

5th International Semantic Service Selection Contest

- Performance Evaluation of Semantic Service Matchmakers -

<u>Matthias Klusch</u> (DFKI, Germany) Birgitta König-Ries (University of Jena, Germany) David Martin (Apple Inc., USA) Massimo Paolucci (NTT DoCoMo Research Europe, Germany) Abraham Bernstein (University of Zurich, Switzerland) Ulrich Lampe (TU Darmstad, Germany) Stefan Schulte (TU Vienna, Austria) Terry Payne (U Liverpool, UK)

Summary Report for 2012 Edition. April 12, 2013.

Evaluation Framework

Evaluation Results & Lessons Learned

 Klusch, M. (2012): Overview of the S3 Contest: Performance Evaluation of Semantic Service Matchmakers.
 In: Blake, M.B.; Cabral, L.; König-Ries, B.; Küster, U.; Martin, D. (Eds.): Semantic Web Services - Advancement through Evaluation; Chapter 2; Springer.

• Service discovery

- Centralized in Web service registries (W3C SOA) or with search engines
- Decentralized in P2P service networks
- Semantic selection (aka semantic matchmaking)
 - (1) Semantic matching of registered services S with desired service description Q
 - (2) Relevance ranking of S (answer set) for final selection of services by user
 - NO brokerage (composition, publish/subscribe negotiation, execution handling)

Evaluation of Semantic Selection

(1) Support of service description languages

- OWL-S, WSML, SAWSDL, SA-REST, USDL, hRESTS
- Agnostic: Semantic-preserving transformations, metamodels

(2) Support of composition

- Pruning of composition search space by selection
- Iterative selection for forward/backward chaining
- (3) Security (data privacy)
- (4) Usability and configuration efforts

(5) Performance of selection

Correctness: Precision, Recall, MAP, F1, etc.

Speed: Average query response time

Other Evaluation Initiatives

• Comparison with other service evaluation initatives:

	SWS Challenge	WS Challenge	S3 Contest
Scope	compos (given sce	sition enarios)	discovery
Performance	-	runtime	IR measures, runtime
Usability/effor	t adaptation effor	t -	description effort (cross-eval track in 2009)
Correctness	Alg. co	rrectness	Retrieval correctness

Blake, M.B.; Cabral, L.; Koenig-Ries, B.; Küster, U.; Martin, D. (2012): Introduction. In: (dito), Semantic Web Services - Advancement through Evaluation; Chapter 1. Springer.

Kuester, U.; Koenig-Ries, B.; Klusch, M. (2009): Evaluating Semantic Web Service Technologies: Criteria, Approaches and Challenges. In: Progressive Concepts for Semantic Web Evolution: Applications and Developments; Advances in Semantic Web Information Systems series. IGI Global.

Participants of S3 Contest 2012

Track 1 OWL-S Service Matchmakers

- 1. iSeM 1.1 (DFKI, Germany)
- 2. OWLS-MX3 (DFKI, Germany)
- 3. SeMa² v2 (TU Berlin, Germany)
- 4. Nuwa-OWLS (URJC Madrid, Spain)
- 5. OWLS-iMatcher (U Zurich, Switzerland)
- 6. SPARQLent (HP, Italy)
- 7. OWLS-SLR (Aristotle U of Thessaloniki, Greece)
- 8. XSSD (Beihang U, China)
- 9. EMMA (U Seville, Spain)

10. iSeM-TSM1 (Payame Noor U, Iran / DFKI)

• iSeM 1.1

[analog iSeM 1.1 for SAWSDL]

- Selection: Hybrid; Signature (I/O), Specification (P/E), Service description tag
 - Logic-based matching
 - Logical I/O concept subsumption + information-theoretic valuation of approximated logical I/O concept subsumption
 - Logical P/E plugin checking (theta-subsumption)
 - Non-logic-based matching
 - Text similarity of unfolded service signatures (I/O) and service description tags,
 - Ontology-based structural I/O match Separated filters
 - Adaptive (offline): SVM relevance classifier with coherence-based weighting scheme
 [TS = 5% OWLS-TC4] for aggregation of matching degrees with subsequent ranking
- Dev: Patrick Kapahnke, Matthias Klusch (DFKI, Germany), 2010

• iSeM-TSM1

Selection: Non-logic-based; Signature (I/O), Service description tag

- Non-logic-based matching
 - Text similarity of unfolded service signatures (I/O) and service description tags,
 - Ontology-based structural I/O match Separated filters

-Dev: Elyad Alaei, Ahmad Faraahi (Payame Noor U, Iran), Mohammad-Reza Feizi-Derakhshi (U Tabriz, Iran)

Service Selection By Participants in Brief

Nuwa-OWLS

Selection: Hybrid; Signature (I/O), Service description text

- Logic-based matching: Logical concept subsumption
- Non-logic-based matching:
 - Ontology-based (WordNet) structural I/O concept label match (I/O concept label e.g. <u>http://foo/bar.owl#door</u> --> label: "door")
 - Text similarity (Cosine TF-IDF) of keywords extracted from: Semantic I/O concept URI fragments, labels Service textual description Service name and service URI fragment
- Ranking: Weighted sum of results of both matching types

Dev: Zije Cong, Alberto Fernandez (URJC Madrid, Spain)

[analog Nuwa-SAWSDL]

Service Selection By Participants in Brief

- SeMa² v2
 - Selection: Hybrid; Signature (I/O), Specification (P/E)
 - Logic-based matching:
 - Logical I/O concept subsumption relation as numeric score
 - Logical P/E (SWRL rule) plugin matching with theta-subsumption (no ABox) + separated precondition checking over given ABox
 - Non-logic-based matching:
 - String matching of I/O concept names (string.equal() / .contains())
 - Structural and taxonomic matching of variable types in SWRL (P/E) rules
 - Ranking: Linear weighted aggregation of all matching scores
 - Dev: Nils Masuch (TU Berlin, Germany)

• OWLS-SLR lite

- Selection: Hybrid; Signature (1/O), Non-functional parameters
 - Logic-based match: Logical I/O concept subsumption relations as basis for ...
 - Non-logic-based match: ... Ontology-based structural match (edge distance,

upward co-topic distance)

- Ranking: Structural similarity
- Dev: Georgios Meditskos, Nick Bassiliades (U Thessaloniki, Greece)

OWLS-iMatcher

- Selection: Syntactic; Signature (I/O)
 - Non-logic-based: Vector-based text similarities of unfolded service signatures
 - Ranking: Text similarity
- Dev: Christoph Kiefer, Avi Bernstein (U Zurich, Switzerland)

Service Selection By Participants in Brief

• OWLS-MX3

- Selection: Hybrid, adaptive; Signature (I/O)
 - Logic-based match Logical I/O concept subsumption
 - Non-logic-based match: Text similarity of unfolded service signatures, Ontologybased structural match - Separated filters
 - Adaptive (offline): SVM relevance classifier [TS = 10% OWLS-TC3] for aggregation of (non-)logic-based matching degrees with subsequent ranking
- Dev: Matthias Klusch, Patrick Kapahnke (DFKI, Germany)

• SPARQLent

- Selection: Logic-Based; <u>Signature (I/O)</u>, Specification (P/E)
 - Logic-based match: P/E described in SPARQL, I/O concepts represented as additional constraints; I/O concept match via RDF entailment rules for RDF-encoded OWL
- Dev: Marco Luca Sbodio (Hewlett-Packard EIC, Italy)

• XSSD

- Selection: Hybrid; Signature (1/O), Service description tag
 - Logic-based match: Logical I/O concept subsumption
 - Non-logic-based match: Text similarity match of service description tags
 - Ranking: Logic-based degree followed by text similarity-based ranking
- Dev: Jing Li, Dongjie Chu (U Beihang, China)

• EMMA

- Selection: Logic-based semantic pre-filtering; Signature (I/O)
 - Logic-based pre-filtering: SPARQL query in Jena RDF store using inference rules
 - Hybrid match: Based on pre-filtering using OWLS-MX3 (or other OWL-S MM plugins)
 - Ranking: Ranking procedure of internal OWLS-MX3 plugin
- Dev: José María García, David Ruiz, Antonio Ruiz-Cortés (U Seville, Spain)

Track 2 SAWSDL Service Matchmakers

- 1. LOG4SWS.KOM (TU Darmstadt, Germany)
- 2. COV4SWS.KOM (TU Darmstadt, Germany)
- 3. iSeM 1.1 (DFKI, Germany)
- 4. SAWSDL-MX1 (DFKI, Germany)
- 5. URBE (Politecnico di Milano, Italy)
- 6. SAWSDL-iMatcher (U Zurich, Switzerland)
- 7. Nuwa-SAWSDL (URJC Madrid, Spain)

• LOG4SWS.KOM

- Selection: Hybrid; Signature (I/O), Element names
 - Logic-based match: Logical I/O concept subsumption relation as numeric score
 - Non-logic-based match: Ontology-based structural I/O concept similarity (path length); WordNet distance (fallback strategy for missing modelReference)
 - Adaptive (offline): Aggregated results using Ordinary Least Squares (OLS)
 - Ranking: Linear weighted average similarity of matched operations

COV4SWS.KOM

- Selection: Non-logic-based (see LOG4SWS.KOM); Signature (I/O), Element names

Dev: Stefan Schulte, Ulrich Lampe (TU Darmstadt, Germany)

Service Selection By Participants

• URBE

- Selection: Non-logic-based; Signature (I/O)
 - Non-logic-based match: Bipartite graph-matching of service operations;
 Ontology-based structural I/O concept similarity (worst-case path length in given reference ontology); Text similarity (WordNet) for property-class and XSD data type matching
 - Ranking: Weighted aggregation of structural and text matching scores

Dev: Pierluigi Plebani (Politecnico di Milano, Italy)

SAWSDL-MX1

- Selection: Hybrid; Signature (I/O)
 - Logic-based match: Logical I/O concept subsumption
 - Non-logic-based match: Text similarity of unfolded concept definitions
 - Ranking: Logic-based sorted by text similarities

Dev: Patrick Kapahnke, Matthias Klusch (DFKI, Germany)

SAWSDL-iMatcher

- Selection: Non-logic-based; Signature (I/O)
 - •Non-logic-based: Vector-based text similarities of unfolded service signatures
 - Ranking: Text similarity

Dev: Dengping Wei, Avi Bernstein (U Zurich, Switzerland)

iSeM 1.1 for SAWSDL

- Selection: Hybrid; Signature (I/O), Service name
 - Match: [cf. iSeM 1.1 for OWL-S, slide 7]

but no P/E match; uses service name instead of description tag

Nuwa-OWLS

- Selection: Hybrid; Signature (I/O), Service description text
 - Match: [cf. Nuwa-OWLS, slide 9]

Classification

	Non-logic-based	Logic-based	Hybrid
Non-Func	WSMLqos-SE (04)		PolyMaR (09), ROWLS (07)
Monolithic	Themis-S (Müller+09)	RACER, MaMaS	
			iSeM-SAWSDL (Klusch+ 07/08/09/10)
			OWLS-MX1/2/3;
			OWLS-iMatcher2(Kiefer+ 08)
	iSeM-TSM1 (Alaei+ 13)		Opossum (Toch+ 09)
			ALIVE (Andreou+ 09)
(10)	COV4SWS.KOM (Schulte+ 10)		LOGASWS KOM (schulter 10)
Signature	SAWSDL-iMatcher (Wei+ 09)	JIAC-OWLSM (Masuch+ 07)	SAWSDL-IVIX1/2 (Klusch+ 09)
	URBE (Plebani+ 08)	EMMA (Garcia+ 10)	
			OWLS-SLRlite (Meditskos+ 10)
			XSSD (Li + 10)
(PE)		PCEM(06)	
Specification			IJCIVI (Klusch+ 10)
Full Functional (IOPE)	WSColob (a	SPARQLent (Sbodio,+ 09)	SeMa ² (Masuch+ 10)
			(Lamparter + 0/)
Combined N/F	·	GSD-MM(01)	FCMATCH (06), GLUE2 (08),

- Tracks [#participants]
 - OWL-S [11] - SAWSDL [7]
 - hREST/WSML-lite [2]

Evaluation Framework

Evaluation Results & Lessons Learned

Framework Components in Brief

• Service retrieval test collections

- Track1: OWLS-TC 4.0

- 1.083 services, 42 requests w/ binary & graded relevance sets, 38 ontologies
- Groundings in WSDL 1.1, 7 domains (Communication, Economy, Education, Food, Medical Care, Travel, Military)
- 160 services and 18 requests w/ preconditions + effects each in SWRL and PDDL2
- @semwebcentral: 14.339 downloads (in Top-10 as of March 7, 2012)

- Track2: SAWSDL-TC 3.0

- 1.080 services, 42 requests w/ binary & graded relevance sets, 38 ontologies
- @semwebcentral: 760 downloads (March 7 2012)
- Track3: hRESTS 1.0
- Development: DFKI, U Jena, TU Darmstadt, U Beihang, U Thessaloniki, a.o.

• Evaluation tool: SME² v2.2

- Open source publicly available @semwebcentral.org since 2008: 2.816 downloads (March 7 2012)
- Plugin interface for contested matchmakers; standard retrieval performance measures

Service Relevance

- Relevance assessment of services
 - **Binary relevance** value: Relevant (1), or Irrelevant (0)
 - Standard NTCIR **4-graded relevance** scale used @TREC:

Relevance Grade	Gain value	Intuitive Meaning of Relevance Grade
Highly relevant	3	"Perfectly satisfies request $(S \equiv R)$ "
Relevant	2	"Relevant to request with some conditions of its conditions not satisfied $(S \subset R)$ "
Partially relevant	1	"Helpful to satisfy request by providing related information (S \cap R $\neq \phi$, S \notin R)"
Not Relevant	0	"Not relevant at all (S \cap R = ϕ)"

- Relevance sets defined by union average pooling of assessments:
 - >> Service relevant if judged relevant by at least one user (TREC).
 - >> Services not yet rated, or not in relevance set are irrelevant.

Evaluation Tool SME² v2.2

Performance measures

- Macro-averaged precision@recall MAP
- Average precision AP
- Q, nDCG [Graded relevance]
- Average query response time AQRT (elapsed time per query execution)
- http-request analysis
- Precision@k, R-Precision

Easy handling

ightarrow Load test collections +

Select matchmaker plugin(s) +

Configure evaluation run

→ Tailor your (printable) report of evaluation results

		ł	SME*2 Semantic Web) Servi	ce Matchmaker Evaluation	Environr	nent		
Configuration	Evaluation Resu	Its							
Test Collection				(General				
Selected test co	lection: OWLS-	FC 4 (PDDL 2	.1) 🔻						
Property				- I					
service type	0WL-S11		value						
# of service off	1083								
# of requests	42			C	urrent configuration file:			Save	Load
authors	Klusch et al. (DFk	(I)			Output directors	CiDaton	02)20100ME2000	ultebasi	Chan
description	OWL-S test collec	tion develop:	ed at DFKI, including graded rele		Output unectory.	C.(Datern	(55(2010(5)))E2(185)	unsonn	Chang
htdocs root	testcollections\O\	VLS-TC4_PE	DDL\htdocs		Auto-save results:	~			
← 🗂 isem (SA ← 📑 SAWSDL	WSDL) -iMatcher		⊷ 📑 alive •- 📑 emma				Scalability Tests		
 ► □ SAWSDL ► □ sawsdim 	-iMatcher IX		🕈 🗔 emma - 🗋 EMMA (Qall)		Query Response Time				
► □ urbemm ► □ XAM4SW	s		🛏 🗋 EMMA (Qsome) 🗢 🗂 isem				Enabled		
🛉 📑 sparqlen	t		🔶 🗂 OWLS-iMatcher						
– 🗋 Spard – 🗋 Spard	qlentXpbApbEpbE qlentXpbApbEpbR	>>	► □ owls-sir (lite) ► □ owlsmx		✓ Total Execution Time		0 10 2	20 30	40
- 🗋 Spard	qlentXp_Ap_Ep_E		🔶 🗂 sema2				Fraction size (%)	of service of	ffers per r
	alentXp Ap Ep R	~~	🔶 📑 xssd		Memory Consumption				
- 🗋 Snarr	nientX A E E								
- 🗋 Spare	10000XL								
- 🗋 Spard - 🗋 Spard	nlentX & F P								
– 🗋 Spard – 🗋 Spard – 🗋 Spard	qlentX_A_E_R								
– 🗋 Sparo – 🗋 Sparo – 🗋 Sparo	qlentX_A_E_R								
- 🗋 Sparc - 🗋 Sparc - 🗋 Sparc	qlentX_A_E_R				Avg. Offer Registratio	n Times			
- 🗋 Spard - 🗋 Spard - 🗋 Spard	qlentX_A_E_R				Avg. Otter Registration	n Times			
- D Sparc	qlentX_A_E_R				Avg. Otter Registration	n Times			
- D Sparc	qlentXAER		Start	Suspe	nd Abort	n Times			

Evaluation Tool SME² v2.2

Implementation

- Plug-in architecture
- Implemented in Java
- XML-based matchmaker plugin & TC configuration
- Jetty web server embedded

Developed @ DFKI: Minko Dudev Patrick Kapahnke Josef Misutka Martin Vasileski

Matthias Klusch

Evaluation Results & Lessons Learned

OWL-S Selection: Average Precision (Bin)

	<u>Matchmaker</u>	AP	Dev.
S 3	1. iSeM 1.1	.922	DFKI, Germany
	2. SeMa ² v2	.877 v1: .741	TU Berlin, Germany
	3. iSeM-TSM1	.861	Payame Noor U, Iran / DFKI
	4. Nuwa-OWLS	.853 -	URJC Madrid, Spain
	5. OWLS-MX3	.831	DFKI, Germany
	6. XSSD	.795	U Beijing, PR China
	7. EMMA	.762	U Seville, Spain
	8. OWLS-iMatcher	.672	U Zurich, Switzerland
	9. SPARQLent	.612	HP, Italy
	10. OWLS-SLR (lite)	.609	Aristotle U, Greece

<u>Please note</u>: For matchmakers with more than one variant, the one with best AP is shown.

M Klusch

OWL-S Selection: Macro-Averaged Precision for Binary Relevance

M Klusch

Mate	chmaker	AP:nDCG	Ma	itchmaker	AP:Q
53 1.	SeMa ² v2	.927 🕻	2 1.	SeMa ² v2	.883
2.	iSeM-TSM1	.916	2.	iSeM-TSM1	.855
3.	Nuwa-OWLS	.911	3.	Nuwa-OWLS	.846
4.	OWLS-MX3	.899	4.	OWLS-MX3	.834
5.	XSSD	.881	5.	iSeM 1.1	.821
6.	EMMA	.87	6.	EMMA	.7884
7.	iSeM 1.1	.841	7.	XSSD	.7881
8.	SPARQLent	.728	8.	OWLS-iMatcher	.671
9.	OWLS-SLR (lite)	.723	9.	SPARQLent	.576
10.	OWLS-iMatcher	.719	10.	OWLS-SLR (lite)	.57

Only very few matchmakers perform specification (P/E) matching

- SeMa² v2 (TU Berlin)
 - Structural + logical plugin (no Abox) + precondition satisfaction (ABox)
- SPARQLent (HP Italy)
 - SPARQL ASK [where] query containment (ABox)
- iSeM 1.1 (DFKI)
 - Logical plugin (no Abox)

Current problems:

- Test collection OWLS-TC has no ABoxes
- P/E in PDDL and SWRL: SWRL syntax in OWL-S spec and SWRL spec differ

Lesson Learned: Specification Matching

Problems

- Only 15% of OWLS-TC4 services have P/Es. Low increase of precision with P/E match.
- "Solution" of I/O pitfalls by "luck of random choice" (S1 or S2) w/o PE matching
- Collections require more services with (complex) P/E descriptions

<u>Ma</u>	tchmaker	AQRT (s)	w/o http	Vs. fastest variant [AQRT; diff AP]: diff rank AQRT
sa) 1.	XSSD	0.125	0.124	
2.	OWLS-SLR lite	0.46	0.446	[0.169;023]: +1
3.	SPARQLent	0.576	0.569	[0.201;423]: +2
4.	OWLS-iMatcher	2.152	2.121	
5.	iSeM 1.1	2.34	2.332	[1.828;097]: +1
6.	iSeM-TSM1	4.447	4.437	
7.	OWLS-MX3	5.369	4.997	more http traffic during query phase
8.	SeMa ² v2	5.084 (v1: 4.	4) 5.063	for OWLS-MX3: not everything's cached \rightarrow cf. next slide
9.	EMMA	9.644	9.335	Repeated restart of plugin!
10.	Nuwa-OWLS	18.356	18.334	

OWL-S matchmakers deal with required service ontologies quite differently

- Caching of complete ontologies during service registration
 - Reduces #http-requests: Only queries but no ontology d/l required for Q/A
 - Used by XSSD, OWLS-iMatcher, SeMa²
- Caching of self-contained (unfolded) concept definitions
 - Reduces #http-requests: No additional classification of concepts required for Q/A
 - Used by iSeM 1.1 (and iSeM-TSM1), OWLS-MX3
- No caching at all
 - > EMMA restarts internally used pugin for every query

M	atchmaker	AP (B)	AP (G): nDCG,	Q	Dev.
1.	iSeM 1.1	.842	.803	.762	DFKI, Germany
2.	LOG4SWS.KOM	.837	.896	.851	TU Darmstadt, Germany
3.	COV4SWS.KOM	.823	.884	.825	TU Darmstadt, Germany
4.	Nuwa-SAWSDL	.819	.884	.817	URJC Madrid, Spain
5.	SAWSDL-iMatcher	.764	.855	.784	U Zurich, Switzerland
6.	URBE	.749	.85	.777	Politecnico Milano, Italy
7.	SAWSDL-MX1	.747	.839	.767	DFKI, Germany

SAWSDL Selection: Macro-Averaged Precision for Binary Relevance

M Klusch

Matchmaker	AQRT (s)	w/o http	Vs. fastest variant [AQRT; diff AP]: diff rank AQRT
💱 1. LOG4SWS.KOM	0.241	0.241	
2. COV4SWS.KOM	0.301	0.301	
3. SAWSDL-iMatcher	1.787	1.787	
4. SAWSDL-MX1	3.859	3.853	
5. Nuwa-SAWSDL	9.009	8.986	
6. iSeM 1.1	10.662	10.655	[1.584s;018]: +3
7. URBE	40.01	39.941	

Lesson Learned: Caching Strategies

SAWSDL matchmakers deal with required service ontologies quite differently

- Caching of complete ontologies *before* service registration
 - > Ontologies are loaded and classified right after matchmaker plug-in initialization
 - Used by LOG4SWS.KOM, COV4SWS.KOM, SAWSDL-iMatcher
- Caching of self-contained (unfolded) concept definitions
 - Used by SAWSDL-MX1, iSeM 1.1
- Unknown strategy: URBE

Lesson Learned: Performance

Highest precision (AP):	Binary	Graded (nDCG)	
 Hybrid + Adaptive OWL-S SAWSDL 	0.92 0.84	0.84 0.8	iSeM 1.1 iSeM 1.1
- Hybrid			
OWL-SSAWSDL	0.88 0.84	0.93 0.90	SeMa² v2 LOG4SWS
- Logic-based			
OWL-SSAWSDL	0.76	0.87	EMMA
- Non-logic-based			
OWL-SSAWSDL	0.87 0.82	0.92 0.88	iSeM-TSM1 COV4SWS, NUWA-SASWDL

- Fastest response (AQRT): 0.12s XSSD (OWL-S), 0.24s LOG4SWS (SAWSDL)
- Best trade-off (AP_B/AQRT; SAW, w_{1,2}=.5): iSeM (.939, OWL-S), LOG4SWS (.973, SAWSDL)