Integrated Semantic Fault Analysis and Worker
Support for Cyber-Physical Production Systems

Ingo Zinnikus, André Antakli, Patrick Kapahnke,

Matthias Klusch, Christopher Krauss, Andreas Nonnengart, Philipp Slusallek
German Research Center for Artificial Intelligence (DFKI)
Saarbriicken, Germany
E-Mail: FirstName.LastName@dfki.de

Abstract—About a decade ago, the fourth industrial revolution,
also known as Industrie 4.0, has been ushered by the introduction
of the Internet of Things and Services into the manufacturing
environment. Since production and manufacturing control sys-
tems are increasingly networked and connected, the complexity
of modern distributed cyber-physical production systems (CPPS)
requires new tools for monitoring, failure detection and analysis.
In this paper, we present a framework for semantic fault analysis
of CPPS which combines semantic sensor data stream analysis for
fault detection and diagnosis through reasoning on given domain
model and belief network with fault prognosis through formal
behavior analysis with timed hybrid automata. As CPPS are
envisioned to not only cooperate with each other but also with
humans on a new level of sociotechnical interaction, we use agent-
based 3D visualisation tools to provide human users with support
when repairing occurring faults. We illustrate the approach using
the example of a smart factory case study.

I. INTRODUCTION

About a decade ago, the fourth industrial revolution, also
known as Industrie 4.0, has been ushered by the introduction
of the Internet of Things and Services into the manufacturing
environment. Industrie 4.0 is focused on creating smart prod-
ucts and processes flexibly in dynamic, real-time optimised
and self-organising value chains, and profitably even down
to production lot size of one. To rise up to this challenge,
Industrie 4.0 applications basically operate on the principles
and use of autonomous cyber-physical systems with self-*
properties for integrated production across the entire value
chain. In particular, the IP-networked and sensor-equipped
machinery, systems, vehicles and devices of smart factories
are vertically and horizontally integrated with service-based
business processes both within a company and inter-company
value networks. Together with the ever increasing general re-
quirements of high flexibility, reduced delivery time, and short
product life cycles, the Industrie 4.0 concept represents the
highly dynamic, individualized, and networked environment
of modern, digital factories. Besides, cyber-physical produc-
tion systems are envisioned to not only cooperate with each
other but also with humans on a new level of sociotechnical
interaction.

There is a large number of challenges on the IT side for
realizing Industrie 4.0: (i) The high flexibility of production
processes requires the ability to quickly redesign and adapt
production lines and all supporting processes in a company. (ii)
The high variability of products with small batch sizes requires

novel, highly adaptable ways to monitor the production line
for quality and errors while providing support and training
for workers that adapts to the current situation. (iii) To
support quick changes we must move from fixed, specialized
networks and interfaces to flexible architectures and service
interfaces that can easily be reconfigured and support the
low-latency, high-volume communication needed in industrial
environments. This new approach to production is enabled by
suitable IT tools that (partially) have yet to be developed:
Industrie 4.0 requires the ability to model the production
processes at a high level so that they can be adapted quickly
and the ability to simulate, visualize, and verify these changes
before execution [3]. Based on the simulated models we need
the ability to derive monitoring strategies that ensure safe and
high-quality production.

The individualised and self-organising, inter-connected pro-
duction in CPPS breaks open the classical hierarchical control
in production systems [18]. In order to prevent or reduce
downtime, ensure reliability and maintain control in CPPS, the
increasing complexity of modern networked and distributed
production systems requires new tools for monitoring, failure
detection and analysis. The human factor and support becomes
even more important in manufacturing control as decisions
and maintenance tasks have to be adapted to the complexity
of the systems. We need the ability to derive support and
training for those who work in these environments with new
visualisation methods for humans in various roles, such as
workers, supervisors, and managers.

To the best of our knowledge, the INVERSIV platform is the
first 3D simulation platform for CPPS that flexibly integrates
agent-based computing, semantic technologies, formal verifi-
cation and 3D visualisation for production control. Besides,
it is the first approach that combines semantic technologies
and formal model-based verification for intelligent condition
monitoring of machines.

The remainder of this paper is structured as follows. In
section II we introduce the approach for fault detection and
diagnosis combining model-based and semantic data analysis.
We give an overview of the architecture, comprising the com-
ponents for fault detection, agent-based worker visualisation
and data synchronisation. In section III we describe in more
detail the component for semantic data analysis, the approach
for model-based fault detection using hybrid automata and



Production line

Sensors (4 (49 (49 (49) (4 (4

Model-based Analysis

Worker Support

23—
v 1

and Prognosis

Synchronisation
Framework

Semantic Data Analysis

Agent-Based Behavior

Modelling -
LVirtual Twin“ and Dashboard

Fig. 1. Overview of the INVERSIV infrastructure.

the agent component for describing and visualising worker
behavior. We apply the approach to a smart factory use case in
section IV. We discuss related work in section V and conclude
in section VI.

II. INVERSIV PLATFORM ARCHITECTURE

We assume a plant or production line equipped with mul-
tiple sensors which provide real-time data about the rele-
vant modules (cf. fig. 1). The sensor data is gathered and
streamed into the synchronization framework which provides
data subscription endpoints in real-time for various clients.
The sensor data is used to establish a dashboard and ’virtual
twin’ of the factory line which visualize the current state and
processes running in the production line. For fault detection
and prognosis, the model-based analysis component analyzes
incoming data and communicates abnormal situations to the
semantic data analysis component which diagnoses potential
causes. Depending on the diagnosed cause, the agent-based
modeling and execution environment is then used to visualise
e.g. repair actions for operators and workers depending on
their role in the production process.

Approaches to fault detection can be distinguished into
phenomenological and model-based approaches (cf. [21]). In
the phenomenological approach, using a trained classifier the
sensor data is directly classified as correct or defective. In
order to detect anomalies in the behavior in a model-based
approach, a model is used to predict the normal — continuous
and discrete — behavior of a plant. If the actual behavior
— based on the observations — deviates from the nominal
behavior, the observed behavior is classified as anomalous.

Both approaches have advantages as well as drawbacks:
the phenomenological approach does not depend on a model
but can detect failures only against the direction of causality.
In the model-based approach which requires less data the
relation between normal behavior and failure is much more
comprehensible in case of a deviation but the problem domain
has to be modeled manually (although there are attempts to
learn these models, cf. [17]). The approach taken in this paper
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Fig. 2. Combining hybrid automata and semantic data analysis for model-
based diagnosis.

is to combine a model-based approach using hybrid automata
and semantic data analysis in order to leverage the strengths
of both approaches. The usage of hybrid automata allows at
the same time a prediction about deviations occurring in the
future.

In fig. 2, the combination of the approaches as developed
in the project is represented in more detail. Based on sensor
data which provides observations about a production line,
model-based analysis detects deviations of observations from
the model. For fault identification, potential root causes for
the symptoms are then analysed, hypotheses generated and
provided to the human user indicating the probability of the
detected cause. At the same time, the formal model allows a
prognosis of the evolution of the system based on the current
data. The anomalous state(s) predicted for the future can again
be analysed and root causes detected. Based on the analysis
of the predicted failure, maintenance and repair actions can
be generated which anticipate and prevent the failure before it
may occur. Stable modifications and adjustments of the system
behavior may be propagated into the formal model which
then reflects the reconfiguration of the production line. Repair
actions for the detected problem are generated and visualised
to the human worker, using agent-based behavior modeling
and 3D avatar visualisation.

In the following, we describe the corresponding components
in detail and illustrate their interaction with reference to a
smart factory use case.

III. COMPONENTS
A. Semantic Stream Data Analysis with SDA

In agent-based simulations of productions with the INVER-
SIV platform, intelligent agents are supposed to continously
monitor, detect and diagnose faults and conditions of the
simulated machinery. For this purpose, we developed the
INVERSIV platform component SDA for semantic sensor data
stream analysis. The SDA combines techniques for semantic



stream reasoning with probabilistic reasoning in order to detect
most likely symptoms, faults and conditions of monitored
machinery, and to answer specific diagnosis queries. The
semantic model of the considered SmartFactory in this project
consists of a domain ontology and a domain belief network.
The ontology defines the concepts and relations between the
machines and their components, sensors, faults and symptoms
in the description logic OWL2-DL, while the belief network
represents the probabilistic knowledge on causal relations that
are modeled in the ontology. The overall architecture of the
SDA component is depicted in fig. 3.
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Fig. 3. SDA component architecture

The stream processing module of the SDA semantically
annotates the simulated sensor data stream according to the
domain ontology, and can continously answer given queries in
C-SPARQL for fault symptom detection over the materialized
stream data for each (consecutive) stream window. The SDA
then performs probabilistic reasoning over the belief network
in order to determine the evidentially most probable machine
component fault for detected symptoms, as well as a list of
probable faults and their symptoms for a detected machine
condition as an initial diagnosis. Furthermore, SDA can per-
form semantic reasoning with its integrated reasoners STAR
and HermiT either individually or in combination in order
to answer a given set of semantic fault analysis (diagnosis)
queries. Examples of such queries are: What is the most likely
condition of given component, or Which other components are
semantically affected by the detected fault, or what are the
semantic relations between detected component faults [16].
The implemented SDA component utilizes the Jena triple-
store (SPARQL 1.1), the C-SPARQL engine for RDF stream
querying, the BN engine GeNle for probabilistic reasoning,
the reasoner STAR for RDF object-relational querying, the
reasoner Hermit for reasoning in OWL2, and the OWL-API
3.4.3.

While the SDA component of the INVERSIV platform
performs its analysis based on a semantic understanding of
faults, their correlation with symptoms, their probabilities

and their interrelations it does not consider any information
about the potential behavior of the system. System models
in HAVLE, however, exactly contain this information and in
the context of failure analysis our goal is to leverage this
knowledge to predict faulty situations. An example of the
interplay between SDA and HAVLE for integrated detection,
prognosis, and diagnosis of faults of a hydraulic machine in
the smart factory scenario is provided in Sect. IV.

B. Machine Behavior Analysis with HAVLE

Analyzing potential behavior of such factory systems re-
quires to consider both their continuous evolution, usually
performed by the physical objects in the system, the discrete
(usually control) actions and the interaction of both of those
kinds of behavior. In general such systems are called hybrid
systems and through the years hybrid automata, as introduced
by Alur and Henzinger in [1] have established themselves as
the methodology for the formal modeling and verification of
hybrid systems.

Modeling and verification of hybrid systems happens at
design time or at least independently to the running of the
real system. The main idea in INVERSIV is to leverage the
behavioral models and the description of desired or undesired
behavior (given through properties) - that are both created as
part of the analysis anyway - to monitor the behavior of the
system at runtime. Such an approach allows the detection of
inconsistencies between the actual and the modeled system,
the detection of errors (i.e. propositional properties that do
not hold in the current monitored state), and the prediction
of potential undesired situations in the future based on the
possible behavior of the system. The INVERSIV-System uses
HAVLE' for modeling, verification and monitoring of hybrid
systems.

1) Hybrid Automata: Hybrid automata (see figures 9 and
10 for examples) consist of a set of variables, locations, and
transitions. Locations describe the modes the system can be
in. In these locations the system evolves continuously. The
continuous behavior is given through differential equations
and constrained by invariants over the variables. Transitions
are the discrete jumps between the different modes of the
system. Jump constraints provide conditions on when a tran-
sition can be traversed and how variables change when it
is. Additional conditions are imposed through parameterized
multi labels, namely the existence of appropriate partners for
synchronization. Finally, declaring a transition to be urgent
results in the interruption of the continuous behavior in the
source mode whenever the jump condition is met and potential
partners for communication are present. Hybrid automata
can be understood as finite, (in general) non-deterministic
descriptions of all possible behaviors of a hybrid system (or
components of a hybrid system).

2) Verification of Hybrid Automata: Based on rigorous
formal semantics, given a model of the system, hybrid au-
tomata theory provides a formal understanding of the potential

'Hybrid Automata Verification by Location Elimination due to a verification
algorithm based on location elimination [22] implemented in this tool.



behaviors of the system. Behaviors that should be allowed (or
are desired) for the system are formulated as properties in
a variation of temporal logic referring to the locations and
variables of the system (see [22] for a formal definition).
Properties considered in HAVLE deal in general with the
question whether nothing bad will occur in all states that
are reachable or - a dual view of this question - whether a
desired situation can be reached. Verification itself is (as usual)
performed on the states reachable from a set of initial states.
HAVLE implements general reachability algorithms as known
for example from [8] but also an elimination approach [22]
especially suited for the purpose of monitoring.

Additionally to the mere answer to the question of whether
some property holds or does not hold for the given system
HAVLE also provides witness(es) for behavior(s) that violates
the property. These witnesses are called traces and consist
of interleaving descriptions of continuous evolutions of the
system in modes and discrete steps between these modes.

3) Monitoring with Hybrid Automata: While in verification
we have a well defined initial situation (the initial states of the
automaton) and prove properties considering the states reach-
able from this initial situation, the essential observation when
it comes to monitoring is that we have a new initial situation
with every current state of the system. Also in verification we
usually start by computing all states reachable from the initial
states and then check whether all properties hold for those
states. In monitoring we have the dual situation: we have one
property (from which we can easily identify a set of immediate
bad states, i.e. states in which the a-temporal part of the
property already does not hold) and for which we can compute
the set of states from which such immediate bad states are
reachable. Strategies similar to backward reachability can be
applied. This can be precomputed before runtime for every
property to be monitored. At runtime for any current state of
the system it only has to be checked whether this state is in
this set for any property.

4) Architecture of the HAVLE component: Fig. 4 shows
the different components and their relations. In a preparatory
phase (before the actual runtime of the system) the hybrid
automaton model is modeled in the HAVLE-Editor. Then the
HAVLE-Verifier is configured to verify the properties to be
monitored and to generate the required monitoring databases.
Finally the translation mapping is defined that relates sensor
data with hybrid automata model states. For the actual moni-
toring at runtime the HAVLE-Monitor is instantiated with the
monitoring databases and this mapping.

The HAVLE-Monitor itself consists of two parts: a sensor-
state-translator and a matcher. The sensor-state-translator
receives a system state perceived through the current values of
the available sensor data and translates it into a set of model
states based on the mapping provided at initialization time.
These model states will then be sent to a collection of state
matchers - one for every property. Every matcher will - based
on the provided database for the monitored property - check
whether any of the states satisfies the monitored property. The
matcher will finally return a monitoring result which contains
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the status of the check, i.e. whether the property holds or does
not and, depending on the kind of the monitored property and
its validity, a list of witnesses for this status. The provided
witnesses consist of the location of the state together with
a constraint on the variables that have been satisfied by the
currently checked model state. Additionally, it contains a trace
witness.

The interaction between the INVERSIV platform compo-
nents HAVLE and SDA for fault detection, prognosis, and
diagnosis in the smart factory scenario is exemplified in Sect.
IV. In the virtual 3D simulation environment of the INVER-
SIV platform, workers represented as INVERSIV agents can
use the result of such integrated semantic fault analysis of a
machine to plan the respectively required maintenance action.

C. Agent-based Simulation of Workers with AJAN

The aim of our approach is to detect faults in cyber-physical
production and manufacturing systems and to analyze possible
reasons of these failures. The occurring faults have to be
repaired by real workers working in such production settings.
For this reason we support users of our INVERSIV system
with 3D simulation tools, to visualize production faults and to
give answers of how a human can repair them directly in the
shop floor. For this, we need besides the production process
also a representation of the worker and his behavior in the
simulation tool. AJAN? is a component of the INVERSIV plat-
form for simulating agent based workers in 3D environments.

To simulate human workers we need a system which pro-
vides the ability to simulate autonomous actors in the 3D visu-
alization tool. In this context, the agent paradigm is often used
as approach. The agent itself and his behavior is represented by

2AJAN is the acronym for Accessible Java Agent Nucleus and means agent
in Turkish
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an avatar and avatar movements in that 3D environment. To act
autonomously in the simulation environment, the agent needs
sensors and actuators to perceive other actors and to interact
with them to accomplish its goals, like repairing production
faults. In case of worker simulations, sensors can be realized
for example by implementing a view frustum, for detecting 3D
objects in the avatars field of view. With our approach of a
combined formal model and a semantic sensor stream analysis
to detect and analyze production failures, the agent can also
use these upcoming information to react to the simulated
production process. Using the sensor output and the available
simulation actuators, the agent only needs a behavior model
to execute contextually dependent and reasonable actions.

To perform a specific behavior by an agent, this behavior has
to be modeled in advance. An established architecture to model
agents is the Belief Desire Intention (BDI) [23] paradigm.
Other agent languages, mostly used in the game industry, are
the mathematical model Finite State Machine (FSM) [27] and
its modular enhancement Hierarchical Finite State Machine
(HFSM) [24], or the Behavior Tree (BT) [7], which was first
mentioned in [11]. To model and execute agent behaviors with
AJAN, we developed a SPARQL 1.1 extended BT architecture.
As described before, one goal in INVERSIV is to support hu-
man users, especially those with less programming knowledge
who work on site in manufacturing environments. BTs are
developed to realize a modular agent architecture which is easy
to extend, but which also provides an intuitive user interface to
model different agent behaviors in a fast and simplified way.

AJAN is implemented as a web service which consists of
four parts (cf. fig. 5): a knowledge base using a triple store;
an execution service which receives environmental information
and performs actions in the simulation tool; the sensors and
actuators in the 3D environment; and a web editor to model
BTs in a graphical way. In the triplestore the agent model, with
the domain model and behavior model, as well as the instance
knowledge are stored. The triplestore was implemented with
the use of RDF4J® which provides SPARQL 1.1 endpoints

3A JAVA framework, formerly known as Sesame, is used in INVERSIV to
create the agents belief base and to handle RDF: http://rdf4j.org

to access the stored RDF graphs. The AJAN architecture
also provides the use of other RDF stores like Fuseki*. The
triplestore endpoints are used by the web editor, to store the
agent models, and by the execution service, to load these
agent models and to perform BTs. The execution service itself
provides REST endpoints, to initialize and execute agents
and to receive environmental changes for updating the agents
knowledge base. To perform an agent, its behavior described in
RDF is loaded by the execution service and translated into an
executable BT. We implemented this JAVA based service with
the RDF4J framework to handle RDF and the gdx.ai’ library to
run BTs. To perform actions in the simulation environment,
e.g. by the execution service, these actions respectively the
avatar animations are also implemented with REST endpoints.
These endpoints expose a description® in an action language
based manner as a RDF graph to a user in order (a) to know
how to execute the action and (b) to get information about its
environmental effects.

For the graphical web editor we extended the JavaScript
Behavior3JS’-editor to model BTs in RDF and to define
SPARQL queries for condition and action nodes. BTs can be
built by drag and drop graphical elements and by connecting
them with each other. These elements represent different
kinds of BT-nodes, such as composite nodes, e.g. sequence
or priority as well as parallel nodes, or decorator nodes, e.g.
repeater nodes. Composite nodes decide the execution order of
their child nodes. Instead, decorator nodes are used to decide
how their child node has to be executed or how its output
has to be propagated up to the tree. Decorator or composite
nodes can have one or more child nodes which can also be
decorator, composite or leaf nodes like action or condition
nodes. Leaf nodes are using the agent knowledge to execute
actions or to check if a defined condition holds. For accessing
the RDF store, conditions or the input for actions are described
with SPARQL queries. By using SPARQL 1.1 we are also
able to model UPDATE?® queries for manipulating the agents
knowledge with update leaf nodes. Finally, the editor also
provides an interface to load descriptions of environmental
actions over their REST endpoints, to automatically generate
action nodes which then can be used to model a BT.

IV. USE CASE: SMART FACTORY SCENARIO

As use case for the INVERSIV platform, an example
cyber-physical production system from SmartFactoryKL [32]
with several networked and connected devices for key fob
production has been selected. In particular, the considered
smart factory (SF) module (see fig. 6) produces key fobs
consisting of an upper and bottom shell and an intermediary

4The Jena SPARQL server: https://jena.apache.org/documentation/fuseki2/

5 A JAVA based artificial intelligence framework. The feature we use is the
Behavior Tree module: https://github.com/libgdx/gdx-ai

The description of service actions respectively affordances is oriented to
the action language A defined in [9]

7 A Behavior Tree library written in JavaScript. For our editor to create BTs
in RDF, we use the Behavior3JS-editor: http://behavior3js.guineashots.com/

8The W3C update language to manipulate RDF  graphs:
https://www.w3.org/TR/sparql11-update/



Fig. 6. Smart Factory production module in virtual 3D representation with
dashboard containing sensor data and status information.

with an integrated USB stick for individualized data storage.
This production module consists of several (hydraulically and
electrically driven) presses for squeezing the parts together, a
movable rotary arm (pick and place robot) which puts and re-
moves the parts to and from the presses and a carriage moving
on a conveyor belt for transportation of the parts. A number of
dispensers provide additional material needed for the assembly
process. The module is equipped with sensors which send
status information about pressure, position and speed of the
rotary arm and carriage, as well as the filling level of the
various dispensers. The data is fed into the synchronization
framework and production processes are visualized in real-
time together with the relevant sensor data (cf. fig. 6).

A. Semantic Domain Model

The semantic domain model of this SF scenario represents
the domain knowledge of an INVERSIV agent, and consists
of two parts: A SF domain ontology (SF-Ont) in OWL2,
and a SF belief network (SF-BN). In particular, the concept
base of the formal SF-Ont ontology consists of about 500
concepts and relations, which define the semantics of the SF
machinery, sensors, measured properties, component faults,
symptoms, and conditions, as well as external factors and
condition-fault-symptom relations (cf. fig. 7). The ontology
part related to semantic fault detection and diagnosis is based
on the vocabularies of the condition monitoring standards
ISO 2041,13372,17359:2011, interviews with relevant domain
experts, and an extension of the standard W3C SSN (semantic
sensor network) ontology. The fact base of the SF ontology
contains the descriptions of the concept instances, i.e. the
concrete assets of the smart factory module in terms of its
individual machines, their components and attached sensors,
as well as RDF encoded data of sensor measurements, detected
conditions, faults, symptoms and probability values as a result
of the semantic sensor data stream analysis with the SDA
component (cf. Sect.Ill-A).

The second part of the semantic domain model is the SF
belief network, which models the probabilistic knowledge on
causal relations that are defined in the SF-Ont ontology. In
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particular, the SF-BN (cf. fig 8) represents in a compact
way the joint probabilities of cause-effect relations between
the states of fault symptoms, faults, conditions, and external
factors. The labels of nodes and their conditional probability
tables in the SF-BN are the same as those for the respective
concepts and relations that are defined in the SF-Ont. The
conditional probability values are dynamically updated by
the SDA after each fault symptom detection and used for
probabilistic fault detection and diagnosis. For example, the
SF belief network can be used to compute the most likely
fault F' based on detected fault symptoms S, i.e. the fault F
with maximum conditional probability P(F|S), and for the
basic diagnosis of some condition C, i.e. set of symptoms S
with P(C|S) > 6.

B. Behavioral Model

For monitoring the behavior of the machinery in the sce-
nario, a system model consisting of hybrid automata for
the relevant physical objects, controllers and their interaction
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is modeled in the HAVLE-Editor. Figures 9 and 10 show
hybrid automata for the Pick and Place Robot and the Part
Assembly Controller as an example. Properties that describe
the undesired situations that should be predicted or at least
detected such as 'The magazine fill state of the bottom part
dispenser should not become empty’ and 'The oil level in the
accumulator of the hydraulic system should remain inside pre-
defined bounds’ are formulated in terms of the formal model.
Monitoring databases required for behavioral based monitoring
in the HAVLE-Monitor are computed using the HAVLE-Verifier
based on the system model and these properties. The sensor
state mapping is formulated using data like the current position
of the pick and place robot, the load of the press, and the
current number of parts in the dispensers.

C. Integrated fault detection, prognosis, and diagnosis

Faults of the monitored hydraulic drive of the press in the
SF scenario are online detected by SDA for its current states.
As mentioned above, this detection is based on structured
domain knowledge about concepts and causal relations be-
tween symptoms and faults, which is represented in standard
description logic and a belief network. However, the static
logic-based semantic and probabilistic knowledge representa-
tion and reasoning techniques used by SDA (cf. Sect. III-A)
do not allow to determine whether and when some fault

state of the hydraulic drive, thus the hydraulic press, could
be reached from the current state in the future. The HAVLE
component, on the other hand, is capable of such a prognosis
as it has knowledge about the potential behavior of the system
through the hybrid automaton model. Using the precomputed
monitoring databases (one for every monitored property) it
can check whether an undesired situation is reachable from
the current state. However, unlike SDA, HAVLE does not
have any formally specified notions of faults, symptoms and
causal relations between them, hence cannot diagnose, that is
determine the most probable causes of some faulty situation
it predicts. The diagnosis of the predicted faulty situation has
to be performed by SDA, again.

As an example of such an interplay in the smart factory
scenario, suppose that HAVLE monitors the desired property
’SmartFactory produces 2 key chains per minute’ over the
sensor data, while SDA detects the fault symptom ’High
pressure at press P2’. After SDA notifies HAVLE about this
event, the latter re-verifies the property using an updated
model. In particular, the automaton for the press is replaced by
a different instance with a slower working cycle. The formal
model used by HAVLE is thus updated based on currently
observed runtime behavior by SDA.

Now suppose that the HAVLE-Monitor detects that - con-
sidering the current configuration of the system - it is possible
for the bottom part dispenser to become empty in some future
state R in 4:38 min (violating a monitored property). The
predefined mapping allows HAVLE to translate this property
together with its validity into a fault symptom understandable
by SDA, i.e. 'Magazine fill state empty’ in R. The trace
provided together with this prediction contains the behavior
required to get from the current state to the actual undesired
(faulty) state R. Though SDA detected no fault symptom for
the current state of the whole machinery, it is now notified by
HAVLE about this prognosticated type of fault. SDA extracts
the evidence for the fault symptom Magazine fill state empty’
from the trace by use of the predefined mapping to concepts in
the SF domain ontology, and then uses its SF belief network
to diagnose the faulty state R of the magazine.

In particular, the result of the probabilistic reasoning by
SDA is returned in textual form as ’Magazine refill cycle too
long [prob 0.72]” and ’Magazine in bad condition [prob 0.79]’
to INVERSIV agents, or INVERSIV dashboard user. In other
words, SDA extracts the type S and state X. For determining
the related most likely fault type, it then feeds this evidence
and the actual results of C-SPARQL stream queries for all
other fault symptoms as additional evidences into its domain
belief network. The detection returns the fault type F' and
its state s with maximum conditional probability given these
evidences, i.e. F' with maximal P(F = s|S = X...5,, =
X)), and the most likely condition type C' with state ¢ of
the monitored machine or component such as the magazine
in the example above. This corresponds with the intuitive
notion of diagnosis of the faulty state returned by HAVLE
(fault and condition which caused the observed symptoms to
appear). As mentioned above, in condition monitoring, basic



diagnosis refers to the determination (filtering) of the most
likely (observed) symptoms S that are caused by the detected
fault/condition states (S with P(C' = ¢|S = X) > 0).

The SDA component can also perform other kinds of
semantic reasoning over the SF-Ont for fault diagnosis. As
an example, suppose that SDA detects low cooling power in
the hydraulic press of the smart factory module. This symptom
is detected as a result of the evaluation of the respective C-
SPARQL symptom query over the stream data, that is the
checking of the temperature difference between entry and
outlet of the cooling unit of the hydraulic drive of the press. In
this example, SDA uses the SF-BN to determine that this low
cooling power is most likely caused by the onset of a certain
fault, that is a cooling circuit leakage, with highest probability
of .84. According to interviewed domain experts, one inter-
esting semantic fault diagnosis is to determine which other
components of the press could be affected by this detected
fault, and which sensors are involved. This diagnosis query
is answered by SDA through query answering with SPARQL
and reasoning on symptoms-faults-components relations in the
SF-Ont ontology with two different semantic reasoners STAR
and HermIT. The STAR reasoner computes the shortest paths
between given instances in the ontology, and the HermlIT
reasoner is used for logical concept classification into the
ontology.

In particular, SDA uses the STAR reasoner to check for
each component X of the hydraulic drive of the press,
whether there is a shortest semantic relation path in the SF-
Ont ontology between X and the fault instance Y (cooling
circuit leakage) via symptoms S1 of Y and S2 of X with
some shared property P. In our example, the control valve
and the accumulator are detected as being possibly affected
by the cooling circuit leakage according to their semantic
relations modeled in the domain ontology. For each inferred
property-symptom relation (P, S1, S2), SDA then uses the
reasoner HermlT to identify sensors z with which the shared
property P of the symptoms sl, s2 can be observed through
classifying the respectively abstract sensor concept QC' =
Sensor M Jobserves.(P M3monitorsSymptom(S1MS2))
into the SF-Ont ontology and retrieve the relevant sensor
concept instances. Finally, SDA uses the BN tool GeNle to
determine for both affected components, the valve and the
gas accumulator of the hydraulic drive of the press, the most
probable condition state given the detected fault state. The
overall diagnosis result is compiled into a given query-specific
explanation form (textual or tabular) that can be shown to a
human worker by an INVERSIV agent.

D. Agent-based worker support

In response to the returned report on the detected fault of the
hydraulic press, the human worker as user of the INVERSIV
dashboard has the option (a) to plan and execute the required
maintenance action directly, or (b) activate the INVERSIV
agent as representative of the human worker to come up with
such a repair plan and visualize it for him as operative instruc-
tions in the real-world smart factory environment. In the latter

case, the INVERSIV agent adapts BTs predefined for different
fault types to the concrete fault situation, and generates the
appropriate 3D visualisation of executing the repair action
plan. As mentioned above, the INVERSIV component AJAN
allows to configure an INVERSIV agent in support of its
(repair) action planning at any time.

Fig. 11. 3D Visualisation of repair action for worker

In particular, AJAN enables the system configurator to
create different kinds of agents which control avatars in the
simulation environment to test how a worker should behave
in critical situations, and how this behavior influences the
subsequent production. With the AJAN-editor all possible
avatar animations — respectively actions — implemented in
the INVERSIV simulation environment, like movement an-
imations, navigation or production flow manipulations, are
accessible to model agent behaviors with a graphical pro-
gramming language. Because of the modularity of the BT
paradigm, there is no need in AJAN to repeatedly model
the same behavior for different contexts. Instead, predefined
BTs can be used to create new kinds of behaviors. By using
a graph based knowledge representation, an AJAN agent is
adaptable for different kinds of simulation scenarios without
redesigning database schemata or any downtime of the AJAN
web service. With SPARQL 1.1, the agent developer can use
a well known, flexible and extensive query language to work
with agent beliefs for graph checking and updating.

< #

Fig. 12. Worker behavior modeled in the AJAN BT-Editor

In our SF use case scenario, a possible fault is an empty



dispenser which leads to a production stop. Therefore, the
worker has to replenish a dispenser before it runs empty. The
worker must be informed about a critical filling state, so that he
has enough time to refill the dispenser for a smooth production.
To visualize this specific situation, we modeled an AJAN agent
to simulate a worker who refills the critical dispenser. We
assume that the needed parts to refill this dispenser are stored
in a locker. For this reason, the worker must first go to that
locker, take the parts and walk to the dispenser before he can
refill it. In fig. 12 the agent behavior with the sequence of these
worker actions (yellow nodes) is shown. This sequence (arrow
labeled node) is executed from top to bottom. By performing
BT actions, avatar movements are triggered in the visualization
tool and the filling state of the dispenser will be manipulated.
As mentioned before, the agent needs information about that
critical filling state to behave at a reasonable time. This
INVERSIV agent receives detected failing results (in OWL2)
from the SDA component and stores these in its belief base.
To use this knowledge to decide if the worker has to refill the
dispenser, a SPARQL query is used to check this incoming
critical situation with a condition (blue node). Fig.11 shows
the 3D visualization of the agent controlled worker of our
SF scenario, in this case while refilling the critical dispenser.
After running the simulation, the dashboard user can see if
the simulated worker behavior was ergonomically and for the
production flow optimal. Furthermore the real worker gets an
instruction which actions have to be done in order to refill the
dispenser.

V. RELATED WORK

The interplay between the INVERSIV components SDA and
HAVLE for integrated fault detection, prognosis, and diagnosis
is related to work on intelligent condition monitoring. For
example, in [10], intelligent fluid condition monitoring of
wind turbine gears is performed through semantic sensor
data analysis offline by applying semantic technologies for
interpreting the state of turbine parts and answering questions
related to their maintenance. Similar to the work in [16],
[12], the specific domain knowledge is encoded in OWL2
and with SPIN rules; given fault detection and diagnosis
queries are answered by use of the semantic reasoners Fact++,
STAR, TopSPIN rule engine over a central SwiftOWLIM
store. In [16], an intelligent condition monitoring system for
hydraulic drives has been developed that combines statistical,
probabilistic and semantic data analysis for fault detection and
diagnosis with semantic explanations to the user. The semantic
analysis component exploits RDF stream processing with C-
SPARQL, semantic query answering offline with SPARQL,
and semantic reasoning online with STAR and HermiT either
individually or in combination in order to answer a given set of
fault analysis queries as required and with reasonable response
times. In fact, our work is largely inspired by this system.

There are quite a few approaches on fault detection, diagno-
sis and prediction based on behavioral models of hybrid sys-
tems (for a general overview cf. [4]). [15] base their prognosis
on an extension of timed automata. [30] compares measured

event time sequences with a stochastic timed discrete event
model given as stochastic timed automaton. In [25] the authors
present a framework for complex systems that combines
diagnosis and prognosis. [26] also considers diagnosis and
prognosis based on state representations that provide the nom-
inal behavior of the system and the progression of faults. By
that they are able to predict the remaining useful life (RUL).
Similarly [6] tries to provide predictions on the RUL based
on extensions of hybrid automata with fault progression and
degradation functions. Integrating model-based and statistical
methods in the diagnostic scheme [29] presents an approach
for detecting and diagnosing faults in hybrid systems. [19]
perform model-based diagnosis of hybrid systems using hybrid
bond graphs. In [17] the authors concentrate on the automated
generation of behavioral models as timed automata from a
system running in nominal mode. Then anomaly detection in
the actual system is performed against this model. However,
the techniques we use for the detection and prediction of
undesired situations are very different. Our models are not
explicitly created for the purpose of monitoring. They provide
a description of the potential system behaviors including such
that lead to undesired situations. These are specified through
properties rather than by modeling faults into the system
model. We thereby distinguish between system behavoir and
desired properties of the system. Also our approach for the
prognosis is based on the application of verification tech-
niques.

Several commercial systems allowing the configuration and
3D simulation of production environments in the shop-floor
context, e.g. Tecnomatix®, FlexSim'®, visTABLEtouch'! or
SIMULS". DELMIA" for example, is a tool which allows
additionally the validation of ’produced’ products and the
evaluation of manufacturing processes. DELMIA is also used
in [14] for prototyping CPPS environments. To our knowledge,
none of these solutions dealing with internal machine models,
let alone the fault detection and diagnosis.

In the CPPS context, multi-agent technologies are mostly
used for production control and planning, e.g. in [28], in
[20] or in [5]. AnyLogic14 instead, that advertises its use for
production process visualization, uses FSM agents to simulate
worker behaviors. Other 3D simulation platforms using agent
based technologies to simulate workers are presented in [13]
and [31]. In [13] BDI agents are coupled with planning
techniques and in [31], the main focus is the collaborative
configuration and validation — using hybrid automata — of
3D factories. In [2], a three layered approach is presented
for simulating ’intelligent” worker behavior in 3D, in which
the decision making process of BDI-agents and the simulation
domain semantics is modeled in Answer Set Programming
(ASP). Most of these solutions offer no graphical user interface

9Tecnomatix: plm.automation.siemens.com/Tecnomatix
10FlexSim: www.FlexSim.com/FlexSim

1yisTABLEtouch: www.vistable.de/visTABLEtouch-software
12SIMULS: www.SIMULS.com

BDELMIA: www.transcat-plm.com/software/ds-software/delmia
14 AnyLogic: www.anylogic.com



for an intuitive and clear agent modeling or are unnecessarily
complicated for modeling complex behaviors.

However, there is no implemented approach of combining
semantic technologies and verification with hybrid automata
for intelligent condition monitoring as done in the INVERSIV
platform.

VI. CONCLUSION

In this paper we presented a novel framework for semantic
fault detection in CPPS combining model-based analysis and
semantic data analysis. Sensor data from a production line
is fed into a synchronization middleware which distributes
the data among the connected components. The sensor data
and the state of the production module is visualised in real-
time in a dashboard and a 3D ’virtual twin’. The model-based
analysis component uses hybrid automata to detect and predict
undesirable states. The semantic data analysis component then
generates hypotheses and potential causes for the predicted
behavior. An agent-based modeling and execution component
is used to visualise repair actions for workers and operators,
depending on the diagnosed cause.
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