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Abstract. This paper introduces the agent platform HumanSim, a com-
bination of the BDI-paradigm and Answer Set Programming (ASP), to
simulate entities in three-dimensional virtual environments. We show
how ASP can be used to (i) annotate a virtual three-dimensional world
and (ii) to model the goal selection behavior of a BDI agent. Using this
approach it is possible to model the agent domain and its behavior –
reactive or foresighted – with ASP. To demonstrate the practical use of
HumanSim, we present a three-dimensional planning and simulation ap-
plication, in which worker agents are driven by HumanSim in the shop
floor domain. Furthermore, we show the results of an evaluation of Hu-
manSim in the former mentioned simulation application.

Keywords: BDI Agents, Intelligent Virtual Agents, Virtual Environ-
ments, Answer Set Programming, IVA architecture

1 Introduction

Applications of virtual three-dimensional environments have seen a strong growth
in the last few years. One main reason is the increasing number of affordable
and easy to use hardware and software by which it is possible to create and
display such environments in less time, with a more realistic graphics and intu-
itive interaction. These technologies are not only used in the consumer section,
for example in games. Moreover, those technologies enable new opportunities in
research or manufacturing. Examples are the evaluation of ergonomic aspects
in cars1 or the simulation of a shop floor configuration2 which require the (as
far as possible) realistic simulation of autonomous entities. In order to use those
entities in a daily routine, for example in different evaluation settings, a flexible
way to model their behavior is necessary.
An often used technology to drive three-dimensional entities in virtual environ-
ments is the BDI-agent architecture (see [1][2]). This paradigm is a established

1 RAMSIS Automotive http://www.human-solutions.com/
2 FlexSim Simulation Software, https://www.flexsim.com/flexsim/
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and well researched agent model, which has its origins in the research done by
[3]. It combines aspects of reactive and deliberative agent models. A BDI-agent
can adapt its behavior in non-deterministic environments in a resource efficient
way. The main components of a BDI-agent are Beliefs, Desires and Intentions.
Beliefs represent the agent knowledge about its environment and its current
situation. Desires are long-term goals which have to be achieved by the agent.
Intentions are the actions which have to be performed next to reach the current
goal. Agent frameworks which are using this approach are Jack [4] or Jadex [5].
An agent can only interact with its environment in an autonomous and realistic
way, if it ’understands’ what it is ’seeing’ by dint of its sensors. The virtual en-
vironment and thus its objects need to be annotated with semantic information,
which describe in a – for the agent – meaningful way what they are standing for.
Usually, the semantic information about the world state, the agent actions and
their potential effects are expressed in heterogeneous formalisms and languages.
In [1] for example, three-dimensional objects in a simulated virtual environment
are semantically annotated with OWL23. In [6], RDF4 is in use to describe the
3D-scene instead. The perceived semantic information can be used by the agent
to deliberate and reason about the current world state to execute specific agent
plans for reaching goals.
In this paper we present our approach to describe the BDI agent environment
and its reasoning process with a uniform declarative logical formalism, answer
set programming (ASP). The application areas of ASP, which is based on the
stable model semantics [7], are NP-hard search problems [8], typically used for
model-checking, scheduling, diagnostics and decision-making [9]. By using ASP,
on the one hand we are able to annotate the agent environment and model its
ontology. We are also in the position to endow agents with commonsense rea-
soning [10], to simulate reliable foresighted acting virtual humans. Furthermore,
ASP allows extending the specification of a knowledge-intensive problem domain
with additional features such as e.g. non-deterministic effects, indirect effects of
events, default reasoning or background knowledge in a uniform way. E.g. it is
possible to naturally specify and reason about transitive relations necessary for
agents in 3D environments such as reachability of locations which can be formal-
ized in PDDL only by using derived predicates which are supported only by a
few PDDL planners5. A further motivation and requirement for using a declar-
ative formalism is the possibility to modify and change the agent’s knowledge
during the design phase of a simulation scenario without the need to recompile
the agent code after each modification. Simulation environments are used e.g. for
rapid prototyping, investigating and evaluating properties of production scenar-
ios before they are put in place etc. In this case, the behavior of human avatars
needs to be adapted to various settings. We have integrated the ASP-based BDI
agent approach into a design and editing framework for 3D environments which
allows changing agent behaviour in a flexible way. Our approach enables elabora-

3 Web Ontology Language, http://www.w3.org/TR/owl2-overview/
4 Resource Description Framework, https://www.w3.org/RDF/
5 For a discussion of the problems involved in derived predicates in PDDL cf. [11]
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tion tolerant6 ways of specifying human actions. If e.g. objects are duplicated in
a 3D environment, logical rules can immediately be applied to these new objects
without reconfiguring the agent behavior specification (which would be the case
in e.g. automata based behaviour representations).
The remainder of this paper is organized as follows. In Section 2 and 3, we
describe our layered approach and introduce the HumanSim architecture. In
section 4 and 5 we show, with reference to a shop floor use case example, how
HumanSim can be embedded and used in a simulation environment. Section 6
describes the evaluation results and section 7 shows the related work in the areas
of agent description and simulation in 3D environments.

2 HumanSim: a Layered Approach

For simulating human actions in virtual worlds, we structure agents represent-
ing human avatars with a three layer architecture. Each layer is responsible for
dealing with specific aspects, i.e. related to navigation and animation (bottom
layer), basic actions (middle layer) and deliberation (upper layer). The naviga-
tion layer handles path finding and animation, the middle layer provides routines
and recipes for executing ground actions such as e.g. walking, picking and plac-
ing objects, etc. The deliberation layer finally contains a representation of the
agent’s beliefs about the environment, the possible actions it might perform and
their consequences, as well as the decision procedures to form an intention based
on this knowledge.

Fig. 1. The HumanSim three layer architecture.

2.1 Layered Architecture

Navigation and Animation layer: This layer handles the basic tasks of path
finding and motion generation of agents in 3D environments. Both are standard
tasks in such environments supported by several game engines7. This layer in

6 “Elaboration tolerance is the ability to accept changes to a person’s or a computer
program’s representation of facts about a subject without having to start all over.”
[12]

7 Example of an engine which supports both tasks is unity3d: http://unity3d.com/
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HumanSim represents the 3D scene, the objects as well as generating paths and
motions which allow avatars to interact with the 3D scenario by avoiding colli-
sions with objects or other avatars. The navigation and animation components
are accessible for all agents and handle the motion requests and the execution
of the agent motions in the 3D scene. During execution, the agents receive con-
stant updates of their motion to control the accomplishment of a for example
movement or picking task.

BDI Agent Plans: The BDI agent plans provide routines for ground actions
the agents can execute in 3D environments. Ground actions include movement
(walking, running, etc.), picking and placing objects as well as more fine grained
tasks such as pushing buttons, locking and unlocking (doors, storages, etc.).
Ground actions such as walking use the bottom layer for navigation, whereas
other actions require specific animation functionality depending on the render-
ing environment used. Agents comprise of a set of these ground plans which ac-
cording to the BDI approach are triggered when respective events are received.
For selecting the ground plans, deliberation rules are used.

Deliberation Rules: HumanSim agents possess an explicitly represented,
symbolic model of the world as well as knowledge about their capabilities to act
and the effects of these actions. Both knowledge is expressed in ASP rules. The
world model includes facts about the state of the world as well as knowledge
about relationships between classes, types of objects, terminological knowledge
etc. which is usually represented in ontologies. The combination is used to per-
form the process of intention formation, i.e. the selection of plans which allow
the agent to accomplish its goals.

2.2 Logic Programs: Basic Concepts and Terminology

Due to space reasons, we refrain from a detailed introduction of the syntax and
semantics of logical rules in ASP (the reader is referred e.g. to [13]). Instead we
try to highlight several aspects which characterize ASP and are necessary for
the understanding in the context of this paper.
A logical program P in ASP consists of a set of rules with (possibly negated)
literals in the body and at most one literal in the head of a rule. Literals may be
ground or contain variables. Facts are rules with empty body. The stable model
semantics for a program P is based on the Gelfond-Lifschitz transformation [7].
Given P and a set of ground atoms S, the reduct PS is obtained by deleting

1. each rule that has a negated literal notL in its body with L ∈ S, and
2. negated literals of the form notL in the bodies of the remaining rules.

The set S is a stable model of P , if the least Herbrand model MM(PS) = S
(note that PS is a definite program, i.e. does not contain negated literals). Thus,
a stable model or answer set is a consistent set of ground literals. Intuitively, a
stable model consists of the ground literals which are consistent with the rules
in P and are justified by the rules (i.e. appear in the head of at least one rule).
It is important to note that usually a logic program has several stable models.
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Answer set programming is based on the stable model semantics extended with
rules for expressing e.g. choice, weights, cardinality constraints and optimization
statements [14]. In the context of planning, a choice rule can be used to express
that a rule may be optionally applied in a specific situation. Thus, this semantics
allows expressing non-determinism in a natural way. For generating the stable
models of a program, a number of efficient solvers have been developed.

2.3 Deliberation Rules for Reactive Agents

Extending the BDI reasoning cycle with deliberation rules, the logical rule set
representing the agent’s knowledge about the current state of the world is used
for selecting the agent’s intention. If a relevant event is received from the envi-
ronment the belief state of the agent is changed and the reasoning process for
the updated rule set is started. With respect to the usual BDI reasoning cycle,
this provides a filter which interprets events in the light of the knowledge rules
and as a result leads to potential intentions. Since the rule set can have several
stable models, each of these models provides an option the agent might choose to
achieve his goal(s). The options refer to ’ground’ plans which the agent is able to
perform. One implemented BDI plan is e.g. the moveTo plan, which will be trig-
gered by a moveTo(X) predicate contained in a stable model. In the following,
a random walk behavior, implemented with one rule, is shown:

intention(moveTo(L)) :- location(L), not agentPosition(L,T), actualTime(T).

This rule has the following meaning: ”Go to location L, if there is a location
L and you are not at location L at time T and T is the current time.”

2.4 Look-ahead and Planning with the Discrete Event Calculus

A general limitation of BDI agents is the limited support when accounting for
the possible effects of an action while selecting an intention. The Discrete Event
Calculus (DEC) is a logical formalism for expressing commonsense knowledge
and enabling the reasoning about effects of events and actions, see [10]. DEC
uses a sorted logic with events, fluents and timepoints. Events represent events
or actions that can occur in a world. Fluents represent properties of the world
which can vary over time, which is represented by timepoints. DEC provides
axiomized predicates which allow to express the effect of events (e.g. agent ac-
tions) on fluents. Reasoning about effects of events and actions can be used to
endow agents with look-ahead capabilities and planning. DEC has initially been
formalised using first-order logic with circumscription (which is a second order
feature) in order to cope with the frame problem. Lee and Palla [15] have shown
that DEC can be represented in ASP8 which allows the usage of state-of-the-art
ASP solvers in new contexts (which indicates the close relationship between cir-
cumscription and the stable model semantics). The usage of DEC allows agents

8 DEC ASP Rules: http://reasoning.eas.asu.edu/ecasp/examples/foundations/DEC.lp
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to project the knowledge about the current situation into the future, in particular
to plan the course of actions in order to achieve their goals.

The following example shows a specification of the action moveTo as DEC
event with effects of performing the action at timepoint T. moveTo can be ap-
plied to all known locations (line 1). The rule in line 2-4 specifies that a moveTo
action can be performed under certain circumstances (e.g. the agent believes that
the location is reachable at timepoint T). The DEC predicates initiates and ter-
minates (lines 5-8) state which fluents are affected if the action is performed
(the fluent agentPosition is modified). Finally, an ASP constraint (a rule with
empty head, line 9) specifies which property must not hold after executing agent
actions, i.e. the goal the agent wants to achieve (in the example: a dispenser has
to be filled with units). Note that moveTo does not affect the fluent needUnits,
hence by itself is not sufficient to bring about the goal condition.

01| event(moveTo(L)) :- location(L).

02| {happens(moveTo(L), T)} :-

03| holdsAt(agentPosition(M),T), location(L),

04| reachable(L, T), M!=L, time(T), T<maxtime.

05| initiates(moveTo(L),agentPosition(L),T) :- location(L),

06| holdsAt(agentPosition(M),T), time(T), M!=L.

07| terminates(moveTo(L),agentPosition(M),T) :- location(L),

08| holdsAt(agentPosition(M),T), time(T), M!=L.

09| :- holdsAt(needUnits(dispenser), maxtime).}

3 Extended BDI Architecture

The layered approach described in the previous section is embedded into a BDI-
agent model and reasoning cycle in order to simulate humans in virtual three-
dimensional environments by coupling several AI technologies, see figure 2.

Our agent model uses the BDI-model to describe the interior agent state,
hence the agent model is divided into the components Beliefs, Desires and In-
tentions. The agent Beliefs respectively its knowledge base KB includes two
different kinds of knowledge: the knowledge Kσ ∈ KB of received information
about the world state σ; and the knowledge Kβ ∈ KB about how to react to
these states to reach specific goals. The set D ⊆ Des represents these goals,
where Des are all possible desires. An agent also has a subset I ⊆ Int of BDI
plans, where Int designates all possible intentions. I provides routines how to
execute an atomic action α ∈ Γ in the agent 3D environment, where Γ denotes
the set of all possible agent actions. An agent A ⊆ Agt of all possible HumanSim
agents has also a function ϕ which uses the KB of A as input to select a set
of intentions Iσ at specific agent world states to reach D ∈ Kβ . Each time ϕ
selects Iσ, the corresponding plans out of I become the next intentions of A and
atomic actions out of Γ were executed. Hereby Kσ will be updated and after
processing all Iσ, ϕ will be executed again with the updated KB. We call ϕ also
reasoning cycle, because of this cyclical execution. While receiving information
δ of updated entities E in the agent environment, the old information of E will
be overwritten with δ in Kσ.
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Fig. 2. HumanSim architecture overview.

3.1 Reasoning Cycle

The reasoning cycle ϕ is shown below as pseudocode by using an ASP system
in our BDI-agent framework. This function will be executed if domain updates
were received by the agent and no plan is currently executed.

Pseudocode of the HumanSim reasoning cycle.

reasoningCycle(event, Kσ, Kβ, I, Γ , maxtime)

01 | run := true
02 | parallel while true
03 | Kσ := receiveDomainInformation()
04 | endparallel while
05 | while run = true
06 | r := getRulesets(Kσ,Kβ)
07 | for i := 1 to maxtime do
08 | m := GetStableModelsWithASPsystem(r,i)
09 | if |m| ≥ 1 then break
10 | endfor
11 | if m = null or |m| = 0 then run := false
12 | mx := chooseModelOutOf(m)
13 | m′

x := coverIntentionPredicates(mx,I)
14 | if |m′

x| = 0 then run := false
15 | for s := 1 to |m′

x| do
16 | Iσ := selectIntentionBySequenceNumber(m′

x,s)
17 | success := executeActionsByIntention(Iσ,Γ ,Kσ)
18 | if success = false then break
19 | endfor
20 | endwhile
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ϕ starts with collecting all beliefs from KBA of agent A which is updated in
a parallel process each time a updated domain information is received (line 2-4).
In the next step, the ASP system will be executed (line 8) in a loop with the col-
lected information (line 6). This loop will be passed until the ASP solver output
contains a stable model or the loop number reaches maxtime ∈ N. maxtime is a
number which can be set from outside to control the loop but also the resulting
stable model. While executing the ASP system a variable defined in the rulesets
is set with the current loop number, e.g. to define the maximal search depth. If
no stable model has been found after maxtime was reached, the reasoning cycle
will be canceled and the agent listens to future belief changes. Otherwise one of
the stable models will be chosen to cover all defined predicates which refer to
available BDI plans (line 12-13). These predicates will be then transformed into
agent intentions Iσ (line 16) and applied depending on the sequence number s in
their predicates (line 17). While achieving a current goal, action messages were
sent to perform ground actions in the agent domain. Belief updates resulting
from this achievement are used to evaluate the success of the executed plan. If
all intentions in the sequence are processed or the plan fails while execution, the
reasoning cycle will be passed again (line 18).
Note that while generating the stable models, the knowledge of the agent is
treated under the closed world assumption according to the stable model se-
mantics. Nevertheless, since the environment is dynamic, the agent can acquire
new knowledge (facts, but also general rules) and e.g. deliberately explore the
environment to get more information9.

4 3D Simulation Environment

The main emphasis of HumanSim is the simulation of human beings in three-
dimensional virtual worlds. To create and simulate such a three-dimensional sce-
nario we integrated our layered approach into a collaborative, web-based frame-
work with components for creating and simulating 3D scenarios for training and
evaluation issues. These components are categorized in two phases: designtime
and runtime. In the designtime phase, a three-dimensional scenario with ani-
mated characters and the 3D models as well as their semantic information are
modeled. In the runtime phase, the scenario designed is simulated and executed.

Designtime: To simulate a scenario it has to be created in the COMPASS
web editor10 (figure 3). In COMPASS it is possible to drag and drop predefined
entity definitions into a scene. To define entities as agents, we use the agent
component. With this component it is possible to model the agent behavior with
ASP rules. In figure 4, a component which defines an agent with a ’random walk’
behavior, is shown. To make ASP annotations other components are available.

9 Arguably, in 3D environments considered in the context of this paper, the closed
world assumption is more appropriate.

10 COMPASS (Collaborative Modular Prototyping And Simulation Server):
https://github.com/dfki-asr/compass
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Fig. 3. COMPASS editor to model the key chain scenario.

Fig. 4. Agent component to define an entity as an agent with a ’random walk’ behavior.

Runtime: In the runtime phase the annotated 3D scene, modeled in COM-
PASS, is simulated with the execution environment FiVES, a highly scalable
synchronization platform11. FiVES initiates agents in HumanSim over its in-
terface with agent information previously defined in an agent component. While
executing agents, HumanSim sends agent information to FiVES, to interact with
the simulated environment. An agent has to perceive its environment, the world
state represented in FiVES, to reason about its domain. Such information is
received by HumanSim (figure 5) through a plugin which listens to create, up-
date or delete events of FiVES-entities. Upon receiving these events, HumanSim
updates the belief base of its agents with the new information. After updating

11 FiVES (Flexible Virtual Environment Server): https://github.com/fives-team
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the belief base the HumanSim reasoning cycle will be performed. While per-
forming this cycle, all ’perceived’ information about the simulation environment
and the agent behavior is used to decide which actions have to be performed
subsequently in the simulated environment.

Fig. 5. FiVES-HumanSim Interaction.

5 Use Case Example

In the use case scenario, a key chain manufacturing process is simulated in a
three-dimensional virtual world. In this process a single manufacturing module,
consisting of presses, two dispensers and a pick and place (PnP) arm, produces
key chains. To produce a key chain, the PnP arm has to pick all required parts
stored in the dispensers and places them into a press which finally presses all
parts together. Thus, the filling level of the dispensers decreases until their min-
imum filling level is reached. After reaching this level, the production stops.

A worker is present in this scenario which is in charge of maintaining the
production. The agent monitors the key chain production to react to possible
errors. The considered manufacturing fault is a reached minimum filling level
of the dispensers, while producing multiple key chains. To avoid the key chain
production termination, the simulated worker has to go to a storage location to
fetch new material and walk to a under filled dispenser to refill it.

5.1 Scenario Modeling

To model and simulate the key chain scenario, we edit the 3D scene using the
C3D-framework, in particular the COMPASS editor. Assets contained in the
scene are a manufacturing module, with its presses and dispensers; a factory
model ; several storage locations; and also a worker asset. Figure 6 shows the
created 3D scene in which the key chain scenario will be simulated.

To annotate the three-dimensional scene, we use the ruleset component. With
this component, it is possible to annotate an entity with ASP rules, describing
to which classes it belongs and its initial state at the execution time. Figure 7
shows three different ASP rules which describes the minimum and maximum
filling level of an entity and the fact that entities contained are withdrawable.
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Fig. 6. 3D Scenario overview.
Fig. 7. Component to anno-
tate entities by ASP rules.

5.2 Agent description.

For the key chain scenario we implemented in addition to the moveTo ground
plan further BDI plans in the HumanSim framework, like the Take and Fill plan.
These plans are recipes which enable an agent to interact with its environment
to refill underfilled dispensers. To realize this behavior, we modeled the ’refill’
behavior in two different strategies: the ’reactive’ and the ’foresighted’ look-
ahead planning strategy.

Reactive Behavior. With this strategy, an agent assesses only its current
situation and acts depending on it. This means that a ’reactive’ agent has for
one situation one or more action goals to reach another situation. The take and
fill action rules of the ’reactive’ refill agent, which are holding if the agent with
no units stands beside a storage location in the first case and in the latter case,
if it has enough units and stands beside the underfilled dispenser, are shown
below:

01| intention(take(C,U)) :- contains(C,S), withdrawable(C),

02| needUnits(D,U), C != D, S >= U, agentPosition(C,T),

03| agentHasUnits(B), actualTime(T), B < U, container(D).

04| intention(fill(C,U)) :- container(C), agentPosition(C,T),

05| agentHasUnits(B), actualTime(T), needUnits(C,U), U <= B.

The BDI take goal will be triggered if the situation from line 1-5 holds.
This rule can be read as: ”If the current agent position is container C and C is
withdraw able and container D needs units U and the agent does not have enough
units R in its bucket B, then the agent has to take U units out of C.” Instead,
the BDI fill goal will be triggered if the situation from line 4-5 holds.

Foresighted Behavior. As mentioned in section 2, there are different ways
to plan with ASP, and therefore to model foresighted agent behavior with our
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approach. We use the DEC axiomatisation and specify further ground actions
(e.g. for take and fill) with execution conditions and effects. Unlike the ’reactive’
strategy, apart from the execution conditions and effects of ground actions, only
the initial situation and goal situation have to be present as rules. By defining
general conditions for actions, this strategy is more flexible than the ’reactive’
strategy. Moreover, it is possible to get multiple stable models and therefore
multiple possible plans to solve a problem, by using this kind of strategy.

5.3 Scenario Simulation

In the runtime phase, the annotated key chain scene with the agent definition
were simulated by FiVES. After initiating HumanSim, a simulated worker is
driven by an agent, while receiving scenario information out of FiVES. With
this information and the agent behavior modeled in ASP, the reasoning cycle
will be performed. The execution of ground agent actions in the simulated envi-
ronment depends i.a. on the used agent behavior and therefore on the predicates
containing in a resulting stable model12. Following, the output of the ASP mod-
ule at world state σt using the ’reactive’ behavior is shown:

Answer: 1

intention(moveTo(storage1)) intention(moveTo(storage2))

We get one stable model with two intention(moveTo(X)) predicates, if a
dispenser is underfilled and the agent has to move to one of two possible storage
locations to take needed units. In the next reasoning cycle step, one of those
predicates will be chosen and a moveTo intention, with location X present in
this predicate, apply. After achieving this goal in the simulated environment,
and therefore after updating the agent belief base with the new world state
agentPosition(X), the reasoning cycle will be executed again. It is performed
until no action rule is present in a stable model. This is the case when the former
underfilled dispensers have enough units, after: intention(take(X,10)),
intention(moveTo(dispenser1)), intention(fill(dispenser1,5)),
intention(moveTo(dispenser2)) and intention(fill(dispenser2,5))

showed up in the ASP module output. The following output of the ’planning’
behavior shows two of four possible stable models which hold if two dispensers
are underfilled.

Answer: 1

intention(moveTo(storage1),1) intention(take(storage1,10),2)

intention(moveTo(dispenser1),3) intention(fill(dispenser1,5),4)

intention(moveTo(dispenser2),5) intention(fill(dispenser2,5),6)

Answer: 2

intention(moveTo(storage2),1) intention(take(storage2,10),2)

intention(moveTo(dispenser1),3) intention(fill(dispenser1,5),4)

intention(moveTo(dispenser2),5) intention(fill(dispenser2,5),6)

12 To minimize the output of the ASP module, we use gringo filter statements #show.
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In these models, the performing sequence of the BDI plan E in the inten-
tion(E,T) predicate, is denoted by the increasing number T. These sequences
propose a way and therefore different possibilities to reach the goal state in
which no dispenser is underfilled. After (e.g. randomly) selecting one sequence
respectively stable model, the selected one will be performed in the virtual en-
vironment by executing the BDI intention specified for time T.

6 Evaluation

We simulated several settings for each behavior strategy: the ’reactive’ and the
’foresighted’ strategy. We considered multiple situations which affect the run-
time of our agent system in the presented scenario domain, see section 5. We
assume that the execution time of selected plans is constant, thus we measured
only the runtime of the agent deliberation process. To do so, we first tested two
different domain situations: a ’Critical’ situation where the worker has to refill
two dispensers and a ’Idle’ situation in which every dispenser has enough units
and the worker has the goal to rest. Further aspects which influences the former
mentioned process are the number of placed objects in the scene like: locations
(defined by one rule), storages (defined by six rules) and dispensers (defined by
five rules). We also measured the increase of the logical program complexity by
defining the deliberation rules more general. While evaluating the ’foresighted’
strategy, we calculate all stable models to get every possible intention for each
plan step, as we receive while using the ’reactive’ strategy. The evaluations were
carried out with the ASP system Clingo 4.4.0 on a Windows 7 system with 16
GB memory and an Intel i7-3770k CPU.

Fig. 8. Strategy runtime evaluation: ’reactive’ (left); ’foresighted’ (right).
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In the evaluations (see figure 8) the number of the placed objects were in-
creased from 1 to 8 × 106 while using the ’reactive’ strategy and for the ’fore-
sighted’ strategy, 1 to 200 objects were placed. The runtime to find stable models
depends i.a. on the number of evaluated rules. This relationship becomes visible
while comparing both strategies for the ’Idle’ setting: The ASP system needs
224.25s to examine ≈ 48×106 rules to find a stable model for the ’reactive’ situ-
ation. For the ’foresighted’ strategy it needs 278.78s to examine ≈ 57×106 rules
instead. Considering the other results of the ’foresighted’ program, its runtime
exponentially increases, the other ’reactive’ results increase polynomial instead.
The strong runtime growth while using the ’foresighted’ strategy depends on the
search depth needed to find a stable model. In all ’Critical’ situations a search
depth of six is needed which is defined by maxtime in the agent function ϕ. Using
the ’reactive’ strategy instead, in all situations a stable model can be found with
a maxtime of one. If placed objects do not influence the deliberation process as
in the ’Location (C)’ situation, their runtime effect is negligible.

7 Related Work

We use the agent paradigm to simulate human models with HumanSim. This
paradigm is not just used to simulate virtual humans, as in [16], but also to
control robotic systems as in [17] or in the shop floor domain as in [18]. The agent
architecture used in HumanSim is the BDI approach implemented with the Jadex
framework. Another BDI-agent framework is Jason13. Jason uses AgentSpeak(L)
to describe the BDI-agent beliefs, goals and to model the decision-making process
[19]. AgentSpeak(L), is a logic based programming language for modeling BDI
agents such like APL3 [20] or DALI [21]. In [22] a BDI framework uses ASP to
support agent belief operations. In [16] instead, the decision-making process of
social virtual agents is extended with ASP. In [23] ASP modules are introduced
which can be integrated in systems to describe agent ”capabilities”. Closer to
our approach for enhancing BDI-agents with deliberation are [24], [25] and [26].
While [25] focusses on incorporating plans generated from first principles into
the plan library, [26] provides a detailed formal account of an extended BDI
agent language and proposes to use an HTN planner to incorporate lookahead
planning. Apart from the restriction on HTN planning (which again requires a
different formalism and language), their theoretical focus is not oriented towards
usage in practical environments.

8 Conclusion and Future Work

In this paper, we presented HumanSim, a layered BDI-agent framework for sim-
ulating human avatars in 3D environments. For intention selection, HumanSim
uses logical rules expressed in ASP which incorporate knowledge about the en-
vironment as well as knowledge about the capabilities of the agent. We detailed

13 Jason: http://jason.sourceforge.net/
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the extended BDI reasoning cycle with reactive and lookahead features based on
the Discrete Event Calculus and described the usage of HumanSim in the con-
text of a simulation environment for production scenarios. Finally, we evaluated
the reactive and foresighted reasoning behavior with respect to solving time for
different domain sizes.
One may argue that for planning purposes, PDDL could be used since highly
optimised software exists. Apart from the fact that this would reintroduce an-
other formalism as opposed to our goal of using a uniform approach, PDDL only
provides the specified language constructs which are in addition not supported
by all planners available. As indicated in the introduction, ASP is much more
versatile and allows expressing a wide range of commonsense knowledge in an
intuitive way, admittedly at the expense of efficiency.
The approach is not limited to one agent but can be applied to an open number
of agents, under the condition that goals are not conflicting among agents. To
coordinate agents in case of conflicting goals, standard mechanisms (protocols)
could be applied. As future work, we will explore how the logical formalism
used for deliberation within one agent can be used to support decisison making
among a group of agents. Together with the reactive and the deliberation layer,
the resulting framework would be an instantiation (with up-to-date technology)
of the InteRRaP architecture [27] in which tradition we situate our approach.
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