDecomposition-
Link. A Goal can have several parameters of type Know-—
ledge. Goals can also have explicit conflicts among each
other.

IV. CONCEPTUAL MAPPINGS

After we introduced the required metamodels, we now
specify the mapping rules (MR) from Jadex and Java
concepts to PIM4AGENTS. Basically, the Jadex project
and application metamodel covers similar concepts to the
PIM4AGENTS MAS aspect, the PIMAAGENTS behavior
aspect corresponds to the Jadex Java metamodel, and the
PIM4AGENTS goal aspect covers similar concepts to the
Jadex BDI metamodel. We structured the mappings into
application mappings, agent and capability mappings, be-
havior mappings, event and goal mappings, and information
model mappings. In the remainder of this Section we use
following abbreviations for the metamodels: PROJ (Jadex
Project), APP (Jadex Application), BDI (Jadex BDI), JAVA
(Java), and P4A (PIM4AGENTS).

A. Application Mappings

MR-0: PROJ : Project — P4A : MultiagentSystem
The entry point of the reverse transformation is the map-
ping from Project to MultiagentSystem and gets

APP : Applicationtype — P4A : MultiagentSystem

target [source [MR

name The name of the Jadex Applicationtype is mapped to the name of the PIMAAGENTS MultiagentSystem. -

agent Each Componenttype declaration of a Jadex Applicationtype is resolved to the actual MBDIAgent. The resolved | 3
MBDIAgent is mapped to a PIMAAGENTS Agent.

behavior Each Jadex Java plan class (concept AbstractTypeDeclaration) which is used by an agent (concept AgentType) or | 5
capability (concept MCapability) of the Jadex application is mapped to a PIM4AGENTS Behavior.

interaction Jadex has no explicit representation of interaction protocols. Thus, we map all MMessageEvents declared by Jadex agents or | 10
capabilities to PIMAAGENTS Messages (for later manual refinement; see Section V).

capability Each capability (concept MCapability) which is used in the Jadex application is mapped to a PIMAAGENTS Capability. 4

goal Each goal declaration (concept MGoal) of all agents and capabilities of the Jadex application is mapped to a PIMAAGENTS Goal. | 9

instance Each Component which is contained by the user specified Application is mapped to a PIMAAGENTS AgentInstance. 2

Table 1

DETAILS OF THE APPLICATION MAPPING (MR-1).

the two user specified parameters $SapplicationName
and $configurationName. Both parameters are used
to select a certain Jadex application and configuration for
the transformation (there might be several). MR-1 is ap-
plied to map the user-specified Applicationtype to
MultiagentSystem.

MR-1: APP : Applicationtype — P4A : Multiagent-
System
This rule maps a concrete Jadex application to a
P1M4 AGENTS model. The Applicationtype concept is
the top-most container of a Jadex application and is mapped
to a PIM4AAGENTS Multiagent System which is the root
element of a PIM4AGENTS model. Table I depicts the details
of this mapping rule.

MR-2: APP : Component — P4A : AgentInstance
Concrete agent instances in a Jadex application are specified
by the Component concept. A component’s t ype attribute
refers to a Componenttype. The filename attribute of
the Componenttype is used to resolve the concrete Jadex
agent model (concept MBDIAgent). The resolved type is
used as the type of the AgentInstance in PIMAAGENTS.

B. Agent Mappings

MR-3: BDI : MBDIAgent — P4A : Agent
This mapping rule maps a Jadex MBDIAgent to a
PIM4AGENTS Agent. The basic structure of both concepts
is similar. An agent’s MBeliefs are mapped by MR-11,
each MCapability by MR-4, and each MP1an is resolved
to the Java class and mapped by MR-5. Additionally, we
create a default DomainRole which is performed by the
agent. The DomainRole has the same name as the agent.

MR-4: BDI : MCapability — P4A : Capability
The declared beliefs and plans of a Jadex MCapability
are mapped to PIM4AAGENTS knowledge and plans, respec-
tively (see MR-11 and MR-5). The name of the source object
is assigned to the name of the target object.

C. Behavior Mappings

There exist various concepts in the Java metamodel
which have to be mapped to PIM4AGENTS. Due to

Java : AbstractTypeDeclaration — P4A : Plan

target | source [MR
name The name of the Java AbstractTypeDecla- | —
ration is mapped to the name of the PIM4 AGENTS
Plan.
localKnow- | Each VariableTypeDeclarationSatement | 11
ledge is mapped to a PIMAAGENTS Knowledge.
steps The plan class’s body () method is resolved (con- | 6,

cept AbstractMethodDeclaration) and all | 7,
contained Java Statements are mapped to cor- | 8
responding PIMAAGENTS Activities.
controlFlow| The Java Statement of the plan’s body method | —
have a certain order. The generated PIM4AGENTS
Tasks and StructuredActivities are con-
nected with ControlFlows in the same order as

the Statements they were created from.

Table II
DETAILS OF THE PLAN MAPPING (MR-5).

space restrictions we focus on the concepts Class
(plan), MethodInvocation, Statement, and For-—
Statement.
MR-5: JAV A : AbstractTypeDeclaration —
P4A : Plan
This rule maps a Java AbstractTypeDeclaration
which inherits from the Jadex P1an class to a PIM4AGENTS
Plan. Table II depicts the details of this mapping rule.
MR-6: JAV A : MethodInvocation —
P4A : AssumeGoal
A helper function is used to check whether a Java
MethodInvocation is a call to the Jadex dispatch-
Subgoal () or dispatchSubgoalAndWait () me-
thods. If this is the case, the method invocation is mapped
to either a PIMAAGENTS AssumeGoal or Assume-
GoalAndwait task. The posted goal type is resolved and
assigned to the AssumeGoal task.

MR-7: Sequence(JAV A : Statement) —
P4A : InternalTask
A sequence of Java Statement s which cannot be mapped
to a certain PIMAAGENTS Task or StructuredActiv—
ity is mapped to an InternalTask. An Internal-

Task is a black box which encapsulates business logic.
All variables which are accessed by the enclosed code are
added as input/output parameters to the InternalTask
(see MR-11).
MR-8: JAV A : ForStatement — P4A : Loop

A ForStatement is directly mapped to a Loop in
PIM4AGENTS. The declared variables are mapped to
Knowledge (see MR-11). Begin and End tasks are
created for the loop (see Section VI for an example). The
contained Java Statements are mapped by MR-6 to MR-
8 and connected with ControlFlows.

D. Event and Goal Mappings

MR-9: BDI : MGoal — P4A : Goal
The goal’s name is mapped to the PIM4AGENTS goal name.
The MParameter elements which are contained by the
goal are mapped to PIMAAGENTS Knowledge which are
parameters of the PIM4AAGENTS goal (see MR-11). Goal
hierarchies are not explicitly represented in Jadex. We use
a design extraction algorithm which computes the Jadex
goal hierarchy (and/or decomposition). The computed sub-
goals of an MGoal are assigned to a PIM4AAGENTS goal’s
subgoallinks property. Conflicts between goals are rep-
resented by the relation conflicts. The concrete Jadex
goal types nicely match the goal types in PIMAAGENTS (e.g.
perform goal or achieve goal).

MR-10: BDI : M MessageEvent — P4A : Message
In opposite to Jadex, PIMAAGENTS has an explicit repre-
sentation of interaction protocols. Since the information is
missing in Jadex, the mapping is difficult. We map a Jadex
MMessageEvent to a PIMAAGENTS Message. The name
of the message is assigned to the PIM4AGENTS Message.
We propose to use an already existing interaction protocol
from the model repository to manually refine the lifted
Messages (see Section V).

E. Information Model Mappings

In DSML4MAS, the information model has been separated
from the actual PIM4AGENTS metamodel. As information
model we use the Ecore metamodel of the EMF framework
[4]. This has several advantages: we get (i) graphical mod-
eling support (UML class diagram style) and (ii) import
from UML, XML schema (including XML de-/serialization)
and existing Java code for free. Thus, we see the lifting
of the information model from Java classes to the Ecore
metamodel as a separate task which is supported by EMF
(see [4] for details). There are several possibilities how
to use the information model in our reverse engineering
approach: (i) the information model can be manually created
for small projects using the Ecore modeling tool, (ii) it can
be imported from UML, XSD, or Java files using EMF. If
no information model is created, no variable types will be
assigned in PIM4AGENTS and have to be refined later.

MR 11: BDI : Belief, BDI : Parameter, JAV A :
Variable DeclarationStatement — P4A : Knowledge
A Belief, Parameter, or VariableTypeState-
ment is mapped to a PIMAAGENTS Knowledge. The
name and type of the elements are mapped one-to-one to
the knowledge’s name and type.

V. MANUAL REFINEMENT

Jadex and DSML4MAS share a conceptual core because
both cover BDI agents. However, Jadex allows more fine
grained control (e.g. about the goal life cycle or by using
Java-based plans). As described in Section II, DSML4MAS
unifies high level concepts such as roles and abstract goals
and concrete agent architecture and deployment aspects.
Several high-level concepts like domain roles, interaction
protocols, or organizational structures cannot be lifted since
they are not explicitly represented in Jadex. Missing infor-
mation can be (i) manually added from scratch, (ii) recon-
structed using a design extraction algorithm (e.g. computing
the goal hierarchy), (iii) refined using validated and tested
artifacts from the model repository. In this section we want
to outline how artifacts from the model repository can be
used to refine a lifted model.

Interactions in PIMAAGENTS are at the highest level
of abstraction (see Figure 2) and only specify message
sequences between interaction roles (see Figure 8). They
do not specify the actual role fillers, content types, or time
out values. Those details are specified at the system design
layer where the protocol is instantiated regarding a certain
scenario (concept Collaboration). The concrete mes-
sages have a link to the abstract interaction messages. What
we extract in MR-10 from Jadex are exactly those concrete
messages. However, the messages are not explicitly linked to
a protocol. Thus, the refinement consists of linking the lifted
concrete messages to abstract messages of a corresponding
interaction protocol that has been imported from the model
repository. The additional information adds expressiveness
to the model and can be used to better validate agent systems
in large scale applications.

i Requester 5 MS_RequestMessage : Non: i Responder
A \.
. =1 RequestMessage : Request
f Refuse

ﬁi MS_: None
‘e - 5 MS_RefuseMessage : Non¢

=1RefuseMessage : Refuse

N
[

5 MS_ProposeMessage : None

=1ProposeMessage : Propose

Figure 8. The interaction diagram of the request response protocol.

VI. EVALUATION

We evaluated our reverse engineering approach with the
mars world classic (MWC) example application from the
official Jadex 2.0 RC6 distribution. The goal of the MWC
agents is to produce ore. There are three agent types. The
sentry agent’s task is to find new resources that can be
exploited and creates new tasks for the production agent.
The production agent produces ore and calls the carry agent
who brings the ore to the home base. The first task is to
create the Jadex project model which contains all resources
of a Jadex example project (see Section III-A). A fully
automatic model extractor iterates over all resources of the
Jadex project and uses EMF’s and MoDiscos’ capabilities
to lift Jadex XML and Java files to the model level. All
found resources are aggregated in a project model (see
Section III). The project model and the information model(s)
are passed to the Jadex2PIM4 AGENTS transformation. The
transformation is based on the mapping rules from Section
IV and has been implemented with the standardized model-
to-model transformation language QVT°.

Figure 9 depicts a part of the extracted goal hierarchy of
the MWC example. The walk_around goal conflicts with
the produce_ore and carry_ore goals. The use of the
information model can be seen at the variable types of the
goal parameters. Figure 10 depicts the extracted Producer
agent which has three plans, one capability for movement,
and performs the default domain role Producer. Figure
11 shows how the ProduceOrePlan is mapped to a
PIM4AGENTS plan. All variables of the Java plan are
mapped to Knowledge (MR-11). The go_dest knowl-
edge points to the move_dest goal type and target
is of type Target. A small part of the information
model is depicted at the upper right corner of Figure
11. Code blocks are mapped to InternalTasks. The
dispatchSubgoalAndWait () method call is mapped
to an AssumeGoal task. After the automatic transformation
we manually refined the models. First, we manually added
an organization to model the collaboration of the agent types
(see Figure 12). The organization has the abstract goal to
mine ore. We imported the request response protocol (see
Figure 8) from the model repository and used it to explicitly
specify the communication between the agents inside the
organization (e.g. to assign tasks among the agents). Benefits
of the refinement are (i) explicit representation of organiza-
tions and protocols make the model much more intuitive,
(ii) the artifacts can be used for better validating the model,
and (iii) we reuse already tested artifacts.

VII. RELATED WORK

In [5], a general overview of MDRE is provided. [6]
provides a taxonomy of reverse engineering. Reverse engi-
neering of agents differs from reverse engineering of object-

http://www.omg.org/spec/QVT/1.0/

N

Figure 9. The PIM4AGENTS goal diagram depicts a part of the extracted
goal hierarchy (perform and achieve goals) of the MWC example. The
black diamonds are and-decomposition links.

i Producer

ProducerPlan
Movement

- ProduceOrePlan

Figure 10. PIM4AGENTS agent diagram of the MWC example (partially).

oriented systems because additional agent-oriented artifacts
have to be considered (e.g. organizational structures, goals,
interaction protocols, mental models). According to [7], the
INGENIAS Development Kit (IDK) contains a component
called code uploader which is used for synchronizing IN-
GENIAS models and code that has been generated from
those models (forward engineering). No further information
is provided how this component works or which aspects
are covered. Similar to IDK, the Prometheus Development
Tool (PDT) offers code synchronization functionality for
generated code that is not further detailed [8]. Both, IDK
and PDT support only forward engineering. To the best
of our knowledge, there exists no MDRE approach for
MAS. In general, there exists not much work regarding
agents and reverse engineering. A. Hirst proposes a reverse
engineering approach for Soar'” agents [9]. He focuses on
reverse engineering of production rules. In [10], an approach
for software comprehension was presented. The idea was
to observe agents at run-time (their execution traces) and
reconstruct their structures. Agent-oriented methodologies
also do not cover reverse engineering. An extensive overview
of agent-oriented methodologies is provided by [11].

VIII. CONCLUSION

In this paper we presented a novel model-driven reverse
engineering approach for making the underlying designs
of concrete implemented multiagent systems reusable on a
platform independent level. First, we introduced the involved
metamodels. Afterwards, we presented conceptual mappings
from Jadex and Java to PIM4AAGENTS. We showed how
missing information can be (i) manually refined, (ii) com-
puted with design extraction algorithms, and (iii) refined

10nttp://sitemaker.umich.edu/soar/home

MR-5

LA H H
public class ProduceOrePlan extends Plan & output_proj.pim4agents

Information Model:

[Target
Fore: EInt

{
public void body(){

Sinitialcapacity : EInt =
. ’ - I 1
| output_proj3.plan_diagram &3 S capacity : Eint [m|
= marked : EBoolean | Palette b

[@ target : Target] [@ max : Elnt]

—icnt: Eint

Target target = ¢

MR-7,

(Target)getParameter("target")«
.getvalue();

[Q go_dest : move_dest] MR-11 /]\

& produceOre(EInt)
4 retrieveOre() : EInt

A ControlFlow

A Information...

IGoal go_dest = ’:| InternalTask1

| @ Loop

createGoal ("move.move_dest");
go_dest.getParameter ("destination")<

[IN_OUT] starget = target : Target = $target
[IN_OUT] $go_dest = go_dest : move_dest = $go_dest

@ Knowledge

.setValue(target.getLocation());
dispatchSubgoalAndWait(go_dest) ;ﬁ
AssumeGoal
int max = target.getOreCapacity();
MR-7

for(int i = 0; i<max; i++) {
target.produceOre(1l);

' @

— InternalTask3

(= Basic Task
2 Send

N Barfiua
[~ StructuredAct...

waitFor(100);

[~ Other Tasks

[IN_OUT] $i =i:EInt = $i

Wait

} [|:| InternalTask2 H
([IN_OUT] $max = max : EInt = $max__]
MR-8

1h (= Web Service A
[~ Goals b
Figure 11. Mapping of a Jadex plan to a PIM4AAGENTS behavior (used MRs are depicted). The upper-right corner shows a part of the information model.
[2] A. Kleppe, Software Language Engineering: Creating
RequestResponseProtocol Domain-Specific Languages Using Metamodels, 1st ed.
Producer Addison-Wesley Longman, Amsterdam, Dec. 2008.
i i [3] C. Hahn et al, “A platform-independent metamodel for
Sentry multiagent systems,” Autonomous Agents and Multi-Agent
Systems, vol. 18, pp. 239-266, April 2009.

MarsWorldClassicOrganization

—ca‘rr’m

Figure 12. This figure depicts the manually refined MWC organization.
It has three domain roles, uses the request response protocol for commu-
nication, and has the abstract goal to mine ore.

using artifacts from the model repository. Finally, the ap-
proach has been evaluated on a real world application and
was integrated into our model-driven development environ-
ment [12]. Even if we demonstrated our approach on the
Jadex platform, it is generic enough to apply it to similar
technology stacks. For this purpose, two things have to be
considered: (i) the conceptual gap between the platform and
PIM4AGENTS and (ii) the used technology. Mapping rules
for other BDI systems will look similar to those of Jadex
since they share a conceptual core. On the technical side
we showed how a general purpose metamodel for Java can
be used for lifting agent artifacts. So, the same mechanism
should work for most agent platforms. Existing approaches
focus on the top-down direction. Is is worthwhile to take
a closer look at concrete agent platforms. This bottom up
direction can provide new insights on what agent modeling
languages should look like.

REFERENCES

[1] A. Rao and M. Georgeft, “BDI-agents: from theory to prac-
tice,” in Proc. of the Ist Int. Conf. on Multiagent Systems
(ICMAS’95), 1995, pp. 312-319.

(4]

(51

[6]

(71

(8]

(9]

(10]

[11]

[12]

D. Steinberg et al., EMF: Eclipse Modeling Framework,
2nd ed. Addison-Wesley, Dec. 2008.

L. Favre, Model Driven Architecture for Reverse Engineering
Technologies: Strategic Directions and System Evolution.
Engineering Science Reference, Feb. 2010.

E. J. Chikofsky and J. H. C. II, “Reverse engineering and
design recovery: A taxonomy,” IEEE Software, vol. 7, pp.
13-17, 1990.

J. J. Gomez-Sanz et al., “INGENIAS development kit: a
visual multi-agent system development environment,” in Proc.
of the 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS’08). IFAAMAS, 2008, pp. 1675-1676.

L. Padgham ef al., “AUML protocols and code generation
in the Prometheus design tool,” in Proc. of the 6th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS’07).
ACM, 2007, pp. 270:1-270:2.

A. J. Hirst, “Reverse engineering of Soar agents,” in Proc. of
the 4th Int. Conf. on Autonomous Agents (Agents’00). ACM,
2000, pp. 72-73.

D. N. Lam et al., “Comprehending agent software,” in Proc.
of the 4th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS’05). ACM, 2005, pp. 586-593.

L. Sterling and K. Taveter, The Art of Agent-Oriented Mod-
eling. The MIT Press, 2009.

S. Warwas and C. Hahn, “The DSML4MAS development
environment,” in Proc. of the 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS’09). IFAAMAS,
2009, pp. 1379-1380.

