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ABSTRACT

Quantum AI is an emerging field that uses quantum computing to solve typical complex problems in
AI. In this work, we propose BILP-Q, the first-ever general quantum approach for solving the Coalition
Structure Generation problem (CSGP), which is notably NP-hard. In particular, we reformulate the
CSGP in terms of a Quadratic Binary Combinatorial Optimization (QUBO) problem to leverage
existing quantum algorithms (e.g., QAOA) to obtain the best coalition structure. Thus, we perform
a comparative analysis in terms of time complexity between the proposed quantum approach and
the most popular classical baselines. Furthermore, we consider standard benchmark distributions for
coalition values to test the BILP-Q on small-scale experiments using the IBM Qiskit environment.
Finally, since QUBO problems can be solved operating with quantum annealing, we run BILP-Q on
medium-size problems using a real quantum annealer (D-Wave).

Keywords Quantum AI · Quantum Computing · Coalition Game Theory

1 Introduction

Quantum computation leverages quantum mechanics laws to endow quantum machines with tremendous computing
power, enabling the solution of problems impossible to address with classical devices. These premises are hugely
appealing for many real-world applications, especially when coming to the adoption of quantum computing in the
domain of Artificial Intelligence (AI). For this reason, Quantum AI is attracting ever-increasing attention from the
academic and private sectors, even if its full potential is still to be understood. However, a topic that is rarely covered
regards the adoption of quantum algorithms in Coalition Game Theory [1].

1.1 Background

The Coalition Structure Generation problem (CSGP) consists of the formation of coalitions by agents such that the
social welfare is maximized. In practice, given a set of n agents A = {a1, a2, ....an} and a characteristic function
v : P(A) → R , a coalition C is a non-empty subset of A . A Coalition Structure (CS) is a set of coalitions
{C1, C2, ...Ck} such that

⋃k
i=1 Ci = A and Ci ∩ Cj = ∅ for any i, j ∈ {1, 2, ..., k} and i 6= j . The coalition

value of a coalition structure is defined as v(CS) = Σv(C) for all C ∈ CS. In a CSGP, given a set of agents and the
characteristic function, the goal is to find the CS with the maximum coalition value.
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The CSGP can be also modeled as a Binary Integer Linear Programming (BILP) problem as follows [2]. A n× (2n− 1)
binary matrix S is defined, where n is the number of agents and 2n−1 are all possible coalitions of n agents. The single
entry Si,j is equal to 1 if the agent ai belongs to the coalition Cj (i.e., ai ∈ Cj), 0 otherwise. The BILP formulation
consists of finding a (2n − 1) binary string x = {x1, x2, .., x2n−1} such that:

Maximize
2n−1∑
j=1

v(Cj)xj (1)

subject to
2n−1∑
j=1

Si,jxj = 1, xj ∈ {0, 1} (2)

for i = 1, 2, ...., n for j = 1, 2, ....., (2n − 1)

where v : P(A) → R is the characteristic function of the game, n is the number of input agents and 2n − 1 is the
cardinality of the power set P(A) of n agents (empty set excluded), i.e., the set of all possible coalitions.

There are two broad classes of solutions for solving the CSGP. Anytime optimal algorithms (IP) [3] generate an initial
set of possible solutions within a bound from the optimal, and then improve the quality of these solutions. The downside
of IP is that these algorithms might end up searching the entire space of all possible coalition structures, which translates
in a worst-case time complexity of O(nn). An alternative approach consists of using Improved Dynamic Programming
(IDP) [4] which avoids the evaluation of all possible solutions without losing the guarantees of finding the optimal
coalition structure. Importantly, the state-of-the-art solution for CSGP is represented BOSS algorithm [5] which
combines IP and IDP, inheriting the worst-time complexity of IDP, which is O(3n).

1.2 Contribution

This work proposes BILP-Q, the first general quantum approach for solving the CSGP using quantum computation.
In practice, we consider the CSGP as BILP, reformulate it as Quadratic Unconstrained Binary Optimization (QUBO)
problem, and leverage the QAOA [6] as a method to find the optimal coalition structure. As a further contribution, we
analyze BILP-Q in terms of gate complexity as a function of the number of agents in the coalition game and compare it
with IP and IDP-BOSS. Furthermore, we perform small-scale experiments using IBM Qiskit to show the effectiveness
of the proposed approach. Finally, since QUBO problems can be solved operating with quantum annealing, we run
BILP-Q on medium-size problems using a real quantum annealer device (D-Wave).

2 Related works

Recently, a specific formulation of the CSGP for quantum annealing has been proposed [7] and further improved [8]. In
this case, the CSGP is expressed as an undirected weighted graph G = (V,W ), where the set of nodes V corresponds
to the set of agents and the edges W : V → V represent possible coalition structures. The weight assigned to each
edge is given by the characteristic function v(Ci) =

∑
(i,j)∈Ci

wij . Therefore, the whole problem is reformulated as a
minimization problem and mapped directly into the topology of a quantum annealer.

We identify several drawbacks to this approach. First, the ability to solve a specific problem instance depends on the
specific topology of the quantum annealer in use. This means that if the graph generated by a given problem does not
fit the connectivity of the qubits in the available quantum device, it is impossible to run the algorithm. Second, the
problem formulation requires two extra parameters, cmax and crossing number, that control the maximum number
of possible coalitions and the minimum number of intersecting edges, respectively. In practice, these parameters are
unlikely to be known in real case scenarios. Third, the use cases explored consider only superadditive games [2].

Thus, the proposed formulation in [7, 8] is not general-purpose, since it requires relevant apriori information and specific
hardware architecture to solve the CSGP.

3 BILP-Q: Quantum Algorithmic Solution for CSGP

In this section, we propose BILP-Q, a general QUBO formulation for CSGP, completely independent of the specific
problem instance, which allows the adoption of gate-based quantum algorithms (e.g., QAOA) and real quantum
annealers (D-Wave) as methods to find the optimal coalition structure. Furthermore, we analyze the computational
complexity of BILP-Q that uses QAOA and compare it with classical baselines IP and IDP-BOSS.
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3.1 QUBO Formulation for CSGP

Starting from the BILP formulation in Eq. (1), we rewrite the CSGP in terms of quadratic objective function, in matrix
form, as follows:

Maximize f
′
(x) = xt1×(2n−1)C(2n−1)×(2n−1)x(2n−1)×1 (3)

subject to Sn×(2n−1)x(2n−1)×1 = bn×1, (4)

where x is a 2n−1 binary vector,C is a (2n−1)×(2n−1) diagonal matrix whose entries are given by the characteristic
function v(Cj), b is an all-ones vector and S is a binary matrix whose rows and columns represent the agents and all
possible coalitions, respectively. The transformation of Eq. (1) as quadratic function is possible since x is a binary
vector and for any element xj ∈ x, x2j = xj . Importantly, the matrix S is highly sparse since each agent (row) belongs,
at most, to half of all possible coalitions (columns)1. Notice that, it is possible to express the maximization of f

′
(x) in

Eq. (3) as the minimization of f(x) which is defined as f(x) = −f ′
(x).

We embed the constrains of Eq. (3) into the objective function f(x), adding a Lagrangian penalty term to shift from a
constrained optimization problem to an unconstrained problem [9], providing a complete QUBO formulation for CSGP:

f(x) = xtCx+ λ (Sx− b)t (Sx− b)
= xtCx+ λ

(
xtStSx− xtStb− btSx+ btb

)
= xtCx+ xtDx+ c

= xtQx+ c (5)

whereQ ∈ R(2n−1)×(2n−1) is a symmetric matrix, c is an additive constant that does not affect the optimization process
and λ is an arbitrarily large positive number, known as penalty parameter, that allows to penalize all those solutions
that are possible in the new QUBO formulation but explicitly forbidden in the previous formulations (2) and (4). Thus,
the original CSGP can be reformulated as a minimization of the QUBO problem in Equation (5) as follows:

Minimize f(x) = xtQx =

2n−1∑
i=1

cixi +

2n−1∑
1≤i<j<2n−1

qijxixj (6)

where the coefficients ci are proportional to the elements of the matrix C by the factor λ, and the binary string solution
provides the encoding (matching to the columns of the matrix S) to the best coalition structure (i.e., maximum coalition
value). The new formulation for CSGP depends completely on the structure of the matrix Q, whose off-diagonal
elements depend, in turn, on the original matrix S. As already mentioned in Sec. 1.1, the sparsity of S (i.e., the
number of non-zero elements) is strictly lower than its total entries, and this is also true for the upper/lower off-diagonal
elements ofQ. In addition, in case of Constrained Coalition Formation [10] the number of possible coalitions is further
reduced and many of the entries in S are forced to be equal 0. In these cases, the matrix S can be even more sparse (as
well asQ). In the next section, we show that having an arbitrarily sparse matrixQ directly affect the gate complexity
of QAOA when it is used in the context of BILP-Q.

3.2 Solving CSGP using QAOA

Solving a QUBO problem is equivalent to finding the ground state of an Ising model Hamiltonian where the binary
variables xi are replaced by spin variables zi = 2x1−1, zi ∈ {−1,+1}. In particular, denoting as I the set of pair-wise
interactions between spins (i.e., the number of non-zero off-diagonal elements in Q), one can formulate the energy
E(z) of the spin system as follows:

E(z) =

2n−1∑
i=1

hizi +

i∑
(i,j)∈I

Ji,jzizj , (7)

where the ground state of the Hamiltonian corresponds to the solution of the original QUBO problem. Once the QUBO
is formulated in terms of Ising Hamiltonian, one can leverage QAOA [6] to find the optimal solution. In practice,
when using a p-level QAOA acting on a 2n − 1 qubits (n number of agents), the quantum system is evolved with a
cost Hamiltonian HC and a mixing Hamiltonian HB p times. These two Hamiltonians are constructed as follows.

1Given a set A of n agents and the corresponding power set P(A) of size 2n, the number of subsets whose the generic agent ai

belongs (for i ∈ {1, . . . n}) is 2n−1 since this is equivalent as finding the number of subsets of a set with size n− 1.
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HB is fixed and results from the sum of all single qubits σx operators HB =
∑2n−1
j=1 σxj . HC , instead, is realized by

replacing the binary variable with Pauli-Z operations as 1
2

∑
(i,j)∈I(1− σzi σzj ). Starting from HC and HB , two sets of

parametrized unitary matrices U(HC , γj) = e−iγjHC and U(HB , βj) = e−iβjHB , for j = 1 . . . p, are defined, which
depend on the two sets of parameters γ = (γ1, . . . , γp) and β = (β1, . . . , βp). In terms of quantum circuit, each of
the Pauli-X in HB is implemented with a single RX(β) rotation gate, while each of the two-qubit interactions in HC

is implemented with two CNOT gates and a local RZ(β) single-qubit gate [11]. The standard approach for QAOA
consists of generating the uniform superposition of all states in the computational basis: |s〉 = H⊗2

n−1 |0〉⊗2
n−1. Then

the unitaries U(HC , γj) and U(HB , βj) are applied iteratively p times to produce the variational quantum state:

|β,γ〉 = e−iβpHBe−iγpHC · · · e−iβ1HBe−iγ1HC |s〉 = U(β,γ) |s〉 (8)

The third step consists of performing expectation measurement to all the qubits:

Fp(β,γ) = 〈β,γ|M |β,γ〉 , (9)

where M is a generic measurement operator. Once the quantum state has been measured, the two sets of parameters β
and γ are updated using classical optimization and the whole process is repeated multiple times to find the value of
Fp(β,γ) for the near-optimal values (β∗,γ∗) that minimizes E(z). For more technical details see [12, 13].

As a consequence of the cost Hamiltonian HC being constructed on the interactions I of the Ising model (7), and the
equivalence with QUBO formulation (6), the sparsity of the matrixQ directly affects the number of gates in QAOA
needed to solve the CSGP. In fact, the QUBO matrixQ of BILP-Q formulation is sparse by nature since the number of
non-zero off-diagonal elements in the matrix S is generally high, and it can be arbitrarily increased to forbid specific
coalitions in case of constrained coalition formation problems [10]. This translates in a lower computational complexity
(in terms of quantum gates) with respect to a generic QUBO formulation. As a result, there are cases where BILP-Q
can outperform even the state-of-the-art solution when comparing the time complexity of the classical baselines with
the gate complexity of BILP-Q as a function of the number of agents (Section 3.3).

Notably, the idea of identifying specific classes of problems where the sparsity affects the computational complexity of
a quantum algorithm has shown good results in the context of fault-tolerant quantum machine learning [14].

Figure 1: Cost complexity as a function of the number of agents n. The green curve represents IP (O(nn)), while the
blue one is referred to the time complexity of the IDP-BOSS (O(3n)). The light blue shaded area and the dashed area
illustrate the performance of BILP-Q while varying s and p respectively.

3.3 Performance analysis

In this section, we analyze the computational complexity of BILP-Q for a generic CSGP instance. In particular, we
express the gate complexity of BILP-Q as a function of the number of agents in the coalition game. Furthermore, we
compare BILP-Q with the time complexity of popular classical solutions for CSGP. However, when comparing classical
and quantum algorithms, it is important to consider that quantum computing introduces a new complexity class, the
Bounded-error Quantum Polynomial time, representing the class of problems solvable in polynomial time by an innately
probabilistic quantum Turing machine.
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Lemma 1. For a n-agent CSGP, BILP-Q, that uses a p-layered QAOA, requires O
(

(2n − 1)(2p+ 1) + 3ps
)

single
and/or two-qubit gates to compute the optimal coalition structure. The s parameter is the number of non-zero elements
in the lower/upper triangular matrix constructed fromQ.

Proof. We consider the two Hamiltonians HC and HB generated according to theQ matrix of the BILP-Q formulation.
Starting from 2n − 1 qubits as input, the first step of QAOA generates an equal superposition of 22

n−1 possible states
through the use of 2n − 1 Hadamard gates. Then, for each interaction in HC , three gates (two CNOT gates and
a local single-qubit RZ gate) are employed, plus an additional RZ applied to each qubit, even with a Ising model
with no interactions. We define as s the total number of interactions, which is also equivalent to number of non-zero
elements in the upper/lower triangular matrixQ (i.e., the cardinality of the set I in Eq (7)). The size of the matrixQ is
(2n − 1)× (2n − 1), hence there are 2n−1(2n − 3) + 1 off-diagonal elements. Furthermore, as already mentioned in
Sec. 1.1, the matrix S is heavily sparse by construction and can be further modified by restricting the possible coalitions
arbitrarily. Thus, the value s can potentially vary from 2n − 1 (a single non-zero off-diagonal element per row) to
2n−1(2n − 3) + 1 (total number of the off-diagonal elements inQ which is however impossible to achieve in case of
BILP-Q). Finally, HB is implemented using 2n − 1 Pauli-X single-qubit rotation gates RX . The two Hamiltonians are
iteratively applied p times. Thus, the total number of single or two-qubit gates of BILP-Q is the following:

2n − 1︸ ︷︷ ︸
Hadamard

+p× (3× s+ 2n − 1︸ ︷︷ ︸
HC

+ 2n − 1︸ ︷︷ ︸
HB

).

It is easy to show that this number is equal to (2n − 1)(2p+ 1) + 3ps.

Figure 1 illustrates a theoretical comparison of BILP-Q computational cost with respect to the classical solutions.
The blue curve is referred to the time complexity of IDP-BOSS, while the light blue shaded area illustrates the cost
(gate complexity) of BILP-Q as the sparsity ofQ varies from 2n − 1 to 2n−1(2n − 3) + 1. BILP-Q outperforms the
IDP-BOSS as the number of interactions decreases. Also, varying p from 1 to 50 (with fixed s = 2n − 1), for large
problem instances (n ≥ 14), BILP-Q outperforms IDP-BOSS even with large p = 50. For medium-size problem
instances (n ≥ 6), BILP-Q outperforms IP in all the cases.

Importantly, the comparison between gate complexity and (classical) time complexity is valid only assuming to
efficiently train the QAOA using classical optimization, a topic which is still open in quantum computing [15].

4 Experiments

To test the BILP-Q we performed small-scale experiments on most of the distributions for coalition values usually
employed to test classical algorithms. In particular, different cooperative games (or coalition games) are generated by
sampling the coalition values v(·) from the following probability distributions: agent-based uniform (ABU), agent-based
normal (ABN), modified uniform (MU), Normal (N), and Single Valuable Agent with beta (SVA-β). Additionally, the
distributions used to benchmark the BOSS algorithm [5] are tested: Weibull (W), Rayleigh (R), Weighted random with
Chisquare (WRC), F-distribution, Laplace (LAP).

2 agents 3 agents
Distr. p BILP-Q BILP p BILP-Q BILP
ABN 1 0.033 0.062 17 3.133 0.517
ABU 1 0.034 0.062 10 1.642 0.624

F 3 0.086 0.063 7 0.910 0.588
Laplace 1 0.120 0.065 11 2.026 0.608

MU 1 0.029 0.060 10 2.360 0.641
Normal 1 0.043 0.102 2 0.490 0.576

Rayleigh 5 0.173 0.062 12 2.491 0.603
SVA-β 2 0.053 0.080 6 0.883 0.567
WRC 2 0.055 0.068 6 1.582 0.529

Weibull 1 0.042 0.070 6 1.499 0.601

Table 1: Results of BILP-Q. The table shows the optimal parameter p for each problem instance, the time to train the
QAOA in the BILP-Q formulation, and the time required to solve the CSGP classically after formulating it as a BILP
(Eq. (1),(2)). The times of BILP and BILP-Q are reported in milliseconds (ms).
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Within BILP-Q which adopts the QAOA as quantum solution, the number of agents of the game is restricted only to
2 and 3, due to the limitation in training large instances of this quantum algorithm using quantum simulation [16].
Specifically, the QAOA is trained using IBM Qiskit on the QASM simulator, a backend that simulates the execution of
a quantum algorithm in a fault-tolerant setting. The number of measurements for each run of the quantum circuits is
fixed to 1024. The execution times for each problem instance are reported in Table 1.

We can observe that the optimal parameter p is strictly related to the specific problem instance to be solved and, as
expected, it has a relevant impact on the time required to train the QAOA, since it increases the depth of the quantum
circuit proportionally to p. In fact, calculating the Pearson’s correlation coefficient between the optimal parameter p and
the time required to find the optimal solution with BILP-Q (Table 1), a value of 0.96% is obtained. This means that as
long as the value of p grows, the time to find the optimal solution increases linearly to it. Also, on average, the optimal
parameter p is significantly higher as the number of agents increases. This might be due to the number of qubits required
(2n − 1) which increases from 3 to 7 when solving the the problem with 2 and 3 agents respectively. Importantly, since
QAOA in the context of BILP-Q has been trained on a quantum simulator, the execution times reported in Table 1 are
just an indication on how BILP-Q would work on gate-based quantum computation on different problem instances.

Furthermore, since quantum annealing can be adopted as a heuristic solution for QUBO problems, BILP-Q formulation
has been tested using a real quantum annealer (D-Wave) [17] for problem instances with a number of agents from 2 to
7. Results are shown in Figure 2.

We can observe an increasing trend in the quantum annealer time as the number of agents increases. In particular,
this tendency seems to be exponential with respect to n for all the distributions, as testified by the light green curve
which describes the function f(n) = 2n + 60. This is an interesting finding since it represents a better results than the
state-of-the-art IDP-BOSS which scales as O(3n). Nonetheless, it is necessary to perform further experiments to verify
whether these times hold even with a larger number of agents.

Figure 2: Results of BILP-Q using a D-Wave quantum annealer.

In general, for both quantum implementations of BILP-Q, the specific coalition values seem not to be particularly
relevant for the time required to get the solution. As expected, the number of agents n and the parameter p (for
QAOA) have a huge impact. However, these results do not represent an exhaustive evaluation of BILP-Q but only
a proof-of-concept on different possible coalition games. Thus, further experiments need to be performed to test in
practice its potential advantage over classical solutions.

5 Conclusion

In this work, we proposed BILP-Q, a quantum algorithmic approach for the Coalition Structure Generation problem. In
particular, we presented a general QUBO formulation for CSGP that can be solved using different types of quantum
devices. Furthermore, we compared the computational (gate) complexity of BILP-Q against the most adopted classical
counterparts, showing that the CSGP may be an ideal setting for leveraging quantum computation in AI.

Also, we demonstrated the adoption of BILP-Q for small-size problems using gate-based quantum simulation and tested
it on a real D-Wave quantum annealer when increasing the number of agents of the coalition game up to 7.
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Future studies will be dedicated to identifying specific cases for CSGP where it is possible to leverage the advantages
of BILP-Q in real-world applications, especially those related to Constrained Coalition Formation [10]. Finally, the
implementation of QAOA for larger problem instances will be investigated using ad-hoc inizialization procedures [18]
as well as custom optimization strategies for quantum annealing.

Code Availability

All code to generate the data, figures, analyses, as well as, additional technical details on the experiments are publicly
available at https://github.com/supreethmv/BILP-Q.
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