On Agent-Based Semantic Service Coordination

Cumulative Habilitation Script
Faculty 6 - Natural Sciences and Technology I
Saarland University

Kumulative Habilitationsschrift
zur Erlangung der venia legendi
fir das Fach Informatik
eingereicht bei der
Naturwissenschaftlich-Technischen Fakultat I
Universitit des Saarlandes

Dr. rer. nat. Matthias Klusch

Saarbriicken, June 2008

M Klusch, 2008

Contents

Selected Publications 10
SUMIMATY .. .o e 13
Preface 15

Part I Foundations

1 Service-Oriented Computing and Agents................... 21
1.1 Service-Oriented Architectures cooon... 21
1.1.1 SOA Principle and Relation to Business Process
Modelingcvvi 21
1.1.2 SOA Example 22
1.1.3 Technical and Business Drivers...................... 24
1.1.4 Developing Service-Oriented Applications............. 26
115 Critique . - . oo 27
1.2 Web Servicest e 28
1.2.1 The W3C Web Services Framework 28
1.2.2 Web Service Description and Interaction 29
1.2.3 Web Service Discovery 32
1.2.4 Web Service Composition 35
1.2.5 Service Negotiation and Contracting 39
1.3 Web Services and Rational Agents......................... 40
1.3.1 Rational Agencycouuiiiiiniiiinnenn.. 40
1.3.2 Relation Between Service and Agent 41
1.3.3 Types of Service-Agent Interaction 42
1.3.4 Agent-Based Web Service Coordination in Brief 44
1.4 Critique . ..o e e 47
1.5 Further Readingso i 48

3/466

M Klusch, 2008

II

Contents

Semantic Web 51
2.1 Architecture i e 52
2.2 0ntologies . ..ot e 54
2.2.1 Classification i 54
2.2.2 Ontology Alignmentc..iiiiiion... 37
2.2.3 Ontology Aignment Scenarios 58
2.3 Description Logics 99
2.3.1 Syntax and Semantics.............coiiiiiiii.. 59
2.3.2 Relationto FOL 60
2.3.3 Reasoning and Complexity 62
2.4 Semantic Web Ontology Languages 64
241 RDFand RDFS.... i 64
242 OWL ..o 66
243 WSMO and WSML 70
2.44 WSMO Framework 71
2.5 Semantic Web Ontologies and Rules 74
2.5.1 Motivationc..cuiiiun i 74
2.5.2 Issues of Combining Rules With Ontologies 7
2.5.3 Combination Strategies n... 79
254 DLP .. 80
2.5.5 SWRL ... 80
2.5.6 Horn-SHIQ i 82
257 DLAHIOg .o 83
2.5.8 Nomonotonic DLP 84
2.6 Semantic Web Applications 85
2.7 Critique - .« ottt e 87
2.8 Further Readings i 90
Semantic Web Services 91
3.1 Issues of Semantic Service Description...................... 91
3.1.1 Parts of Service Semantics............ 92
3.1.2 Structured Representation 92
3.1.3 Monolithic Logic-Based Representation............... 92
3.1.4 Data Semantics oo 93
3.1.5 Reasoning on Service Semantics 93
3.2 SAWSDL . . 93
3.2.1 Annotating WSDL Components 94
3.22 Limitationscuiien i 95
3.3 OWL-S 96
3.3.1 Service Profile 96
3.3.2 Service Process Model, 98
3.3.3 Service Groundingcciiiiiiii i 99
3.3.4 Software Supportt 100
3.3.0 Limitationscoiie i 101
34 WML . 102

4/466

M Klusch, 2008

Contents III
341 Goal ... 102
3.4.2 Service Capabilityt 104
3.4.3 Service Interface i i 105
3.4.4 Software Support 106
3.4.5 Limitationso 106
3.5 Monolithic DL-based Service Descriptions 107
3.6 Semantic Web Service Coordination 108
3.7 Semantic Web Service Applications 109
3.8 Critiqueo 110
3.9 Further Readings o 112
Part II Semantic Service Discovery
Introduction i 115
4 Hybrid Service Matching with LARKS 141
5 Hybrid Semantic Matching of OWL-S Services 173
6 Hybrid Semantic Matching of WSML Services............. 182
7 Semantic Service Discovery in Pure P2P Networks 193
Part IIT Semantic Service Composition
Introduction e 205
8 Service Composition Planning with OWLS-XPlanl 223
9 Advanced Dynamic Service Composition with
OWLS-XPlan2.t e e e e e 240
Part IV Agent-Based Service Negotiation
Introduction i 247
10 Secure Negotiation of Coalitions 271
11 Negotiation of Fuzzy-Valued Coalitions 287
12 Negotiation of Fuzzy Coalitions 303
13 Dynamic Coalition Forming.......... 319

5/466

M Klusch, 2008

v Contents

Part V Agent-Based Business Application Services

Introduction e 329
14 CASA: Integrated Timber Production and Trading 339
15 AGRICOLA: Mobile Resource Planning for Cereal
Harvesting. e e 347
16 CASCOM: Mobile Emergency Medical Assistance 357
17 KDEC: Secure Distributed Data Clustering................ 371

Part VI Quantum Agent-Based Service Coordination

Introduction e 393
18 Quantum Computing and Agents: A Manifesto 405
19 Programming of Quantum Search Agents.................. 423
20 Quantum Matchmaker Agents 430
References. 437
Description of Author’s Contribution to Joint Work 459

6/466

M Klusch, 2008

List of Figures

1.1 Example of a SOA proposed by IBM (2006) 23
1.2 Current Web and Web service technology standards 30
1.3 WSDL service description structure......................... 31
1.4 Web service interaction life cycle 32
1.5 Example of Web service interaction life cycle................. 34
1.6 BPEL business service process flow overview 37
1.7 Basic types of service-agent interaction............. 42
1.8 Building blocks of agent-based service coordination. 45
2.1 Layered Semantic Web architecture 52
2.2 Types of ontologies oo 55
2.3 Ontology alignment i, 57
2.4 Centralized ontology alignment............................. 58
2.5 Decentralized ontology alignment 59
2.6 Description Logics: Syntax and Semantics 61
2.7 Correspondence between DL and FOL 62
2.8 Tractable fragments of OWL 69
2.9 WSML language variants.coouiemenennenenaen... 73
3.1 Example of semantic annotation of WSDL elements in SAWSDL. 95
3.2 OWL-S service description elements 96
3.3 OWL-S service profile structure............................. 97
3.4 Example of OWL-S 1.1 service profile. 98
3.5 OWL-S service process model. 99
3.6 Example of OWL-S service process model. 100
3.7 Grounding of OWL-Sin WSDL......... 101
3.8 WSML service and goal description. 103
3.9 Example of a service request (goal) in WSML. 103
3.10 Example of service capability in WSML. 104
3.11 Example of WSML service interface. 105

3.12 Example of a monolithic DL-based semantic service description 108

7/466

M Klusch, 2008

3.13 Categories of Semantic Web service matchmakers............. 117

3.14 Categories of Semantic Web service discovery architectures. 130
7.1 Classes of Semantic Web service composition planners 207
13.1 CASCOM semantic service coordination architecture.......... 335

8/466

To Barbel, Dieter and Dagmar.

M Klusch, 2008 9/466

M Klusch, 2008

Selected Publications

The following selected publications document my main research activities on
agent-based semantic service coordination and are presented in this cumula-
tive habilitation script together with introductions to the relevant research
areas. A description of my contributions to joint work is provided in the final
section of this thesis.

Semantic Service Discovery

1 K. Sycara, M. Klusch, S. Widoff, J. Lu: LARKS: Dynamic Matchmak-
ing Among Heterogeneous Software Agents in Cyberspace. Autonomous
Agents and Multi-Agent Systems, 5(2), pages 173 - 204, Kluwer Academic,
2002.

2 M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Service Dis-
covery with OWLS-MX. Proceedings of the 5th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), Hakodate,
Japan, pages 915 - 922, ACM Press, 2006.

3 F. Kaufer, M. Klusch: WSMO-MX: A Logic Programming Based Hybrid
Service Matchmaker Proceedings of the 4th IEEE European Conference
on Web Services (ECOWS), Zurich, Switzerland, pages 161 - 170, IEEE
CS Press, 2006.

4 M. Klusch, U. Basters: Risk Driven Semantic P2P Service Retrieval. Pro-
ceedings of the 6th IEEE International Conference on P2P Computing
(P2P 2006), Cambridge, UK, pages 161 - 170, IEEE CS Press, 2006.

Semantic Service Composition

5 M. Klusch, A. Gerber, M. Schmidt: Semantic Web Service Composition
Planning with OWLS-XPlan. Proceedings of the 1st International AAAI
Fall Symposium on Agents and the Semantic Web, Arlington VA, USA,
pages 55 - 62, AAAT Press, 2005.

6 M. Klusch, A. Gerber: Fast Composition Planning of OWL-S Services and
Application. Proceedings of the 4th IEEE European Conference on Web
Services (ECOWS), Zurich, Switzerland, pages 181 - 190, IEEE CS Press,
2006.

7 M. Klusch, K-U. Renner: Dynamic Re-Planning of Composite OWL-S Ser-
vices. Proceedings of the 2nd IEEE Workshop on Semantic Web Service
Composition, Hongkong, China, IEEE CS Press, 2006.

10

10/466

M Klusch, 2008

Agent-Based Service Negotiation

8

10

11

12

13

B. Blankenburg, M. Klusch: BSCA-P: Privacy Preserving Coalition Form-
ing Among Rational Web Service Agents. Kuenstliche Intelligenz, 1/06,
pages 19 - 25, BoettcherIT Verlag, February 2006.

B. Blankenburg, M. Klusch: On Safe Kernel Stable Coalition Forming
Among Agents. Proceedings of the 3rd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), New York, USA,
pages 580 - 587, ACM Press, 2004.

B. Blankenburg, M. Klusch, O. Shehory: Fuzzy Kernel-Stable Coalitions
Between Rational Agents. Proceedings of the 2nd International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), Melbourne,
Australia, pages 9 - 16, ACM Press, 2003.

B. Blankenburg, M. Klusch: BSCA-F: Efficient Fuzzy Valued Stable Coali-
tion Forming Among Agents. Proceedings of the 4th IEEE Conference on
Intelligent Agent Technology (IAT), Compiegne, France, IEEE Computer
Society Press, 2005.

B. Blankenburg, M. He, M. Klusch, N. Jennings: Risk Bounded Forma-
tion of Fuzzy Coalitions Among Service Agents. Proceedings of the 10th
International Workshop on Cooperative Information Agents, Edinburgh,
UK, Lecture Notes in Artificial Intelligence (LNAT), 4149, pages 332 - 346,
Springer, 2006.

M. Klusch, A. Gerber: Dynamic Coalition Formation among Rational
Agents. IEEE Intelligent Systems, 17(3), pages 42 - 47, IEEE CS Press,
May/June 2002.

Agent-Based Business Application Services

14

15

16

17

A. Gerber, M. Klusch: Agent-based Integrated Services Network for Tim-
ber Production and Sales. IEEE Intelligent Systems, 17(1), pages 32 - 39,
IEEE CS Press, January/February 2002.

A. Gerber, M. Klusch: AGRICOLA: Agenten fr mobile Planungsdienste in
der Landwirtschaft. Kiinstliche Intelligenz, 1/04, pages 38 - 42, arendtap
Verlag, 2004.

T. Moller, H. Schuldt, A. Gerber, M. Klusch: Next Generation Applica-
tions in Healthcare Digital Libraries using Semantic Service Composition
and Coordination. Health Informatics, 12(2), pages 107-119, SAGE pub-
lisher, 2006.

J. Costa da Silva, M. Klusch, S. Lodi, G. Moro: Privacy-preserving agent-
based distributed data clustering. Web Intelligence and Agent Systems,
4(2):221 - 238, TOS Press, 2006.

11

11/466

M Klusch, 2008

Toward Quantum Agent-Based Service Coordination

18 M. Klusch: Toward Quantum Computational Agents. In: Computational
Autonomy and Agents. M Nickles, M Rovatsos, G Weiss (eds.), Lecture
Notes in Artificial Intelligence, 2969, pages 170 - 186, Springer, 2004.

19 M. Klusch, R. Schubotz: Programming and Simulation of Quantum Search
Agents. Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics (SMC), Montreal, Canada, IEEE Press, 2007.

20 M. Klusch: Quantum Matchmaking. Extended version of short paper ” Co-
ordination of Quantum Internet Agents” published in the Proceedings of
the 4th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), New York, USA, ACM Press, 2005.

Kurzzusammenfassung der kumulativen Habilitationsschrift

Die ausgewéhlten, wissenschaftlichen Verdffentlichungen, auf die ich meinen
Habilitationsantrag stiitze, représentieren meine Forschung zu intelligenten
und kooperativen Informationssystemen im Internet seit 1998. Thematischer
Schwerpunkt ist dabei die Agentenbasierte Koordination von Diensten im se-
mantischen Web.

Meine Beitrdge hierzu umfassen insbesondere innovative Verfahren zur wis-
sensbasierten Suche nach geeigneten Diensten (Kapitel 4 - 6), deren Kom-
positionsplanung (Kapitel 8 & 9) und Verhandlung in profitablen, sicheren
Koalitionen (Kapitel 10 - 13). Diese koordinierenden Aktivititen werden weit-
gehend automatisch, proaktiv und transparent fiir den Benutzer durch indi-
viduell rational kooperierende Agenten durchgefiihrt.

Die praktische Eignung der Verfahren wurde in prototypisch realisierten Agen-
tenbasierten Informationssystemen fiir verschiedene Anwendungen im Bere-
ich des elektronischen Gesundheitswesens und Landwirtschaft demonstriert
(Kapitel 14 - 16). Verfahren und Aspekte einer sicheren verteilten Daten-
analyse und Wissensentdeckung durch kooperierende autonome Agenten wer-
den in Kapitel 17 diskutiert.

Als eine Vision fiir das Internet der Zukunft nach 2020 sehe ich sogenannte
Quantenagenten, die auf vernetzten, hybriden Quantenrechnern im sogenan-
nten Quanteninternet ihre Dienste signifikant effizienter und inhirent sicherer
koordinieren konnen als dies im heutigen Internet moglich ist (Kapitel 18 - 20).

Die oben gelisteten Veroffentlichungen werden in dieser Arbeit thematisch
geordnet mit jeweiligen Einfiihrungen zum aktuellen Stand der Forschung
in den relevanten Wissenschaftsgebieten prisentiert. Eine personliche Ein-
schitzung des Anteils meiner Beitrige zu diesen Publikationen ist im letzten
Abschnitt Description of Author’s Contribution to Joint Work zu finden.

12

12/466

M Klusch, 2008

Summary

This work is concerned with the study of agent-based service coordination in
the Internet, with particular focus on the Semantic Web. Both service-oriented
computing and Semantic Web use intelligent agents to coordinate Web ser-
vices in terms of discovery, composition planning and execution. Besides, in
competitive environments with pay per use services, the agents need to en-
ter negotiations in order to resolve their conflicting goals, and to maximize
the individual or social welfare of the multi-agent system. However, despite
recent advances in related fields, only little, if at all, is known about the
characteristics, potential, and limits of these coordination activities and their
interrelationships.

Thus, we first present innovative hybrid solutions to the key problems of
semantic discovery, and composition planning of Semantic Web services. In
particular, we provide strong evidence in favor of the proposition that strict
logic-based semantic service selection, as realized by the majority of contem-
porary Semantic Web service matchmakers, is in general weaker than hybrid
semantic service selection. We also contribute to the convergence of Semantic
Web services and peer-to-peer computing by means of an original solution
to the problem of decentralized and efficient service retrieval in unstructured
peer-to-peer networks.

The problem of automated composition planning of Semantic Web services in
dynamic environments has not been sufficiently solved yet. For this purpose,
we developed the first heuristic-based dynamic composition planner for OWL-
S services, and applied it successfully to selected use cases in the e-health
domain.

These contributions are complemented by a number of original game-theoretic
negotiation protocols. These allow rational provider and consumer agents of
non-charge free services to form safe and profitable coalitions under uncer-
tainty. Proof-of-concept implementations of these protocols are used in de-
ployed systems of agent coordinated business application services in different
domains such as agriculture and e-health.

Finally, in line with the vision of networked quantum computers to become
part of the future Internet beyond 2020, we are pioneering the field of quan-
tum agent-based service coordination. In particular, preliminary design and
simulation results of different types of quantum matchmaker agents show that
they can be realized, and perform, under certain constraints, way beyond their
classic counterparts.

13

13/466

M Klusch, 2008 14/466

M Klusch, 2008

Preface

The continuous proliferation of Web services that encapsulate business soft-
ware and hardware assets, e-commerce or social software applications in the
Web 2.0 holds promise to revolutionize the way of interaction within today’s
society and economy. In a world of ubiquitous services, it is just the service
value that counts for a customer and not the software components or net-
worked computing devices that implement the service.

Web services are adopted by major business stakeholders such as IBM, Credit
Suisse, Microsoft, Siemens, and SAP as the basic and reusable building blocks
of service-oriented architectures out of which new and interoperable, loosely
coupled business process applications and systems can be created. This leads
to added value client-provider interaction within and across enterprises. It
comes as no surprise, that the currently prevailing application domains of
Web service technology are enterprise application integration, e-government
and e-business (cf. chapter 1).

One major challenge for this technology is intelligent service coordination, that
is, to discover, compose, negotiate, and execute heterogeneous Web services in
an efficiently automated and coherent way with minimal human intervention
in a given application context. In fact, intelligent Web service coordination is
considered a key enabler of advanced e-business applications that go beyond
of what contemporary approaches to manually orchestrated business services
can deliver.

For example, efficient means for automatically searching and composing Web
services would allow collaborating service providers to extend their business
by wholesaling requested components and resources faster and more flexible
on demand. The same principle applies to dynamically adapting the user-
generated contents of provided Web 2.0 services to the changing needs of in-
dividual service user communities - which would allow the respective providers
to stay competitive in the market.

However, from the perspective of strong Al, in particular symbolic knowledge
representation and reasoning, any automated and semantics based coordi-
nation of services appears hard to achieve without any well-founded logic
specification of service semantics upon which intelligent agents could delib-
eratively reason. Unfortunately, contemporary XML-based Web services are
lacking formal semantics.

15/466

M Klusch, 2008

Meanwhile it is common knowledge that this problem can at least be partially
solved by exploiting Semantic Web technologies (cf. chapter 2). Key idea of
the Semantic Web is to add more meaning to Web resources by semantically
annotating them with concepts and rules from agreed-upon or aligned domain
models or ontologies which semantics are formally specified in an appropriate
logic theory. For example, the standard ontology language OWL is grounded in
description logics, while the rule language WSML-Rule relies on well-founded
logic programming.

In particular, Web service semantics can be encoded in such a way that intelli-
gent agents can indeed ”"understand” the meaning of individual and composed
services by means of logical reasoning. Different Semantic Web service descrip-
tion frameworks exist for this purpose such as OWL-S, WSML, SWSL, and the
recently announced W3C standard SAWSDL, which is, however, only semi-
formal in the sense that it refers to formal semantics of service annotations
and their handling just outside the given framework (cf. chapter 3).

Both Semantic Web and service-oriented computing use intelligent agents to
proactively discover, compose, and execute relevant Web services on demand,
individually or in joint cooperation with other agents. In environments with
contested services, they need to enter service negotiations in order to resolve
conflicting goals, and to maximize the individual or social welfare of the re-
spective multi-agent system. Other issues of agent-based semantic service co-
ordination include safety, privacy, and trust, as well as the dynamics, and
scalability of applied coordination means.

Such a synthesis between Semantic Web, services, and agents, may eventually
lead to a significant improvement of the way and quality of task oriented
Web service provision to the human user [31]. In fact, the convergence of
Semantic Web, Web 2.0, and Web services to the so-called service Web 3.0
populated with personal agents is commonly expected to be the next step in
the evolution of the Web. However, despite recent advances in related fields,
only little is known about the characteristics, potential, and limits of semantic
service coordination.

This work provides innovative solutions to following open problems of the field:
What is the trading off between quality and costs of Semantic Web service
discovery by means of logic-based, approximated, or hybrid forms of semantic
matching? How can we efficiently retrieve Semantic Web services in unstruc-
tured peer-to-peer service networks without any central coordination means
and no prior knowledge about the environment? If the search for relevant
atomic services fails, how to exploit AI planning techniques for dynamically
composing a complex service that eventually satisfies the given goal? This
is a real challenge in open, decentralized and competitive business service
environments in which central composition planning with interleaved execu-
tion of non-local services (or conditional planning-based fault-tolerant service
composition) is prohibited for reasons of autonomy, costs, and efficiency.

We shall also address the problem how cooperative and rational providers can
best form coalitions to maximize their individual profits by sharing and com-

16

16/466

M Klusch, 2008

bining services on demand: How to negotiate these coalitions with reasonable
degree of data privacy, anonymity, and safety against fraud by potential trad-
ing partners? How to form stable coalitions with imperfect knowledge of joint
profits and individual payoffs? How can resource-bounded service providers
limit the financial risk of joining a coalition caused by its possible failure of
providing a composed service within a given deadline? How can they efficiently
react to dynamic changes in the set of trading partners without restarting the
whole negotiation process? What are reasonable options for managing the
relationships between all of these service coordination activities?

Finally, the rapid progress made in the building of quantum computing and
communication devices may lead to sophisticated quantum computer networks
become part of the Internet beyond 2020. This so-called ” Quantum Internet”
may be populated with new forms of intelligent agents that are capable of
both classical and quantum computing. How can quantum agents and multi-
agent systems be realized with computational benefits in general, and future
prospects of service coordination in particular?

Organisation of this work

This work covers main results of my research on agent-based semantic service
coordination in the period of 1998 to 2007 at different institutions (DFKI
in Saarbriicken, Carnegie Mellon University in Pittsburgh, Free University of
Amsterdam), and is structured into the following six parts.

Part I briefly introduces the reader to the basics of service-oriented computing
and agents, the Semantic Web, and Semantic Web services. Readers familiar
with these basics, or parts of them, can skip all, or parts of it. In subsequent
parts, this foundational part is complemented with brief introductions to se-
mantic service discovery, composition planning, and negotiation, as well as
quantum information processing required to understand my own contribu-
tions to these fields.

Part II is dedicated to innovative means of Semantic Web service discovery.
The contributions provide an operational analysis of the potential and lim-
its of logic-based and hybrid semantic matching of Semantic Web services
in OWL-S and WSML. In particular, we present first approaches to hybrid
service matchmaking that are shown to outperform existing solutions under
certain constraints. Further, we provide an efficient solution to the problem
of semantic service discovery in unstructured peer-to-peer networks. Proof-of-
concept implementations of these contributions are available as ready-to-use
tools most of which we used, for example, in military and e-health service
applications.

Part I1T is devoted to Semantic Web service composition with particular focus
on services written in OWL-S. We present and discuss a first solution to the

17

17/466

M Klusch, 2008

problem by means of dynamic service composition planning as opposed to re-
active or contingency planning, its experimental evaluation, and applications
in selected complex use case scenarios in the e-health domain.

Part IV complements these results with solutions to the problem of negotiating
pay per use services. The contributions are original game-theoretic negotiation
protocols that allow provider and consumer agents of user-charging services
to form safe and individually profitable coalitions under uncertainty and with
trust.

Part V provides a selection of prototypically implemented systems of agent-
coordinated business application services in different domains that use some
of the contributions of the previous parts. In particular, a layered architecture
for agent-based coordination of Semantic Web services and its application to
the e-health service domain is presented. This work was mainly done in the
context of the European research project CASCOM and the national project
SCALLOPS.

Part VI concludes with contributions to agent-based service coordination in
the future Internet including networked hybrid quantum computers. In par-
ticular, we propose a classification of quantum agents, and a generic hybrid
architecture of quantum agents. Further, we develop quantum matchmaking
and search agents, and show that they can outperform their classical counter-
parts and are feasible to implement on hybrid quantum computers.

Acknowledgements

The work presented in this thesis has been funded in part by the Euro-
pean Commission in the CASCOM project (FP6-IST-511632), the DARPA
DAML grant F-30601-00-2-0592, DARPA grant F-30602-98-2-0138, the Office
of Naval Research grant N-00014-96-16-1-1222, the German Ministry for Ed-
ucation and Research (BMB+F) in the projects SEMAS (2001 - 2003) and
SCALLOPS (01-IW-D02, 2004 - 2007), and the Saarland Ministry for Envi-
ronment in the projects CASA (2000 - 2002), and AGRICOLA (2002 - 2003).
Personally, I am particularly indebted to J6rg Siekmann for his continuous
strong support of my research activities in general, and this work in particu-
lar. Cordial thanks also go to my colleagues and friends at different research
institutions and universities, in particular to those at the multi-agent systems
group, and my research team on intelligent information systems and agents
at DFKI for a very fruitful collaboration over the past years in several joint
projects related to this work. Last but not least, I am particularly thankful
to my wife, Barbara, for her enduring patience and encouragement during the
preparation of this work.

Saarbriicken, March 2008 Matthias Klusch

18

18/466

Part I

Foundations

M Klusch, 2008 19/466

M Klusch, 2008 20/466

M Klusch, 2008

1

Service-Oriented Computing and Agents

A service can be defined as a kind of action, performance, or promise that
is exchanged for value between provider and client. In other words, it is a
provider-client interaction that creates and captures value for all parties in-
volved [345, 343]. One guiding principle of the global economy since the 1980s
is that, in order to survive, every business should become a service business
with long-term customer relationship management instead of relying on mere
transactional marketing and focussing on mass production of goods only [315].
Web services and their agent-based coordination are the latest development
and hype of this evolution toward a global service economy. In the following,
we introduce the reader to the basic terms, and characteristics of service-
oriented computing, Web services, and agents. References to further readings
on the subject are given throughout and at the end of the chapter.

1.1 Service-Oriented Architectures

In the late 1990s, the paradigm of service-oriented computing (SOC) and
architectures (SOA) emerged mainly as a response to the way how enter-
prises conduct their business. Fully integrated enterprises are being replaced
by loosely coupled business networks and systems in which each partici-
pant provides the others with specialized services. One key issue of this ap-
proach is that potentially heterogeneous, geographically dispersed modular
business resources are advertised as services to consumer applications using
self-contained, standardized machine-interpretable descriptions, and then pro-
visioned dynamically on demand, often as part of complex business process
workflows within and across enterprises.

1.1.1 SOA Principle and Relation to Business Process Modeling

There is no common agreement on the notion of service-oriented system ar-
chitecture (SOA) yet. At its most basic, any SOA is an architectural pattern

21/466

M Klusch, 2008

of a collection of services on a network that communicate with one another
(Datz, 2004)[84]. More concretely, the principle of any SOA, also referred
to as the SOA principle, is that existing enterprise application resources are
published as a group of self-contained enterprise software components each of
which providing one or multiple services with standard based interfaces that
can be resused for the engineering of customer tailored business processes. For
example, verifying a credit card transaction or processing a purchase order.
In fact, the services can be composed into one or multiple business processes
or applications, and communicate with each other via event-driven messages.
Services are loosely coupled, meaning that any business service application
doesn’t have to know the technical details of another application in order to
talk to it, have well-defined, platform-independent interfaces, and are reusable.
In this sense, the SOA principle advocates a higher level of application devel-
opment (also referred to as coarse granularity) that, by focusing on business
processes and using standard interfaces, helps mask the underlying technical
complexity of the enterprise IT environment. Although this principle was es-
tablished before Web services came along, and the concept of a service within
a SOA is per se independent of the concept of a Web service, the majority
of service-oriented business systems in practice employ them since they nat-
urally implement the SOA principle by using lightweight protocols based on
widely accepted standards such as those of the Web service standard stack of
the Web consortium (cf. section 1.2).

How does the SOA principle relate to business process management in general?
Business processes are usually modeled in a concrete process modeling lan-
guage such as workflow nets, event-driven process chains, YAWL (Yet Another
Workflow Language), or the BPM (Business Process Modeling) notation. Con-
crete architectures to enact business processes include workflow management
architectures, case handling architectures, and - service-oriented architectures.
In the latter case, one or multiple services commonly implemented as Web ser-
vices and described in WSDL (Web service description language) with their
choreography and orchestration modeled in BPEL (business process execution
language) are (re-)used to realize one or multiple business processes within or
across enterprises.

We will discuss Web services and the corresponding conceptual SOA model
in section 1.2. For a more comprehensive and accessible treatment of business
process modeling and service-oriented architectures, we refer the reader to,
for example, the volume of Weske (2007)[382].

1.1.2 SOA Example

As mentioned above, the notion of SOA still means different, sometimes even
conflicting things to different people. While business executives and consul-
tants often sell a SOA as a set of services that a business wants to expose to
their customers, or other parts of their organization, system architects con-
sider SOA as an architectural style, that is a set of architectural principles,

22

22/466

M Klusch, 2008

patterns and criteria which address characteristics such as modularity, encap-
sulation, loose coupling, separation of concerns, reuse, and composability that
is enabled by standards, tools, and technologies such as Web services.

As one consequence, a variety of different proprietary architectures and models
exists calling for a standardisation effort to allow for fast and widespread adop-
tion of the SOC paradigm across all organisations developing or using services.
In August 2006, the organization for the advancement of structured informa-
tion standards (OASIS) eventually approved the OASIS Reference Model for
Service Oriented Architecture V 1.0'. An example of a layered SOA that is
compliant with this reference model as proposed by the OASIS member IBM
is shown in figure 1.1.

e
o,
bon 311
[1
0
@ |
=
=
[V
=

:
=
=)

)

1

:

:

1

]

1

!

:

]

H

:

H

H

:

)

1

)

:

H

:

H

H

:

1

H

1l

i

H

:

H

H

:

H

H

:

H

H

]

H

]

:

}

H

H

H

:

:

i

)

:

1

]

:

:

H

:

H

H

;

H

"i
ml
(=]
~

Pnrtletsb I I I 1 I] i

s
X1 a <
= 2| Business Process S
e = 22
Service Composition ey S =
o @ =3
31|%Bw @
Services : = S8 ¢
Q 00 IO 55(32
Atomic Service Ped e g, > ﬁ g
=8 =
A% ' 25|58
omponents % |E ‘E | & §§
Enterprise Components |:‘--. ? g %‘ o §
: _ = e Tl S 2
E "]

Existing Application Resources

Fig. 1.1. Example of a SOA proposed by IBM (2006)

At the core of this SOA proposal is the service model that defines services
and their underlying components of existing business application resources
together with the enterprise service bus (ESB). The ESB is a refined bro-
ker pattern for decentralized, standards based and asychronous communica-
tion between loosely coupled heterogeneous software (services) running on
different platforms and devices. It does not implement a SOA per se but
provides the cross-cutting concerns and features with which one can be im-
plemented: Support of messaging (synchronous, asynchronous, point-to-point,
publish-subscribe), standards-based adapters for integration with legacy sys-
tems, support for service orchestration and choreography (cf. section 1.2),
and intelligent content-based routing services. The functionalities of enter-
prise components are separatedly offered by means of atomic services. Service

! www.oasis-open.org/committees/download.php/19679 /soa-rm-cs.pdf

23

23/466

M Klusch, 2008

compositions implement different business application processes each of which
functionality is available to the customer at the enterprise portal in the Web.

1.1.3 Technical and Business Drivers

The main technical driver of promoting SOA and respective software support
by major business stakeholders like BEA Systems, IBM (with WebSphere),
Oracle, Microsoft (with .NET), SAP (with NetWeaver) and Sun is the identi-
fied need to replace monolithic and proprietary business applications, custom
middleware and tools with loosely coupled, logically layered and physically dis-
tributed vendor components by means of standards-based services [393, 281].

Technical drivers: Loose coupling and interoperability

In practice, XML standard-based Web services are commonly considered the
main basic and reusable building blocks of SOAs out of which new and interop-
erable, loosely coupled Web-based business process applications and systems
can be created for added value client-provider interaction. This has been early
demonstrated by, for example, Credit Suisse and IBM.

Web service enabled service-oriented achitectures, in contrast to traditional
enterprise application integration (EAI) models, offer the advantage that (a)
business functionality in a SOA can be reused to a higher degree than in more
tightly coupled SOAs realized with, for example, CORBA (Common Object
Request Broker Architecture); (b) relying on standards it provides a highly
flexible and adaptable implementation; and (c) it becomes eventually possible
to switch from a particular service to a different one without adaptions.

In other words, the SOA principle represents an evolution from traditional
means of tightly coupled applications including CORBA to loosely coupled
applications by means of Web services. Tight coupling makes it hard for ap-
plications to adapt to changing business requirements, as each modification
to one application may force developers to make changes in other connected
applications. Also, object-oriented development as in CORBA uses a finer
level of granularity - objects can be defined at the level of employee or cus-
tomer order. In an SOA, a service is defined at a more abstract level, that is
a business process such as generating a phone bill.

That is, the SOA principle provides a loosely coupled modular solution to en-
terprise application landscapes avoiding the central point of integration (star
topology), often a bottleneck in traditional EAT solutions. Furthermore, it still
reduces the number of point-to-point adapters since every interface is based
on standard WSDL and can communicate with every other WSDL enabled
interface (cf. section 1.2). However, what the SOA principle does not solve is
the problem of documenting the semantics of these service interfaces which
we discuss later.

24

24/466

M Klusch, 2008

Business driver: Productivity cost reduction and multi-channel sales
management

Expected benefits of such replacement include the flexible share of interop-
erable application building blocks across lines of heterogeneous business and
projects related to, for example, business-to-business (B2B) applications, and
enterprise application integration (EAT). The latter is traditionally realized by
a monolithic stack in a hub-and-spoke architecture. These benefits determine
the currently main business drivers of SOAs which are a significant cost reduc-
tion in productivity and an improved multi-channel order management sup-
port of wholesaler-retailer business. This is achieved through (a) automated
service composition on demand, and (b) better customer focussed initiatives
involving multiple sales channels with more clear separation of concerns such
as presentation and application business logic.

Examples from the B2B, and the e-government domain are the realization
of flexible services-based least cost supply chain management in the automo-
tive and telecommunications industry, and public Web-based governmental
services provided to the citizens for administration purposes. Fast and auto-
mated composition of Web services selected best in terms of price and quality
for specific product bundles would allow service providers to extend their busi-
ness through wholesaling of required components and resources on demand.
This is supporting providers to stay competitive in the global service economy.

Business driver: New customer relationships by Web 2.0 services

Another business driver are the expected huge profits from business-to-
consumer services in the Web 2.0. In particular, both Web services and Web
2.0 technologies such as Ajax for asynchronous Java scripting, XML-based
microformats for limited semantic content annotation, and RSS (Real Simple
Syndication) feeds, enable developers to build more sophisticated, customer
tailored business application services in the Web, and to mash up their content
via XML-based interfaces. Prominent examples of such ”social” (networking)
services in the Web 2.0 with user-generated content are Google’s YouTube,
flickr, NewsCorp’s MySpace, facebook, and Ebay’s Skype. Together with so-
called social software for developing blogs and wikis this type of services is
considered making the Web more social to the user, though only partially
attractive to business as well.

Main reason for this unprecedented win-win situation is that community build-
ing is a key feature of the Web 2.0: Service-oriented tightly knit user commu-
nities jointly create and share the precious content of provided Web services

2 Google purchased YouTube for 1.65 billion USD, NewsCorp bought MySpace for
580 million USD, and Ebay swallowed Skype at the cost of 2.6 billion USD. It
is notable, however, that according to a recent study (published in April 2007)
by McKinsey market analysts, Web 2.0 technologies, except Wikis and blogs,
such as RSS, podcasts, news and (scoially) tagged bookmarks are not considered
important by major business stakeholders for B2B applications yet.

25

25/466

M Klusch, 2008

to pursue various tasks of everyday life. As a consequence, customer-provider
relationships are inherently formed which for the provider come at no costs
but the promise of a new and stable source of monetary gain. Major factor
of securing these business profits is the size of these user communities which
strongly depends on the availability, maintenance, and extension of customized
high quality service data for sharing and reusing. That can be achieved, for
example, by means of distributed and topic-oriented service compositions on
demand in rational strategic coalitions of relevant providers.

1.1.4 Developing Service-Oriented Applications

To date, there is no commonly agreed upon general purpose methodology for
the development of service-oriented business applications and systems. The in-
ternational OSOA (Open Service Oriented Architecture) consortium of major
business stakeholders is currently working on a so-called service component
architecture (SCA) ® which rather aims at simple and platform independent
ways of developing SOA-based applications.

Service Component Architecture (SCA)

The SCA (Service Component Architecture) promises to support SOA imple-
mentations in one of many object-oriented or procedural programming lan-
guages such as Java, PHP, C++4, COBOL, XML-centric languages such as
BPEL and XSLT, and also declarative languages such as SQL and XQuery. It
also allows to build SOA-based business applications in a range of program-
ming styles, including asynchronous and message-oriented styles, in addition
to the synchronous call-and-return (RPC) style. Different service access mech-
anisms can be used such as Web services (cf. section 1.2), messaging systems
and CORBA IIOP; the respective bindings and infrastructure facilities like
security, and transactions are handled declaratively and are independent of
the implementation code.

Service Data Objects (SDO)

Related efforts on developing means to uniformly access and manipulate data
from heterogeneous data sources, including relational databases, XML data
sources, Web services, and enterprise information systems resulted in the ser-
vice data object (SDO) architecture. SDO is based on the language neutral
concept of disconnected data graphs in which a data graph is a collection of
tree-structured or graph-structured data objects. Using SDO APIs a client re-
trieves a data graph from a data source, mutates the data graph, and can then
apply the data graph changes back to the data source. The task of connecting
applications to data sources is performed by data mediator services.

3 www.osoa.org/display /Main /Service+Component+Architecture+Specifications

26

26/466

M Klusch, 2008

Both, SCA and SDO specifications are open source, supported by a range of
tools, but are still under development. Currently, there exist SDO specifica-
tions for C++ and Java. However, it is not yet clear, whether this combined
approach of SCA and SDO will eventually comply with the OASIS reference
model for SOAs, and be adopted in practice, once it has been finalized.

Middleware technologies

Established technologies for realising SOAs include object-oriented middle-
ware (OOM) for distributed computing like OMG CORBA (Common Object
Request Broker Architecture), Sun’s JINI, Microsoft DCOM, Java’s light-
weight component model EJB3, and message-oriented middleware (MOM) like
IBM’s MQseries and TIB/Rendezvous. For example, in contrast to Web ser-
vices which are mostly based on SOAP/HTTP, application services in CORBA
typically communicate via the IIOP (Internet Inter-ORB Protocol). Second,
CORBA services are tightly coupled compared to the loose coupling between
Web services: In CORBA, objects are shared between components, whereas
Web services communicate primarily over messages.

In MOM, unlike OOM, messages are generally untyped, asynchronous, and
the internal structure of messages is the responsibility of the application. This
is typically designed as publish-subscribe systems. Though some vendors like
IONA use CORBA to realize SOAs, these middleware platforms developed in
the 1990s have not been adopted to quite the same extent by industry than
it currently appears to become the case with Web services. In fact, the most
prominent of contemporary approaches to realize SOAs is the Web services
framework of the Web Consortium (W3C) which we will briefly present next,
after some rather general critics on the SOC.

1.1.5 Critique

Main criticism of the SOC paradigm is that in general none of its character-
istics and techniques is really new. In essence, SOC is adopted by industry
from other domains like OOP (object-oriented programming), AOP (aspect-
oriented programming), component-based and distributed computing in order
to synthesize a standards-based solution to, for example, the enterprise appli-
cation integration problem.

But what is wrong with that? OOP and SOA, for example, share indeed many
characteristics like encapsulation, information hiding through interfaces, but
their differences include the remote objects and call stack vs. document-centric
messaging, and object name and type versus service bindings and contracts
(service level agreements) as linking elements. Hence, OOP is a general pur-
pose programming paradigm on a micro-level whereas SOA can be seen as an
architecture style for the problem of enterprise application integration on the
macro level.

However, some critics of SOA are questioning more specifically the effectivity
and efficiency of maintaining as well as verfiying safety and security of large

27

27/466

M Klusch, 2008

scale distributed systems of business application services. These issues have
to be further investigated by the SOC community.

1.2 Web Services

As mentioned abvoe, Web services technology can be used to realize SOAs.
According to the W3C, a Web service is a software system designed to sup-
port interoperable machine-to-machine interaction over a network. Despite
the often interchangeably used terms of Web service and SOA, they are, in
principle, not the same thing. As mentioned above, SOAs may not primarily
base on Web services but can be built on object-oriented (OOM) or message-
oriented middleware (MOM). On the other hand, not every deployed Web
service-based system embraces each of the guiding principles of SOAs like the
one of loose coupling.

1.2.1 The W3C Web Services Framework

The W3C Web services framework is manifested by a set of technical specifica-
tions such as WSDL (Web Service Description Language) and SOAP (Simple
Object Access Protocol) that codify mechanisms for XML-based interoperabil-
ity between heterogeneous business services. A Web service exposes operations
which consume inputs and produce outputs both encoded in XMLS (XML
Schema), and can be communicated with over HTTP and SOAP messaging.
These elements of a service interface are described in the machine-readable
W3C standard language WSDL. Web service operations define the way in
which messages are handled, that is, for example, whether an operation is a
one-way, request-response, solicit-response or notification operation.

Stateless Web services

Please note that Web service interaction, however, is not restricted to SOAP
but can take the form of, for example, the simple REST (REpresentational
State Transfer) style interaction using lightweight XML messages over (state-
less) HTTP based on protocol primitives like HTTP-POST/GET/PUT. In
essence, Web services are stateless message processors that accept request
messages, process them in some fashion, and (usually) formulate a response
to return to the requestor. They are typically implemented by stateless com-
ponents such as Java servlets or EJB (Enterprise Java Beans) stateless session
software components. Therefore, a Web service (a stateless entity) is separate
from any persistent state (of a Web server) that it might need in order to
complete the processing of request messages. A stateful service requires the
service providing Web server to maintain the states of service interaction ses-
sions which is not possible with stateless protocols like HT'TP and SOAP.

28

28/466

M Klusch, 2008

However, Web services can be made to act as if they were stateful by arranging
for the Web server to send the state (or some representative of the state like in
the REST protocol) to the client, and for the client to send it back again next
time to remind the server of the state. Apart from REST, other approaches
to make stateless HTTP-based Web service interactions or sessions appear
stateful include Cookies*, URL rewriting®, hidden fields in forms®, and session
variables’.

Web service standards

The process of Web service coordination encompasses all activities related to
service discovery, composition, negotiation, and execution; we discuss each of
them in more detail later. Relevant work from the W3C on the subject include
the W3C service interaction life cycle for finding WSDL services in registries
like UDDI via SOAP API, the standards WS-Coordination, WS-Agreement,
and WS-Transactions. Other Web and Web services related standards issued
by the W3C are summarized in figure 1.2.

In subsequent sections, we shall briefly present WSDL and SOAP, summa-
rize current approaches to Web service coordination, discuss the relationship
between Web services and rational agents, argue for agent-based service coor-
dination, and conclude this chapter with major criticism of Web services. For
a more comprehensive treatment of Web service technologies, relalted stan-
dards, and applications, we refer to, for example, the excellent volumes [6, 292],
and the proceedings of major conferences in the field such as the European
conference on Web services (ECOWS), and the international conferences on
Web services (ICWS) and service-oriented computing (ICSOC).

1.2.2 Web Service Description and Interaction

The standard language WSDL allows to specify self-describing service descrip-
tions to enable automated discovery of, access to, and to ease the maintenance

* Server (Web site) sends the client a unique reference (session identifier) to a
session state (maintained at the server). These cookies are persistently stored at
the client site (cookie cache) and automatically sent back to the server in HTTP-
headers when the client next visits the site such that the server can uniquely
restore past sessions with the client.

The session state is sent as part of the response and returned as part of the
request URI.

The state (data) is sent from the server to the client in a hidden field as part of
the response, and returned by the client to the server as part of a form’s data
(which can be in the request URI or the POST body, depending on the form’s
method).

Server itself can store and maintain data (in files) keyed by a session variable
(session id) which the client sends back in hidden field or cookie; so nothing is
transmitted to the client (except for a session name and id). It is therefore not
possible for the client to view or edit this session data.

5]

[=2]

-

29

29/466

M Klusch, 2008

Web Mobile Voice Web Semantic Privacy,
Applications Services Web Security

XHTML XHTML Basic VolceXML SOAP P3P
S¥G CDF Mobile SVG SRGS MTOM APPEL

SMIL SMIL Mobile SSML WSDL XML Sig
XForms XForms Basic CCXML Ws-COL XML Enc
CSS Mabile XKMS

Fig. 1.2. Current Web and Web service technology standards

of service code. WSDL defines services as collections of network endpoints or
ports. The abstract definition of endpoints and messages is separated from
their concrete network deployment or data format bindings. Figure 1.3 out-
lines the structure of WSDL 1.1 service descriptions.

The data type part of a WSDL service description references required namespaces.

The message part contains protocol independent messages contained within
the requester’s query and the services response (body in SOAP). A typical
transaction consists of two messages, though several messages may be de-
fined for different transactions The I/O interface of the service (”portType”)
contains pre-service operation(s), input messages for service parameters, and
output messages for return values of the service; if necessary, error messages
describing the set of error conditions are also included. However, a WSDL de-
scription of a service does not include the code of the service but the pointer
to the hosting site. In fact, the implementation part specifies the service inter-
face in terms of the binding of the interface to specific protocols for transport
and messaging (binds operations to physical URLs and ports), and the net-
work location (URI) where the interface has been implemented, i.e., the actual
location or endpoint at which the service can be invoked. WSDL does not al-
low to define stateful service descriptions in terms of preconditions and effects.

30

30/466

M Klusch, 2008

XML Schema data types of the service

Data types <wsdl:definitions xmins types="“urn:MyDataTypes” ... =
<wsdl:types> <wsdlimpornt namespace="urn:MyDataTypes”
location="stockexchange .xsd">

Protocol independent service O messages

<message name=YWeather.GetTemperature®>
<part name="zipcode' type="xsd:string'/=
<part name="celsius' type="¥sd boolean'/>
</message>

Messages
<wsdl:message>

The /O interface of the service (wsdl:portType)

* Pre-service operation <wsdl:portType name="getQuotelnterface”>
Interface + Input messages <wsdl:operation name="getQuote’/>
<wsdl:message> + Output messages <soapuoperation .
. Etror messages SOAP._Actlon= urn:customerchecking”£>
<wsdl:input message="tns:getQuote_symbol"/>
<wsdl:output message="ths:getQuote_return"/>
<fwsdl:operation> <fwsdl:portType>

Implementation of the service interface
Interaction + Binding of the interface to specific protocols for transport & messaging
<wsdl: binding > e.g. HTTP binding: Get, SOAP binding: rpc style, transport = http

<wsdl:service> » Network location (URI) of interface implementation (executable service)
e.g. <soap:address location="http:/ocalhost:8080"/

Fig. 1.3. WSDL 1.1 service description structure

Service interaction via SOAP

Other systems can interact with a given Web service in a manner prescribed
by its interface description using messages specified in SOAP (Simple Object
Access Protocol). SOAP is a XML-based communication protocol for mes-
saging defined on top of the ISO/OSI TCP/IP transport and network layers.
More concrete, it is a message layout specification that defines a uniform way
of passing XML-encoded data. SOAP is a W3C recommendation since June
2003. Data types of SOAP messages are defined in XMLS documents refer-
enced by respective (XLMS) namespaces declared in the header. Each SOAP
message can also reference a method (SOAPAction) the HTTP server has to
execute before decoding the rest of the message which can be used to, for
example, pre-filter unsolicited requests. SOAP allows for both RPC-style and
document-style messaging via HTTP with an XML serialization.

For an accessible account of how to program Web services in Java with detailed
examples of WSDL service descriptions and SOAP messaging, we refer the
interested reader to, for example, [63]. Prominent Web service development
frameworks include Java WSDP /Expresso, IBM WebSphere, and Microsoft
ASP.Net-WSE.

31

31/466

1.2.3 Web Service Discovery

Service discovery aims at coordinating the ultimate service requester with the
ultimate service provider agent. This coordination problem can be solved by
means of either assisted mediation through specialized software agents, so-
called middle agents, such as matchmakers, brokers and mediators, or in a
peer-to-peer fashion, or a combination of both [212].

Web service interaction life cycle

A typical instance of assisted service mediation through matchmaking is the
W3C standard Web service interaction life cycle for service-oriented architec-
tures (also referred to as the Web service role model, or the SOA model for
Web services) between consumer, registry, and provider of a Web service as
shown in figure 1.4. The Web service role model describes a specific service

Web service registry
upD1

(2) Discover | (1) Publish/register
L__.Jl:l

Service I Candidate services Service

consumery in¥S L provider

(3) Select service

Web service i
pros

T (4) Interact with service

via SOAP

Fig. 1.4. Web service interaction life cycle (SOA model for Web services)

coordination scenario consisting of three core entities:

e A service registry acts as an intermediary between providers and re-
questers. Most of these directory services categorise services in taxonomies
such as UDDI registries.

e A service provider defines a service description and publishes it to the
service registry.

e A service requester can use the directory services search capabilities to
find (discover) relevant service descriptions and their respective providers.

32

M Klusch, 2008 32/466

M Klusch, 2008

A service requester agent searches for relevant Web services that are regis-
tered (published) by service provider agents at one or multiple Web service
registries such as UDDI registries. Upon request, the registry returns (refer-
ences to WSDL descriptions of) potentially relevant services to the requester
agent that retrieves the corresponding WSDL descriptions and selects the
most appropriate service. In the last step, the service requester invokes or
initiates an interaction with the selected service at runtime via SOAP using
the binding details in the WSDL service description to locate, contact and in-
voke the service. Service selection includes the negotiation of each individual
candidate service resulting in the selection of one service and committment
to terms of service delivery (so-called service level agreement).

Web service registries

Publishing and locating conventional Web services is commonly done by use of
UDDI service registries such as Systinet’s WASP UDDI v2, where service reg-
istries are installed as servlet under Apache Tomcat 3.2.3, WebLogicServer6.1,
IBM WebSphere 4.0, or as Java-based UDDI client API. Another alternative
is the utilization of IBM’s UDDI for Java (UDDI4J, v2 beta) and Apache
SOAP 2.1. Please note that, unlike service repositories, service registries do
not provide the service code itself but a reference to its interface description
only.

The OASIS standard for Web service registries is the Universal Description,
Discovery and Integration (UDDI) specification 8. An UDDI business registry
(UBR) is a hierarchically structured, XML-based registry of services, and
bindings provided by business entities. It allows to publish services, browse
through, and query the set of registered services via APIs using SOAP. Pub-
lished Web services are uniquely identified, and their types are registered in
the UBR as a unique tModel. Each entry in the UBR provides information
on the relevant business entity (white pages), business service entity (yellow
pages), and technical data on the service (green pages).

One can use two different APIs to access UDDI servers which communicate
using SOAP: PublishSOAP for service providers (publish/advertise), and In-
quireSOAP for service requesters (request). The InquireSOAP interface offers
10 query operations for searching the UDDI registry. Queries to an UBR are
regular expressions with keywords using standard taxonomies such as NAICS
(North American Industrial Classification System), and SIC (Standard Indus-
trial Classification).

How to use the triplet UDDI/WSDL/SOAP in practice?

In order to locate relevant services, an agent may search the UDDI registry
for relevant services by means of keyword matching through the InquireSOAP
APT in order to obtain the references to WSDL service descriptions of relevant

8 www.uddi.org

33

33/466

M Klusch, 2008

services. It then retrieves and inspects those WSDL description files to know
about how to interact with the targeted services using SOAP messaging or
RPC calls, and finally invokes the service implementation at the respective
provider site.

Service Consumer Service Provider

fffff —_— (3) retrieve .wsdl 7
WSIF proxy |« > 7
et : (4) call getQuote
Anta(EN); SOAPclient Im
M . : I getQuote I
UDDI proxy (1) publish_service w
‘]
| wsiF || upbpm4s (2) find_service | WSIF, S0AP, HTTP |

A

| InquireSOAP [{ PublishSOAP |

|
| Apachesoap21 |
|

\ HTTP
uDDI
Registiy | uDDI4
Apache SOAP 2.1
HTTP

Fig. 1.5. Example of Web service interaction life cycle

An example of implementing this scenario is sketched in figure 1.5. It refers
to the discovery, retrieval, and invocation of a Web service in WSDL named
getQuote.wsdl that returns actual values of given stock quotes from the NYSE
(New York Stock Exchange) upon request by a personal agent. This is real-
ized by means of appropriate proxies of software components implementing
the basic infractructure of the W3C interaction life cycle such as proxies of
the WSIF (Web Service Invocation Framework), UDDI4J (UDDI for Java),
Apache SOAP, and HTTP. These proxies are properly integrated into the
agent code that is deliberatively initialising and handling the whole interac-
tion, and further processing of returned results.

In particular, the service agent performs a keyword-based search for services
capable of returning NYSE stock quotes via the InquireSOAP API of the
nearest UDDI service registry, selects the service getQuote.wsdl from the set
of returned results, and retrieves its WSDL description from the relevant
provider. By inspection of the WSDL file, the agent gets to know not only
about the physical location of the service (URL) at the provider site but the
data types of the service I/O messages in XMLS required to interact with
the service via SOAP messaging. The personal agent code can be developed

34

34/466

M Klusch, 2008

with any software agent development environment such as JADE, FIPA-OS,
Tryllian ADK, or JACK.

1.2.4 Web Service Composition

Web service composition refers to the process of combining a number of Web
services into one processing entity at a higher abstract level to provide some
new functionality. In practice, this task is done manually by assigned experts,
so-called business service operators (orchestrators) on the basis of agreed-
upon conditions of utilising contracted services provided by known business
partners.

Nevertheless, automated service composition has been subject of a few re-
search projects such as the Ninja project [137], the SAHARA project [307], and
the OWSBI (Ontology-based Web Services for Business Integration) project
from IBM. The latter project implemented a proof-of-concept demonstration
for the industrial sector that shows semi-automatic service discovery, composi-
tion, and business process transformation?. In general, we can distinguish be-
tween so-called functional-level composition, that is service signature-oriented
("black-box” composition), and so-called process-level composition, that is
based on the control and data flow (”glass-box” composition).

Functional-level Web service composition

Functional-level WSDL service composition can be achieved by sequentially
composing services with properly matching input and output message type
structures in XMLS that produce the desired output for a given input. For this
purpose, means of XML graph matching with, for example, XPath, XQuery
and variants, or statistical means from the domain of information retrieval can
be exploited. The same holds, of course, for matching the whole WSDL service
description with a given query which can be complemented by non-functional
(QoS) parameter matching. Tools that support type matching-based WSDL
service matching are rare; one example is the WSDLAnalyzer developed in the
project ATHENA. Alternatively, WSDL service descriptions can be intuitively
mapped to process languages with formal operational semantics. For example,
in [254, 150], WSDL services are translated to equivalent coloured Petri nets
which composition allows to correctly route and manipulate I/O messages of
composed services from one organization to another.

Process-level Web service composition

Process-level Web service composition is usually split into the so-called or-
chestration and choreography of WSDL services [292]. A service orchestration
model describes both (a) the signature-based (”black-box”) interaction be-
tween the given set of services, and (b) the control and data flow of their

 www.alphaworks.ibm.com/tech/owsbi

35

35/466

M Klusch, 2008

internal (”glass-box”) processing. In contrast, a service choreography model
delivers only the first part but from a global perspective. It describes the
message-oriented communication between services including some control and
data flow dependencies, message correlations, time constraints, and transac-
tional dependencies - but no description of internal functionalities of atomic
or composite services inclduing binding of service input and output variables.
For example, Berardi et al. (2005)[29, 30] propose a process-oriented compo-
sition of WSDL services where both the externally observed and the internal
process execution behavior of each service are represented in terms of (deter-
ministic) finite state machines - which are then automatically composed to
comply with a given service execution scheme.

Service orchestration with BPEL

Orchestration of Web services in WSDL combines existing Web services by
adding a central coordinator (so-called orchestrator) who is responsible of
invoking atomic Web services according to a set of abstract control flow pat-
terns. This yields a global process description that can be executed by an
orchestration engine. State of the art language for specifying such Web ser-
vice orchestration is the XML-based business process execution language for
Web services (BPEL4WS, in short: BPEL) !0 designed by OASIS members
IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems. BPEL allows to
specify the control logic required to aggregate atomic Web services in WSDL
participating in a given business process workflow. It combines WSFL (Web
Service Flow Language) from IBM and BEA System’s WSCI (Web Services
Choreography Interface) with Microsoft’s XLANG specification.

In BPEL, the result of a Web service composition is called a process, par-
ticipating services are partners, and message exchange or intermediate result
transformation is called an activity. Every BPEL process is exposed as a Web
service using WSDL which describes the public entry and exit points for the
process, and can be used to reference external services required by the process.
XML-based WSDL data types are used within a BPEL process to describe the
information that passes between requests, that is a BPEL process interacts
with external partner services through a WSDL interface.

Abstract BPEL specifications are interpreted by an orchestration engine such
as IBM’s BPWS4J and Collaxa (www.collaxa.com). For this purpose, it is as-
sumed that the control and data-flow dependencies of a composite Web service
are maintained and executed by a distinguished node that acts as a central
scheduler (usually one of the participating parties). The engine coordinates
the various activities in the process, and compensates the system when er-
rors occur. BPEL is essentially a layer on top of WSDL, with WSDL defining
the specific operations allowed and BPEL defining how the operations can be
executed in sequence or in parallel (cf. figure 1.6).

10 www-128.ibm.com/developerworks/library /specification /ws-bpel /

36

36/466

M Klusch, 2008

BPEL4WS Process Flow

Web

ey Service

e

Invoke!

i

Sequential Flow

Web
il Service

WM

© o

WsDL

Parallgl Flow

: ;
eply H;E:;:"p;r:r\m Roles and Persistance Web
e Partners and Containers LT, Service

Fig. 1.6. BPEL business service process flow overview [292]

We refrain from providing an example of Web service orchestration in BPEL
by means of a concrete (executable) BPEL file, referring to [190] instead.

Service choreography with BPEL or WSCI

As mentioned above, Web service choreography concerns the description of
the observable or visible behavior between Web services involved in the or-
chestration in terms of their interfacing only. In this sense, it can be both
complementary to or even part of the orchestration depending on the level of
details of the latter. In practice, orchestration languages like WSCI and WS-
CDL [25], BPEL ia also often used to define the corresponding choreography.
The WSCI by SAP, Sun, and Intalio is an XML-based language for defining
a purely message-based service collaboration, that is service choreography. It
supports message correlation, sequencing rules, exception handling, transac-
tions, and dynamic collaboration. WSCI does not address the definition of ex-
ecutable business processes as defined by BPEL. Furthermore, a single WSCI
document only describes one partners participation in a message exchange.

A WSCI choreography includes a set of WSCI documents, one for each partner
in the considered interaction, but there is no single controlling process man-
aging the interaction. WSCI is considered part of BPML (business process
modelling language) that defines the business processes behind each service.
However, to date, BPEL has been adopted by the majority of business stake-
holders for both orchestration and choreography (mostly specified in one con-

37

37/466

M Klusch, 2008

crete BPEL file in practice) while the alternative WSCI/BPML still has a
share in the academic world.

Verifying Web service composition in BPEL

One problem with service orchestration with BPEL in the large is the auto-
mated verification of its correctness, that is the reliability of composite Web
services. The majority of recently proposed solutions to this problem are based
on state-action models (e.g. labelled state-transition systems, several variants
of FSM and ASM [22, 311], Petri nets [370, 390]), or process models (e.g.
7 calculus, calculus of communicating systems, LOTOS, Finite state process
FSP, BPE calculus) [322].

Basic idea of verifying BPEL processes at design time is to translate them
into one of the aforementioned formal models, and then to use a tool (such
as a model checker or workflow analyzer) that verifies standard properties for
this specific formal model, or any other desired property expressed in the logic
supported by the tool. For example, the prominent model checkers '' SPIN,
SMV, and NuSMYV for state machines, and Petri net-based workflow analyz-
ers like LoLA (HU Berlin), Wolfan, or ProM (TU Eindhoven) are used for
formal specification and verification of asynchronously communicating Web
services[122], and the study and detection of information leakage in Web ser-
vice compositions [270]. Further, the Concurrency Workbench, CADP (Con-
struction and Analysis of Distributed Processes) [322], and LTSA (Labelled
Transition System Analyzer) have been used to verify the formal process mod-
els of BPEL, that is to check whether a Web service orchestration designed
in BPEL satisfies a given composition process, and vice versa.

Verifying orchestrated Web services at runtime addresses the problem of
checking and quantifying how much the actual behavior of a running com-
posite service, as recorded in message logs, conforms to the expected behavior
as specified in the underlying process model in BPEL. For example, (van der
Aalst et al., 2007)[371] translate BPEL process definitions into Petri nets and
apply Petri net-based conformance checking techniques to derive two comple-
mentary indicators of conformance (fitness and appropriateness) by means of
their toolset for business process analysis and mining, namely ProM, tested
in an environment comprising multiple Oracle BPEL servers.

Dynamic binding of Web services

As mentioned above, static orchestration of Web services in WSDL at de-
sign time refers to a specification of an executable business process workflow
in BPEL. This BPEL script is then typically enacted by a single workflow
engine of one of the business parties involved that manages the respective

11" A model checker verifies if a given system model satisfies a desirable property. If
the property does not hold, it returns a counter-example of an execution where
the property fails.

38

38/466

M Klusch, 2008

communication and data flow between the orchestrated services. These pat-
terns of interactions between Web services at the I/O message level usually
result in a long-lived, transactional multi-step process model with prescribed
execution order within or across enterprise boundaries.

In general, however, inter-organisational service orchestration differs from
classical workflow management [388]: Web services need to be dynamically
linked to the current process enactment at runtime which overall control is
dynamically distributed among business partners involved. In particular, Web
services technology promises to enable a service requester to discover, select,
and invoke a Web service not only at design time (static) as supported by
BPEL but even at runtime, which is often refered to as the process of dynamic
binding or integration. This is at the core of most WSDL service composition
approaches that employ service registries such as UDDI, or some form of dis-
covery agencies to manage the binding of subsequent Web service interfaces'?.
However, as mentioned above, this requires, in particular, the matching of
XMLS service message types with respect to the underlying intended seman-
tics of heterogeneous Web services without knowing these and the order of
their invocation precisely and in advance - which goes far beyond BPEL. Re-
cent solutions to this problem rely on the use of appropriate semantic meta-
data [70], automated semantic reasoning, and rational agents (cf. sect 1.3.4).

1.2.5 Service Negotiation and Contracting

In competitive environments, service consumers may get charged for service
usage according to a given pricing model of the respective provider. The terms
and conditions of service usage are negotiated in so-called service level agree-
ments (SLA) between consumer and providers during a service negotiation
phase. Such agreements specify guarantees for (a) the delivery of certain func-
tionalities of configurable services, and (b) the non-functional service qualities
(QoS) like the duration of provision, throughput, response time and latency
bounds based on mutually agreed measures, the service privacy policies and
pricing for the consumer'®. Any mutually enforceable SLA signed by the se-
lected service providers and consumer is called a legal service contract which
subsequently gets initialized and executed.

Automated Web service negotiation in business-to-business protocol standards
is only addressed in a very limited way to date. One option is to create SLAs
by use of the OASIS standard ebXML Collaboration Protocol Agreement
(CPA) from the Collaboration Protocol Profiles (CPPs) of two prospective
trading business partners. Another option is to exploit the W3C standard
WS-Agreement, that is a XML-based language for representing contracts and

2 Web Services Architecture, 2004: www.w3.org/ TR /ws-arch

13 Note that in computer networking literature, the traffic-engineering term SLA is
restricted to non-functional service quality guarantees for network service con-
sumers (such as for streaming multimedia applications and videoconferencing).

39

39/466

M Klusch, 2008

agreements on one or multiple services between provider and consumer in
terms of service level objective (SLO, defines bounds usually over QoS con-
cepts such as response time, fault rate or cost), qualifying conditions (which
must exist in order for the SLO to be satisfied) and business values (which
represent the strength of commitment by stating penalties, rewards and im-
portance). However, WS-Agreement suffers not only from the lack of an inter-
action protocol that would allow business partners to form more complex con-
versations than through a simple 2-step offer-accept message sequence (such
as in alternating-offers negotiation) but from vague and unclear semantics of
the specification. Oldham et al. (2006)[279] propose an approach to seman-
tic WS-Agreement based matchmaking of providers and consumers. This is
achieved by using declarative domain specific (predicate) rules to match syn-
tactically heterogeneous but semantically same SLOs guaranteed by providers
and requested by consumers: The SLO of the guarantee should meet or exceed
the SLO of the requirement.

In practice, however, most Web service negotiation approaches just return an
acceptance or a simple rejection of a service request with desired QoS: Service
consumers are provided with the QoS that can be supported at the time the
request is made, but there is no adaptation to changing QoS conditions in
stochastic, dynamic environments. Prominent service negotiation options are
service item auctions, and comparative bargaining (based on, for example,
multi-attribute ultility theory and recommendation) to select services with
the best ratio between performance and price in both short and long term.
Alternatively, cooperative and rational provider agents can form coalitions
in order to maximize their individual profits by sharing and combining user-
charging services on demand. For more details, we refer to part four of this
work.

Web services are not supposed to negotiate any terms of their usage. Thus,
most service (QoS) negotiation protocols like [214, 60] use agents for this pur-
pose. In the next section, we take a closer look at the nature of the relationship
between Web services and rational agents.

1.3 Web Services and Rational Agents

According to Singh and Huhns (2005)[335], rational software agents play a
major role in service-oriented computing. In fact, agents are considered key
for intelligent coordination and provision of complex Web services to the in-
dividual user in a given environment and application context.

1.3.1 Rational Agency

In this work, we do not introduce a new definition of the term ”rational
agent” but refer to those available in the fields of AI (Russell & Norvig,
2002)[313], and autonomous agents and multi-agent systems (Weiss, 1999;

40

40/466

M Klusch, 2008

Wooldridge, 2000)[380, 385] each of which emphasizing different aspects of
rational agency. In general, an intelligent software agent is said to be rational
if it chooses to perform actions that are in its own best interests given the
beliefs it has about the world or environment it is situated in. Such rational
agents should have the properties of autonomy; pro-activeness; reactivity; and
social ability (Wooldridge & Jennings, 1995)[384]. That is, rational agents are
supposed to be capable of making independent, rational decisions, identifying
and taking goal-driven initiatives, adapting to changes in the environment,
and collaborating with other agents to accomplish its individual or joint goals,
if required.

Logic-based qualitative approaches to rational decision making encompass
the processes of deliberation and means-end reasoning about what, respec-
tively, how an agent can achieve its states of affairs, such as exemplified in
the BDI logic framework by Rao and Georgeff. Alternatively, decision and
game theory are normative and quantitative theories of rational action that
define a rational agent as one that maximizes expected utility of actions it
performs without actually saying how to obtain the respective utility function
or probability distribution. However, game-theoretic approaches for strategic
negotiation between multiple rational agents with conflicting individual goals
have found many applications in multiagent systems research. We present
game-theoretic protocols that allow rational service provider agents to form
profitable coalitions in different environments in part four of this work.

1.3.2 Relation Between Service and Agent

Unfortunately, the terms ”agent” and ”service” are still often used inter-
changeably in the literature (Huhns, 2002)[169]. We argue that services are not
agents: Web services remain passive until invoked, whereas rational agents are
not. In particular, Web services are not supposed to take any kind of initiative
to deliberately deviate from their hard coded application-centric functionality,
neither individually, nor in joint collaboration with other services - whereas
agents can do.

Autonomous agents are capable of pro-actively searching for, composing, and
negotiating services on behalf of its user, individually or in cooperation with
other agents. Besides, unlike agents, Web services are typically not supposed
to negotiate their usage terms with potential customers, nor to flexibly adapt
to stochastic changes in the environment apart from some kind of trivial user
profiling. On the other hand, what service-oriented computing adds to the
multiagent systems world is the ability to build on conventional IT and do so
in a standardized manner to facilitate the practical development of large-scale,
interoperable systems (Singh & Huhns, 2005)[335].

To sum up, what benefits can we expect from distinguishing between ser-
vices and agents? The utility of passive Web services can be extended with
autonomous control, reactiveness, and proactiveness which are essential char-
acteristics of rational agents. Service providing agents can deliberatively and

41

41/466

M Klusch, 2008

pro-actively respond to changes in the application environment. This promises
to leverage personalization and effectivity of service provisioning to the human
user. Some of the design choices for integrating agents and Web services are
reviewed in (Dickinson & Wooldridge, 2005)[98] together with an approach to
control Web service invocation by BDI agents using reactive planning.

1.3.3 Types of Service-Agent Interaction

Given that both services and agents are different in nature, how can they
interact with each other? We distinguish between the following basic types of
service-agent interaction as indicated in figure 1.7. A similar classification is
proposed in (Miiller et al., 2005)[267].

(1) Direct agent-service interaction
f Web
\ ‘_@_’ service

{2) Indirect agent-service interaction
(interagent communication)

(3) Service code
integration

" Web
e service
service :\\.*

Web

@ service

Fig. 1.7. Basic types of service-agent interaction

Direct service-agent interaction

In the first scenario, any service requester agent directly interacts with one
or more Web services by means of appropriate SOAP messaging. The agent
invokes the service and processes the returned results. The opposite way of
an agent being called by a Web service violates, in principle, the agent au-
tonomy as its exposed capabilities would be required to represent fixed, de-
terministic behaviours to the service. Besides, the communication idioms of

42

42/466

M Klusch, 2008

Web services and FIPA-standard agents are distinct: (a) Procedure calling Vs.
plain message-passing, (b) asynchronous Vs. asynchronous/synchronous, (c)
stateless Vs. stateful interaction. In any case, unlike Web service interaction,
FIPA-standard based inter-agent communication allows a clear separation of
the communicative intent (request, assertion) from the application-oriented
content of messages which, in particular, eases query-response tracking and
adaptation of messaging to changes of the domain.

In order to properly interact with any Web service, an agent has to know
the semantics of exchanged message content returned by the service, as well
as about exception handling, dealing with lost messages, messages out of se-
quence, time-outs, and so on. Such knowledge can be acquired by the agent
either by means of prior hand-shake coordination with the service, or dur-
ing its interaction with the service based on a minimal shared ontology and
appropriate means of ontology matching, ontology learning, and information
integration. Any use of different service-agent interaction patterns that an
agent wants to follow such as temporary subscription to a service are not
supported by Web service related standards and protocols, hence have to be
agreed upon between the requesting consumer agent and the service provider
in prior.

Similarly, no agent can flexibly negotiate service usage terms for its users with
a passive service that exclusively follows a restrictive set of constraints, ac-
ceptable choices, and policies given by the provider once and for all. Partial
solutions are, for example, auction services like ebay where the service it-
self constitutes the negotiation platform for mediation between providers and
customers, or more complex virtual e-market platforms in the B2B or B2C do-
main that allow customer agents to negotiate access to relevant agent-based
business services which would imply a different basic type of service-agent
interaction as follows.

Indirect service-agent interaction

In the second scenario of service-agent interaction, one or more Web services
are encapsulated (or wrapped) and presented to the external world by a special
type of information agent, a so-called service agent'*. As a consequence, any
service requester agent has to converse with relevant service provider agents in
an agreed-upon ACL with content language, domain ontology, and following
a given coordination protocol. This, in particular, complies to the paradigm
of agent-based cooperative information systems (Papazoglou & Schlageter,
1998)[288] such that existing solutions to semantic interoperability, and fault-
tolerant, distributed service transactions can be reused for developing agent-
based Web service systems with this type of interaction.

!4 We use the term service agent interchangeably for both terms service requester
agent and service provider agent, as well as for the terms rational service agent
and rational agent if the semantics in the given context are clear.

43

43/466

M Klusch, 2008

Prominent example of a gateway between a Web service and a FIPA agent is
the WSDL2JADE tool [274] that allows to translate XML-based SOAP mes-
sages of WSDL services via Java (Axis JAX-RPC and JADE ontology pack-
age) to ACL (for content language SL). The Web service (operation) inter-
action patterns request-response, solicit-response and subscribe-notification
are mapped to the FIPA request, respectively subscribe interaction proto-
col. WSDL2JADE is used by the WSDL2Agent tool [369] to generate a proxy
agent that represents the WSDL service as a kind of syntactic ” wrapper agent”
to other rational agents via FIPA ACL messaging interface only. These simple
wrappers can be extended to rational agents depending on the agent-based
service application at hand.

Service-agent integration

In the extreme, intelligent agents may even integrate relevant (parts of) avail-
able Web service code into their own agent code. This would inherently change
their behaviour at any time as proposed in (Bryson, 2003)[51]. In the remain-
der of this work, however, we presume the first two types of service-agent
interactions.

Examples of agent-based Web services

There are quite a few agent-based Web or semantic Web service applications
available, though most of them are not accessible outside private research
project repositories. Some of them are following in part the SOA paradigm
like AgentSteel for agent-based steel production control deployed and running
at the steel manufacturer Saarstahl AG since 2005[176], or iPARK for inter-
enterprise services integration [70]. In part five of this work, we present selected
examples of agent coordinated business service systems in general, and agent-
based semantic Web service coordination for the e-health domain in particular.

1.3.4 Agent-Based Web Service Coordination in Brief

Why are intelligent agents particularly well suited to perform automated Web
service coordination? The general answer to this question is that passive Web
services simply cannot automatically coordinate themselves but agents can
do, in a proactive way. In other words, agent-based service coordination aims
at flexibly ensuring the collective functionality and expected higher end-to-
end quality of services proactively provisioned to the human user in dynamic
environments.

The building blocks of agent-based service coordination are service discov-
ery, service composition, service negotiation, and service execution as shown
in figure 1.8. The typical sequence of coordination activities (in compliance
with the SOA model) starts with the discovery and composition of candidate
services that are relevant to a given request, the final selection of services by
negotiating their terms and conditions with respective providers, and ends
with the execution of contracted services.

44

44/466

M Klusch, 2008

Service
Discovery

Service
Composition

Service
Negotiation

Service Execution /

ey
Y

Service Discovery sy Service Negotiation =====pp Service Execution’/

2 o) B
CED % &)

candidate services
Negotiation

{(Bargaining, Votlng,
Auctions, Market,
Coalitions)

Contract initiation, transactions,
status monitoring, compensation

Service Composmon

Composed
candidate service

Selecbed service provider(s) with
Service Level Agreement(s) f Contracting

Fig. 1.8. Building blocks of agent-based service coordination.

Agent-based Web service discovery and composition

Like intermediaries in the physical economy, so-called middle-agents, are able
to solve the coordination or connection problem in the Internet, that is to
connect the ultimal service requester with the ultimal service provider, in
different ways based on the declarative characterization of the capabilities of
both. Prominent types of middle-agents are broker, matchmaker, and mediator
agents (Klusch & Sycara, 2001)[212].

In particular, the W3C Web service interaction life cycle or conceptual SOA
model (cf. figure 1.4) corresponds to the classical matchmaking process. In
fact, like a registry, a matchmaker agent returns a ranked list of registered
services that semantically match a given query to the requester, whereas a
broker agent additionally handles service engagement (negotiation and legal
contracting) as well as transactions of service value which, in most cases, bases
on subscription models (with differentiation-based or flat-fee pricing).
Mediator agent-based SOAs like the one proposed in (Cong, Hunt & Dittrich,
2006)[70] draw upon the notion of mediators introduced by Wiederhold and
his colleagues in the domain of multidatabase systems. That is, a central ser-
vice mediator agent is capable of semi-automated integration (composition)
and enactment of Web services based on appropriate service interface schema
alignment, and coordinated execution. However, as mentioned above, auto-
mated service composition (orchestration in BPEL) is still unusual in the

45

45/466

M Klusch, 2008

business domain in practice. An approach to agent supported composition
and reliable execution of Web services is proposed, for example, in (Binder
et al., 2004)[36]. Other approaches are proposed in (Chakraborthy & Joshi,
2001)[61] for agent-based Web service composition in wired-line networks, and
in (Chen et al., 2001)[64] for mobile service networks.

Agent-based Web service negotiation

As mentioned above, in commercialized and competitive settings, services
may not be available for free but pay per use. Service requester agents could
be charged, for example, for every single invocation of services at discov-
ery or planning time according to selected flat fee or differentiation-based
pricing models. In most cases, service pricing for both configurable and non-
configurable services based on quality of service parameters such as latency,
delivery time, warranty, and the opting out of privacy policy parts, is subject
to negotiation. Besides, service pricing is often private which makes it hard,
if not infeasible, for any requester agent to calculate the total expenses of its
coordinated service value provision to its user in advance.

Self-interested requester and provider agents can (semi-)automatically nego-
tiate the terms and conditions of using individual or compound candidate
services. The candidate services have been selected according to their se-
mantic relevance to the given query (service selection as part of service dis-
covery). There is a wide range of negotiation protocols (mechanisms) that
can be used by agents for service negotiation such as voting, contract nets,
auctions, bargaining, general equilibrium market mechanisms, and coalition
forming (Rosenschein et al., 1994; Sandholm & Lesser, 1995; Kraus et al.,
2001)[319, 219, 327]. In any case, all agents have to agree in advance on the
used negotiation protocol, procedure of contracting and its scope of enforce-
ment including terms and condition of penalty payments, the general payment
scheme, XML message templates and vocabulary (XMLS namespaces) for (se-
mantically) interoperable interaction.

After reaching a service level agreement at the end of the negotiation phase,
the SLA gets transformed into a legally binding contract which has to be
signed by both service providers and requesters (contracting). This contracting
phase is separated from but often considered being part of service negotiation.
In practice, Web service orchestration is done manually based on SLAs that
have been negotiated and contracted with business partners even before or
during service orchestration.

Representative examples of agent-based service negotiation are listed in the in-
troduction to part four of this work. There we also present our game-theoretic
solutions to the particular problem of privacy preserving service negotiation
in n-agent coalitions. In particular, these coalition algorithms enable agents
to negotiate individually rational distributions of joint payoffs obtained by
means of joint sales of service items in a coalition. Hence, the application of
these algorithms is agnostic to any (semantic) Web service description format
and the common understanding between all negotiating parties is assumed.

46

46/466

M Klusch, 2008

1.4 Critique

There are quite a few basic problems with Web services which we briefly
summarize in the following.

What are the semantics of WSDL services?

Although Web service technologies can simplify SOAs drastically, one major
barrier of reaching the full potential of automated and meaningful service
coordination is that they are exclusively syntactical and lack any formal se-
mantics. In fact, the use of XML allows to uniformly represent all kinds of
data in the Web including unstructured text and video streams, structured
data like account records, and mixed data like annotated text. Together with
the separation of XML data (.xml) and its possibly multifolded interpretation
over corresponding type schemas (.dtd), and agreed upon namespaces, XML
supports business data interoperability and software mass customization in
practice. However, the crucial point is that XML has no formal logic-based
semantics, much less XML-based service descriptions in WSDL.

How to meaningfully reason on WSDL services?

As one consequence, from the hard core (symbolic) AI perspective, rational
agents cannot meaningfully reason about Web services while pursuing their
tasks in the Web. That is, the semantics of Web services are not specified in
any logic typically used by deliberative agents to represent and reason upon
its knowledge about the world including services. There are lots of agreed
upon but no formally grounded (domain) namespaces in XML available for
service descriptions in WSDL.

More concrete, a service description in WSDL specifies how to technically
interact with the service but hardly reveals what it does, nor in what order its
operations have to be invoked to achieve certain functionalities. The only way
the current W3C Web services framework allows to cope with these problems
is to look at respective entries, or informal comments of the WSDL description,
or in the service registry which are provided, if at all, in natural language
text by humans. UDDI service registries only allow for simple keyword-based
searching of relevant services; the same holds for Java-based services in JINI
service networks. Though agents can easily search UDDI registries through the
respective SOAPInquireAPI, humans still must be involved to semantically
interpret the entries returned.

Scalable Web service orchestration?

Since heterogeneous WSDL services are encapsulated in BPEL orchestrations,
data mismatches must be addressed through a process that transforms data
types and models without loss in service semantics. On a large scale, to model
these processes as services could dramatically affect the throughput of the

47

47/466

M Klusch, 2008

overall system. An account for not applying service concepts to runtime struc-
tures but applying high-performance transaction system design criteria that
optimize runtime properties instead is given in [52]. There are no experimen-
tal evaluation results for BPEL orchestrations available so far which makes it
hard to judge even on its scalability.

Automated planning for Web service composition?

Automating Web service composition could be based on existing Al planning
techniques, although these methods were developed for problems where the
number of operators is relatively small, but may lead to complex plans. In
contrast, Web service composition for large scale pervasive computing envi-
ronments requires planning methods that can deal with the very large number
of possible services, but plans are not likely to become very complex. In any
case, composition planning based on Al planning techniques requires a formal
logic-based grounding of service semantics which is lacking for WSDL ser-
vices. As mentioned above, most approaches to WSDL service composition,
in essence, base on XML message type compatibility checking.

The vision of agent-based semantically enriched SOA, in particular semantic
Web service coordination promises to overcome most of the above problems
by exploiting semantic Web technology. In the next chapters, we provide a
brief introduction to the semantic Web, semantic Web services, and their au-
tomated coordination. The following parts of this work are then specifically
dedicated to agent-based semantic Web service discovery, composition plan-
ning, and negotiation.

1.5 Further Readings

For a more comprehensive treatment of service-oriented computing and ar-
chitectures, we refer to, for example, the excellent book of Singh and Huhns
(2005)[335], the proceedings of major conferences in the field such as the in-
ternational conference on service-oriented computing (ICSOC), and relevant
research projects like SUPER'® and ATHENA'6. A most recent survey of
service-oriented computing is provided in (Papazoglou et al., 2007)[289].

For more complete coverage of agent-based SOAs, we refer to relevant re-
search projects like the European integrated project ATHENA!?, and the
proceedings of international workshops on Web services, or service-oriented
computing and agent-based engineering (WSABE, SOCABE)!®. (Omicini et

15
16
17
18

www.ip-super.org

www.athena-ip.org

www.athena-ip.org
www.ict.swin.edu.au/conferences/socabe2006/

48

48/466

al., 2001)[280] provide an accessible account of agent-based coordination tech-
nologies including a special treatment of middle agents such as brokers and
matchmakers (Klusch & Sycara, 2001)[212].

49

M Klusch, 2008 49/466

M Klusch, 2008 50/466

M Klusch, 2008

2

Semantic Web

The vision of the Semantic Web is that of an extension of the current Web in
which the individual meaning of uniquely identified resources is ”understand-
able” not only by human users but also by machines or software agents.! The
basic idea to realize this vision is to annotate Web resources with machine-
interpretable meta-data that is exclusively based on shared vocabularies or
ontologies written in a logic-based ontology language. This way, intelligent
agents in the Semantic Web can automatically reason about the resource se-
mantics, and, as one consequence, improve upon the quality and the way of
how they pursue their tasks on behalf of their users.

In particular, the tremendous amount of information available in the Web
should be processed by agents based on formal semantics attached to it. That
is, the semantics of any Web resource as seen by the human user shall be
encoded in such a way that any agent should not only be able to process,
but ”understand” it by drawing similar conclusions on it through appropriate
kinds of logic reasoning than their human users would do in a given context as
good as it gets. This is in perfect line with the weak, if not strong Al paradigm
based on symbolic knowledge representation. The Semantic Web community
has developed a number of W3C standard languages (RDF, RDF Schema,
OWL) that deploy logic for this purpose. It is expected that proactive agents
in the Semantic Web will significantly improve on both the way and quality
of task-oriented data and information discovery, composition, navigation, and
provision to their human user - though this is still out of reach for the common
user of the Web to date, despite encouraging progress made in the field and
impressive single project results in the past decade.

In the following, we briefly introduce main concepts and selected issues of
Semantic Web technology, deployed Semantic Web applications, and provide
references to further readings throughout and at the end of this chapter.

! This vision has been advocated first by the director of the Web consortium (W3C),
Sir Tim Berners-Lee, at the XML conference in 2000.

51/466

M Klusch, 2008

2.1 Architecture

The key constituents of the Semantic Web are formal ontologies and rules,
logic-based reasoning, and proactive agents. Formal ontologies and rules are
used to represent static declarative knowledge for semantic annotations of
uniquely identifiable Web resources. Rational agents are supposed to proac-
tively reason upon these resources with formal semantics in due course of
accomplishing their tasks individually, or in joint collaboration with other
agents. The layered functional architecture of the Semantic Web (also called
the Semantic Web layer cake) currently proposed by the Web consortium
W3(C? is shown in figure 2.1.

User Interface & applications

Trust
Proof
Unifying Logic
ontology: Rules:
Query: OWL RIF
SPARQL

l RDF-S '

XML

VR Unoode

Fig. 2.1. Layered Semantic Web architecture

The Semantic Web architecture grounds itself on standards for refering to en-
tities (URI) and encoding of character symbols (Unicode), and reuses existing
Web technologies like XML for syntactic purposes. In particular, its core lay-
ers concern the use of standards for improved Web data interoperability and
semantic annotation through RDF, respectively, formal ontology languages
like RDFS and OWL, and logic-based reasoning and querying.

? Original architecture: http://www.w3.org/2005/Talks/0511-keynote-tbl/

92

52/466

M Klusch, 2008

Ontology layer

The ontology layer focuses on formal knowledge representation and reasoning
about the concepts of a domain of discourse and their relationships (ontology)
used to semantically annotate the content of Web resources. The standard
ontology languages RDFS and OWL (Lite and DL) are decidable subsets of
monotonic FOL for which sound and complete proof systems exist. In par-
ticular, OWL bases on description logics with reasonable trade off between
computational complexity and expressivity required for resource annotation
(cf. sections 2.3, 2.4.2).

Rules layer

The original intention of the rules layer is to leverage both the expressivity
of ontology languages and practical reasoning upon large scale ontologies by
the integrated use of (monotonic and nonmonotonic) logical rules, in partic-
ular the efficient proof systems for rule bases in logic programming (LP). As
pointed out by Grosof (2003), building rules specified in rule markup lan-
guages like RuleML variants [43] on top of ontologies would enable the rule
base to have access to ontological definitions for vocabulary primitives (e.g.,
predicates and individual constants) used by these rules. On the other hand,
building ontologies on top of rules enables ontological definitions to be sup-
plemented by rules, or imported into these definitions from rules.

In the current Semantic Web architecture both ontology and rules layer are
separated with safe integration either under first-order semantics like in the
decidable FOL fragments with monotonic (function- and negation-free) Horn
rules, that are DLP (cf. section 2.5.4), Horn-SHIQ (cf. section 2.5.6) and DL-
safe SWRL (cf. section 2.5.5), or under nonmonotonic (stable model, answer
set) semantics of full logic programming with default negation like in WSML-
Rule (cf. section 2.4.3), DL+log and dl-programs (cf. section 2.5.8).

Unifying logic

An unifying logic on top of the ontology and rules layer is supposed to com-
bine both nonmonotonic and monotonic features in the same language like in
(auto-)epistemic extensions of first-order description logics with local closed-
world assumption (e.g., FOAEL, ALCK, MKNF [263], OWL-Flight). The lo-
cal closed-world assumption allows to specify complete knowledge for a cer-
tain precdicate (DL concept or role) in queries and definitions. For any locally
closed and default negated predicate it is up to the implementation to decide
which type of nonmonotonic negation to use (e.g. stratified negation, negation
under well-founded or stable model semantics).

Proof and trust layers
The final top layers of the Semantic Web cake ensure the secure and trusted

exchange of such information between intelligent agents. Basic idea is to let

33

53/466

M Klusch, 2008

the agents validate the formal proofs of received logic-based statements on
Web resources made in a local or shared context of representation and rea-
soning. Both, proof and context, are assumed to be provided by the creators
of these statements - which authentication is ensured by means of, for exam-
ple, digital signatures. Once any pair of conflicting statements can be deduced
from received information signed with a given key, then anything can be de-
duced such that the key can be considered broken. However, both layers are
just starting to be addressed by Semantic Web research.

According to the W3C, in particular its current director Sir Tim Berners-
Lee, reasoning in the open-ended Semantic Web shall be monotonic, though
there are strong arguments from the side of practical applications for the
need of nonmonotonic (closed-world) reasoning. In fact, the widely accepted
compromise is to allow for a kind of local closed-world reasoning (cf. section
2.5).

2.2 Ontologies

Logic-based ontologies form the backbone of the Semantic Web and are com-
monly considered as the silver bullet for many different application areas such
as knowledge management, enterprise application integration, e-commerce
and e-government systems, Semantic Web service coordination, or social net-
works in the Web 2.0. This section introduces to the field of ontologies only
in very brief with selected references for further readings.

2.2.1 Classification

An often cited definition of an ontology by Tom Gruber (1993) [144] defines
an ontology as a formal explicit specification of a shared conceptualization of
a domain of interest. That is, an ontology explicitly represents a formal model
of a shared domain in the real world such that several parties can agree on
and reuse it in their own applications.

This definition is not bound to any particular formalism. In fact, there exist
many different types of ontologies with varying degrees of formal knowledge
representation such as the generic thesaurus WordNet for structured, natural-
language descriptions of the semantics of English terms, the vast CyC ontology
capturing commonsense knowledge in logic axioms, and other domain-specific
ontologies like the UNSPC for product classification scheme for vendors.

Types of ontologies

According to Guarino (1997)[145], any ontology can be classified with respect
to its subject of conceptualization as indicated by the ontology type inclusion
hierarchy in figure 2.2.

54

54/466

M Klusch, 2008

Top-Level/Upper Ontology
+ SUMO, DOLCE, OWL, OWL-S, WSMO, etc.

Domain Ontology Task Ontology

* WINE, GALEN = Ballistic Missile Tracking

* OWL-TIME, IPROnto = Scheduling, Courseware Authoring (CATO)
* Music Ontology « Enhanced Automatic Assessment of

EDSS in Multiple Sclerosis (AEDSS)

Application Ontology
» Sensitive Sensors Ontology
* Expanded Disability Status Scale Ontology (EDSS)

Fig. 2.2. Types of ontologies with examples ([145])

Top-level ontologies describe very abstract and general concepts to be shared
across multiple domains and are as such not directly used in applications but
for other (domain, task, application) ontologies to be aligned with. Domain
ontologies capture (task independent) knowledge within a specific domain of
discourse such as genetics, medicine, biology, music, or geography, while task
ontologies explicitly refer to a specific task such as diagnosing, configuring, or
pricing described neutrally with respect to a domain. Application ontologies
are most narrow in scope by providing a vocabulary required to describe a
specific task in a specific domain in a particular application; it typically makes
use of relevant domain and task ontologies.

How to build ontologies?

The building (or acquisition) of ontologies is known to be hard in practice,
since it requires to reach a concensus among different domain experts, devel-
opers, and users on the modeling of the considered task, application domain
and/or commonsense knowledge to be effectively shared and reused in a given
context. Ontology acquisition can be partially supported by automated means
of ontology learning.

Semantic Web ontology languages

Prominent ontology languages for the Semantic Web are the standards RDF/RDF

Schema, OWL (Ontology Web Language), and the non-standard WSML lan-

35

55/466

M Klusch, 2008

guage variants each of which having a formal semantics that allows to auto-
matically reason upon the respective ontologies. The same holds for ontologies
that are directly specified in first-order logic (FOL), and KIF or any LP vari-
ant. We present the standard ontology languages in more detail later.

Examples of Semantic Web ontologies

Prominent examples of ontologies are the top-level ontologies

e SUMO? in FOL/KIF and OWL,
DOLCE! in KIF, RDFS and OWL-Lite (and alinment with WordNet noun
sets) for linguistics and cognitive sciences,

and the domain ontologies

WINE? for winery (in OWL),

GALENS for biomedics (in OWL),

IPROnto” for intellectual property rights (in OWL),

OWL-TIME? and its extension OWL-TIMELINE? for temporal concepts
(in OWL), and

e Music Ontology!? for music concepts (in RDFS).

Examples of task and application ontologies are

e the courseware authoring task ontology CATO, specific scheduling task
ontologies,

e the expanded disability status scale ontology (EDSS) used by the task
ontology for the automatic assessment of EDSS in Multiple Sclerosis
(AEDSS) in OCML (Operational Conceptual Modeling Language), and

e the non-public sensitive sensor application ontology (in Prolog) used by
the ballistic missile tracking task ontology (in Prolog) of the US Missile
Defense Agency.

e the emergency medical assistance ontology used in the research projects
CASCOM and SCALLOPS,

e the wealth of other special ontologies developed for application use case
demonstrators like in SmartWeb, and the projects of the ESSI cluster.

% ontology.teknowledge.com/

* www.loa-cnr.it/DOLCE.html
® www.schemaweb.info/schema/SchemaDetails.aspx?id=62; refers to ontolin-
gua.stanford.edu/doc/chimaera/ontologies/wines.daml.
www.cs.man.ac.uk/-rector /ontologies/simple-top-bnio/

" dmag.upf.edu/ontologies/ipronto/.

8 www.w3.org/TR/owl-time/.

? purl.org/NET/c4dm/timeline.owl
10 pingthesemanticweb.com/ontology /mo/musicontology.rdfs.

6

96

56/466

M Klusch, 2008

2.2.2 Ontology Alignment

Ontology-based semantic interoperation among heterogeneous resources in-
cluding services facilitates agents to successfully pursue a variety of different
tasks such as service discovery and composition in the Semantic Web. This
can be achieved through the common share, reuse or dynamic alignment or
matching of relevant parts of different ontologies and rules that are used to
describe the semantics of these resources including services.

Many of the current systems for semi-automated ontology alignment like
PROMPT, FCA-Merge, FOAM, SAMBO, Chimaera and ODEMerge are
based on the computation of similarity values between entites in the given
pair of source ontologies, and can be seen as instantiations of the alignment
framework defined in (Lambrix & Tan, 2006)[226] which is shown in figure
2.3.

—_ T
— T
/_—_\\
o ¥ -
— W domain
instance dictionary)
corpus ““T/ thesauri
~thesauri ___
—_—

alignment algorithm

matcher a

.

S 0 »

o n matcher l

u t !
o

r O e

combination

a o
<
~

filter
c
g 4 e _____
i n
! ons I
e suggestions t
b
K = user
A4 B
rconflict

. ! |
alignments o checker !

Fig. 2.3. Ontology alignment framework (Tan & Lambrix, 2006)

The first part of this framework computes alignment suggestions while the
second part interacts with the user to decide on the final alignments. An
alignment algorithm receives as input two source ontologies and can invoke
several ontology matchers to resolve potential semantic heterogeneities be-
tween considered entities. There are many different ontology matching ap-
proaches available from relevant fields like knowledge management, databases

57

57/466

M Klusch, 2008

[303], and AI. Each of these matching techniques determines semantic corre-
spondences between entities in a given pair of ontologies based on linguistic
(syntactic) concept similarity, structure-based matching, logical constraint or
instance-based matching strategies, or a combination of these.

Alignment suggestions are then determined by combining and filtering the re-
sults generated by one or more matchers. Different ontology alignment strate-
gies are obtained by using different matchers, combining and filtering their
results in different ways. The alignment suggestions are presented to the user
who accepts or rejects them, which may influence further suggestions. Fi-
nally, a conflict checker is used to avoid conflicts introduced by the alignment
relationships. The output of the alignment algorithm is a set of alignment
relationships between terms from the source ontologies.

2.2.3 Ontology Aignment Scenarios

Scenarios of ontology alignment can be classified with respect to the degree
of centralization required to implement them (cf. figure 2.4, 2.5) [373] ranging
from fully centralized to peer to peer computing environments with respective
local interontology mappings.

9..

mapp mapping mapping
onwlosvrb o
Integrator Integrator
Centralized N:1 ontology mapping Centralized N:N ontology mapping

Fig. 2.4. Centralized ontology alignment scenarios [373]

Of course, it depends on the application context which of these ontology
alignment scenarios and strategies is most appropriate. A method for rec-
ommending ontology alignment strategies with four linguistic matchers for
given application is proposed in (Tan & Lambrix, 2007)[227]

Further readings

A comprehensive introduction to the field of ontologies is provided in the excel-
lent volume [347] and the book chapter [142]. For a survey of ontology match-

98

58/466

M Klusch, 2008

(o) ——

osiode
Description of B
Ontology implemertation |
mapping
8
Description of A o__i_/./
Desaiption of B | Description of C
Q@rplemion merpmu'y Decentralized P2P
= N:M ontology mapping w/ local ontology
B G

Decentralized P2P
1:N ontology mapping w/f shared global ontology

Fig. 2.5. Decentralized ontology alignment scenarios [373]

ing techniques we refer to, for example, [334]. The portal www.ontologymatching.org

provides a good source of further references on the same subject.

The majority of ontology languages for the Semantic Web bases on description
logics. Therefore, we shall provide a brief introduction to this field in the next
section, and then discuss the standard RDFS and OWL family together with
the non-standard WSML language variants, and their integration with rules
in subsequent sections.

2.3 Description Logics

Description logics (DL) are a family of decidable fragments of undecidable
first-order logic (FOL)[68] whose trade-offs between expressivity and compu-
tational complexity are well known. In this section, we only introduce the
main notions and concepts of DL in very brief.

2.3.1 Syntax and Semantics

DLs distinguish between atomic concepts or classes, representing sets of ob-
jects, and roles or properties, representing relationships between objects, and
individuals as specific objects. Atomic concepts (and roles) are canonically
constructed to complex concepts (and roles) by means of given concept (and
role) constructors of the terminological knowledge representation language

39

59/466

M Klusch, 2008

11 "and a set of primitive components which semantics are assumed common

knowledge, hence are not defined in a DL knowledge base.

A DL knowledge base W = (T, A) consists of a terminology (TBox T'), and
its conservative extension (ABox A). The terminology describes the structure
of the considered part of the real world by means of both concept and role
axioms, while its instantiation is a set of object assertions. To this end, T
can be seen as database schema, while A would correspond to one database
state with respect to T'. There are many linear state-equivalent translation
procedures for conceptual data models (like the extended entity-relationship
data model [191]) available 2.

Usually, the semantics of a DL is given by a model theory through its trans-
lation to 2-variables FOL fragment with equality and set interpretation over
a given domain of discourse. Figure 2.3.1 shows syntax and model-theoretic
semantics of some classical DL operations and axioms.

Shared minimal vocabularies

Any complex concept and role between concepts in the TBox of a DL-based
ontology is canonically defined from a given set of primitive concept and role
components which semantics are assumed to be common knowledge, hence
are left undefined. This set of primitive components of an ontology T is called
the basic minimal vocabulary (BMV) of T'.

The common sharing of BMVs out of which different domain ontologies can be
canonically built (in the same ontology language) enables any receiver of some
concept C that has been terminologically unfolded in the local ontology of the
sender to compute the concept subsumption relation of C with any concept
unfolded in its own ontology. This form of basic semantic interoperability has
already been applied to, for example, semi-automated recognition of inter-
database dependencies and database schema integration in the early 1990s.
However, nothing falls from heaven. Even if we assume such kind of shared
BMVs to be exchanged they still have to be aligned to each other (by means
of ontology matching techniques), as we cannot presume the existence of one
global BMV.

2.3.2 Relation to FOL

The correspondence between FOL and its decidable fragment of function-free
DL is indicated in figure 2.7.

1 In the following, the terms role and property, and class and concept are used
interchangeably.

12 However, the open-world semantics of DLs imply that A contains incomplete
information such that reasoning over W must take all of its models into account
whereas closed-world reasoning like in databases exclusively relies on the specific
model of A wrt. T'.

60

60/466

M Klusch, 2008

| Name [IDL Syntax] FOL Semantics |Abbr .|

Thing, Nothing T, L AT D

Concept (Class) A Al

Role (Property) R R’
Concept Intersection | C D c'np!
Concept Disjunction | C U D c’'uD! S
Concept Complement -C AN\C!

Concept Inclusion CCD cl'cp!
Concept Equivalence| C =D cl =D’

Universal Role-
Value Restriction VYRC |{zcA’:VyecA' (z,y)e R -yecC'}
Existential Role-
Value Restriction iR.C {zeAT:3yecAl.(z,y) e R Ay}

Trans. Role Closure | RY C R (R")T
Role Inclusion RCP R C P! H
Inverse Role JR.C | {reAl:IyeAl(yx) e RIAyeCT} | T
Non-Qualified Role | (< nR) {re AT [{ye AT : (z,y) € R"}| < n}
(Cardinality) Restr. | (> nR) {zeAT: |{ye AT : (z,y) € R} <n} N
(=nR) | {reA:|{yeA’:(z,y) € R'}| =n}

Functional Role

in
o
=3

{re AT [{ye AT: (z,y) e R} <1} | F

Qualified Role (<nRO){{zr e AT [{y: (z,y) e RF Ay e CT} <n}
(Cardinality) Restr. | (> nR.C) [{x € AT : {y: (z,y) e RF- Ay C'} >n}| Q
(=nR.C)|{x € AT : |{y: (z,y) € RF Ay € CT}| =n}
Nominals {o1,...,0n} {ol,...,0L} (0]
JR{o} |{re AT :3Iye Al (z,y) € R Ay’ € {0}}
Concept Membership| a:C a€Ct
Role Membership | (a,b): R (a,b) € R!

Fig. 2.6. Description Logics: Syntax and Semantics.

Atomic DL concepts correspond to unary FOL predicates, and complex con-
cepts correspond to FOL formulae with one free variable. Roles are binary
predicates, complex role expressions are equivalent to FOL formulae with one
free variable guarded by the role predicate like in Jy.R(z,y) A C(y), and indi-
viduals (nominals) are equivalent to FOL constants. Standard class (and role)
inclusion axioms (e.g. A C B) correspond to standard first-order material
implications with universal variable quantification (e.g. Vz.A(z) — B(z)).
DL axioms of the form a : C' and (a,b) : P with named individuals (nominals)
a, b correspond to ground atoms (facts) C(a) and P(a,b). Concepts (or classes)
can be explicitly defined by means of nominals (so-called enumerated classes).
Finally, an interpretation over given domain of discourse satisfies a DL knowl-
edge base (also called DL-based ontology) W iff it satisfies every axiom and
fact in W; W is consistent iff it is satisfied by at least one interpretation. A
DL-based ontology W5 is entailed by another DL-based ontology W, iff every
interpretation that satisfies W7 also satisfies W5.

61

61/466

M Klusch, 2008

Name |DL Syntax| FOL Syntax

Thing, Nothing T, L T, L
Concept (Class) A A(z)
Role (Property) R R(z,y)
Concept Intersection cnbD C(z) A D(z)
Concept Disjunction cub C(x)V D(x)
Concept Complement -C -C(x)
Concept Inclusion Axiom cCcCD Vz.C(z) = D(z)
Concept Equivalence Axiom | C =D Vz.C(z) < D(x)
Universal Role Value Restr. | VR.C Vy.(R(z,y) — C(y))
Existential Role Value Restr.| 3R.C dy.R(z,y) A C(y)
Transitive Role Closure RTC R |Vx,y,2.(R(z,y) A R(y,z)) = R(x, z)
Functional Role (£1R) | Vz,y,z.(R(z,y) AR(z,z)) 2 y==
Non-Qualified Role (<nR) |[Viily:. Nz B(x,yi) ANz vi # yi
(Cardinality) Restr. (>nR) |ViHly:. N2 R(zyi) = Vi ¥i =y
Qualified Role (£nR.C) | Vyi.n. N\icicn(R(x,y:) ANC(yi))
(Cardinality) Restr. i<icni<j<n Yi £ Yi
Nominals (Value Restr.) |{o1,...,0n} r=01V..Vx=o0,
AR .{o} R(z,0)
Concept Instance Assertion a:C C(a)
Role Instance Assertion (a,b) : R R(a,b)

Fig. 2.7. Correspondence between DL and FOL.

2.3.3 Reasoning and Complexity

The classical DL reasoning tasks for a given knowledge base (or ontology)
W = (T, A) are as follows.

Knowledge base consistency: To check whether W has at least one model
(satifiability of W). In other words, checking the consistency of ABox A
with respect to the TBox T', or the consistency of the terminology 7' (Abox
A) itself can be reduced to checking the unsatisfiability of .

Concept satisfiability: Given W and concept C, we verify whether there is
amodel of W in which the interpretation of C is a non-empty set (CT # ().
Concept subsumption: Given W and two concepts C, D, verify whether the
interpretation of C' is a subset of the interpretation of D in every model
of W: W | C Cr D iff WU {C N -D(a)} unsatisfiable. Similarly for
subsumption checking without a TBox: Is C interpreted as subset of D for
all FO interpretations I (Cf C DT).

Instance checking and retreival: Given W, a named individual o and a
concept C, verify whether o is an instance of C in every model of W:
W |= C(o) (iff A entails o wrt T iff W' = AU {=C(0)} is inconsistent), or
whether the same holds for pairs of objects defined in A as role fillers of
some role defined in T'. Instance retrieval returns the set of all individuals
o in the Abox A that are instances of a given concept description C in
every model of W.

62

62/466

M Klusch, 2008

Query answering is equivalent to deciding the entailment of query ¢ by W
(W = ¢) [165, 131]. In conjunctive query answering (CQA), the answers
to a given conjunctive query ¢ with respect to W is returned. Apart from
the KAONZ2 system, all state-of-the-art DL reasoners implement the tableaux
calculus to provide automated reasoning support for all of the above logical
inference tasks. In DLs that are propositionally closed, i.e. that provide, either
implicitly or explicitly, conjunction, union and negation of class descriptions
such as OWL-DL, OWL-Lite and OWL 1.1 the problems of knowledge base
consistency, concept satisfiability, concept subsumption and instance checking
can be reduced to each other in polynomial time.

Types of complexity

For practical purposes, when evaluating the complexity of reasoning upon DL
knowledge bases, it is commonly distinguished between the following kinds of
complexity.

e Data complexity is the complexity measured with respect to the number
of facts (assertions) in the knowledge base.

e Tazonomic complezity is the complexity measured with respect to the size
of the axioms in the knowledge base.

e Query complexity is the complexity measured with respect to the number
of conjuncts (single subqueries) of a conjunctive query.

e Combined complexity is the complexity measured with respect to both the
size of the axioms and the number of facts. In case of conjunctive query
answering, the combined complexity also includes the query complexity.'3

Decision procedures for conjunctive query entailment in SHIQ and SHOQ are
known only recently [131]. Most CQA techniques are seen as problematic since
they only allow primitive roles in queries, and do not handle nominals at all.
In general, the efficiency of query answering in DL is commonly considered
insufficient for large scale knowledge bases in practice.

Practical Problems

Main challenges of practical reasoning with DL-based ontologies concern its
scalability, in particular the efficient query answering over knowledge bases
with large-scale ABoxes, the handling of cyclic class definitions via blocking,
inverse and transitive roles, and nominals.

While research on optimization techniques with respect to nominals has just
started, optimized techniques for concept subsumption [158] and query an-
swering for tableaux-based DL reasoners are available (and partially im-
plemented) even for the case of changing ABoxes with frequent updates
[149, 235, 90].

13 In the following, we refer to the combined complexity of a given DL, if not stated
otherwise.

63

63/466

M Klusch, 2008

There are currently two different approaches towards scalable ABox reasoning.
One approach is to partition the ABox so that some kinds of reasoning can
be performed separately on each partition and trivially combine the results
[121, 136]. Another approach is to (a) convert the knowledge base in the
(function- and negation-free) FOL fragment Horn-SHIQ to an equisatisfiable
disjunctive Datalog program with equality replacement rules and integrity
constraints (Datalog"-'¢), and then (b) to reduce this further to plain Datalog
(def-Horn) by splitting the disjunctive rule heads in order to use any of the
existing Datalog engines for answering ground queries (e.g. C(a), a object)
more efficiently (computing the minimal Herbrand model of the plain Datalog
program including the ABox facts) in polynomial data complexity. Though
the preceding conversion in disjunctive Datalog, in particular the saturation
of the knowledge base with all grounded inferences related to the query is in
NEXPTIME (cf. section 2.5.6).

Motik et al. [262] propose a resolution-based algorithm which evaluates also
non-grounded queries in one pass so that the efficiency of query answering is
further improved. This still requires exponential space in the worst case calling
for appropriately partitioning the ABox to cut down memory consumption.

Further readings

For a more comprehensive treatment of description logics, and their wide
range of applications, we refer the interested reader to the excellent handbook
of description logics (Baader et al., 2003)[19], and the Web pages of the DL
commmunity at http://dl.kr.org.

2.4 Semantic Web Ontology Languages

The current W3C standards of ontology languages for the Semantic Web
include RDFS and the OWL language family. Prominent non-standard exam-
ples of the ontology languages landscape are the Semantic Web rule language
(SWRL), the WSML language family, and Description logic programming
(DLP).

2.4.1 RDF and RDFS

The RDF (Resource Description Framework) language!? and its extension
RDF Schema (RDFS) are probably the most adopted Semantic Web languages
today.

' www.w3.org/RDF/

64

64/466

M Klusch, 2008

Syntax and Semantics of RDF(S)

Driven by the least possible committment to a particular data model for the
Web, RDF uses directed labeled graphs, also called triple-based data model,
for representing information. Any RDF graph is a set of directed labeled edges,
or statements commonly written as triples of the form (Subject Predicate
Object). The edge links Subject denoting a resource identified by an URI
or blank node to another resource, blank node or datatype (or XML) lit-
eral Object with Predicate as label denoting a property of the origin node
Subject. Blank (anonymous) nodes are used to express incomplete informa-
tion, or queries. RDF uses XML for its serialization.

One can consider RDF as an first-order assertional logic in which each triple
expresses a simple proposition. This imposes a fairly strict monotonic dis-
cipline on the language, so that it cannot express closed world assumption,
local default preferences, and several other commonly used non-monotonic
constructs like multiple inheritance and overriding.

RDF Schema (RDFS) extends RDF in order to express simple taxonomies
and hierarchies among resources and properties. RDFS allows to define more
complex ontological vocabularies for RDF descriptions in terms of simple tax-
onomies and hierarchies of classes (concepts) and properties (roles), contain-
ers, and property restrictions. RDFS statements are equivalent to DL axioms
of thefom CC D, TCVP:C, TCVP .C,PC Q,a:C and (a,b) : P.
Thus, the semantics of RDFS can to a large extent be approximated by a set
of FOL sentences. For details, we refer the interested reader to [151]'

Support of RDF(S)

Querying RDF knowledge bases is commonly reduced to RDF graph matching
which is implemented for most RDF query languages such as the SQL-like
and W3C recommendation SPARQL (SPARQL Protocol and RDF Query
Language)'®, one of its predecessors RDQL 7, and Versa-QL!8.

Prominent frameworks supporting RDF reasoning are HP’s Jena'®, RacerPro,
Sesame, TRIPLE, KAON2 and Corese?’. TRIPLE?! offers additional rules
reasoning support on top of RDF(S) graphs. Sesame?? is another open source

!5 One alternative is to translate RDFS constructor semantics to function-free,
negation-free def-Horn rules and consider RDF statements as facts in the re-
sulting plain Datalog program of which its minimal Herbrand model then is a
correct, smallest possible interpretation that satisfies the given RDF graph.
www.w3.org/ TR /rdf-sparql-query/

Y www.w3.org/Submission/RDQL/

'8 www.xml.com/pub/a/2005/07/20/versa.html

19 www.hpl.hp.com /semweb/tools.htmfjena

20 www-sop.inria.fr /acacia/soft /corese/

2! triple.semanticweb.org/

www.openrdf.org/

16

22

65

65/466

M Klusch, 2008

framework for storage, inferencing and querying of RDF data. The Corese
platform?® implements an RDF/RDFS processor based on the conceptual
graph model with a special graph matching algorithm and SPARQL. The W3C
Metalog system?* allows querying of RDF resources in a NL-oriented language
(PNL) interfaced with an underlying logical extension of the RDF semantics
and model. The Oracle 11g RDF database provides full RDFS support for
querying RDF and a subset of OWL-DL inside Oracle’s relational database
management system?>,

For more information on the practical use of RDF(S), and its relation to other
knowledge modeling approaches like UML, XML, and XML-TopicMaps, we
refer to the respective W3C site26.

2.4.2 OWL

The standard ontology language for the Semantic Web is OWL (Ontology
Web Language)[71, 160]. It has its roots in the joint initiative DAML+OIL of
researchers from the US and Europe in 2000 to develop a formal annotation
or mark-up language for the Web. Only three years later, OWL became a
W3C recommendation and has been widely adopted by both industry and
academics since then. The current version of OWL is OWL 1.1%7.

Variants

OWL comes in several variants, that are OWL-Full, OWL-DL, and OWL-
Lite. Each variant corresponds to a DL of different expressivity and complex-
ity. OWL-Lite and OWL-DL are an abstract syntactic form of the description
logic SHIF (D), respectively, SHOIN(D), whereas OWL-Full corresponds to
the description logic SHOIQ(D)*. For syntax and model-theoretic semantics
of these description logics, we refer to figure 2.3.1 in section 2.3.1.

OWL-Full. The most expressive but undecidable variant OWL-Full provides
full compatibility with RDFS and covers the expressivity of the description
logic SHOIQ(D)* which offers not only simple data types (D) but inverse roles
(I), roles as subroles (a role hierarchy H), role transitivity (S) and qualified
role cardinality restrictions (Q), as well as derived classes (classes used as
individuals) together with non-primitive roles (cf. figure 2.3.1, section 2.3.1).
Since OWL-Full allows in particular non-primitive roles (which can either be

transitive or have transitive subroles) in role cardinality restrictions (S*), it
is undecidable (while SHOIQ(D) is not) [164].

3 www-sop.inria.fr /acacia/soft /corese/

 www.w3.org/RDF/Metalog/

%5 www.oracle.com/technology/tech/semantic_ technologies/
www.w3.org/RDF /developers

T www.w3.org/Submission/2006/10/

26

66

66/466

M Klusch, 2008

OWL-DL. Unlike OWL-Full, the less expressive variant OWL-DL (SHOIN(D))
allows only for unqualified number (role cardinality) restrictions, and does
not permit to state that a role P is transitive or the inverse of another role
Q@ # P.1In particular, OWL-DL does not include relationships between (transi-
tive) role chains which would cause its undecidability. That is, in role number
restrictions, only simple roles which are neither transitive nor have transi-
tive subroles are allowed; otherwise we gain undecidability even in SHN [164].
OWL-DL also does not allow classes to be used as individuals (derived classes),
or to impose cardinality constraints on subclasses.

OWL-Lite. The variant OWL-Lite (SHIF(D)) is even less expressive than
OWL-DL. It prohibits unions and complements of classes, does not allow the
use of individuals in class descriptions (enumerated classes, nominals O), and
limits role cardinalities to 0 or 1 (F). However, it is possible to capture all
OWL-DL class descriptions except those containing either individuals or role
cardinalities greater than 1 by properly exploiting the implicit negations intro-
duced by disjointness axioms, and introducing new class names [161]. In role
cardinality restrictions, only simple roles are allowed; however, it is unknown
whether SHF or SHIF becomes undecidable without this restriction [164].

The syntactic transformation from OWL-Lite and OWL-DL ontologies to cor-
responding DL knowledge bases is of polynomial complexity. What makes
OWL a Semantic Web language is not its semantics (which are quite stan-
dard for a DL) but the use of URI references for names, the use of XMLS
datatypes for data values, and the ability to connect to documents in the
Web. The abstract syntax of OWL can be mapped to the normative syntax
of RDF.

Relation to RDFS

OWL adds constructors to RDFS for building more complex class (concept)
and property (role) descriptions with model-theoretic semantics. For exam-
ple, the use of intersection (union) within (sub-)class descriptions, or univer-
sal/existential quantifications within super-/subclasses in OWL is not possible
in RDFS[161]. However, the variants OWL-DL and OWL-Lite are extensions
of a restricted use of RDFS whereas OWL-Full is fully upward compatible with
RDFS. As mentioned above, OWL-DL and OWL-Lite do not allow classes to
be used as individuals, or to impose cardinality constraints on subclasses, and
the language constructors cannot be applied to the language itself - which is
possible in OWL-Full and RDFS.

It has been shown only recently in [283] that the formal semantics of a sub-
language of RDFS is compatible with that of the corresponding fragment of
OWL-DL such that RDFS could indeed serve as a foundational language of
the Semantic Web layer stack. Though checking whether a RDF graph is an
OWL ontology and upgrading from RDFS to OWL remains hard in practice,

67

67/466

M Klusch, 2008

and is topic of ongoing research. For a detailed treatment of this subject, we
refer to [131].

Complexity

As mentioned above, logical entailment or concept subsumption reduced to
concept satisfiability is decidable for OWL-Lite and OWL-DL in EXPTIME
(-complete), respectively, NEXPTIME (-complete) [159, 359]. Noticeably, con-
cept satisfiability in SHOIQ(D) is intractably co-NEXPTIME-hard [359],
while its variant SHOIQ(D)*, hence OWL-Full, allowing non-primitive tran-
sitive roles to occur in role cardinality restrictions (S*) is undecidable. Unde-
cidability of SHOIQ* has been proven by reduction to the Domino problem
[71].

Reasoning with data types and values (D) for all OWL variants can be sepa-
rated from reasoning with concepts and individuals by allowing the DL rea-
soner to access a kind of datatype oracle that answers simple questions with
respect to data types and values; this way, the language remains decidable if
data type and value reasoning is decidable, i.e., if the oracle can guarantee
to answer all questions of the relevant kind for supported datatypes. Figure
2.8 shows the relation of OWL to other prominent (polynomially reducable)
tractable DL subsets like EL++, Horn-SHIQ, and DLPs (cf. section 2.5.4)
together with related complexity results (cf. section 2.3.3) [55].

Efficient query answering over DL knowledge bases with large ABoxes (in-
stance stores) and fixed TBoxes is of particular interest in practice. Unfor-
tunately, OWL can be considered insufficient for this purpose in general:
Conjunctive query answering for SHIQ and SHIF underlying OWL-Lite is
decidable but only in time exponential in the size of the knowledge base (tax-
onomic complexity) and double exponential in the size of the query [131]
(query and combined complexity); the CQA complexity for OWL-DL is un-
known. For both OWL-DL (SHOIN(D)) and OWL-Lite SHIF(D) knowledge
base (DL-based ontology) entailment checking?® is decidable.

Critique

The main criticism of the standard Semantic Web ontology language OWL is
that it only allows for static declarative knowledge representation of limited
expressivity and reasoning support. For example, OWL does not allow tem-
poral or spatial reasoning nor integrity constraints. Approaches to overcome
these limitations of OWL by means of adding monotonic or nonmonotonic
rules from logic programming are briefly discussed in section 2.5. The follow-
ing section summarizes existing tools for reasoning on OWL ontologies.

28 W, entails Wa, i.e., W1 |= Ws if and only if every model of W; also satisfies W.

68

68/466

M Klusch, 2008

Complexity

Taxonomic Data Query Combined
EL++ A: PTIMEc PTIMEc - PTIMEC
N B: ? PTIMEh ? ?
OWL 1.1
Undecidable 4 DLP A: EXPTIME PTIMEc - EXPTIME
----------------------------- B: EXPTIME PTIMEc EXPTIME EXPTIME
NEXPTIME R
oW I: DL Horn-SHIQ A: EXPTIMEc PTIMEC - EXPTIMEc
‘ B: dr? ar a? itk
EXPTIME
\RDFS A“PTIME LOGSPACE - PTIME
OWL Lite B: PTIME LOGSPACE d/? d?
b
EL++ - DL-Lite DLP Horn-SHIQ

Legend:

A = Ontology Consistency, Concept Satisfiability,

F Concept Subsumption, Instance Checking

- A* = Concept Subsumption, Instance Checking
RDEFS B = Conjunctive Query Answering

? = Open problem,

d/? = Decidable, complexity bounds unknown
- = not applicable, h/c = hard/complete

Fig. 2.8. Tractable fragments of OWL ([55])

OWL Support

There are many implemented OWL reasoners available for both OWL-DL
(SHOIN(D)) and OWL-Lite SHIF(D) that cover all major DL inferencing
tasks. Each of these reasoners provide access to their functionality either
through proprietary APIs that conform to their implementation language,
or support the standard DIG interface[27] for handling DL elements in an
XML format.

State-of-the-art OWL reasoners include QuOnto for OWL-Lite, FaCT++2°
and Pellet for OWL-DL [163] as part of the OWL-API, Racer/RacerPro3® for
OWL-Lite and OWL-DL with approximations for nominals. Another promi-
nent framework for reasoning with OWL are KAON1 and KAON2 for SHIQ
extended with the decidable DL-safe fragment of SWRL, i.e. for OWL-DL
with qualified role cardinality restrictions but without nominals (cf. section
2.5.6).

The above reasoners are claimed to be sound and complete, though a proof
has been published for KAON2 only. Besides, they are tableaux-based DL
reasoners, except KAON2 which reduces a OWL-DL knowledge base W to a

% owl.man.ac.uk/factplusplus/
30 www.racer-systems.com

69

69/466

M Klusch, 2008

disjunctive Datalog program P [172] (in EXPTIME) - such that W and P
entail the same set of ground facts - and then efficiently solves P by means of a
disjunctive Datalog engine through magic set transformation [78] (bottom-up
evaluation of P) and resolution-based theorem proving [276]. Besides, KAON2
uses an equisatisfiable semantics of SHOIN(D) defined through translation
into a multi-sorted (for concrete domains D) first-order logic [164]. This en-
ables optimized assertional DL reasoning (OWL-DL ABoxes, F-Logic instance
bases, RDF triple stores) for (approximate) query answer set computation over
large ABoxes.

Since OWL-DL is a decidable FOL fragment one can also translate OWL-
DL knowledge bases into a collection of equivalent FOL formulas and use
FOL theorem provers for consistency checking. For example, Hoolet3! is an
OWL-DL reasoner that uses the FOL theorem prover Vampire [363].
Prominent OWL query languages are OWL-QL[119]*>?, SAIQL (Schema And
Instance Query Language)®®, and GLOO (Graphical Query Language for
OWL Ontologies)[112]. For example, OWL-QL[119] is a formal language and
protocol for query-answering dialogues among Semantic Web computational
agents. An OWL-QL query is basically a OWL knowledge base with a specifi-
cation which of the URIs referred to in the query pattern are to be interpreted
as variables. Variables come in three forms: must-bind, may-bind, and do-not
bind variables. OWL-QL uses the standard notion of logical entailment: query
answers can be seen as logically entailed sentences of the queried knowledge
base. OWL-QL allows not only extensional queries but also structural queries
such as "retrieve the subsuming concept names of the concept name father”.
The use of the RDF query language SPARQL for querying OWL-DL knowl-
edge bases via the interaction between the Protege and the Jena2 toolkit is
problematic for the following reason. SPARQL does not support the model-
theoretic interpretation of RDFS or OWL ontologies. That is, there is neither
one single query graph like in RDF but many possible interpretations (mod-
els) of an OWL ontology, nor a finite query graph since each of these models
can be infinite. On the other hand, conjunctive queries over OWL-DL knowl-
edge bases could be considered as SPARQL query graphs of conjunctive RDF
triples. However, the treatment of variables differs in both approaches such
that the extension of SPARQL to OWL-DL can only be approximative in
principle ([154], pp 235).

2.4.3 WSMO and WSML

In this section, we informally introduce the reader to the basic elements of
semantic service description in the Web service modeling language (WSML).

31 owl.man.ac.uk/hoolet/

32 projects.semwebcentral.org/projects/owl-ql/
33 www.uni-koblenz.de/FB4/Institutes/IF1/ AGStaab/Research/SAIQL

70

70/466

M Klusch, 2008

2.4.4 WSMO Framework

The WSMO (Web Service Modelling Ontology) framework3* provides a con-
ceptual model and a formal language WSML (Web Service Modeling Lan-
guage)® for the semantic markup of Web services together with a reference
implementation WSMX (Web Service Execution Environment). Historically,
WSMO evolved from the Web Service Modeling Framework (WSMF) as a re-
sult of several European Commission funded research projects in the domain
of Semantic Web Services like DIP, ASG, Super, TripCom, KnowledgeWeb
and SEKT in the ESSI (European Semantic Systems Initiative) project clus-
ter36,

WSMO offers four key components to model different aspects of Seman-
tic Web services in WSML (Web Service Modeling Language): Ontologies,
goals, services, and mediators. Goals in goal repositories specify objectives
that a client might have when searching for a relevant Web service. WSMO
ontologies provide the formal logic-based grounding of information used by all
other modeling components. Mediators bypass interoperability problems that
appear between all these components at data (mediation of data structures),
protocol (mediation of message exchange protocols), and process level (medi-
ation of business logics) to ”allow for loose coupling between Web services,
goals (requests), and ontologies”. Each of these components, called top-level
elements of the WSMO conceptual model, can be assigned non-functional
properties to be taken from the Dublin Core metadata standard by recom-
mendation.

WSML Variants

The Web service modeling language WSML allows to describe a Semantic
Web service in terms of its functionality (service capability), imported ontolo-
gies, and the interface through which it can be accessed for orchestration and
choreography. The syntax of WSML is mainly derived from F-Logic extended
with more verbose keywords (e.g., ”hasValue” for — >, ”p memberOf T” for
p:T etc.), and has a normative human-readable syntax, as well as an XML and
RDF syntax for exchange between machines. WSML comes in five variants
with respect to the logical expressions allowed to describe the semantics of
service and goal description elements. In the following, we informally intro-
duce F-Logic and the WSML variants in very brief.

F-Logic. F-Logic is an object-oriented extension of first-order predicate logic
with objects of complex internal structure, class hierarchies and inheritance,
typing, and encapsulation in order to serve as a basis for object-oriented logic

34 http://www.wsmo.org/TR/d2/v1.4/20061106
35 http://www.wsmo.org/TR,/d16/d16.1/v0.21/20051005/
36 http://www.sdkcluster.org/

71

71/466

M Klusch, 2008

programming and knowledge representation. For modeling ontologies, it al-
lows to define, for example, is-a object class (or type) hierarchies through
subclass relationships like person::human denoting class ”person” as a sub-
class of human, a class of objects with structured properties (object type
signature) like person[name *= string, children *= person], and instances
of classes (typed objects) like john:person as well as rules like (R:region :-
Rl:region, R::R1.) and (L:location :- L:R, Riregion.) denoting that every sub-
class "R” of an object class "R1” of type "region” is a region and that every
member L of a region "R” is also a location. Rules may also be used to define
virtual classes like the rule (X:redcar :- X:car, X[color — red].) defining the
virtual class ”redcar”.

F-Logic comes in two flavors with respective variants: A first-order F-Logic
variant (F-Logic(FO)) that includes an (OWL-DL/WSML-DL) description
logic subset of classical predicate logic, and a full logic programming (LP) vari-
ant (F-Logic(LP)) that is LP extended with procedural built-ins (functions),
and nonmonotonic default inheritance and negation-as-(finite)-failure®”. Non-
monotonic (default) inheritance of F-Logic(LP) allows to override default
property values of classes inherited by subclasses. For example, a class Ele-
phant[color *— grey] with default value ”"grey” of property ”color” has a
subclass royalElephant[color *— white] for which objects this default value
of inherited property ”color” is overriden by (default) value ”white”. Hence,
one can assert object fred[color — grey| as member of class ”Elephant” (but
not "royalElephant”), and clyde[color — white] as member of both classes.
Semantics of F-Logic(LP) are derived from Van Gelder’s well-founded (fix-
point-based, minimal model) semantics of the nonmonotonic part of logic
programming [368]. F-Logic(LP) is more commonly used than F-Logic(FO)
like in the LP-reasoners OntoBroker, Flora-2 and Florid. For more details on
the syntax and semantics of F-Logic, we refer to [8, 187, 389].

WSML variants. The formal semantics of WSML service description ele-
ments are specified as logical axioms and constraints in ontologies using one
of five WSML variants: WSML-Core, WSML-DL, WSML-Flight, WSML-Rule
and WSML-Full (cf. Figure 2.9).

Though WSML has a special focus on annotating Semantic Web services like
OWL-S it tries to cover more representational aspects from knowledge rep-
resentation and reasoning under both classical FOL and nonmononotic LP
semantics. For example, WSML-DL is a decidable variant of F-Logic(FO)
with expressivity close to the description logic SHOIN(D), that is the vari-
ant OWL-DL of the standard ontology Web language OWL. WSML-Flight

37 In nonmonotonic LP, like semi-decidable PROLOG and F-Logic(LP), the default
negation of fact p (not p) means ”p is true if p cannot be proven in a given
knowledge base KB in finite time” (under closed-world assumption). This is non-
monotonic, i.e., truth values of asserted and implied knowledge in KB do not
grow monotonically: (KBE p) does not imply (KB U {q} E p), e.g., KB = {(p :-
not ¢)} implies p true (KB |= p), but KB* = {q, (p :- not ¢)} implies p false.

72

72/466

M Klusch, 2008

| WSML-Full, |

WSML-DL

WSML-Rule

WSML-Flight || | |

WSML-Core| | | |
D -

I?irst-Ordqr Logic ;

— —
Logic Programming : : :

Description Logics

Fig. 2.9. WSML language variants.

is a decidable Datalog variant of F-Logic(LP) (function-free, non-recursive
and DL-safe Datalog rules) with (nonmonotonic) default negation under per-
fect model semantics [302] of locally stratified F-Logic programs with ground
entailment. WSML-Rule is a fully-fledged logic programming language with
function symbols, arbitrary rules with inequality and nonmontonic negation,
and meta-modeling elements such as treating concepts as instances, but does
not feature existentials, strict (monotonic) negation, and equality reasoning.
The semantics of WSML-Rule is defined through a mapping to undecidable
(nonmonotonic, recursive) F-Logic(LP) variant with inequality and default
negation under well-founded semantics [368]. WSML-Full shall unify the DL
and LP paradigms as a superset of FOL with non-monotonic extensions to
support nonmonotonic negation of WSML-Rule via Default Logic, Circum-
scription or Autoepistemic Logic. However, neither syntax nor semantics of
WSML-Full have been completely defined yet.

The description of Semantic Web services in WSML will be treated in more
detail in the following chapter.

Mediators in WSMO

As mentioned above, mediators are responsible to resolve semantic hetero-
geneities between ontologies in WSMO. Currently the WSMO specification
covers four different types of mediators.

e ooMediators import the target ontology into the source ontology by re-
solving all the representation mismatches between source and target;

e ggMediators connect goals that are in a relation of refinement and resolve
mismatches between those;

73

73/466

M Klusch, 2008

o wgMediators link Web services to goals and resolve mismatches;
e wwMediators connect several Web services for collaboration.

Mediators of type ggMediator, wgMediator, wwMediator shall use ooMe-
diators in order to align different imported domain ontologies (or shared basic
vocabularies out of which different domain ontologies can be canonically built,
cf. Section 2.3) that are used for describing goals and Web service capabilities.

Critique

From the WSMO specification it remains completely unclear how the pro-
posed mediators shall be imlemented apart from pointing either to a goal
that declaratively describes the required "magic” mapping between the de-
scription elements, or to a Web service that actually implements this mapping,
or to a wwMediator that just links to such a service. In any case, the solution
to the problem is shifted completely outside the framework. Other critics of
WSML with respect to its use for Semantic Web services are presented in the
following chapter (section 2.4.3).

WSMO Support

Implemented approaches to build and query ontologies in non-standard WSML
include the WSMO studio®® with WSML validator, the WSMO4J API?*?, and
reasoners for WSML-Core, WSML-DL and WSML-Rule. Note that reasoning
on ontologies in WSML, in opposite to OWL, comes in two different flavors:
Reasoning on WSML-DL is monotonic, while it is nonmonotonic for WSML-
Flight and WSML-Rule with negation by default. For more information on
reasoning support of WSML, we refer to respective deliverables of the WSMO
intitiative (www.wsmo.org).

2.5 Semantic Web Ontologies and Rules

Semantic Web research considers both ontologies and rules as separate ”stacks”
of the Semantic Web architecture (cf. section 2.1) with an unifying logic on
top of them. The standardized markup, publishing and interchange of rules
between different systems and tools is expected to benefit many business ap-

plications over the Web.

2.5.1 Motivation
Main motivation of combining rules with OWL ontologies are to overcome

32 http://www.wsmostudio.org/download.html
39 http://wsmodj.sourceforge.net/

74

74/466

M Klusch, 2008

(a) the limited expressivity of description logics underlying OWL for practical
applications, and

(b) the scalability problem of extensional querying OWL ontologies with large
ABoxes (cf. section 2.3.3) by use of optimized LP rule reasoning engines
like SWI-Prolog, XSB, dlv and smodels.

A normal disjunctive logic program P consists of a finite set of rules
A1 V...VA, < B AN... N\B, A not By,11 A...\ not B,

with £ > 0,n > m > 0, and facts. In the following, we call a rule disjunctive
normal if & > 0, definite if k¥ = 1 (no disjunction), positive if negation-as-
failure (not) does not appear (m = n), disjunctive if it is positive and k > 0,
Horn if it is definite and positive (H < By A ... A By,), and Datalog if it is
function-free. Definite logic programming (definite LP) with definite, positive
rules is related to the undecidable Horn FOL, while its subset def-LP relates
to the decidable function-free Horn FOL (called def-Horn, plain Datalog).

Overcoming limited expressivity of first-order description logics

Relational knowledge. Description logics are very limited in representing
relational knowledge. The reasons are that (a) they are designed as decidable
subsets of undecidable 2-variable FOL fragment with one free variable only,
and (b) they are restricted to unary and binary predicates only. In particular,
the decidability of most DLs is due to their having the so-called tree-model
property, i.e., any model of a given DL knowledge base kb defines a finite,
tree-shaped directed graph with depth and branching factor bounded by the
size of kb.

This restricts the way variables and quantifiers can be used in DLs. In fact,
each quantified variable must occur in a role along with the only free vari-
able (e.g. y.R(z,y) A C(y)). As a consequence, it is impossible to describe
concepts whose instances are related to other (anonymous) instances via dif-
ferent role paths. One example is the well-known relational concept uncleO f
that is not possible to express in DL but as the function-free Horn rule
uncleOf(Z,Y) < fatherOf(X,Y),brotherOf(X,Z) that has a triangular-
shaped model*°.

Integrity constraints. DLs do not support integrity constraints that are
used to check the consistency of a knowledge base without deriving new facts.
In deductive databases such constraints are modeled in Datalog/® as def-
Horn rules with empty heads, i.e., rules of the form < By, ..., B,, (equivalent
to LV =By V..V -B,) which asserts that statements B; can never become

0 Similarly, the concept of homeworkers as individuals who live and work
at the same location are not expressible in description logics but in def-
Horn (e.g. HomeWorker(X) < Person(X),livesAt(X,Y), worksAt(X,Y), or
HomeWorker(X) < worksAt(X,Y), livesAt(X, Z), loc(Y, W), loc(Z, W)).

75

75/466

M Klusch, 2008

true simultaneously*!.

Nonmonotonic reasoning. Unlike normal logic programming with default
negation, or autoepistemic description logics with modal operator K that al-
lows for local closed-world reasoning, first-order description logics like OWL-
DL are restricted to monotonic reasoning under open-world assumption. Since
the Semantic Web is open-ended, this is considered appropriate by the W3C,
but for many practical Web applications like ticket booking services over finite
databases it makes much more sense to perform (local) closed-world reason-
ing instead. In particular, nonmonotonic negation-as-finite-failure, defeasible
rules with priorities, procedural attachments and builtins to compute, for ex-
ample, aggregations like count, sum, max, avg)*?, as well as nonmonotonic
class inheritance (overriding default property values) are commonly consid-
ered useful for data intensive Web applications in practice, but impossible to
express with FOL much less description logic.

Rules reasoning support

Main reasoning tasks of normal logic programming with nonmonotonic (de-
fault) negation-as-failure under minimal model (or stable model) semantics
concern the inference of factual knowledge (ground entailments, query an-
swering). These inferences are as follows [105]:

a) Given a logic program P and ground literals (facts) l1,...,1,, decide
whether they simultaneously hold in every stable model of P;

b) Given a logic program P and non-ground literals Iy, ...,,, over variables
X1, ..., X}, return all value assignments v to X; such that [y, ...,1,, evaluate
to true.

Prominent examples of implemented frameworks that provide monotonic rule
reasoning support include JESS*? with its own declarative XML rule lan-
guage, the TRIPLE** Horn rules engine (on top of RDF/S, uses external
DL reasoners like RACER to cover OWL outside def-Horn), the KAON2
reasoner®® (covering SWRL, WSML-DL, Horn-SHIQ), and the FUB SWRL
engine?®, and Hoolet covering SWRL rules and the (monotonic layers of)

! For example, disjointness of OWL concepts C,D (C M D = L) corresponds to
the rule < C'D. Every model of a logic program P that satisfies this rule body
evaluates the rule to false (L), hence is considered inconsistent and therefore has
to be dropped.

42 Any aggregation implicitly applies default negation, since it is implicitly assumed
that no additional facts have to be taken into account for computing the aggre-
gation.

3 jessrules.com/jess/index.shtml

4 triple.semanticweb.org/

5 kaon2.semanticweb.org/

6 www.ag-nbi.de/research /swrlengine/

76

76/466

M Klusch, 2008

SWSL-Rule*”. Tools that additionally support nonmonotonic rule reasoning
include the KAON?2 reasoner, the OntoBroker and the FLORA-2 reasoner (for
F-Logic(LP) underlying WSML-Flight and WSML-Rule), and the Bossam
Rule/OWL reasoner.

2.5.2 Issues of Combining Rules With Ontologies

The problem of combining rules with ontologies is to combine a first-order
theory, ¢, that is a set of logical formulae in a first-order language L¢ over
signature o4 with a logic program (or rule base) P, that is a set of (monotonic
or nonmonotonic) rules in a language Lp over signature op, in a combined
knowledge base kb = (¢, P). There are several issues related to this problem
which we only indicate in very brief. For a more elaborated discussion of them
with examples, we refer to the excellent readings [105, 103].

Classical first-order logic vs. logic programming

Ground entailments. As well-known, the function-free Horn subset of clas-
sical FOL corresponds to the core of logic programming without negation-
as-failure, that is plain Datalog. For entailments of positive facts « (positive
ground entailments), the first-order semantics of ¢ (¢ |= a) coincides with the
minimal model semantics of P (P =, a). This does neither hold for negative
ground entailments nor for non-ground entailments in general*®. Besides, the
first-order reading of a positive logic program P can also allow for additional
non-factual inferences that are not entailed by P.

Negation-as-failure vs. classical negation. Negation-as-failure (not) in
normal logic programs is evaluated under closed-world assumption, hence is
nonmonotonic. Negation (—) in first-order logics is interpreted classically un-
der open-world assumption, hence is monotonic. As one consequence, negative
ground entailments that hold in definite programs P with negation may not
hold in the first-order description logics reading of P 49.

47 www.w3.org/Submission/SWSF-SWSL/

8 For example ([262]), in a simple knowledege base P of one fact or ground atom
P = {C(a)}, the classically negated fact & = —~C(0) is not true (under OWA) in
all first-order models of P: P ¥ «. That is, its negation C(0) cannot be explicitly
derived from P: P | —C(o) if P U {C(0)} is unsatisfiable, but this does not
hold through at least the model {C(a),C(0)}. In contrast, the default negated
fact a = not C(0) is true (under CWA) in the only minimal (w.r.t set inclusion)
model {C(a)} of P: P =, a. Non-ground entailments like concept subsumption
a = (Vz.C(z) = D(z)) can be decided in most description logics under first-order
semantics but, in general, not in normal logic programming with default nega-
tion under stable model semantics. However, as mentioned above, LP is mostly
concerned with factual inferences (ground entailments).

9 In the simple example above, the classically negated fact =C/(0) does not hold in
P under OWA such that adding C(o) later to P does not falsify any previously

7

77/466

M Klusch, 2008

Unique names assumption. The unique names assumption (UNA) states
that individuals with different names (URI, IRI) are different, i.e., there are
no aliases or synonyms. This assumption is not made in classical logic, hence
not in RDF and OWL. In OWL knowledge bases it is possible to deduce
that two individuals or concepts with different names are the same based on
their logical definitions. OWL also offers operators to specify whether named
individuals are the same or not (samelndividualAs, differentFrom, < nR(0)).
In logic programming, the UNA does hold, hence any equality reasoning by
means of some equality predicate in rule heads is not supported.

The UNA for a combined knowledge base kb = (¢, P) can be obtained by
adding a special binary equality predicate as a classical built-in predicate
with the usual equality axioms in ¢. An example of equality predicate eq
in P axiomatised through DL-safe function-free Horn rules is as follows:
eq(X,X); eq(X,Y) < eq(Y,X); eq(X,Z) < eq(X,Y),eq(Y,2); C(Y) «

C(X),eq(X,Y) for every concept C and R(C, D) «+ R(A, B),eq(C,A),eq(D, B)

for every role R in ¢. Alternatively, the UNA could be axiomatized by assert-
ing inequality between every set of distinct individuals (constants) of kb.

Decidability and DL-safe rules

Another problem of combining first-order ontologies with rules from normal
logic programming is that the combination of decidable fragments of both
worlds can be undecidable. For example, query answering and satisfiability
checking in the decidable description logic ALCNR combined with a decid-
able Datalog variant in CARIN has been shown undecidable (Halevy and
Rousset, 1998) [231]. Similarly, the combination of SHOIN(D) with function-
free Horn (def-Horn) in the Semantic Web rule language SWRL is undecidable
(cf. section 2.5.5).

The main reason is that the evaluation of existential role constraints (e.g.
Person T Ffather.Person) equivalently encoded as a recursive rule (e.g.
father(X) : Person < Person(X)) with function symbols (father) for ob-
ject creation can, for a given query (e.g. ?XhasFather?Y’), create an infinite
chain of anonymous individuals (e.g. father(father(...(peter)) for ?X /peter).
The syntactic DL-safety condition for rules avoids this problem. It requires
that each variable occurring in a rule must occur in a positive non-DL-
atom in the rule body, and may therefore be bound only to constants,
that are named (not anonymous) individuals in the ABox of the DL part
of the combined knowledge base. For example, the rule uncleOf(Z,Y) «+

fatherOf(X,Y),brotherOf (X, Z)) with OWL-DL roles (DL-atoms) brotherOf,

fatherOf is not DL-safe since X does not occur in the only (positive) non-
DL-atom of the rule, that is the rule head uncle(Y, Z).

infered knowledge, hence classical negation is monotonic. However, the default
negated fact not C(o0) is true in P under CWA such that adding the fact C(o)
later to PU{not C(0)}, the previous inference not C(0) from P has to be retracted
(belief revision of P), hence default negation is nonmonotonic.

78

78/466

M Klusch, 2008

Unsafe rules can be made DL-safe by adding positive non-DL-atoms of the
form O(X) (with special rule predicate O not defined in ¢) to the rule body
for each variable X violating the DL-safety condition, and a fact O(a) for each
individual a in the ABox of ¢. Regarding the example above, the modified
rule uncleOf(Z,Y) < fatherOf(X,Y),brotherOf(X,Z),0(X) is DL-safe.
DL-safety enforces evaluation of the rule with known individuals of the given
ABox of ¢ only, since the positive non-DL-atoms O only match with these
but no anonymous individual implied by existential constraints.

2.5.3 Combination Strategies

As mentioned above, in the current Semantic Web architecture both ontology
and rules layer are separated. Approaches to combining first-order descrip-
tion logic-based knowledge bases with rules from logic programming can be
classified as follows [103, 105].

e Homogeneous integration (tight coupling) of both components under first-
order semantics without any negation in the rules part of the combined
knowledge base kb = (¢, P). In this setting, the rules part P is restricted to
function-free Horn rules such that the semantics of kb can be defined by its
translation to classical FOL. Examples are the decidable DLP (Description
Logic Programming, cf. section 2.5.4), the Horn-SHIQ (cf. section 2.5.6)
and DL-safe SWRL (cf. section 2.5.5), as well as undecidable SWRL.

e Homogeneous integration (tight coupling) of both components under sta-
ble model (answer-set) semantics of logic programming with default nega-
tion in P and classical negation in ¢. The (nonmonotonic) stable models
of P are built with respect to first-order models of ¢, and constitute the
stable models of the combined knowledge model kb. Examples are decid-
able DL+log (cf. section 2.5.7) and undecidable WSML-Rule (cf. section
2.4.3).

e Hybrid integration with strict semantic separation of both components
(loose coupling) with allowed use of default negation in the rules part. In
this setting, both components communicate via a safe interface but do not
impose any syntactic restriction on each other. The DL part ¢ is merely
dealt with by the rules part P as an external source of information whose
first-order semantics is treated separately which allows a mix of separate
closed- and open-world reasoning. That involves special query predicates
as positive DL-atoms in rule bodies in order to query the DL knowledge
base from P for additional factual knowledge (ground entailments) such as
evaluated concept memberships in (the ABox of) ¢. Prominent example is
dl-programming with default negation under stable model semantics (cf.
section 2.5.8).

79

79/466

M Klusch, 2008

2.5.4 DLP

The basic idea of description logic programming (DLP) introduced by Grosof
et al. (2003)[143] is to intersect description logics with def-LP, that is equality-
free, plain Datalog (H < Bj A...B,,A\)*® such that query answering of respec-
tively combined knowledge bases is decidable. This is achieved by mapping
as much as possible of OWL into the decidable function-free, definite Horn
(def-Horn) which is the syntactic equivalent of def-LP in FOL. In fact, the
first-order and minimal (w.r.t set inclusion) model semantics of def-Horn, re-
spectively, def-LP coincide for positive ground entailments®!.

For example, concept conjunction C; M Cs on both sides of DL inclusion ax-
ioms (C;y M Cy E D, D C C; NC,) can be either directly or via Lloyd-Topor
transformations from its FOL syntax to equivalent (set of) def-Horn rules®?.
Disjunctions on the right-hand-side of concept inclusion axioms cannot be
handled within def-Horn, since no disjunction are allowed in Horn rule heads.
Similarly, the translation of qualified universal and existential role restric-
tions into def-Horn is incomplete, while concept negation and role cardinality
restrictions cannot be mapped to def-Horn.

The resulting description Horn logic (DHL), or OWL-DLP is a strong subset of
not only def-Horn but SHIF (OWL-Lite), hence not very expressive for practi-
cal purposes. For example, without disjunctions or existential in the rule head,
DLP cannot define a subconcept of a complex concept expression which is a
disjunction (e.g. HumanMAdult T ManUW oman), or a subclass of a complex
class expression which is an existential (e.g. Radio C JhasPart.Tuner).

The semantics of the combined knowledge base (¢, P) with ¢ in DHL and P
in def-Horn is defined by translation to the FOL fragment def-Horn. Examples
of DLP reasoners are KAON-DLP and OWLIM.

2.5.5 SWRL

The Semantic Web rule language SWRL is a monotonic FOL extension of the
description logic OWL-DL, i.e. SHOIN(D) with function-free Horn rules [351].
In particular, negation is allowed through OWL-DL axioms only (classical
negation) but not in the rules part of the combined knowledge base. In contrast
to the overcautious approach of DLP intersecting DL with def-Horn logic,

%0 These rules correspond to definite function-free Horn FOL clauses (Vz.—Bi(z) V
... V=By(z) V H(z) with universally quantified variable .

5! That is, the def-LP and the def-Horn rule sets entail exactly the same set of facts,
though conclusions of def-Horn are not restricted to be facts but can also be rules
(definite Horn clauses). In practical Semantic Web applications, however, often
only factual inferences (ground entailments, conclusions in fact-form) are desired.

2 01 M C> C D corresponds to FOL Vz.C1(x) A Ca(x) — D(x) that is in def-Horn;
D C C: N Oy corresponds to Vz.C1(X) A C2(x) «+ D(x) which is converted into
set of def-Horn rules {C1(z) < D(z),Ca2(z) - D(z)}.

80

80/466

M Klusch, 2008

SWRL takes the other extreme of proposing the union of both but at the
price of decidability.

A combined knowledge base kb = (¢, P) in SWRL consists of a set of
SHOIN(D) statements (¢), and a set of def-Horn rules (P) with a combined
signature oy as union of the signatures (o4, op) of both parts. In fact, SWRL
allows for full interaction between these parts (tight coupling): Any DL con-
cept C and role R can be unrestrictedly used in rules by means of unary,
respectively, binary DL atoms C(s) and R(s,t) with s,¢ constants or vari-
ables and predicates C and R. Concepts and role predicates (DL-atoms) may
occur in the head and the body of rules without any restrictions®®. There exist
various SWRL builtins for numbers, strings, lists, times, etc.

Unlike DLP remaining in def-Horn logic, the combination of SHOIN(D) with
function-free Horn rules increases the expressivity of both languages. For ex-
ample, integrity constraints (Horn rules with empty head) and any statement
that requires rules with arbitrarily shaped model such as the triangular model
of the role ”uncleOf” mentioned above cannot be represented in SHOIN(D)
but in SWRL through Horn rules.

On the other hand, SWRL adds expressivity to Horn rules in terms of DL
atoms in rules that are defined in SHOIN knowledge bases but are not express-
ible in Horn. For example, DL statements with concept negation, unqualified
role cardinality constraints, and existential role restrictions on the right-hand-
side of concept inclusions (D C JR.C)>* that allow infering the existence of
anonymous individuals are not possible to express with function-free Horn
rules®.

The semantics of a SWRL knowledge base kb is defined by translation of both
¢ in SHOIN(D) and P in def-Horn (both decidable fragments of FOL) into
first-order formulae (FOL clauses). That is, SWRL has a single integrated
FO model which is the union of two models, one for the OWL-DL and one
for the rules part, which share the same domain. Variables in SWRL rules
universally quantify over both named and unnamed individuals in ¢. In other
words, SWRL embeds rules and DL ontologies under the same FOL semantics
(tight integration) but is restricted to monotonic (negation-free) Horn rules.

% SWRL rules are defined as new axioms in kb through r := Implies(H,B)
with head H and body B as atoms of the form C(z), P(z,y), sameAs(z,y),
dataRange(x), or differentFrom(z,y), individualvaluedPropertyl D(z,y),
datavalued Propertyl D(x,y), builtIn() where C is a named OWL class, P is
an OWL property, and z,y are either variables, OWL individuals or OWL data
values from a given OWL ontology.

% Like in Person C 3father.T, or the concept of grand childs
dfather.(Afather.Person) L GrandChild used in the (DL-unsafe) Horn
rule BadChild < GRandChild(z,y), parent(z,y), parent(z,y), hates(z, z) [262]

% The reading of the latter in FOL, that is Vz.3y.R(z,y) AC(y) < D(z), cannot be
transformed to def-Horn because of the conjunction (not definite) and the existen-
tially quantified variable in the rule head (Horn requires all variables universally
quantified at the outer level of a rule).

81

81/466

M Klusch, 2008

Main inferences over combined knowledge bases kb = (¢, P) in SWRL under
first-order semantics are (a) checking the satisfiability (consistency) of kb, and
(b) query answering in terms of ground entailments, i.e. checking whether a
ground atom (fact) a holds in or is entailed by kb (kb = «). Unfortunately,
SWRL extends OWL-DL with unrestricted function-free Horn rules which
causes its undecidability [231, 160].

However, (incomplete) reasoning in SWRL can be performed using any gen-
eral first-order theorem provers like Vampire, as well as any PROLOG or
Datalog engine (no default negation in SWRL). For example, Hoolet is an im-
plementation of an OWL-DL reasoner that uses Vampire to support SWRL.
Other systems that offer also SWRL support are the KAON2 system, the
FUB SWRL engine, and even Pellet, a prominent OWL-DL reasoner.

2.5.6 Horn-SHIQ

In (Motik, Sattler & Struder, 2004)[262] the EXPTIME-complete description
logic SHIQ [173] is extended with DL-safe disjunctive positive Datalog rules. In
these rules, DL-atoms are restricted to concepts and primitive (atomic) roles
only. Though function-free Horn is covered by disjunctive Datalog, this ex-
tension is called Horn-SHIQ. It lies between both extremes of homogeneously
combining ontologies and rules under first-order semantics, that are DLP and
SWRL with respect to both expressivity and computational complexity of
query answering (w.r.t. positive ground entailment, and non-ground concept
subsumption reduced to satisfiability).

Horn-SHIQ is far more expressive than DLP, since SHIQ provides concept
constructors that, unlike in DLP, cannot be mapped into def-Horn logic. In
addition to DLP (def-Horn), SHIQ supports classical negation (=), role car-
dinality restrictions, unrestricted use of existential and universal role (value)
restriction, and concept disjunction. Further, Horn and even more disjunc-
tive Datalog covers def-Horn of DLP. As mentioned above, DL-safety does
not restrict the expressivity of Horn-SHIQ but only restricts the evaluation of
rules with DL predicates to individuals that are explicitly named in the SHIQ
knowledge base to retain decidability [262].

In particular, SHIQ with DL-safe def-Horn is a decidable subset of undecid-
able SWRL* (SHOIQ and def-Horn)[262]. SHIQ prohibits the use of nominals
(O) and unqualified role cardinality restrictions (N) which allows to achieve
optimal query answering for a significant portion of decidable DL-safe SWRL
(SHOIN and def-Horn) 6. The motivation of restricting the description of
knowledge bases to SHIQ(D) with DL-safe rules is not only to retain decid-
ability - which would have been the case already for more expressive DL-
safe SWRL* - but to provide a more efficient query answering mechanism
(131, 222).

56 The combined use of nominals, inverse roles and unqualified role cardinality re-
strictions cause an increase in complexity from EXPTIME to NEXPTIME [359].

82

82/466

M Klusch, 2008

This is achieved by reducing the SHIQ(D) knowledge base ¢ to an equisatisfi-
able DL-safe disjunctive Datalog program DD(¢) over which query answering
in terms of positive ground entailments can be performed in polynomial data
complexity (PTIME). In particular, the reduction proposed in [262, 260] guar-
antees that

(a) kb = (¢, P) is satisfiable if and only if DD(¢) U P is satisfiable, and

(b) kb = & (under FO semantics) if and only if DD(¢) U P |=. o (under min-
imal model semantics) for positive facts (non-negated ground DL-atoms)
a of the form R(a,b) or C(o) with C' concept, R primitive role and a,b, 0
named individuals. This query answering is safe, since for such positive
ground entailments the first-order and minimal model semantics coincide.

It is noticeable, however, that the conversion of ¢ into disjunctive Datalog, in
particular the saturation of ¢ with all grounded consequences related to the
query is computed in EXPTIME with respect to the size of the knowledge base
[131, 222]. This leads to a combined complexity of Horn-SHIQ in EXPTIME.
Any other DL-safe rule in P with the above restrictions can be appended to
this reduction of ¢ to DD(¢).

According to the recent study [320], the naive use of LP reasoners like XSB
for query answering transformed SHIQ(D) knowledge bases is infeasible for
practical applications, whereas special DL/LP reasoners KAON2, OntoBroker
and SCREECH showed reasonable performance. It is not yet clear whether
this Horn-SHIQ approach also scales well to knowledge bases of size of several
terrabytes in practice [113] which is a general problem of all approaches to
DL-based and rules reasoning.

2.5.7 DL+log

In DL+log (Rosati et al., 2006)[316], both components of a combined knowl-
edge base kb = (¢, P) are tighly coupled under nonmonotonic stable model
(answer-set) semantics. DL predicates taken from ¢ can arbitrarily occur in
DL-safe rules of P (but not vice versa) with possible default negation in rules,
and classical negation in ¢. Unlike DLP, the approach allows to integrate
a knowledge base in an arbitrary DL with safe Datalog”’ rules and, unlike
loosely coupled dl-programs, does not require special query atoms in rules for
interaction.

The stable model of kb is of the form NM = I U M where [is a first-order
model of ¢, and M a stable model of rules predicates after deletion of classical
DL atoms that are satisfied by I in P. That is, for a given interpretation I of
¢, the rules in P are grounded and reduced with respect to I by eliminating
(a) non-satisfied (wrt I) DL atoms in rule heads, and (b) satisfied DL atoms
in rule bodies. The resulting ground program P; contains no DL atoms and
can be assigned a stable model, if it exists. For an illustrative example of
a DL+log knowledge base and a stable model NM (= M of Pr) for given

83

83/466

M Klusch, 2008

interpretation I of ¢ (there could be no stable models M for given , we refer
to [103].

2.5.8 Nomonotonic DLP

Nonmonotonic description logic programs, called dl-programs, are loosely cou-
pled knowledge bases (¢, P) that extend function-free normal logic programs
P with queries to description logic knowledge bases ¢. This is achieved by
means of special query atoms (DL atoms) to ¢ in the bodies of rules in P of
the form DL[S10p1p1, -y SmnOPmPm; @](t) with query predicate Q[106, 107].
These special query atoms are used to check for ground entailment of concept
membership in ¢. Query answering in dl-programs is decidable provided that
it is decidable in ¢.

The minimal model semantics of a dl-program (¢, P) is defined via grounding
all rules in P with a set of constants in P and ¢. That is, the query atom
DL[C)(X) fetches the instances of concept C from the ABox of ¢ by calling
an external DL reasoner, and then grounds the rule (via variable X) in P
with these instances and those in P.

For example, the rule wineBottle(X) <— DL[Wine](X) gets evaluated over all
(stable) models of P and the extension of the concept Wine in all first-order
models of ¢. A query ?—wineBottle(T opkapi) evaluates to true in P if the DL-
atom D L[Wine](T opkapi) of the rule above holds in ¢ (¢ = Wine(T opkapi)).

The evaluation of DL[? W hiteWine(+)mywhite, DryWine(—)semidry;” Wine”](X)
adds all assertions W hiteWine(c) and ~DryWine(c) to ¢ such that mywhite(c),

respectively, semidry(c) holds in P. For more details on dl-programming with
examples, we refer to [103, 106, 107].

Standardized rule exchange format

Research on Semantic Web rules is rapifdly evolving but the recommended
choice of a combined ontology rule language or unifying logic is still open.
For the rules layer, the W3C issued the rule interchange format (RIF)®7 as a
general purpose rule language to enable the sharing of rules across rule systems
from different suppliers. RIF includes the RIF-Core language for expressing
Horn rules. For more details on RIF, we refer to [44].

Open problems and challenges

Some open problems of reasoning with Semantic Web ontologies and rules are
as follows.

e A general unifying logical framework to formally study the integration of
monotonic DLs and nonmonotonic rules (e.g., the analysis of autoepistemic
and modal logics for unifying FOL and LP [87], the integration of OWL-
DL with DL-safe rules of autoepistemic logic MKNF[263], and embedding
of LP in autoepistemic logic FOAEL [88]).

5 www.w3.org/2005 /rules/

84

84/466

M Klusch, 2008

e Practical software support for rule-based application building and sharing
based on RIF, and field test experiments on the scalability of DL and rules
reasoning.

2.6 Semantic Web Applications

Current major application domains of Semantic Web technology are knowl-
edge management (KM), enterprise application integration (EATI), CSCW and
social networking, infotainment, e-healthcare, life sciences, digital libraries,
and astronomy. Though, the exploitation of Semantic Web technologies in
each of these domains is different in nature.

For example, in typical KM applications to organize and provide tailored in-
formation inside or across enterprise boundaries, the Semantic Web technolo-
gies RDF, RDFS and SPARQL are used for document annotation, building
of related ontologies, and RDF document querying, whereas the use of OWL
and rules is rather rare. In contrast, in EAI or e-commerce applications the
standard ontology language OWL is supposed to be heavily used to make
the semantics of information explicit in ontologies, and rules are used to de-
scribe the relationships between them and/or to convert between different
data formats while application database(s) can have RDF wrappers and data
is published and exchanged in RDF.

In case of Semantic Web applications made available as a single or composed
Web service, we are into the field of Semantic Web services - which is the
topic of the next chapter. One popular application example in business is
the dynamic classification of, and search for relevant business partners and
experts in and across enterprises (Sheth et al., 2006)[332].

Deployed applications

Remarkably, there has been quite a number of Semantic Web applications de-
ployed to date of which the Semantic Web Challenge promotes the most inno-
vative ones at challenge.semanticweb.org. The following short list of Semantic
Web application examples is representative but, of course, not exhaustive.

e One of the first and most widely known Semantic Web applications is
the Friend-of-a-Friend (FoaF) social network which describes relationships
among people in terms of homepage-like profiles in RDF.

e The system Revyu.com for jointly reviewing and rating literally anything
(revyu.com) tagging the content in RDF was voted Semantic Web Chal-
lenge winner in 2007.

The collaborative semantic music recommender Foafing-the-music®®.
The multimedian e-culture demonstrator > was voted Semantic Web Chal-
lenge winner in 2006.

foafing-the-music.iva.upf.edu
59 e-culture.multimedian.nl

85

85/466

M Klusch, 2008

The TemGrid® that semantically interconnects over 70 heterogeneous re-
lational databases for traditional chinese medicine by use of a shared global
OWL ontology with over 70 classes and 800 properties; it also provides se-
mantic query, search and navigation services.

The BioDASH®!' Semantic Web dashboard for drug development that uses
rule-based RDF inferencing to filter and merge data in due course of asso-
ciating relevant information on disease, drug progression stages, molecular
biology and others for a team of users.

The VSTO 1.0 (Virtual Solar Terrestrial Observatory)®? astronomical ap-
plication that provides semantically integrated access to two large, hetero-
geneous online scientific data repositories in the area of solar- and solar-
terrestrial physics. Semantic information integration in VSTO is based on
a globally shared special VSTO ontology in OWL for the CEDAR com-
munity of approximately 1200 participants.

The semantic knowledge management platforms KIM and hTechSight
KMP.

The RichNews news agency application by BBC which semantically anno-
tates and summarizes radio and television news broadcasts using resources
retrieved from the Web.

Vodafone’s Live Mobile Portal allows users to more efficiently search for
relevant RDF annotated resources, such as ringtones, games, and pictures
which decreased the page views per download around 50 percent and num-
ber of downloaded ringtones up to 20 percent in only two months.

Selected Semantic Web application projects

From the set of Semantic Web application development projects world wide,
we would like to point to, for example, Nepomuk®, SmartWeb% NEWS%5
MESH?®®, Sculpteur®”, Helsinki IIT application projects®®, and the relevant
European Commission funded projects on the subject. Other projects fo-
cussing on semantic Web business data integration include DartGrid®® from
Zhe Jiang University in China, and those launched internally by Boeing,
MITRE Corporation, and Elsevier.

For example, the German government funded project SmartWeb coordinated
by DFKI was developed context-aware multimodal user interfaces for distrib-

60
61
62
63
64
65
66
67
68
69

uted and composable Semantic Web services on mobile devices. In particular,

cent.zju.edu.cn/projects/dartgrid /tcmgrid.html
www.w3.org/2005/04/swls/BioDash/Demo/
www.vsto.org
nepomuk.semanticdesktop.org/xwiki/bin/Mainl/
smartweb.dfki.de/main_pro_en.pl?infotext_en.html
WWW.news-project.com
cordis.europa.eu/ist/kct/fp6_mesh.htm
www.sculpteurweb.org
www.seco.tkk.fi/applications/
cent.zju.edu.cn/projects/dartgrid/

86

86/466

M Klusch, 2008

advancements of both mobile broadband communication and Semantic Web
technology were exploited to realize such services with innovative person-
alization and localization features. The implemented SmartWeb application
demonstrators are (a) the multi-modal dialogue-based personal guide for the
2006 FIFA world cup in Germany which provides a mobile infotainment ser-
vice to soccer fans on mobile devices such as the MDA pro III/IV, and (b)
safety information services for drivers of a Mercedes A-class car and a BMW
K1200LT motor bike.

2.7 Critique

One major problem of realizing the Semantic Web is to effectively achieve an
automated semantic integration of distributed, heterogeneous data, informa-
tion and services in the Web on demand. From a historical perspective, the
Semantic Web can even be seen as a kind of rebirthed idea that has been used
to cope with the same problem of semantic interoperation in the domains of
federated and multi-database systems, and cooperative information systems
already two decades ago.

What is new with the Semantic Web?

Provocatively speaking, the principled use of description logics for auto-
mated logic-based reasoning about heterogeneous, semantically annotated re-
sources and formal ontologies was deeply investigated in the context of semi-
automated database schema integration since the mid 1980s, while the use of
intelligent agents to manage and coordinate them is a proclaimed key feature
of the paradigm of intelligent cooperative information systems introduced by
Papazoglou, Selis and Laufman already in 1992. The tremendous progress
in research and development of Semantic Web technologies since the begin-
ning of this century would not have been possible without heavily building on
relevant results achieved and practical experiences made in these and other
related fields.

Where shall the critical mass of semantic metadata come from?

One key to the success of the Semantic Web in practice is the massive pro-
duction and maintenance of standard-based formal data semantics, ontologies
and related instance sets or knowledge bases. However, as both Tom Gruber
and Tim Berners-Lee pointed out during their keynote talks at the ISWC
2006 conference, the availability of a cost-free, critical mass of Semantic Web
data and ontologies to the common user is still far from being achieved. As
a consequence, apart from theoretic research challenges and required funding
of relevant science world wide, creating this critical mass is considered to be
one major barrier for developing Semantic Web business applications today.

87

87/466

M Klusch, 2008

In other words, bringing a true Semantic Web to the world of common Web
users still is kind of a chicken-and-egg problem. Until there is enough Web data
attached with metadata in standard RDF or OWL to make it meaningful, and
without easy to use software support for resource annotation and processing
the semantic metadata, apart from academics and research projects, nobody
is going to be able to create any interesting services on the fly for everyday
tasks. At the ISWC 2007 conference, there has been some vivid discussion on
possible incentive schemes to push both the development and widespread use
of easy to use tools for semantic annotation of Web resources by the common
user but still, in essence, without any common agreement by the community
participating in this discussion - so, this essential problem remains to be solved
yet.

Do we really need formal ontologies to share?

Another main criticism of the Semantic Web even questions its practical fea-
sibility and added value for business applications in general, from both the
technical and the human user perspective. For example, the simple Web re-
source format XHTML or task specific microformats such as hCard, XFN and
XOXO for contact information, social relationships, lists and outlines, respec-
tively, are argued for their more ease of creation and use in specific Web 2.0
services and applications like RSS-based newsfeeds and podcasts.

The same goes with individual user-generated tags, so-called folksonomic cate-
gories that allow for rather idiosyncratic tagging of collaboratively shared con-
tent of social Web 2.0 application services like flickr, mySpace and facebook.
As with agreed-upon XML-namespaces for whole application domains like
chemistry and mathematics, the use of such popular, informal folksonomies
instead of formal logic-based ontologies in RDFS or OWL are often argued
to better suit the needs of individual service specific user communities in
practice.

Is logic-based reasoning only appropriate?

Regarding the original Semantic Web idea of logic-based reasoning on anno-
tated Web resources, it is often argued for an alternative, a so-called statistical
Semantic Web. The basic idea of this alternative is to live with semantic an-
notations in structured XML and text, and perform approximative reasoning
upon such metadata by means of, for example, linguistic similarity measure-
ment or probabilistic XML information retrieval. In other words, if one does
accept the hypothesis that it will take smart software to produce the markup
that the Semantic Web and agents will exploit, then what is the case for
believing that it will be ontology-based logical inference engines rather than
statistically-based heuristic search engines making use of already widespread
XML metadata that people will be using? At the current stage, we cannot tell
until solid and publicly available user studies on the subject are conducted.

88

88/466

M Klusch, 2008

In fact, the same argument in principle holds for the area of Semantic Web
services which we will introduce in the next chapter.

Notably, the original idea to base the Semantic Web on (description) logics
only got even questioned by the Semantic Web community itself quite re-
cently. For example, in (van Harmelen & Fensel, 2007)[113] it is acknowledged
that the basic underlying assumptions of proposed (crisp) logical, complete
and correct reasoning approaches do not seem to match the reality the Web
provides. Such limiting assumptions include the restriction of the sets of (on-
tological/rule) axioms and facts in size, the axioms and facts are static and
known in advance, and the inference process must be sound and complete.
In fact, Semantic Web research now tends to revise these limiting assump-
tions of the original vision in favor of approximate reasoning that promises to
better scale to the the Web. As mentioned above (cf. section 2.4.2), the discus-
sion on related issues and open problems like belief revision in the Semantic
Web, probabilistic notions of entailment, desirable properties of such inferenc-
ing (monotonic vs. nonmonotonic, anytime availability, etc.), and appropriate
query languages is ongoing.

What are mature technologies for easy adoption by the common user?

In practice, the Semantic Web today provides standardized technologies that
aim at the easy integration of semantically annotated Web data: It includes
a standardized abstract model (RDF) for relational resource graphs, plus effi-
cient means to extract RDF information from XML, XHTML or microformat-
ted pages (GRDDL), plus means to add structured information to XHTML
pages (RDFa), plus a query language adapted for RDF graphs (SPARQL),
and standardized ontology languages to categorize resources such as RDFS
and OWL. Apart from the rule interchange format RIF, reasoning means for
formal ontologies with (monotonic or nonmonotonic) rules like for SWRL,
DLP, or WSML-Rule are not standardized.

Depending on the complexity required, applications may choose among these
technologies ranging from rather simple RDFS to more sophisticated ones like
OWL and rules, and reuse existing ontologies that others have produced such
as DOLCE, WINE, SUMO, SEMINTEC, GALEN. Though, some of these
technologies are stable, others are being under development still. Moreover, as
mentioned above, there is even a current major shift in research of the Seman-
tic Web community towards approximate, scalable reasoning on semantically
annotated Web resources of which no one knows the results yet.

What about the future of Semantic Web technologies?

Taking this and the lack of easy-to-use Semantic Web tools for annotation,
reasoning, and application building for the common Web user into account, it
comes at no surprise that the uptake of Semantic Web technology world wide
appears slow. For example, a recent survey of the Semantic Web performed
by use of a specific search engine Swoogle revealed that there merely exist

89

89/466

M Klusch, 2008

around 800K RDF annotated resources in the visible Web. This size is of
some magnitudes smaller than the one of the Web with its estimated 12 billion
resources indexed by the search engine Google alone.

Besides, the technology survey 2006 by market analyst Gartner expects Se-
mantic Web science to take further five to ten years for reaching a level of
maturity that is sufficient enough for possible commercial uptake by major
business stakeholders beyond RDF and OWL, not to speak about making it to
the common Web user broadly. The same survey also predicts the convergence
of Semantic Web technologies with peer to peer (P2P) computing (Stucken-
schmidt & Staab, 2006)[345], service-oriented computing, and pervasive com-
puting. In fact, first research and development efforts towards the ubiquituous
Semantic Web (ako Web 3.0++) by merging Web 2.0 ideas of practical ever-
day life and social collaborative applications with ambient intelligence and
Semantic Web technologies for future (intra- and inter-organizational) service
applications anytime, anywhere are already underway.

2.8 Further Readings

For a comprehensive and more detailed coverage of the Semantic Web, we refer
the interested reader to, for example, the excellent readings on the subject
[114, 11]. Advancements in the field are regularly reported in the proceedings
of major conferences like the International Semantic Web Conference (ISWC,
since 2002), and the European Semantic Web Conference (ESWC, since 2004).
Examples of major funded research projects that significantly contributed to
the advancement of theory and application of the Semantic Web are Knowl-
edgeWeb™, DIP™!, SEKT?2, REWERSE"®, SUPER™, and SmartWeb7>.
Besides, the Web sites of relevant W3C working groups "®, and the DFKI
competence center for the Semantic Web (semanticweb.dfki.de) serve as good
starting points for obtaining references to topical research and development
in the field.

70 knowledgeweb.semanticweb.org
™! dip.semanticweb.org
™ www.sekt-project.org

73 rewerse.net
74

75

www.ip-super.org
smartweb.dfki.de/main_pro_en.pl?infotext_en.html
™ www.w3.org/2001/sw/

90

90/466

M Klusch, 2008

3

Semantic Web Services

Industrial standards for XML-based Web services (cf. chapter 1) are designed
to represent information about the interfaces of services, how they are de-
ployed, and how to invoke them. They are, however, insufficient to represent
the semantics of a Web service, that are its capabilities and requirements in a
machine-understandable, logic-based form to enable automated semantic ser-
vice discovery, composition planning and integration. This major challenge of
semantic service coordination carried out by intelligent software agents has
been addressed by the Semantic Web community introducing Semantic Web
services (SWS) technology as one manifest of the convergence of Semantic
Web and service-oriented computing.

This chapter briefly discusses prominent Semantic Web service description
frameworks, that are the standard SAWSDL, OWL-S and WSML!, and Se-
mantic Web service service coordination activities each of which discussed
in more detail in the following parts. This is complemented by main critics
of Semantic Web services, and selected references to further readings on the
subject. This chapter is an extended version of (Klusch, 2008)[195].

3.1 Issues of Semantic Service Description

Each semantic service description framework can be characterised with respect
to (a) what kind of service semantics are described, (b) in what language or
formalism, (c) allowing for what kind of reasoning upon the abstract service
descriptions? Further, we distinguish between an abstract Web service, that
is the description of the computational entity of the service, and a concrete
service as one of its instances or invocations that provide the actual value
to the user (Preist, 2007)[299]. In this sense, abstract service descriptions
are considered complete but not necessarily correct: There might be concrete

! Due to space limitations other description frameworks like SWSL (Semantic Web
Service Language) and project specific formats like DIANE are omitted.

91/466

M Klusch, 2008

service instances that are models of the capability description of the abstract
service but can actually not be delivered by the provider.

3.1.1 Parts of Service Semantics

In general, the functionality of a service can be described in terms of what
it does, and how it actually works. Both aspects of its functional semantics
(or capability) are captured by a service profile, respectively, service process
model. The profile describes the signature of the service in terms of its input
(I) and output (O) parameters, and its preconditions (P) and effects (E) that
are supposed to hold before or after executing the service in a given world
state, and some additional provenance information such as the service name,
its business domain and provider. The process model of atomic or composite
services describes how the service works in terms of the interplay between data
and control flow based on a common set of workflow or control constructs like
sequence, split+join, choice, and others.

This general distinction between profile and process model semantics is com-
mon to structured Web service description frameworks, while differences are
in the naming and formal representation of what part of service semantics.
We can further differentiate between stateless (10), respectively, state-based
(PE) abstract service descriptions representing the set of its instances, that are
concrete services providing value to the user. The non-functional service se-
mantics are usually described with respect to a quality of service (QoS) model
including delivery constraints, cost model with rules for pricing, repudiation,
availability, and privacy policy.

3.1.2 Structured Representation

A domain-independent and structured representation of service semantics is
offered by upper (top-level) service ontologies and languages such as OWL-
S and WSML with formal logic groundings, or SAWSDL which comes, in
essence, without any formal semantics. Neither OWL-S nor WSML provide
any agreed formal but intuitive, standard workflow-based semantics of the
service process model (orchestration and choreography). Alternatively, for
abstract service descriptions grounded in WSDL, the process model can be
intuitively mapped to BPEL orchestrations with certain formal semantics.

3.1.3 Monolithic Logic-Based Representation

The formal specification of service semantics agnostic to any structured service
description format can be achieved, for example, by means of a specific set
of concept and role axioms in an appropriate logic (cf. section 3.5). Since
the service capability is described by means of one single service concept,
this representation of service semantics is called monolithic and allows to

92

92/466

M Klusch, 2008

determine the semantic relations between service descriptions fully within the
underlying logical formalism based on concept satisfaction, subsumption and
entailment. However, it does not provide any further information on how the
service actually works in terms of the process model nor any description of
non-functional semantics.

3.1.4 Data Semantics

The domain-dependent semantics of service profile parameters (also called
data semantics) are described in terms of concepts, roles (and rules) taken
from shared domain, task, or application ontologies. These ontologies are de-
fined in a formal Semantic Web language like OWL, WSML or SWRL. If
different ontologies are used, agents are supposed to automatically resolve the
structural and semantic heterogeneities for interoperation to facilitate better
Web service discovery and composition. This process of ontology matching
is usually restricted to ontologies specified in the same language, otherwise
appropriate inter-ontology mappings have to be provided to the agents.

In subsequent sections, we briefly introduce prominent approaches to both
types of service descriptions. For structured semantic service descriptions, we
focus on OWL-S, WSML, and SAWSDL, and omit to dicuss alternatives like
DSD (DIANE service description format) and SWSL (Semantic Web Service
Language).

3.1.5 Reasoning on Service Semantics

The basic idea of formally grounded descriptions of Web services is to al-
low agents to better understand the functional and non-functional semantics
through appropriate logic-based reasoning. For this purpose, it is commonly
assumed that the applied type of logic reasoning complies with the underly-
ing semantic service description framework. Further, the concept expressions
used to specify the data semantics of service input and output parameters are
assumed to build up from basic concepts and roles taken from formal appli-
cation or domain ontologies which the requester and provider commonly refer
to. We survey approaches to non-logic based, logic based, and hybrid reason-
ing means for Semantic Web service discovery, and composition planning in
the introductions to the following parts of this work.

3.2 SAWSDL

The standard language WSDL for Web services operates at the mere syntactic
level as it lacks any declarative semantics needed to meaningfully represent
and reason upon them by means of logical inferencing. In a first response to
this problem, the W3C Working Group on Semantic Annotations for WSDL

93

93/466

M Klusch, 2008

and XML Schema (SAWSDL) developed mechanisms with which semantic
annotations can be added to WSDL components. The SAWSDL specifica-
tion became a W3C candidate recommendation on January 26, 20072, and
eventually a W3C recommendation on August 28, 2007.

3.2.1 Annotating WSDL Components

Unlike OWL or WSML, SAWSDL does not specify a language for representing
formal ontologies but provides mechanisms by which ontological concepts that
are defined outside WSDL service documents can be referenced to semantically
annotate WSDL description elements. Based on its predecessor and W3C
member submission WSDL-S? in 2005, the key design principles for SAWSDL
are that (a) the specification enables semantic annotations of Web services
using and building on the existing extensibility framework of WSDL; (b) it is
agnostic to semantic (ontology) representation languages; and (c) it enables
semantic annotations for Web services not only for discovering Web services
but also for invoking them.

Based on these design principles, SAWSDL defines the following three new
extensibility attributes to WSDL 2.0 elements for their semantic annotation:

e An extension attribute, named modelReference, to specify the associ-
ation between a WSDL component and a concept in some semantic (do-
main) model. This modelReference attribute is used to annotate XML
Schema complex type definitions, simple type definitions, element decla-
rations, and attribute declarations as well as WSDL interfaces, operations,
and faults.

e Two extension attributes, named liftingSchemaMapping and lower-
ingSchemaMapping, that are added to XML Schema element declara-
tions, complex type definitions and simple type definitions for specifying
mappings between semantic data in the domain referenced by modelRef-
erence and XML. These mappings can be used during service invocation.

An example of a SAWSDL service, that is a semantically annotated WSDL ser-
vice with references to external ontologies describing the semantics of WSDL
elements, is given in figure 3.1: The semantics of the service input parameter
of type ”OrderRequest” is defined by an equally named concept specified in an
ontology ”purchaseorder” which is referenced (URI) by the element tag ”mod-
elReference” attached to ”OrderRequest”. It is also annotated with a tag A
tag ”loweringSchemaMapping” which value (URI) points to a data type map-
ping, in this case an XML document, which shows how the elements of this
type can be mapped from the referenced semantic data model (here RDFS)
to XMLS used in WSDL.

? www.w3.org/2002/ws/sawsdl/
3 www.w3.org/Submission/ WSDL-S/

94

94/466

M Klusch, 2008

<wsdl:description targetMamespace="http: M w3 orgl2002iwsisawsdispeciwsdiorderg
smins="http: e w3.orgr20020wsisawsdl/spechwsdliorders”
xming wsdl="http e w3 orgimsfwsd”
wming: xs="http: /e w3 orgf20015MLSchema'”
#mins:sawsdl="http: Fanw w3 orgisisawsdl"=

awsdltypess
<y5:5chema targetMamespace="http: M w3.org/2002ws/sawsdlispecimsdlfordert” elementFormDefault="qualified">
<xs.element name="UrderRequest’
sawsdl:modelReference= "http:liwww.w3.0rgl2002lwsisawsdlispeciontologylpurchaseorder#OrderRequest”
sawsdl:loweringSchemaMapping="http: www.w3.orgl2002iwslsawsdlispecimapping/RDF Ont2Request.xml™>
<5 .complexType=
<5 5eqUence>
<yselement name="customerNo" type="xs:intager" /=
<ys:element name="orderltem" type="item" minOccurs="1" maxOccurs="unbounded" /=
</X3.3eqUence
<fxs.complexType=
<fxs.element=

<fwsd|:typeé>

<wsdlinterface name="Crder"
sawsdl:modelReference="http:fexample.orgicategorization/productsielectronics>

<wsdl operation name="order" pattern=" http: e w3 org/nsfwsdlin-out"
sawsdl:modelReference="http:Jwww.w3.orgl2002iwsisawsdlispeciontologyipurchaseorder#RequestPurchaseOrder">

<wsdlinput element="OrderRequest” /=
<wsdl-output element="CrderResponse” /=

<fwsdl operation=
<fwsdlinterface>
<fwisdl description=

Fig. 3.1. Example of semantic annotation of WSDL elements in SAWSDL.

3.2.2 Limitations

Major critique of SAWSDL is that it comes, as a mere syntactic extension of
WSDL, without any formal semantics. In opposite to OWL-S and (in part)
WSML, there is no defined formal grounding of neither the XML-based WSDL
service components nor the referenced external metadata sources (via model-
Reference). Quoting from the SAWSDL specification (section 2.2): ” Again, if
the XML structures expected by the client and by the service differ, schema
mappings can translate the XML structures into the semantic model where
any mismatches can be understood and resolved.” This makes any form of
logic-based discovery and composition of SAWSDL service descriptions in the
Semantic Web rather obsolete but calls for "magic” mediators outside the
framework to resolve the semantic heterogeneities.

Another problem with SAWSDL today is its very limited software support.
Notable exceptions are the implemented SAWSDL service discovery and com-

95

95/466

M Klusch, 2008

position planning means of the METEOR-S framework (MWSDI). However,
the recent announcement of SAWSDL as a W3C recommendation does not
only support a standardized evolution of the W3C Web service framework in
principle (rather than a revolutionary technology switch to far more advanced
technologies like OWL-S or WSML) but will push software development in
support of SAWSDL and reinforce research on refactoring these frameworks
with respect to SAWSDL.

3.3 OWL-S

OWL-S is an upper ontology used to describe the semantics of services based
on the W3C standard ontology OWL and is grounded in WSDL. It has its
roots in the DAML Service Ontology (DAML-S) released in 2001, and became
a W3C candidate recommendation in 2005. OWL-S builds on top of OWL
and consists of three main upper ontologies: the Profile, Process Model, and
Grounding (cf. figure 3.2). In the following, we briefly present each of the main

Fig. 3.2. OWL-S service description elements.

elements of OWL-S service descriptions. The underlying standard ontology
language OWL has been introduced in the previous chapter.

3.3.1 Service Profile

The OWL-S profile ontology is used to describe what the service does, and
is meant to be mainly used for the purpose of service discovery. An OWL-S
service profile encompasses its functional parameters, i.e. hasInput and ha-
sOutput, and precondition and effect (IOPEs), as well as non-functional para-
meters such as serviceName, serviceCategory, qualityRating, textDescription,

96

96/466

and meta-data (actor) about the service provider and other known requesters.
Please note that, in contrast to OWL-S 1.0, in OWL-S 1.1 the service IOPE

parameters are defined in the process model with unique references to these
definitions from the profile (cf. figure 3.3).

T
‘\‘63' ‘_,.). &xsd;#anyURL
.,\ " — —
w;,a“f‘,..- o(" &xsd:#anyURL
o e’ ~
s N W gme o —
-/ e L PR P T L]).
M &expr;#Condition Cong,. O
" textDescription)
- caecsedese
-
:' pashes 328 pro,
. &process;#Result
.
.
)

»
e

*
0
-

*
0
"
"
"
.
.
.
.
.
.
.
.
.
.
.
.

Ba
s has\“\"u.---"' E}
k' &process;#Input wast® Eig
K o
-‘. — “\9\:"._.-1 .é ;_;
At #a
&process;#0utput et g z
. Ve

_k ObjectProperty
------ P DatatypeProperty

snmnnn -. SubClass/Property

Fig. 3.3. OWL-S service profile structure.

Inputs and outputs relate to data channels, where data flows between
processes. Preconditions specify facts of the world (state) that must be as-
serted in order for an agent to execute a service. Effects characterize facts
that become asserted given a successful execution of the service in the physi-
cal world (state). Whereas the semantics of each input and output parameter
is defined as an OWL concept formally specified in a given ontology, typi-
cally in decidable OWL-DL or OWL-Lite, the preconditions and effects can
be expressed in any appropriate logic (rule) language such as KIF, PDDL,
and SWRL. Besides, the profile class can be subclassed and specialized, thus
supporting the creation of profile taxonomies which subsequently describe

different classes of services. An example of a Semantic Web service profile in
OWL-S 1.1 is given in figure 3.4.

97

M Klusch, 2008 97/466

M Klusch, 2008

Service profile (IOPE) of atomic service ,BookFlightService” in OWL-5

‘ Input: Customer, Flight ‘ ‘ Output: Ticket ‘

‘Precondition: isProvided(FIight)‘ ‘ Effect: isBookedFor(Flight, Customer) ‘

<profile:haslinput><process:Input rdf:ID="Customer"=...</process:Input=</profile:hasIinput>
<profile:hasInput><process:Input rdf:ID="Flight">...</process:Input><fprofile:hasinput>

<profile:hasOutput><process:Qutput rdf:ID="Ticket">... </process:Output></profile:hasOutput>

<process:hasPrecondition><pddxml:PDDXML-Condition rdf:|ID="PDDXML-Precondition">
<expr.expressionBody rdf: datatype="http:/Awww . w3.org/2001/XMLSchema#string"=>
<pred name="http://127.0.0.1/FlightCompany_Ontology.owk#isProvided">
<param>7http:/127.0.0.1/BookFlight. owl#Flight</param=>
<f/pred>
<fexpr:expression Body></pddxml:PDDXML-Condition></process:hasPrecondition>

<process:hasEffect> ...
<pred name="http://127.0.0.1/Health-Scallops_Ontology.owl#isBookedF or">
<param=>7http:/1127.0.0.1/BookFlight.owl#Flight</param=>
<param>7http://127.0.0.1/BookFlight.owl#Customer</param>
<fpred>
<fprocess:hasEffect>

Fig. 3.4. Example of OWL-S 1.1 service profile.

3.3.2 Service Process Model

An OWL-S process model describes the composition (choreography and or-
chestration) of one or more services, that is the controlled enactment of con-
stituent processes with respective communication pattern. In OWL-S this is
captured by a common subset of workflow features like split+join, sequence,
and choice (cf. figure 3.5). Originally, the process model was not intended for
service discovery but the profile by the OWL-S coalition.

More concrete, a process in OWL-S can be atomic, simple, or composite.
An atomic process is a single, black-box process description with exposed
IOPEs. Simple processes provide a means of describing service or process
abstractions which have no specific binding to a physical service, thus have to
be realized by an atomic process, e.g. through service discovery and dynamic
binding at runtime, or expanded into a composite process. The process model
of the example OWL-S service above is provided in figure 3.6.

Composite processes are hierarchically defined workflows, consisting of
atomic, simple and other composite processes. These process workflows are
constructed using a number of different control flow operators including Se-
quence, Unordered (lists), Choice, If-then-else, Iterate, Repeat-until, Repeat-
while, Split, and Split+Join. In OWL-S 1.1, the process model also specifies
the inputs, outputs, preconditions, and effects of all processes that are part

98

98/466

M Klusch, 2008

disjointWith

————3» ObjectProperty
...... = DatatypeProperty
------- b SubClass/Property
......
.

components o,
*e

unionOf

Fig. 3.5. OWL-S service process model.

of a composed service, which are referenced in the profiles of the respective
services.* An OWL-S process model of a composite service can also specify
that its output is equal to some output of one of its subprocesses whenever the
composite process gets instantiated. Moreover, for a composite process with a
Sequence control construct, the output of one subprocess can be defined to be
an input to another subprocess (binding). Finally, OWL-S allows to specify
conditional outputs (inCondition).

Unfortunately, the semantics of the OWL-S process model are left unde-
fined in the official OWL-S documents. Though there are proposals to specify
these semantics in terms of, for example, the situation calculus, and the logic
programming language GOLOG based on this calculus [252].

3.3.3 Service Grounding

The grounding of a given OWL-S service description provides a pragmatic
binding between the logic-based and XMLS-based service definitions for the
purpose of facilitating service execution. Such a grounding of OWL-S services
can be, in principle, arbitrary but has been exemplified for a grounding in

* This is in opposite to OWL-S 1.0, where the IOPES are defined in the profile and
referenced in the process model.

99

99/466

M Klusch, 2008

Process model of service composed out of atomic services ,ProposeFiight’, ,BookFlight®

Input Input Output
—ﬂanhtContraints‘ — Customer‘ Ticket }-}
r
Sequence
Atomic Process Atomic Process
ProposeFlight | BookFlight
>0
FlightCortraints| | Flight [ref—> Flight | | Ticket
Input Output ||, Customer

<process:hasDataFrom>)
<process:inputBinding>
<process:valueSource> <process:ValueOf>
<process:theVar
rdf:resource="http://127.0.0.1/ProposeFlight.owl#Flight"/>
<process:fromProcess rdf:resource="#Perform_PlanStep_1"/>
<fprocess:ValueOf> <fprocess:valueSource>
<process:toParam rdf:resource="http://127.0.0.1/BookFlight. owl#Flight"/>
</process:InputBinding>
</process:hasDataFrom>

Fig. 3.6. Example of OWL-S service process model.

WSDL to pragmatically connect OWL-S to an existing Web service standard
(cf. figure 3.7).

In particular, the OWL-S process model of a service is mapped to a WSDL
description through a thin (incomplete) grounding: Each atomic process is
mapped to a WSDL operation, and the OWL-S properties used to represent
inputs and outputs are grounded in terms of respectively named XML data
types of corresponding input and output messages. Unlike OWL-S, WSDL
cannot be used to express pre-conditions or effects of executing services. Any
atomic or composite OWL-S service with a grounding in WSDL is executable
either by direct invocation of the (service) program that is referenced in the
WSDL file, or by a BPEL engine that processes the WSDL groundings of
simple or orchestrated Semantic Web services.

3.3.4 Software Support

One prominent software portal of the Semantic Web community is SemWeb-
Central 3 developed by InfoEther and BBN Technologies within the DAML
program in 2004 with BBN continuing to maintain it today. As a consequence,
it comes at no surprise that this portal offers a large variety of tools for OWL

5 http://projects.semwebcentral.org/

100

100/466

M Klusch, 2008

)

OWL-S EPTTPETPTrN

.
-

2

Process Model Profile, Ontology (DL) :

I

Atomic Process Inputs / Outputs

.
.
.
x
g

. »*

“ammamms sasssEEssmEEEmEn CELETTTETTE

T IR TR -
.

wsdlOperation wsdIMessage (XML NS)

Binding to SOAP, HTTP, etc.

eiEEEEEEEEEEEEEEE,

Service Grounding)

(3

PLLLEET TR

LR —— WSDL snsnnnnmnnns’

Fig. 3.7. Grounding of OWL-S in WSDL.

and OWL-S service coordination as well as OWL and rule processing. Ex-
amples of publicly available software support of developing, searching, and
composing OWL-S services are as follows.

Development.

OWL-S IDE integrated development environment®, the OWL-S 1.1 API 7
with the OWL-DL reasoner Pellet® and OWL-S editors.

Discovery.

OWL-S service matchmakers OWLS-UDDI?, OWLSM!® and OWLS-MX!!
with test collection OWLS-TC2.

Composition.

OWL-S service composition planners OWLS-XPlan'2?, GOAL (www.smartweb-
project.de).

3.3.5 Limitations

Main critique of OWL-S concern its limited expressiveness of service descrip-
tions in practice which, in fact, corresponds to that of its underlying descrip-

5 http://projects.semwebcentral.org/projects/owl-s-ide/

" http://projects.semwebcentral.org/projects/owl-s-api/

8 http://projects.semwebcentral.org/projects/pellet/

® http://projects.semwebcentral.org/projects/mm-client/
10 http:/ /projects.semwebcentral.org/projects/owlsm/
" http://projects.semwebcentral.org/projects/owls-mx/
2 http://projects.semwebcentral.org/projects/owls-xplan/

101

101/466

M Klusch, 2008

tion logic OWL-DL (cf. chapter 2). Only static and deterministic aspects of
the world can be described in OWL-DL, since it does not cover any notion
of time and change, nor uncertainty. OWL-S allows specifying conditional
effects, that are possible effects of the service each of which conditioned by
its result (output) but not input. Besides, in contrast to WSDL, an OWL-S
process model cannot contain any number of completely unrelated operations.
However, OWL-S bases on existing W3C Web standards, in particular the
Web services protocol stack: It extends OWL and has a grounding in WSDL.
Furthermore, the large set of available tools and applications of OWL-S ser-
vices, as well as ongoing research on Semantic Web rule languages on top of
OWL such as SWRL and variants still support the adoption of OWL-S for
Semantic Web services, though this might be endangered by the choice of
SAWSDL as a W3C standard just recently.

3.4 WSML

The conceptual model WSMO (Web Service Modelling Ontology), in partic-
ular the different variants of the formal ontology and Semantic Web service
description language WSML has been introduced in the previous chapter. In
this section, we briefly describe how goals and services are described in WSML
in more detail.

WSML is particularly designed for describing a Semantic Web service in terms
of its functionality (service capability), imported ontologies in WSML, and the
interface through which it can be accessed for the purpose of orchestration
and choreography. The formal semantics of elements within the description
of goals and services capabilities (pre- and postconditions) are specified as
logical axioms and constraints in ontologies using one of five WSML variants
(cf. chapter 2, section 2.4.3). In general, the description of the semantics of a
service and request (goal) in WSML is structured into the parts of the service
capability, the service interface used for orchestration and choreography, and
the shared variables.

3.4.1 Goal

Like in OWL-S, a goal in WSMO represents the desired WSML service which
is indicated with a special keyword ”goal” instead of ”webservice” in front of
the service description. A goal refers to a desired state that can be described by
help of a (world state) ontology. Such an ontology provides a basic vocabulary
for specifying the formal semantics of service parameters and transition rules
(TBox), and a set of concept and role instances (ABox) which may change
their values from one world state to the other. It also specifies possible read-
write access rights to instances and their grounding. A state is the dynamic
set of intances of concepts, relations and functions of given state ontology at
a certain point of time. The interpretation of a goal (and service) in WSML

102

102/466

M Klusch, 2008

webService

hasinterface

hag capability

requests capability

capability

has assumption |hasprecondtion | has postcondition

has effect

axiom

sharedVariables

|gossnerccmleres J

" has shared variables

requeds interface

intesface

has orchestration

has choreography

orchestration

Fig. 3.8. WSML service and goal description.

is not unique: The user may want to express that either all, or only some of
the objects that are contained in the described set are requested (Keller et

al., 2005) [185].

namespace { _"http:Vexample. org/goals#"’, dc _"http://purl.org/defelements/ 1#",
tr _"hitp:/fexample.orgftripReservationOntology”,
wsml _"http:/fwww. wsmo.orghwsmlfwsml-syntax#”,
loc _"http:/fwww.wsmo.org/ontologiesflocationOntology#"}

goal _"http:/lexample.org/havingATicketReservationlnnsbruckVenice"
importsOntology { _"http:/fexample.orgftripReservationOntology”,
_"http:/iwww. wsmao.org/ontologiesflocationOntology "}

capability
postcondition definedBy

?reservation[reservationHolder hasValue ?reservationHolder,
ltem hasValue ?ticket]

memberOf t#freservation and

?ticket] trip hasValue 7trip] memberOf tr#ticket and
rip [origin hasValue loc#innsbruck, destination hasValue loc#venice |

memberOf tr#trip.

Fig. 3.9. Example of a service request (goal) in WSML.

103

103/466

M Klusch, 2008

Figure 3.9 gives an example of a goal in WSML to find a service, which as a
result of its execution, offers to reserve a ticket for the desired trip. In this case,
the only element of the capability the user is interested in, is the postcondition
of the desired service.

3.4.2 Service Capability

A WSML service capability describes the state-based functionality of a service
in terms of its precondition (conditions over the information space), postcondi-
tion (result of service execution delivered to the user), assumption (conditions
over the world state to met before service execution), and effect (how does
the execution change the world state). Roughly speaking, a WSML service ca-
pability consists of references to logical expressions in a WSML variant that
are named by the scope (precondition, postcondition, assumption, effect, ca-
pability) they intend to describe. It also specifies non-functional properties
and all-quantified shared variables (with the service capability as scope) for
which the logical conjunction of precondition and assumption entails that of
the postcondition and the effect.

capability BookTicketCapability
sharedVariables {?creditCard, ?initialBalance, ?trip, ?reservationHolder, ?ticket}

precondition

definedBy
?reservationRequest]
in reservationltem hasValue ?trip,
—p reservationHolder hasValue 7reservationHolder]

memberOf t#freservationRequest
and ?trip memberOf tr#tripFromAustria
and ?creditCard[balance hasValue ?initialBalance] memberOf po#creditCard.
assumption
definedBy po#validCreditCard(?creditCard)
and { ZcreditCard[type hasValue "PlasticBuy"] or
ZereditCard[type hasValue "GoldenCard"]).
postcondition
definedBy
“?reservation memberOf tr#reservation] reservationltem hasValue ?ticket,
reservationHolder hasValue 7reservationHolder]
and ?licket] trip hasValue ?trip] memberOf trifticket.
effect
definedBy
ticketPrice(?ticket, "euro”, ?ticketPrice)
and 7finalBalance= (?initialBalance - ?ticketPrice)
and ?ereditCard[po#balance hasValue ?finalBalance

out

Fig. 3.10. Example of service capability in WSML.

Figure 3.10 provides an example of a Web service capability specified in
WSML. This example service offers information about trips starting in Aus-
tria and requires the name of the person and credit card details for making

104

104/466

the reservation. The assumption is that the credit card information provided
by the requester must designate a valid credit card that should be of type
either PlasticBuy or GoldenCard. The postcondition specifies that a reserva-
tion containing the details of a ticket for the desired trip and the reservation
holder is the result of the successful execution of the Web service. Finally, the
effect in the world state is that the credit card is charged with the cost of the
ticket.

3.4.3 Service Interface

A WSML service interface contains the description of how the overall func-
tionality of the Web service is achieved by means of cooperation of different
Web service providers (orchestration) and the description of the communi-
cation pattern that allows to one to consume the functionality of the Web
service (choreography). A choreography description has two parts: the state
and the guarded transitions. As mentioned above, a state is represented by
an WSMO ontology, while guarded transitions are if-then rules that specify
conditional transitions between states in the abstract state space.

interface BookTicketInterface
importsOntology _http:/fwww.example.org/BookTicketInterfaceOntology
choreography BookTicketChoreography
orchestration BookTicketOrchestration

choreography BookTicketChoreography
state _"http://fexample.org/BookTicketInterfaceOntology”
guardedTransitions BookTicketChoreographyTransitionRule

guardedTransitions BookTicketChoreographyTransitionRule

if { reservationRequestinstance [reservationltem hasValue ?trip,
reservationHolder hasValue 7reservationHolder]

memberOf bti#reservationRequest

and 7trip memberOf tr#tripFromAustria

and ticketInstance] trip hasValue ?trip, recordLocatorNumber hasValue 7rin]
memberOf triticket)

then temporaryReservationinstance[reservationltem hasValue ticketinstance,
reservationHolder hasValue 7reservationHolder]
memberOf bti#temporaryReservation

Fig. 3.11. Example of WSML service interface.

Figure 3.11 provides an example of a service interface with choreography, and
a guarded transition rule which requires the following to hold: If a reservation
request instance exists (it has been already received, since the corresponding
concept in the state ontology currently has the mode ”in”) with the request
for a trip starting in Austria, and there exists a ticket instance for the desired

105

M Klusch, 2008 105/466

M Klusch, 2008

trip in the Web service instance store, then create a temporary reservation for
that ticket.

3.4.4 Software Support

The project web site www.wsmo.org provides, for example, a comprehen-
sive set of links to software tools for developing WSMO oriented services
(in WSML) most of which available under open source related licenses at
sourceforge.net. Examples include the WSMO4J API'?, the WSMO studio'*
with WSML service editor, WSML-DL and WSML-Rule reasoner, WSML
validator, and the WSMX service execution environment'®.

Remarkably, there are still no implemented semantic WSML service composi-
tion planner nor full-fledged WSML service matchmaker available apart from
rather simple keyword-based and non-functional (QoS) parameter oriented
WSML service discovery engine as part of the WSMX suite, and the hybrid
matchmaker WSMO-MX.

3.4.5 Limitations

The WSMO conceptual model and its language WSML is an important step
forward in the Semantic Web service domain as it explicitly overcomes some
but not all limits of OWL-S. Unfortunately, the development of WSMO and,
in particular, WSML has been originally at the cost of its connection to the
W3C Web service standard stack at that time. This raised serious concerns
by the W3C summarized in its official response to the WSMO submission
in 2005 from which we quote'®: ” The submission represents a development,
but one which has been done in isolation of the W3C standards. It does
not use the RDFS concepts of Class and Property for its ontology, and does
not connect to the WSDL definitions of services, or other parts of the Web
Services Architecture. These differences are not clearly explained or justified.
The notion of choreography in WSMO is obviously very far from the definition
and scope presented in WS-CDL. The document only gives little detail about
mediators, which seem to be the essential contribution in the submission.” To
date, however, the connection of WSML with WSDL and SAWSDL (WSDL-S)
has been established in part, and is under joint investigation by both WSMO
and SAWSDL initiatives in relevant working and incubator groups of the
standardisation bodies OASIS and W3C.

Another main critique of WSML concerns the lack of formal semantics of
service capabilities in both the WSMO working draft as of 2006, and the
WSML specification submitted to the Web consortium W3C in 2005. Recently,

13 http://wsmodj.sourceforge.net/

' http:/ /www.wsmostudio.org/download.html
!5 http:/ /sourceforge.net/projects/wsmx/
16 http://www.w3.org/Submission/2005/06/Comment

106

106/466

M Klusch, 2008

this problem has been partly solved by means of a semi-monolithic FOL-based
representation of functional service semantics over abstract state spaces and
(guarded) state space transitions by service execution traces (Stollberg et al.,
2007)[349]. Though, the formal semantics of the WSML service (orchestration
and choreography) interface part is still missing - which is not worse than the
missing process model semantics of OWL-S.

Further, principled guidelines for developing the proposed types of WSMO
mediators for services and goals in concrete terms are missing. Besides, the
software support for WSML services provided by the WSMO initiative appears
reasonable with a fair number of downloads but is still not comparable to that
of OWL-S in terms of both quantity and diversity.

Finally, as with OWL-S, it remains to be shown whether the revolutionary
but rather academic WSMO framework will be adopted by major business
stakeholders within their service application landscapes in practice. Apart
from the announcement of SAWSDL as initial standard, this also relates to
the key concern of insufficient scaling of logic-based reasoning to the Web
scale in general, as mentioned in the previous chapter.

3.5 Monolithic DL-based Service Descriptions

As mentioned above, an alternative to formally specifying the functional se-
mantics of a Web service agnostic to any structured service description formats
like OWL-S, SAWSDL, or WSML, is the pure DL-based approach: The ab-
stract service semantics is defined through an appropriate set of concept and
role axioms in a given description logic. Any instantiation of this service con-
cept corresponds to a concrete service with concrete service properties. That
is, the extension S’ of a service concept S representing the abstract service to
be described in an interpretation I of the concept over a given domain contains
all service instances the provider of S is willing to accept for contracting with
a potential requester of S. An example of a monolithic DL-based description
of an abstract service and possible service instances is shown in figure 3.12
([139)).

In this example, the functional semantics or capability of the abstract Web
service S is described by a set Dg of two DL concept axioms: The service con-
cept S for the shipping of items with a weight less than or equal to 50kg from
cities in the UK to cities in Germany; the concept Shipping (used to define S)
which assures that instances of S specify exactly one location for origin and
destination of the shipping. Semantic relations between such monolithically
described service semantics can be determined fully within the underlying log-
ical formalism, that is by DL-based inferencing. For a more detailed treatment
of this topic, we refer to (Grimm, 2007) [139].

107

107/466

M Klusch, 2008

Capability description D | Dg={ 8= (Shippingn
of abstract service S: (7 item.(¥ weight. <)) N
(3 from. UKCity) M

Instances of (3 to.GermanCity))

service concept S:
ShippingC ((=1from)m (=1 to))

1

~Shipping items from UK to Germany

i Package T Package
item = item
Shipping1 Package1 Shipping2 Package?
from / \fo weight from fo weight
[London J [Hamburg} [London } [Bremen J
UKCity GermanCity Kg UKCity GermanCity Kg

Fig. 3.12. Example of a monolithic DL-based semantic service description [139]

3.6 Semantic Web Service Coordination

Semantic service coordination aims at the coherent and efficient discovery,
composition, negotiation, and execution of Semantic Web services in a given
environment and application context. Each of these coordination activities
is an active field of research in itself, and mainly treated separatedly in the
literature. In general, the basic process of Web service coordination and the
potential relations between service discovery, composition, negotiation and
execution also hold for Semantic Web services (cf. chapter 2, section 1.3.4).
However, what makes agent-based coordination of services in the Semantic
Web different from its counterpart in the Web is its far more advanced de-
gree of automation and, from the perspective of strong AI, meaning. This is
achieved through means of logic-based reasoning on heterogeneous semanti-
cally annotated Web services by appropriate software agents with respective
background theories (ontologies).

The following three parts of this work provide introductions to the fields of
Semantic Web service discovery, composition planning, and negotiation. In
these introductions, we also comment on the principled relationships between
these coordination activities, and provide representative examples of their
interleaved coordination, if available.

In summary, the feasability of logic-based and hybrid semantic discovery and
composition of Web services has been demonstated (for different formats) in
several major funded research projects, though its benefit in practice seems not
yet bullet proved. In fact, current proof-of-concept implementations of Seman-

108

108/466

M Klusch, 2008

tic Web service matchmakers and composition planners are lacking sufficient
scalability for the vast, open ended Web.

Apart from other open problems like privacy preserving coordination of Web
services in the Semantic Web with its inherently higher potential of automated
semantic inference attacks, research on the potential impact of exploiting Se-
mantic Web technology for Web service negotiation, is in its very infancies yet.
Though one would intuitively expect that a better understanding of service
semantics should allow for a more informed and focussed decision making and
negotiation, this has not been sufficiently investigated yet, neither in theory
nor in practice. This concerns the process of automatically interleaving dis-
covery, composition and negotiation as well as its expected revenues compared
to Web service negotiation models. A brief account of the few approaches to
agent-based semantic service negotiation and open problems are given in the
introduction to part four of this work.

3.7 Semantic Web Service Applications

Despite the tremendous project support and progress made in the domain
of Semantic Web services, the number of publicly deployed real world ap-
plications using this technology appears almost negligible compared to the
large number of available Web services. We present selected applications of
agent-based semantic services in part five of this work.

Prominet example of exploiting Semantic Web service technology on the large
scale is the semantic Grid'[96] as an extension of the Grid [132] in which infor-
mation and services are given well-defined meaning. Conversely, the Grid and
its scientific users provide application pull which will benefit the Semantic
Web and, in particular, the development of Semantic Web service applica-
tions. Besides, for the Semantic Web and service community to develop large
scale and robust, distributed solutions, it might be helpful to also look to the
Grids portfolio of software specifications, middleware components and practi-
cal deployed e-science services applications. For example, the myGrid/Taverna
project has built a component (Feta) '® for adding and retrieving semantic
service and workflow descriptions in bioinformatics [244]. There are a few se-
mantic grid projects with working prototypes that are relevant including the
OntoGrid project (www.ontogrid.net).

Current competitions in the Semantic Web service domain include the Seman-
tic Web Services Challenge!® and the Semantic Service Selection (S3) Contest
20 The first of which attempting to qualitatively measure the minimal amount
of programming required to adapt the semantics of given systems to new ser-
vices, acknowledging that the complete automation of composing previously

17 www.semanticgrid.org

8 Source is available through www.mygrid.org.uk/taverna
!9 http://sws-challenge.org
20 http://www.dfki.de/-klusch/s3

109

109/466

M Klusch, 2008

unknown services is impossible, rather being a kind of Holy Grail of mod-
ern semantic technologies. This activity is complemented by the S3 Contest
through the comparative evaluation of the performance of semantic service
matchmaking tools based on respective service retrieval test collections like
the OWLS-TC22!.

3.8 Critique

Main critiques of Semantic Web services range from limitations of proposed
frameworks via the lack of appropriate means of service coordination and
software support to the legitimation of the research field as a whole. As one
consequence, SWS technology still appears too immature for getting adopted
by both common Web users and developers in practice, and industry for its
commercial use on a large scale.

Do we really need formal service semantics?

Some recent critics of SWS technology argue against the significance of its
claimed benefits for practical Web service applications in general. Key justi-
fication of this argument, is related to the general critics on Semantic Web
technologies. In fact, the need of having formal logic-based semantics specified
for Web services in practical human-centred applications is often questioned:
It is completely unclear whether the complete lack of formal service seman-
tics turns out to be rather negligible, or crucial for what kinds of service
applications for the common Web user in practice, and on which scale.

Just recently, van Harmelen and Fensel [113] argued for a more tolerant and
scalable Semantic Web reasoning based on approximated rather than strict
logic-based reasoning. This is in perfect line with experimental results avail-
able for hybrid SWS matchmakers that combine both logic and approximated
reasoning like the OWLS-MX (Klusch et al., 2005)[201], the WSMO-MX
(Kaufer & Klusch, 2006)[182] and the syntactic OWLS-iMatcher (Bernstein
& Kiefer, 2006) [32].

Where are all the Semantic Web services?

Another interesting question concerns the current reality of Semantic Web
service technology in use. According to a recent survey of publicly available
Semantic Web service descriptions in the surface Web [213], revealed that
not more than around 1500 indexed semantic services in OWL-S, WSML,
WSDL-S or SAWSDL are accessible in the Web of which only about one
hundred are deployed outside special test collections like the OWLS-TC 22.
Though we expect the majority of Semantic Web services being maintained in

2! Available at projects.semwebcentral.org/projects/owls-tc/
22 projects.semwebcentral.org/projects/owls-tc/

110

110/466

M Klusch, 2008

private project repositories and sites of the deep Web [152], it certainly does
not reflect the strong research efforts carried out in the Semantic Web service
domain world wide.

Of course, one might argue that this comes at no surprise in two ways.
First, Semantic Web service technology is immature (with a standard an-
nounced just recently, that is SAWSDL) which still provides insufficient com-
mon ground supporting its exploitation by end users. Though this is certainly
true, the other related side of this argument is that massive research and de-
velopment of the field around the globe should have produced a considerable
amount of even publicly visible Semantic Web service descriptions within the
past half dozen of years.

Second, one might argue that it is not clear whether the surface Web and
academic publications are the right place to look for Semantic Web service de-
scriptions, as many of them would be intended for internal or inter-enterprise
use but not visible for the public. Though this is one possible reason of the low
numbers reported above, it indicates some lack of visibility to the common
Web user to date.

Where are the easy to use Semantic Web service tools for the public?

As with Semantic Web application building in general, apart from the project
prototypes and systems there is hardly any easy to use software support off
the shelves available to the common user for developing, reusing and sharing
her own Semantic Web services - which might hamper the current confluence
of the field with the Web 2.0 into the so-called service Web 3.0 in practice.

How to efficiently coordinate Semantic Web services?

Despite tremendous progress made in the field in European and national
funded research projects like DIP, Super, CASCOM, Scallops and SmartWeb,
there still is plenty of room for further investigating the characteristics, po-
tential, and limits of Semantic Web service coordination in both theory and
practice. The Semantic Web Services Challenge?® attempts to qualitatively
measure the minimal amount of programming required to adapt the seman-
tics of given systems to new services. This acknowledges that the complete
automation of composing previously unknown services is impossible, rather
being a kind of Holy Grail of modern semantic technologies. Besides, the
comparative evaluation of developed Semantic Web service discovery tools is
currently hard, if not impossible, to perform since the required large scale ser-
vice retrieval test collections are still missing even for the standard SAWSDL.
Related to this, there are no large scale experimental results on the scalability
of proposed service coordination means in practice available.

Apart from the problem of scalable and efficient Semantic Web service dis-
covery and composition, another open problem of Semantic Web service co-
ordination as a whole is privacy preservation. Though there are quite a few

23 http://semantic Web service-challenge.org

111

111/466

M Klusch, 2008

approaches to user data privacy preservation for each of the individual co-
ordination processes (discovery, composition, and negotiation), there is no
integrated approach that allows to coherently secure Semantic Web service
coordination activities.

Summary

The interdisciplinary, vivid research and development of the Semantic Web did
accomplish an impressive record in both theory and applications within just a
few years since its advent in 2000. Though we identified several major gaps to
bridge before Semantic Web service technology reaches maturity, its current
convergence with Web 2.0 towards a service Web 3.0 in an envisioned Internet
of Things helds promise to effectively revolutionize computing applications
for our everday life. In the following parts, we briefly survey research and
development of Semantic Web service discovery, composition planning, and
negotiation, and present innovative contributions to each of these areas.

3.9 Further Readings

For more comprehensive information on Semantic Web services, we refer to
the accessible readings [348, 57, 115] on the subject. Examples of major funded
research projects on Semantic Web services are

e the European funded integrated projects DIP?* and ASG (Adaptive se-
mantic services grid technologies)?®
SmartWeb - Mobile multi-modal provision of Semantic Web services,
SCALLOPS?® - Secure Semantic Web service coordination,
CASCOM?7, ARTEMIS?® - Semantic Web services for e-health applica-
tions (mobile, P2P)

For more information about Semantic Web service description frameworks,
we refer to the respective documents submitted to the W3C:

OWL-S (www.w3.org/Submission/OWL-S/)

WSMO (www.w3.org/Submission/WSMO/)

SAWSDL (www.w3.org/2002/ws/sawsdl/)

Semantic Web Services Framework SWSF (www.daml.org/services/swsf/)
with SWSL-Rule (www.w3.org/Submission/SWSF-SWSL/) for monolithic
FOL-based service representation by means of different variants of rule
languages (DLP, HiLog, etc).

dip.semanticweb.org/

asg-platform.org
www-ags.dfki.uni-sb.de/klusch/scallops/
www.ist-cascom.org

www.srdc.metu.edu.tr /webpage/projects/artemis/

112

112/466

Part 11

Semantic Service Discovery

M Klusch, 2008 113/466

M Klusch, 2008 114/466

M Klusch, 2008

Introduction

Service discovery is the process of locating existing Web services based on
the description of their functional and non-functional semantics. Discovery
scenarios typically occur when one is trying to reuse an existing piece of
functionality (represented as a Web service) in building new or enhanced
business processes. A Semantic Web service, or in short semantic service, is
a Web service which functionality is described by use of logic-based semantic
annotation over a well-defined ontology (cf. chapter 3). In the following, we
focus on the discovery of semantic services. Both service-oriented computing
and the Semantic Web envision intelligent agents to proactively pursue this
task on behalf of their clients.?”

Semantic service discovery can be performed in different ways depending on
the considered service description language, means of service selection and
coordination through assisted mediation or performed in a peer-to-peer fash-
ion. In general, any semantic service discovery framework needs to have the
following components ([139]).

e Semantic service description: A semantic service description language
(more precisely top-level ontology, also called service description format)
is used to represent the functional and non-functional semantics of Web
services. Examples of structured and logic-based semantic service descrip-
tion language are OWL-S and WSML. The standard Semantic Web ser-
vice description language SAWSDL allows for a structured representation
of service semantics in XML(S) with references to any kind of non-logic-
based or logic-based ontology for semantic annotation.?C. Alternatively, in
so-called monolithic logic-based service descriptions the functionality of a
service is represented by means of a single logical expression of an appro-
priate logic, usually a description logic like OWL-DL or WSML-DL (cf.
chapter 3).

29 This introduction is part of the book chapter (Klusch, 2008a)[196].
30 In this sense, SAWSDL services can be seen as a weaker form of semantic services,
and WSDL services are no semantic services.

115/466

M Klusch, 2008

Semantic service selection: Service selection encompasses semantic
matching and ranking of services to select a single most relevant service
to be invoked, starting from a given set of available services. This set can
be collected and maintained, for example, by front-end search engine, or
given by providers advertising their services at registries or middle-agents
like matchmakers and brokers. Semantic service matching, or in short: ser-
vice matching, is the pairwise comparison of an advertised service with a
desired service (query) to determine the degree of their semantic correspon-
dence (semantic match). This process can be non-logic-based, logic-based
or hybrid depending on the nature of reasoning means used.
Non-logic-based matching can be perfomed by means of, for example,
graph matching, data mining, linguistics, or content-based information
retrieval to exploit semantics that are either commonly shared (in XML
namespaces), or implicit in patterns or relative frequencies of terms in
service descriptions. Logic-based semantic matching of services like those
written in the prominent service description languages OWL-S (Ontology
Web Language for Services), WSML (Web Service Modeling Language)
and the standard SAWSDL (Semantically Annotated WSDL) exploit stan-
dard logic inferences. Hybrid matching refers to the combined use of both
types of matching.

Discovery architecture: The conceptual service discovery architecture
concerns the environment in which the discovery is assumed to be per-
formed. This includes assumptions about the (centralized or decentralized
P2P) physical or semantic overlay of the network, the kind of service infor-
mation storage (e.g., service distribution, registries, and ontologies) and
location mechanisms, as well as the agent society in the network (e.g.,
service consumers, providers, middle-agents).

In the following, we survey existing approaches to semantic service matching
and discovery architectures. Examples of semantic service description lan-
guages were presented in the previous chapter.

Classification of Semantic Web Service Matchmakers

Semantic service matching determines whether the semantics of a desired ser-
vice (or goal) conform to that of an advertised service. This is at the very core
of any semantic service discovery framework. Current approaches to semantic
service matching can be classified according to

what kinds and parts of service semantics are considered for matching,
and

how matching is actually be performed in terms of non-logic-based or logic-
based reasoning on given service semantics, or a hybrid combination of
both, within or partly outside the respective service description framework
(cf. chapter 3).

116

116/466

M Klusch, 2008

Figure 3.13 shows representative examples of implemented Semantic Web ser-
vice matchmakers for each of these categories.

7 § OWLSPM IORPTM
Process {Sycara+, 07) (Vidal+, 03)
{Lamparter+, 07)
i iMatcher1 GSD-MM iMatcher2
Combined {Bernstein+, 08) (Chakraborty+, 01) (Kiefer+, 08)
FC-MATCH
(Bianchini+, 06)
RFSD (Stollberg+, 07), WSMO-MX
IOPE DSD-MM {Keller+, D), f_ﬂfé?' 06),
— Klein+, 04
() GLUE (Dellavalle+, 05) &0, 1o00)
. PE PCEM (Botelho+, 06)
Profile-| Functional =~
E (Grimm+, 06),
| . MAMAS (DiNoia+, 04/07),
(monolithic) RACER {Horrocks+, 03),
(Trastour+, 02)
MWSDI-Lumina SE ~ OWLSM (J&ger+, 05), OWLS-MX
L 0 {Verma+, 03) SDS (Mcllraith+, 03), (Klusch+, 05)
HotBlu OWLS-UDDI
(Faltings+, 03) (Paolucci+, 02)
-Non-functional WSML-QoS SE ROWLS
(QoS, roles, etc.) (Vu+, 04) (Fernandez+, 07)

o
>

Non-Logic-Based Logic-Based Hybrid

Fig. 3.13. Categories of Semantic Web service matchmakers.

Non-logic-based, logic-based, and hybrid semantic service matching

The majority of Semantic Web service matchmakers performs deductive, that
is logic-based semantic service matching. In this sense, they are keeping with
the original idea of the Semantic Web to determine semantic relations (thus re-
solve semantic heterogeneities) between resources including services based on
logical inferencing on their semantic annotations that are formally grounded in
description logics (DL) and/or rules (cf. chapter 2). As shown in figure 3.13,
pure logic-based semantic matchmakers for services in OWL-S and WSML
are currently prevalent. Non-logic-based semantic service matchmakers do not
perform any logic-based reasoning to determine the degree of a semantic match
between a given pair of service descriptions. Examples of non-logic-based se-
mantic matching techniques are text similarity measurement, structured graph
matching, and path-length-based similarity of concepts3!.

31 Please note that any kind of semantic service matching that identifies concepts
or rules (which are logically defined in a given ontology) by their names only

117

117/466

M Klusch, 2008

Service profile and process model matching

Most Semantic Web service matchmakers perform service profile rather than
service process model matching. Service profile matching (so-called ”black-
box” service matching) determines the semantic correspondence between ser-
vices based on the description of their profiles. The profile of a service de-
scribes what it actually does in terms of its signature, that is its input and
output (I0), as well as preconditions (P) and effects or postconditions (E), and
non-functional aspects such as the relevant business category, name, quality,
privacy and pricing rules of the service. We classify additional context informa-
tion for service matching such as the organisational (social or domain) roles,
or geographic location of service requesters and providers in their interaction
as non-functional.

Service process-oriented matching (so-called ” glass-box” service matching) de-
termines the extent to which the desired operational behavior of a given ser-
vice in terms of its process control and data flow matches with that of another
service. Like with service profile matching, we can distinguish between non-
logic based, logic based and hybrid semantic process matching approaches
depending on whether automated reasoning on operational semantics speci-
fied in some certain logic or process algebraic language (e.g. CCS, m-calculus)
is performed, or not. An overview of relevant approaches to process mining
for process discovery is given in (van der Aalst & Weijters, 2004)[367].

Supported Semantic Web service description formats

Each of the implemented Semantic Web service matchmakers shown in figure
3.13 supports only one of the many existing Semantic Web service description
formats (cf. chapter 3) as follows. This list is representative but not exhaustive.

e OWL-S matchmakers: Logic-based semantic matchmakers for OWL-S
services are the OWLSM (Jéger et al., 2005)[177] and OWLS-UDDI
(Paolucci et al., 2002)[286] focussing on service IO-matching, and the
PCEM (Botelho et al., 2006)[45] that converts given OWL-S services to
PDDL actions for PROLOG-based service PE-matching. Further OWL-S
matchmakers are the hybrid service IO-matchmaker OWLS-MX (Klusch
et al., 2006)[201], the hybrid non-functional profile matchmaker ROWLS
(Fernandez et al., 2006)[116], the hybrid (combined) profile matchmaker
FC-MATCH (Bianchini et al., 2006)[35], the non-logic-based (full) ser-
vice matchmaker iMatcherl (Bernstein & Kiefer, 2006)[32] and its hy-
brid successor iMatcher2 (Bernstein & Kiefer, 2008)[186]. An approach
to logic-based OWL-S process model verification is in (Vaculin & Sycara,
2007)[366] while (Bae et al., 2006)[21] present an approach to the matching

does not classify as logic-based matching in the strict sense. Without any formal
verification of the semantic relation between given (semantic service annotation)
concepts based on their logical definitions, the matchmaker performs non-logic-
based semantic service matching.

118

118/466

M Klusch, 2008

of OWL-S process dependency graphs based on syntactic similarity mea-
surements, and Bansal and Vidal (2003)[23] propose a hybrid matchmaker
that recursively compares the DAML-S process model dependency graphs.

WSML matchmakers: Implemented approaches to WSML service dis-
covery include the hybrid semantic matchmaker WSMO-MX (Klusch and
Kaufer, 2006; cf. chapter 6), the logic-based matchmaker GLUE (Della
Valle et al., 2005)[94], and the syntactic search engine (part of the WSMO
studio) for QoS-enabled WSML service discovery in P2P networks (Vu
et al., 2006)[377]. Approaches for logic-based semantic matching of so-
called rich functional service descriptions (WSML-oriented) in abstract
state spaces based on transaction logic are proposed in (Keller et al., 2005;
Stollberg et al., 2006)[185, 349], though it is unclear to what extent they
have been implemented.

WSDL-S/SAWSDL matchmakers: The METEOR-S WSDI discovery
infrastructure (Verma et al., 2004)[372] and the UDDI-based search com-
ponent Lumina3? are the only tool support of searching for SAWSDL ser-
vices so far. While searching with Lumina is keyword based, the MWSDI
discovery of SAWSDL services relies on non-logic-based matching means.

Monolithic DL-based matchmakers: Only very few matchmaker are ag-
nostic to the above mentioned structured Semantic Web service descrip-
tion formats without conversion by accepting monolithic descriptions of
services in terms of a single service concept written in a given DL. In
this case, semantic matching directly corresponds to DL inferencing, that
is, semantic service matching is done exclusively within the logic theory.
Examples of monolithic DL-based service matchmakers are RACER (Li
& Horrocks, 2003)[232], MaMaS*3*(Di Noia et al., 2004; 2007)[99, 100],
and the semantic service mathcing approaches proposed in (Grimm et al.,
2006)[141] and (Trastour et al, 2002). Recently, (Lamparter & Ankolekar,
2007)[228] present an implemented approach to matching of monolithic
service descriptions in OWL-DL extended with (non-functional) pricing
policies (modeled as DL-safe SWRL rules) according to given preferences
by means of SPARQL queries to a service repository.

Others: Non-logic-based semantic service IOPE profile matchmakers for
other structured service description formats are the DSD-MM matchmaker
(Klein & Konig-Ries, 2004)[189] for DIANE services, the HotBlu match-
maker (Constantinescu & Faltings, 2003)[72] that performs numeric service
I0-message data type matching, and the hybrid semantic service IOPE

32 Isdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/
33 sisinflab.poliba.it/MAMAS-tng/

119

119/466

M Klusch, 2008

matchmaker LARKS for services in an equally named service description
format (Sycara et al., 1999; Sycara et al., 2002)[355].

In the following, we discuss each category of Semantic Web service matching
together with selected representative examples of the above mentioned Se-
mantic Web service matchmakers in more detail. This is complemented by a
classification of existing service discovery architectures for which these match-
makers have been designed for, or can be used in principle. As stand-alone
implementations, each matchmaker classifies as centralized service discovery
system, though a few of them have been also tested for, or were originally
developed for decentralized P2P service retrieval systems like the OWLS-MX
and the OWLS-UDDI matchmaker, respectively, the WSMO-QoS search en-
gine and the DReggie/GSD matchmaker.?*

Logic-Based Semantic Service Profile Matching

As mentioned above, logic-based semantic service matchmakers perform de-
ductive reasoning on service semantics. The majority of such matchmakers
pairwisely compare logic-based descriptions of service profile semantics. In
order to define these semantics, logical concepts and rules are taken from
respective ontologies as first-order or rule-based background theories with a
shared minimal vocabulary. Different ontologies of service providers and ser-
vice requester are matched or aligned either at design time, or at runtime as
part of the logic-based service matching process.

Matching degrees

The degree of logic-based matching of a given pair of semantic service profiles
can be determined either (a) exclusively within the considered logic theory by
means of logic reasoning, or (b) by a combination of logical inferences within
the theory and algorithmic processing outside the theory. Prominent logic-
based matching degrees are exact, plugin, subsumes, and disjoint which are
defined differently depending on the parts of service semantics and the logic
theory that is used to compute these degrees.

One prominent example for a software specification matching degree is the
so-called plug-in match. A specification S plugs into (plug-in matches with)
another specification R, if the effect of S is more specific than that of R, and
vice versa for the preconditions of S and R (Zaremski & Wing, 1996)[391].
If this definition is restricted to effects only, the matching degree is called
a post plug-in match. Unfortunately, the original notion of plug-in match

34 For reasons of readability, the implemented (stand-alone) Semantic Web service
matchmakers shown in figure 3.13 each representing a central discovery system by
itself are not again listed in figure 3.14, and vice versa, that is, those matchmaking
approaches being inherent part of the functionality of each node of decentralized
discovery systems (but not available as stand-alone matchmaker) ar enot listed
in figure 3.13.

120

120/466

M Klusch, 2008

has been adopted quite differently by most logic-based Semantic Web service
matchmakers for both monolithic and structured service descriptions.

Monolithic logic-based service matching

Matching of monolithic logic-based semantic service descriptions (cf. chapter
3) is performed exclusively by means of logic inferences within the considered
logic theory. That is, the functionality of a Web service is represented by a
single (monolithic) expression in an appropriate logic, usually a description
logic like OWL-DL or WSML-DL. As a consequence, monolithic logic-based
semantic service matching reduces to standard first-order (description) logic
reasoning such as checking the satisfiability of service and query concept con-
junction, or the entailment of concept subsumption over a given knowledge
base. Furthermore, it is agnostic to any form of structured stateless (I/0)
or stateful (IOPE) representation of service semantics like in OWL-S and
WSML. The prominent degrees of semantic matching used by the majority
of monolithic logic-based semantic service matchmakers are logic equivalence,
post-plug-in match, subsumes, and fail.

For example, the logical so-called post-plug-in match of an advertised service
S with a service request R bases on the entailment of concept subsumption
of S by R over a given knowledge base kb extended by the axioms of S and
R: kbUSUR |= S C R. That is, the matchmaker checks if in each first-
order interpretation (possible world) I of kb, the set S’ of concrete provider
services (service instances) is contained in the set R! of service instances
acceptable to the requester: ST C R!. This assures the requester that each
provided service instance offers at least the requested functionality, maybe
even more. In other words, service S is more specific than the request R, hence
considered semantically relevant. In contrast, the so-called logical subsumes
match assures the requester that her acceptable service instances are also
acceptable to the provider: kb USUR|=RC S.

Some monolithic DL-based service matchmakers also check for a so-called
intersection or potential match (Grimm, 2007)[139]. This matching degree in-
dicates the principled compatibility of service S with request R with respect
to the considered knowledge base kb by means of either concept intersection or
non-disjointness. In the first case, the advertised service concept S potentially
matches with the (desired service or) query concept R if their concept con-
junction S N R is satisfiable with respect to kb in some possible world I such
that STN R’ # () holds. In the second case, the monolithic logic-based seman-
tic service matchmaker makes a stronger check by determining whether the
intersection of both concept extensions is non-empty in each possible world.
In general, the complexity of matching monolithic DL-based service descrip-
tions is equal to the combined DL complexity. For example, post-plug-in
matching of service concepts in OWL-Full, that is SHOIQ™ (including tran-
sitive non-primitive roles) has been shown to be undecidable (Baader et al.,
2005)[20] but decidable for OWL-DL, WSML-DL and DL-safe SWRL.

121

121/466

M Klusch, 2008

One problem of monolithic DL-based service matching is the risk to return
false positives due to incomplete knowledge specified in service descriptions
S, R or the domain ontology kb [141]. In other words, semantic matching of S
with R with respect to kb based on monotonic DL reasoning under open-world
assumption (OWA) can wrongly succeed due to the existence of possible but
unwanted interpretations of concepts or roles used in S or R over kb. Such
unwanted possible worlds of kb are intuitively ruled out by humans by default
- which accounts for their usually non-monotonic reasoning under closed-world
assumption3°.

One solution to this problem is to explicitly capture such default (common-
sense) knowledge by adding, for example, appropriate concept disjointness
axioms or object assertions to the knowledge base kb. This excludes possible
worlds which are ”obviously” wrong (but allowed due to open-world seman-
tics) but is considered impracticable as it requires the modeler to somewhat
”overspecify” the kb with ”obvious” information.

An alternative solution is to perform semantic matching of services with local
closed-world reasoning [141]. Key idea is to exclude the unwanted possible
worlds of knowledge base kb by means of an additional autoepistemic logic
operator K39 that allows to restrict the interpretation of certain concepts C'
and roles r used in advertised and desired service descriptions S and R to
named individuals (nominals) in the ABox of kb which are definitely known
or not known to belong to them (C,r)37.

3 The OWA states that the inability to deduce some fact from a knowledge base
does not imply its contrary by default, that is, the fact may hold (not in all but) in
some possible world (interpretations of kb). For example, the intersection match
of R = Flight NV from.UKCity with S = Flight NV from.USCity with respect
to the knowledge base kb = {UKCity C EUClity, Flight C 3from.T} wrongly
succeeds. The reason is that kb is underspecified in the sense that (due to the
OWA) there can be possible worlds in which cities can be both in the UK and
the US, which causes a false positive for the intersection match.

The epistemic logic operator K allows to refer to definitely known facts by in-
tersecting all possible worlds: (KC)"# = Nice C". The epistemic concept KC
is interpreted as the intersection of extensions of concept C over all first-order
interpretations of kb, that is the set of all individuals that are known to belong
to C (in the epistemic model E(kb) of kb, that is the maximal non-empty set of
all first-order interpretations of kb).

In the above example, the intersection match of the request R = Flight N
Vfrom KUKCity with service S = Flight NV from KUSCity with respect
to the matchmaker knowledge base kb = {UKCity T EUCity, Flight T
Afrom. T, UKCity(London)} correctly fails, hence avoids to return a false pos-
itive. The satisfiability of the epistemic concept S M R requires the existence of
a named individual z in kb known to be both UK City and USC'ity (that is kb
entails UK City(z) N USCity(z), i.e. kb |= UK City(z) and kb |= USCity(x), for
every possible world I in the epistemic model E(kb)). While the named individual
London in the ABox of kb is definitely known to belong to the concept UK City,
and also known to belong to EUC'ty due to the inclusion axiom in the TBox of

36

37

122

122/466

M Klusch, 2008

However, this local closure of concepts and roles in S, R for their interpretation
in kb (i.e., locally closing off possible worlds of kb in S and R without any
occurrence of K in kb) under the local closed world-assumption (LCWA)38
by use of the K-operator makes semantic matching dependent on the state of
the world: It requires the existence of named individuals in the ABox of kb as
representative (static) information on the locally closed concepts and roles®”.
Besides, using an autoepistemic extension of description logics like OWL-DL
or WSML-DL for semantic service matching is still uncommon in practice,
though (non-monotonic) reasoners such as for epistemic query answering in
ALCK*? can be easily integrated in a matchmaker.

Another application of non-monotonic reasoning to monolithic DL-based ser-
vice matching is presented in (Colucci et al., 2005; DiNoia et al., 2007)[69, 100].
The respective matchmaker MaMaS provides non-standard explanation ser-
vices, that are non-monotonic logical abduction and contraction, for partial
(also called approximated, intersection, or potential) matches. For example,
concept contraction computes an explanation concept G to explain why a re-
quest concept R is not compatible with service concept S, that is, why ST R
is not satisfiable (S M R) CL. For this purpose, it keeps the least specific
concept expression K of concept R such that K is still compatible with S,
ie. 7(K M S) CL. The remaining set G of constraints of R represents the
desired explanation of mismatch. Such kind of non-monotonic logical service
matching is NP-hard already for the simple description logic ALN. However,
research in this direction has just begun and is, in part, related to research on
non-monotonic reasoning with Semantic Web rule languages (cf. chapter 2).
Examples of implemented monolithic DL-based matchmakers for service con-
cepts written in OWL(-DL) and DAML+OIL are MaMaS (DiNoia et al., 2004;
2007)[99, 100], respectively, RACER (Li & Horrocks, 2003). Remarkably, both

kb, it is not definitely known to also belong to USCity (kb ¥ USCity(London)).
There is also no other named individual in kb which is both known to be in
UKCity and USCity such that ST R is not satisfied. An intersection match of
R with different service S’ = Flight NV from. KEUCity correctly succeeds.
The LCWA assumes that all individuals of some concept, or all pairs of individuals
of some role are explicitly known in the local knowledge base (selected local
concept or role closure).
In the above example, the intersection match S’ M R would (wrongly) fail, hence
causes a false negative, if the named individual London would not have been
explicitly stated in kb to belong to UKCity as its representative by default:
There would be no named individual definitely known to belong to both UK C'ity
and EUC'ty in all possible worlds. Though UK City(London) has to be added
to the kb of the matchmaker to avoid false positives and negatives of intersection
matches by non-monotonic epistemic query answering kb with K, no (dynamic)
information about concrete flights, i.e. individuals of concpet Flight, has to be
additionally specified in kb.
0 http://www.fzi.de/downloads/wim /K Toy.zip

38

39

123

123/466

M Klusch, 2008

matchmakers determine the degree of post-plug-in match inverse to its original
definition in [391].

Service specification or PE-matching

The logic-based semantic matching of service specifications (so-called PE-
matching) concerns the comparison of their preconditions (P) and effects (E)
and originates from the software engineering domain. As mentioned above,
the plug-in matching of two software components S, R requires that the logic-
based definition of the effect, or postcondition of S logically implies that of R,
while the precondition of S shall be more general than that of R (Zaremski
& Wing, 1996)[391]. In other words, a logic-based semantic plug-in match of
service specifications S, R requires (in every model of given knowledge base
kb) the effect of advertised service S to be more specific than requested, and
its precondition to be more general than requested in R. Depending on the
Semantic Web service description framework (cf. chapter 3), the logic lan-
guage for defining service preconditions and effects ranges from, for example,
decidable def-Horn (DLP), WSML-DL and OWL-DL to undecidable SWRL,
KIF and F-Logic(LP).

For example, the logic-based service-PE matchmaker PCEM (Botelho et al.,
2006)[45] exploits the Java-based light-weight Prolog engine tuProlog*! for
logic-based exact matching of service preconditions and effects written in Pro-
log. In particular, the PCEM matchmaker checks whether there is a possibly
empty variable substitution such that, when applied to one or both of the
logical propositions (PE), this results into two equal expressions, and applies
domain specific inference rules (for computing subPartOf relations).

The hybrid semantic WSML service matchmaker WSMO-MX (Kaufer &
Klusch, 2006)[182] is checking an approximated query containment over a
given finite service instance base for service effects (postconditions, con-
straints) written in undecidable F-Logic(LP) using OntoBroker. The ap-
proach to semantic service IOPE matchmaking described in (Stollberg et al.,
2007)[349] uses the VAMPIRE theorem prover for matching pairs of precondi-
tions and effects written in FOL, while the hybrid service IOPE matchmaker
LARKS (Sycara et al., 2002)[355] performs polynomial theta-subsumption
checking of preconditions and postconditions in def-Horn. There are no non-
logic-based or hybrid semantic service PE matchmaker available yet.

Service signature and IOPE-matching

Logic-based semantic matching of service signatures (input/output, 1I0), so
called service profile IO-matching, is the stateless matching of declarative data
semantics of service input and output parameters by logical reasoning within
the theory and algorithmic processing outside the theory. For example, the
logic-based plug-in matching of state-based service specifications (PE) can be

1 http://alice.unibo.it /xwiki/bin/view/ Tuprolog/

124

124/466

M Klusch, 2008

adopted to the plug-in matching of stateless service signatures (I0): Service
S is expected to return more specific output data whose logically defined
semantics is equivalent or subsumed by those of the desired output in request
R, and requires more generic input data than requested in R.

More concrete, the signature of S plugs into the signature of request R iff V INg
JINg: INg < INg AYOUTR 3 0UTg: OUTs € LSC(0UTR), with LSC(C) the set
of least specific concepts (direct children) C' of C, i.e. C" is a immediate sub-
concept of C' in the shared (matchmaker) ontology. The quantified constraint
that S may require less input than specified in R guarantees at a minimum
that S is, in principle, executable with the input provided by the user in R.
This holds if and only if the logical service input concepts are appropriately
mapped to the corresponding WSDL service input message data types in
XMLS.

Examples of Semantic Web service matchmakers that perform logic-based se-
mantic matching of service signatures only are the OWLSM (Jéger et al.,
2005)[177] and the OWLS-UDDI (Paolucci et al., 2002)[286]. Though the lat-
ter determines a signature plug-in matching degreee which is defined inverse
to the original definition and restricted to the output. (Keller et al., 2005)
and (Stollberg et al., 2007) propose approaches to logic-based semantic IOPE
matching of Web services. In general, logic-based matching of stateless service
descriptions with I/O concepts and conjunctive constraints on their relation-
ship specified in SHOIN has been proven decidable though intractable (Hull
et al., 2006)[170]. This indicates the respective decidability of IOPE matching
for OWL-S (with OWL-DL) and WSML (with WSML-DL).

Non-Logic-Based Semantic Service Profile Matching

As mentioned above, non-logic-based Semantic Web service matchmaker do
not perform any logical inferencing on service semantics. Instead, they com-
pute the degree of semantic matching of given pairs of service descriptions
based on, for example, syntactic similarity measurement, structured graph
matching, or numeric concept distance computations over given ontologies.
There is a wide range of means of text similarity metrics from information
retrieval, approximated pattern discovery, and data clustering from data min-
ing, or ranked keyword, and structured XML search with XQuery, XIRQL or
TeXQuery [147, 7]. In this sense, non-logic-based semantic service matching
means exploit semantics that are implicit in, for example, patterns, subgraphs,
or relative frequencies of terms used in the service descriptions, rather than
declarative IOPE semantics explicitly specified in the considered logic.

One example is the matchmaker iMatcherl (Bernstein & Kiefer, 2006)[32]
which imprecisely queries a set of OWL-S service profiles that are stored as
serialized RDF graphs in a RDF database with an extension of RDQL, called
iRDQL, based on four (token and edit based) syntactic similarity metrics from
information retrieval. The imprecise querying of RDF resources with similarity
joins bases on TFIDF and the Levenshtein metric. The results are ranked

125

125/466

M Klusch, 2008

according to the numerical scores of these syntactic similarity measurements,
and a user-defined threshold.

The DSD (DIANE service description format) service matchmaker (Klein &
Konig-Ries, 2004)[189, 224] performs, in essence, graph matching over pairs
of state-based service descriptions in the object-oriented service description
language DSD (with variables and declarative object sets) without any logic-
based semantics. The matching process determines what assignment of IOPE
variables is necessary such that the state-based service offer is included in the
set of service instances defined by the request, and returns a numeric (fuzzy)
degree of DSD service matching.

Hybrid Semantic Service Profile Matching

Syntactic matching techniques are first class candidates for the development of
hybrid semantic service profile matching solutions that combine means of both
crisp logic-based and non-logic-based semantic matching where each alone
would fail. Indeed, first experimental evaluation of the performance of hybrid
semantic service matchmakers OWLS-MX (Klusch et al., 2005) and iMatcher2
(Kiefer & Bernstein, 2008) show that logic-based semantic service selection
can be significantly outperformed by the former under certain conditions.
LARKS (Sycara et al., 1999; 2002)[356, 355] has been the first hybrid se-
mantic service [IOPE matchmaker for services written in a frame-based lan-
guage called LARKS. The matchmaker OWLS-MX (Klusch et al., 2005;
2006)[202, 201] bases in part on LARKS, and is the first hybrid semantic
service signature (IO) matchmaker for OWL-S services. OWLS-MX com-
plements deductive (DL) reasoning with approximated IR-based matching.
For this purpose, each of its four hybrid variants OWLS-M1 to OWLS-M4
applies a selected token-based string similarity metric (cosine/TFIDF, ex-
tended Jaccard, Jensen-Shannon, LOI) to the given pair of service signature
strings in order to determine their degree of text similarity-based matching.
If the text similarity value exceeds a given threshold the failure of logic-based
matching is tolerated, that means the service is eventually classified as se-
mantically relevant to the given query. The ranking aggregates both types
of matching degrees with respect to the total order of logic-based matching
degrees. Experimental evaluation results over the test collection OWLS-TC
together with a FP/FN-analysis of OWLS-MX showed that the performance
of logic-based semantic matching can be improved by its combination with
non-logic-based text similarity measurement (Klusch & Fries, 2007; Klusch et
al., 2008)[199, 200].

Similarly, the hybrid semantic service profile matchmaker iMatcher2 (Kiefer &
Bernstein, 2008)[186] uses multiple edit- or token-based text similarity met-
rics (Bi-Gram, Levenshtein, Monge-Elkan and Jaro similarity measures) to
determine the degree of semantic matching between a given pair of OWL-
S service profiles. Like OWLS-MX, the iMatcher transforms each structured
service profile description into a weighted keyword vector that includes not

126

126/466

M Klusch, 2008

only the names but terms derived by means of logic-based unfolding of its ser-
vice input and output concepts. In this sense, iMatcher2 classifies as a hybrid
matchmaker. The experimental evaluation of iMatcher2 over the test collec-
tion OWLS-TC2.1 confirmed, in principle, the previously reported results of
the evaluation of OWLS-MX.

In its adaptive mode, iMatcher2 can also be trained over a given retrieval
training collection to predict the degree of semantic matching of unknown
services to queries by means of selected regression models (support vector
regression with a RBF kernel, linear and logistic regression). This regression-
based induction is performed over the set of (a) the binary value of subjective
semantic relevance as defined in the relevance sets, and (b) different text simi-
larity values computed by means of the selected similarity metrics for each pair
of query and service of the training collection. After training, the iMatcher2
first computes the text similarity values (using the selected similarity met-
rics) of a given query to all services of a given test collection, then uses the
learned regression model to predict the combined similarity (or likelihood)
of a match, and finally returns the answers in decreasing order of similarity.
Experimental evaluation of the adaptive iMatcher2 showed that the combined
logical deduction and regression-based learning of text similarities produces
superior performance over logical inference only.

The hybrid semantic service matchmaker FC-MATCH (Bianchini et al.,
2006)[35] does a combined logic-based and text similarity-based matching
of single service and query concepts written in OWL-DL (SHOIN(D)). A
service concept S is defined as logical conjunction of existential qualified
role expressions where each role corresponds to a selected profile para-
meter: S = JhasCategory(Cy) M JhasOperation(Cy) M Jhaslnput(Cs) M
JhasOutput(Cy4)). Hybrid matching degrees are computed by means of (a)
combined checking of logic-based subsumption of profile concepts (C;) and
(b) computing the so-called Dice (name affinity) similarity coefficient be-
tween terms occuring in these concepts according to the given terminological
relationships of the thesaurus WordNet. FC-MATCH (FC stands for func-
tional comparison) performs structured hybrid semantic matching of func-
tional (I/O) and non-functional profile parameters (hasCategory, hasOpera-
tion). That is a combined matching of functional and non-functional parame-
ters of OWL-S service profiles rewritten in special OWL-DL expressions. To
the best of our knowledge, FC-MATCH has not been experimentally evaluated
yet.

WSMO-MX (Kaufer & Klusch, 2006)[182] is the first hybrid semantic match-
maker for services written in a WSML-Rule variant, called WSML-MX. The
hybrid service matching scheme of WSMO-MX is a combination of ideas of
hybrid semantic matching as performed by OWLS-MX, the object-oriented
graph matching of the matchmaker DSD-MM, and the concept of intentional
matching of services proposed in (Keller et al., 2005). WSMO-MX applies
different logic-based and text similarity matching filters to retrieve and rank
services that are relevant to a query. The hybrid semantic matching degrees

127

127/466

M Klusch, 2008

are recursively computed by aggregated valuations of (a) ontology-based type
matching (logical concept subsumption), (b) logical (instance-based) con-
straint matching in F-logic(LP) through approximative query containment,
(c) relation name matching, and (d) syntactic similarity measurement as well.
The experimental evaluation of WSMO-MX over an initial WSML service
retrieval test collection is ongoing work.

However, it is not yet known what kind of hybrid service matching will scale
best to the size of the Web in practice. Research in this direction is in perfect
line with the just recent call in (van Harmelen and Fensel, 2007)[113] for a
general shift in Semantic Web research towards scalable, approximative rather
than strict logic-based reasoning.

Logic-Based Semantic Service Process Matching

Automated semantic matching of service process models is uncommon, and
was not intended by the designers of OWL-S and WSML. Besides, the seman-
tics of process models in OWL-S or WSML have not been formally defined yet,
while neither SAWSDL nor monolithic service descriptions offer any process
model. This problem can be partly solved by intuitively rewriting the process
model descriptions in an appropriate logic with automated proof system and
respective analysis tool support.

For example, in (Vaculin & Sycara, 2007)[366], OWL-S service process models
are mapped into (intuitively) equivalent logical Promela statements which are
then efficiently evaluated by the SPIN model checker. 42 This allows to verify
the correctness of a given service process model in terms of consistency and
liveness properties of an advertised service like the Delivery process always
executes after the Buy process. The result of such service process model check-
ing could be used for process-oriented OWL-S service selection (by identifying
properties of service process models to be verified with queries to match); this
is a topic of ongoing research.

Alternatively, the matching of process models of OWL-S services that are
grounded in WSDL (cf. chapter 3) can be, in principle, reduced to the match-
ing of corresponding WSDL service orchestrations in BPEL. As mentioned
before, the OWL-S process model captures a common subset of workflow fea-
tures that can be intuitively mapped to BPEL (used to define WSDL service
compositions) which offers an all-inclusive superset of such features (e.g. struc-
tured process activities in BPEL like Assignment, Fault Handler, Terminate
are not available in OWL-S) [16]. Though BPEL has been given no formal
semantics either yet, there are a few approaches to fill this gap based on Petri
nets (Lohmann, 2007)[243] and abstract state machines (Fahland & Reisig,
2005)[111] that allow to at least verify liveness properties of WSDL service

“2° A model checker verifies if a given system (service process) model satisfies a
desirable property. If the property does not hold, it returns a counter-example of
an execution where the property fails.

128

128/466

M Klusch, 2008

orchestrations in BPEL [250]. However, there are no approaches to exploit
any of the proposed formal BPEL semantics for semantic matching of OWL-S
process models that correspond to BPEL orchestrations of WSDL services.

Non-Logic-Based and Hybrid Semantic Service Process Matching

There are a few approaches to non-logic-based Semantic Web service process
model matching. For example, (Bae et al., 2006)[21] present an approach to the
matching of (business) process dependency graphs based on syntactic similar-
ity measurements. Bansal and Vidal (2003)[23] propose a hybrid matchmaker
(IO-RPTM) that recursively compares the DAML-S process model depen-
dency graphs based on given workflow operations and logical match between
IO parameter concepts of connected (sub-)service nodes of the process graphs.
On the other hand, means of functional service process matching can be ex-
ploited to search for a set of relevant subservices of a single composite service.

Semantic Service Discovery Architectures

Existing Semantic Web service discovery architectures and systems in the
literature can be broadly categorized as centralized and decentralized by the
way they handle service information storage and location in the considered
service network (Aktas et al., 2006; Grimm, 2007)[5, 139]. A classification of
implemented Semantic Web service discovery systems is given in figure 3.14).
Centralized service discovery systems rely on one single, possibly replicated,
global directory service (repository, registry) maintained by a distinguished
so-called super-peer or middle agent like matchmaker, broker or mediator
agent (Klusch & Sycara, 2001)[212]. Contrary, decentralized service discovery
systems rely on distributing service storage information over several peers in
a structured, unstructured or hybrid P2P network.

Semantic service discovery systems can be further classified with respect to the
kind of semantic service matching means used by the intelligent agents in the
network. For example, the exact keyword-based service location mechanisms
of all contemporary P2P systems like JINI, SLP, Gnutella flooding, and DHT
(distributed hash table) can be complemented or replaced by sophisticated
logic-based semantic matching means to improve the quality of the search
result.

As mentioned above, due to its generic functionality, any service matchmaker
(cf. figure 3.13) can be used in arbitrary discovery architectures and systems.
In the extremes, a matchmaker can either serve as a central service directory
(index) or look-up service, or can be integrated into each peer of an unstruc-
tured P2P service network to support a semantic service search like in RS2D
(Basters & Klusch, 2006)[39].

129

129/466

M Klusch, 2008

Semantic Service Discovery Architectures

Centralized Decentralized
= Central service index {SDir) [T]
- Matchmaker (P2P) Structured P2P Unstructured P2P Hybrid P2P
- Broker, Mediator (C/5) « Distributed service index « No index + Combined
- Hierarchic: N=1 Domain SDirs - Flooding itggg’hugfﬁe%
(peer groups, super-peers, fedSDir) + Localindices P9P search
- Flat Routing indices (structured - Random Walk
Semantic Service averlay), Mo super-peers - Adaptive Search
Matchin
g Salutation, JIMILS, SLP, FlatiHierarchic DHT based [(e.q Gnulela, PDP, UPnP, Edutella,
. i CORBAORBIR, Ghord, P-Grid, Pastry, Tapestry, Konark, Allie, DEAPSpace, [Loo+ 04),
Non.—SLong W3C WSDALDDI GAN), Compound routing indises BilTorrent, Freelet, APS (Rosenfeld+, 07)
a5e
MWSDI (Verma-+ 04) SSLinkNet (Liu & Fhuge, 05)

WSML-P2P [vu+ 06)
Grid-Vine (Aberer+ 06)

Bibster (Sicbes+ 06),

INGA (Slaab+, 09),
Logic-Based {Paclucci+03),

Sem-WSPDS [Kashani- 04)
HyperCuP (Schiosser+02),
DReggie/GSD (Chakraborthy-+, 01)

Agora-P2P (Matskin+, 06) R$2D (Klusch-+, 06)

Hybrid CASCOM-P2P(3b) (Caceres+ D)

Fig. 3.14. Categories of Semantic Web service discovery architectures and systems.

Centralized Semantic P2P Service Discovery

In centralized semantic P2P service networks, a dedicated central service di-
rectory (or matchmaker) returns a list of providers of semantically relevant
services to the requester. Contrary to centralized client-server middleware or
brokering, the requester then directly interacts with selected providers for ser-
vice provision (Klusch & Sycara, 2001)[212]. The advantage of such centralized
discovery architectures is a fast resource or service lookup time, though the
central look-up server or registry like in JINI or the CORBA ORB interface
registry is a single point of failure that can be only partially mitigated by
replication and caching strategies.

An application of centralized P2P service discovery is the Napster music file
sharing system, and the SETI@home system that is exploiting a vast set of
distributed computional resources world wide to search for extraterrestrial
signals. From the Semantic Web service discovery perspective, each of the
above mentioned stand-alone Semantic Web service matchmakers, in princi-
ple, realizes a centralized logic-based semantic service discovery system by
itself. For example, the SCALLOPS e-health service coordination system uses
the hybrid semantic matchmaker OWLS-MX as a central matchmaker for the
selection of relevant e-health services in a medical emergency assistance appli-
cation. The same matchmaker is distributed to each peer of an unstructured

130

130/466

M Klusch, 2008

P2P network for decentralized OWL-S service discovery (Basters & Klusch,
2006)[39].

MWSDI (Verma et al., 2004)[372] is a centralized semantic P2P service system
with non-logic-based semantic service signature matching. Each peer in the
system maintains one domain specific WSDL-S (SAWSDL) service registry
and respective ontologies; multiple peers can form a domain-oriented group.
However, a distinguished central gateway or super-peer provides a global reg-
istries ontology (GRO) that maintains the complete taxonomy of all domain
registries, the mappings between WSDL-S service I/O message types and
concepts from shared domain ontologies in the system, associates registries to
them, and serves as central look-up service for all peers. This central super-
peer is replicated in form of so-called auxiliary peers for reasons of scalability.
For service location, any client peer (user) selects the relevant domain reg-
istries via the central GRO at the super-peer which then performs non-logic-
based semantic matching (structural XMLS graph matching, NGram-based
syntactic similarity, synonyms/hyponyms/hypernyms in the GRO) of service
input and output concepts with those of the desired service. However, it would
be hard to build the GRO, and difficult for the user to query the GRO without
knowing its details in advance.

Decentralized Semantic P2P Service Discovery

Decentralized semantic service discovery relies on service information storage
and location mechanisms that are distributed over all peers of structured,
unstructured or hybrid P2P networks.

Structured semantic P2P service systems

Structured P2P networks have no central directory server but a significant
amount of structure of the network topology (P2P overlay) which is tightly
controlled. Resources are placed neither at random peers nor in one central
directory but at specified locations for efficient querying. In other words, the
service index of the system is distributed to all peers according to a given
structured P2P overlay enforcing a deterministic content distribution which
can be used for routing point queries.

Prominent examples of structured P2P systems are those with flat DHT-
based resource distribution and location mechanism like Chord rings (Sto-
ica+, 2001), Pastry (Rowstron+, 2001), Tapestry (Zhao+, 2001), CAN (Rat-
nasamy+, 2001), P-Grid (Aberer et al., 2006), and structured hierarchic P2P
systems with super-peers. Flat DHT-based systems allow to route queries with
certain keys to particular peers containing the desired data. But to provide
this functionality all new content in the network has to be published at the
peer responsible for the respective key, if new data on a peer arrives, or a new
peer joins the network.

In structured hierarchical (also called N-super-peer) P2P systems, the peers
are organized in (N>1) domain-oriented groups with possibly heterogeneous

131

131/466

M Klusch, 2008

service location mechanisms (e.g hierarchic DHT, that is, one group with
Chord ring overlay, another one with P-Grid overlay, etc.). Each group is
represented by one super-peer hosting the group/domain service index. The
set of super-peers, in turn, can be hierarchically structured with federated
service directories in a super-peer (top-level) overlay of the network. Peers
within a group query its super-peer which interacts with other super-peers
to route the query to relevant peer groups for response. The functionality of
a super-peer of one peer group is not necessarily fixed, but, in case of node
failure, transferable to a new peer of that group. Typically JXTA, a collection
of P2P protocols, is used to realize super-peer based P2P systems, though it
does not enforce such architectures.

Examples of decentralized Semantic Web service discovery in structured P2P
networks are WSPDS (Kashani et al., 2004)[181], SSLinkNet (Liu & Zhuge,
2005)[236], CASCOM-P2P3;, (Caceres et al., 2006)[53], Grid-Vine (Aberer et
al., 2006)[1], WSML-P2P (Vu et al., 2006)[377] and Agora-P2P (Kiingas et
al., 2006)[223, 237]. SSLinkNet, Agora-P2P and WSML-P2P exploit keyword-
based discovery in a Chord ring, respectively, P-Grid system with non-logic-
based semantic profile matching of services in WSDL, respectively, WSML.
The Grid-Vine system performs non-logic-based semantic P2P content re-
trieval by means of so-called semantic gossiping with the underlying P-Grid
system. The CASCOM and Agora-P2P systems have been demonstrated for
logic-based semantic OWL-S (DAML-S) service discovery in hierarchic struc-
tured P2P networks.

In the SSLinkNet (Liu & Zhuge, 2005)[236], a Chord ring-based search is
complemented by forwarding the same Web service request by the identified
peers to relevant neighbors based on a given so-called semantic service link
network. The semantic links between services are determined by non-logic-
based semantic service matching, and are used to derive semantic relationships
between service provider peers based on heuristic rules.

Similarly, the AGORA-P2P system (Kiingas et al., 2006)[223, 237] uses a
Chord ring as the underlying infrastructure for a distributed storage of infor-
mation about OWL-S services over peers. Service input and output concept
names are hashed as mere literals to unique integer keys such that peers hold-
ing the same key are offering services with equal literals in a circular key space.
A service request is characterized as a syntactic multi-key query against this
Chord ring. Both systems, SSLinkNet and AGORA-P2P, do not cope with
the known problem of efficiently preserving the stability of Chord rings in
dynamic environments.

The generic CASCOM semantic service coordination architecture has been in-
stantiated in terms of a hierarchic structured P2P network with N interacting
super-peers each hosting a domain service registry that make up a federated
Web service directory. Each peer within a group can complement a keyword-
based pre-selection of OWL-S services in their super-peer domain registries
with a more complex semantic matching by a selected hybrid or logic-based
semantic OWL-S matchmaker (ROWL-S, PCEM or OWLS-MX) on demand.

132

132/466

M Klusch, 2008

The respective semantic service search components are integrated into each
peer (cf. chapter 16).

The Grid-Vine system (Aberer et al., 2006) [1] performs a hybrid semantic
search of semantically annotated resources by means of so-called semantic
gossiping between peers about their actual semantic knowledge (also called
logical layer or semantic overlay of the P2P system). The semantic overlay is
defined by (a) the set of peer ontologies in RDFS or XMLS that are used
to encode document annotations in RDF (each RDF triple or concept in
the peer schema represents a set of documents as its instances), and (b) a
set of user-specified peer schema (concept) mappings that are used by the
peers to translate received queries. The numeric ”semantic quality” value of
these directed concept mappings, hence the non-logic-based degree of seman-
tic similarity between query and resource annotation concept of two peers is
locally assessed by the requester through a quantitative analysis of (transi-
tive) propagation cycles of the mappings (and their previous semantic quality
value) which might be wrong but not by means of logic-based reasoning about
concepts. The translation links, that is the mapping and its numeric ”seman-
tic quality” are continously exchanged and updated by the peers: Semantic
gossiping among peers is the propagation of queries to peers for which no
direct but transitive translation links exist. The efficient location of resources
for a given and translated query by the underlying P-Grid system bases on
keyword-based matching of their identifiers, that are DHT keys.

Service discovery in structured P2P networks can provide search guarantees, in
the sense of total service recall in the network, while simultaneously minimiz-
ing messaging overhead. However, this challenge has not been fully explored
for unstructured P2P networks yet.

Service discovery in structured P2P networks can provide search guarantees,
in the sense of total service recall in the network, while simultaneously min-
imizing messaging overhead. Typically, structured networks such as DHT-
based P2P networks of n peers offer efficient O(log(n)) search complexity
for locating even rare items, but they incur significantly higher organizational
overheads (maintaining DHT, publishing)*® than unstructured P2P networks.
Alternatively, flooding-based or random-walks discovery in unstructured P2P
networks are effective for locating highly replicated, means popular, but not
rare items. Hybrid designs of P2P networks aim to combine the best of both
worlds such as using random-walks (with state-keeping to prevent walkers
from revisiting same peers) for locating popular items, and structured (DHT)
search techniques for locating rare items [241].

43 For example, peer p, publishes each of its hashed items (term;) over the DHT
network, that is the item gets stored in an inverted list (termg, [..., pn, ...]]) of
some peer that is found in O(log(n)) hops.

133

133/466

M Klusch, 2008

Unstructured semantic P2P service systems

In unstructured P2P systems, peers initially have no index nor any precise
control over the network topology (overlay) or file placement based on any
knowledge of the topology. That is, they do not rely on any structured network
overlay for query routing as they have no inherent restrictions on the type of
service discovery they can perform.

For example, resources in unstructured P2P systems like Gnutella or Mor-
pheus are located by means of network flooding: Each peer broadcasts a given
query in BFS manner to all neighbour peers within a certain radius (TTL)
until a service is found, or the given query TTL is zero. Such network flood-
ing is extremely resilient to network dynamics (peers entering and leaving the
system), but generates high network traffic.

This problem can be mitigated by a Random Walk search where each peer
builds a local index about available services of its direct neighbour peers over
time and randomly forwards a query to one of them in DFS manner un-
til the service is found** as well as replication and caching strategies based
on, for example, access frequencies and popularity of services (Lu et al.,
2002)[245]. Approaches to informed probabilistic adaptive P2P search like in
APS (Tsoumakos & Roussopoulos, 2005)[364] improve on such random walks
based on estimations over dynamically observed service location information
stored in the local indices of peers. In contrast to the structured P2P search,
this only provides probabilistic search guarantees, that is incomplete recall.
In any case, the majority of unstructured P2P service systems only performs
keyword-based service matching and does not exploit any qualitative results
from logic-based or hybrid semantic service matching to improve the quality of
an informed search. In fact, only a few system are available for logic-based or
hybrid semantic Web service retrieval such as DReggie/GSD (Chakraborthy
et al., 2002; Chen et al., 2001)[62, 64], HyperCuP (Schlosser et al., 2003)[328],
Sem-WSPDS (Kashabi et al., 2004)[181], (Paolucci et al., 2003)[287], Bibster
(Haase et al., 2006)[148], INGA (Loser et al., 2005)[242], and RS2D (Basters &
Klusch, 2006)[39]. These systems differ in the way of how peers perform flood-
ing or adaptive query routing based on evolving local knowledge about the
semantic overlay, that is knowledge about the semantic relationships between
distributed services and ontologies in unstructured P2P networks. Besides, all
existing system implementations, except INGA and Bibster, perform seman-
tic service IO profile matching for OWL-S (DAML-S), while HyperCuP peers
dynamically build a semantic overlay based on monolithic service concepts.
For example, Paolucci et al. (2003)[287] propose the discovery of relevant
DAML-S services in unstructured P2P networks based on both the Gnutella
P2P discovery process and a complementary logic-based service matching
process (OWLS-UDDI matchmaker) over the returned answer set. However,

4 This is valid in case the length of the random walk is equal to the number of
peers flooded with bounded TTL or hops).

134

134/466

M Klusch, 2008

the broadcast or flooding-based search in unstructured P2P networks like
Gnutella is known to suffer from traffic and load balancing problems.
Though Bibster and INGA have not been explicitly designed for Semantic
Web service discovery, they could be used for this purpose. In INGA (Loser et
al., 2005)[242], peers dynamically adapt the network topology, driven by the
dynamically observed history of successful or semantically similar queries, and
a dynamic shortcut selection strategy, which forwards queries to a community
of peers that are likely to best answer given queries. The observed results
are used by each peer for maintaining a bounded local (recommender) index
storing semantically labelled topic specific routing shortcuts (that connect
peers sharing similar interests).

Similarly, in Bibster (Haase et al., 2006)[148] peers have prior knowledge about
a fixed semantic overlay network that is initially built by means of a special
first round advertisement and local caching policy. Each peer only stores those
advertisements that are semantically close to at least one of their own services,
and then selects for given queries only those two neighbours with top ranked
expertise according to the semantic overlay it knows in prior. Further, prior
knowledge about other peers ontologies as well as their mapping to local
ontologies is assumed. This is similar to the ontology-based service query
routing in HyperCuP (Schlosser et al., 2003)[328].

In RS2D (Basters & Klusch, 2006)[39], contrary to Bibster and DReggie/GSD,
the peers perform an adaptive probabilistic risk-driven search for relevant
OWL-S services without any fixed or prior knowledge about the semantic
overlay. We describe this system in more detail in chapter 7.

Semantic service discovery systems for hybrid P2P networks

Hybrid P2P search infrastructures combine both structured and unstructured
location mechanisms. For example, Edutella combines a super-peer network
with routing indices and an efficient broadcast. In (Loo et al., 2004)[241] a
flat DHT approach is used to locate rare items, and flooding techniques are
used for searching highly replicated items. A similar approach of hybrid P2P
query routing that adaptively switches between different kinds of structured
and unstructured search together with preliminary experimental results are
reported in (Rosenfeld et al., 2007)[318]. However, there are no hybrid P2P
systems for semantic service discovery available yet.

Despite recent advances in the converging technologies of Semantic Web and
P2P computing (Staab & Stuckenschmidt, 2006)[345], the scalability of se-
mantic service discovery in structured, unstructured or hybrid P2P networks
such as those for real-time mobile ad-hoc network applications is one ma-
jor open problem. Research in this direction has just started. Preliminary
solutions vary in the expressivity of semantic service description, and the
complexity of semantic matching means ranging from computationally heavy
Semantic Web service matchmakers like OWLS-MX in SCALLOPS and CAS-
COM, to those with a streamlined DL reasoner such as Krhype (Kleemann

135

135/466

M Klusch, 2008

& Sinner, 2007)[188] suitable for thin clients on mobile devices in IASON
(Furbach et al., 2007)[124]. An example analysis of semantic service discovery
architectures for realizing a mobile e-health application is given in [59].

The Contributions

In the following four chapters, we present innovative means of hybrid seman-
tic service matchmaking, and adaptive semantic service retrieval in unstruc-
tured P2P networks. These contributions are joint work with colleagues at
the Carnegie Mellon University in Pittsburgh (USA), and my Master stu-
dents Benedikt Fries, Ulrich Basters, and Frank Kaufer at DFKI.

Chapter 4: Hybrid service matching with LARKS. Early work on agent-based
semantic service selection started in the late 1990s and include the first hy-
brid semantic matchmaker LARKS. Services (also called agent capabilities)
are described in a frame-based language LARKS while the matching process
uses five different filters to perform both logic-based semantic profile IOPE
matching, and syntactic matching of the service description as a whole. Dif-
ferent degrees of partial matching are determined by different combinations
of these filters. The LARKS matchmaker considerably influenced the initial
work on the Semantic Web mark-up language DAML-S, the predecessor of
OWL-S, and the subsequent development of a variety of Semantic Web ser-
vice matchmakers. LARKS has been implemented in Java and successfully
demonstrated for selected use cases in the military domain.

Chapter 5: Hybrid semantic matching of OWL-S services. Based on LARKS,
we developed the first hybrid Semantic Web service signature matchmaker,
called OWLS-MX. It complements logic-based semantic matching of OWL-S
services with token-based syntactic similarity measurements. The results of
the experimental evaluation of OWLS-MX are evidencing that logic-based se-
mantic matching of OWL-S services can be in part significantly outperformed
by both content-based and hybrid semantic service matching. Our experimen-
tal results were confirmed by Bernstein and Kiefer (2006, 2008)[32, 186].
Further experimental evaluation of the performance of OWLS-MX over an
extended test collection OWLS-TC 2.2 together with a general analysis of its
logic-based, hybrid and syntactic only false positives and false negatives is
provided in (Klusch, Kapahnke & Fries, 2008)[200]. The matchmaker OWLS-
MX was successfully used for semantic service selection in selected scenarios
of emergency medical assistance in the e-health domain (cf. part 5).

Chapter 6: Hybrid semantic matching of WSML services. Further, only a few
semantic matchmaker for WSML services are available. In this chapter, we
present the first hybrid matchmaker, called WSMO-MX for services in a LP
extension of WSML-Rule, called WSML-MX. The hybrid service matching
scheme of WSMO-MX, in essence, is a combination of the ideas of hybrid se-

136

136/466

M Klusch, 2008

mantic matching as realized by OWLS-MX, the object-oriented graph match-
ing proposed by Klein and Ko6nig-Ries (2004), and the concept of intentional
matching of services presented by Keller et al. (2005)[185]. The matchmaker
WSMO-MX performs hybrid semantic service IOP matching by combining
logic-based reasoning with text similarity measurement. Different matching
degrees are recursively computed by the aggregated valuation of logic-based
type matching and constraint matching in F-Logic(LP), keyword-based rela-
tion matching, and text similarity measurement.

The results of our preliminary experimental evaluation of WSMO-MX over
an initial test collection WSML-TC1 are reported in (Kaufer & Klusch, 2008)
[207, 183]. Again, the experiments evidenced the potential of hybrid over logic-
based only semantic matching in terms of increased service retrieval perfor-
mance.

Chapter 7: Semantic service discovery in pure P2P networks. How to perform
a semantic search for services in unstructured P2P networks in an efficient and
robust way? In this chapter, we move beyond the state-of-the-art solutions for
informed adaptive probabilistic and object-specific search in unstructured P2P
networks. Key idea of our approach, called RS2D (Risk-Driven Semantic Ser-
vice Discovery), is to let each peer agent (a) dynamically build and maintain
its local view of the semantic overlay of the network, (b) use the OWLS-MX
matchmaker for hybrid semantic service matching, and (c) learn the average
query-answering behaviour of its direct neighbours in the network. The de-
cision to whom to forward a semantic service request is then driven by its
estimated probabilistic (Bayes’ conditional) risk of routing failure in terms of
both the implied semantic loss and communication costs. Notably, this kind of
informed adaptive search not only renders the RS2D system independent from
any fixed global ontology like in the DReggie/GSD system, or special adver-
tisement rounds in advance like in the Bibster system. The RS2D performed
comparatively well with respect to both retrieval and robustness.

An alternative version, called RS2D 2.0 (Basters & Klusch, 2006)[26], that
uses a different semantic loss function showed a lower precision of service re-
treival but with less communication effort than the original version presented
in this chapter.

Open Problems

Some major open problems of semantic service discovery are the following.

o Approximated matching. How to deal with uncertain, vague or incomplete
descriptions of service semantics and user preferences for service selection?
Fuzzy, probability, and possibility theory are first class candidates for the
design of approximated (hybrid) semantic service matching (and ranking)
algorithms to solve this problem. In particular, efficient reasoners for re-
spective extensions of Semantic Web (rule) languages like probabilistic

137

137/466

M Klusch, 2008

pOWL, fuzzyOWL, or pDatalog can be applied to reason upon semantic
service annotations under uncertainty and with preferences.

However, there are no such semantic service matchmakers available yet.
Apart from the first hybrid matchmakers for OWL-S and WSML services,
OWLS-MX and WSMO-MX, the same holds for the integrated use of
means of statistical analysis from data mining or information retrieval for
approximative matching of semantic service descriptions.

Scalability. How to reasonably trade off the leveraging of expensive logic-
based service selection means with practical requirements of resource-
bounded, just-in-time and light-weight service discovery in mobile ad-hoc,
unstructured or hybrid P2P service networks? What kind of approximated
and/or adaptive semantic service discovery techniques scale best for what
environment (network, user contxt, services distribution, etc) and appli-
cation at hand? Required very large scale, comparative service retrieval
performance experiments under real world conditions have not been con-
ducted yet.

Adaptive discovery. How to leverage semantic service discovery by means
of machine learning and human-agent interaction? Though a variety of
adaptive personal recommender and user interface agents have been de-
veloped in the field, none of the currently implemented semantic Web
service matchmakers is capable of flexibly adapting to its changing user,
network, and application environment.

Privacy. How to protect the privacy of individual user profile data that are
explicit or implicit in service requests submitted to a central matchmaker,
or relevant service providers? Approaches to privacy preserving Semantic
Web service discovery are still very rare, and research in this direction
appears somewhat stagnant. Amongst the most powerful solutions pro-
posed are the Rei language for annotating OWL-S services with privacy
and authorization policies [95, 179], and the information flow analysis-
based checking of the privacy preservation of sequential OWL-S service
plans [174, 175]. However, nothing is known about the scalability of these
solutions in practice yet.

Lack of tool support and test collections. Support of Semantic Web service
discovery by means of easy to use software tools is still lagging behind
the theoretical advancements, though there are differences to what extent
this is valid for what semantic service description framework (cf. figure
3.13). In particular, there is no official test collection for evaluating the re-
trieval performance of service discovery approaches (matchmakers, search
engines) for the standard SAWSDL and WSML, while there are two pub-
licly available for OWL-S (OWLS-TC2, SWS-TC). There are no solutions
for the integrated matching of different services that are specified in dif-

138

138/466

ferent languages like SAWSDL, OWL-S and WSML. Relevant work on
refactoring OWL-S and WSML to the standard SAWSDL is ongoing.

139

M Klusch, 2008 139/466

M Klusch, 2008 140/466

4

Hybrid Service Matching with LARKS

K. Sycara, M. Klusch, S. Widoff, J. Lu: LARKS: Dynamic Match-
making Among Heterogeneous Software Agents in Cyberspace. Au-
tonomous Agents and Multi-Agent Systems, 5(2), pages 173 - 204,
Kluwer Academic, 2002.

M Klusch, 2008 141/466

ﬁ“ Autonomous Agents and Multi-Agent Systems, 5, 173-203, 2002
‘\ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

LARKS: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace*

KATIA SYCARA AND SETH WIDOFF katia@cs.cmu.edu
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

MATTHIAS KLUSCH klusch@dfki.de
Deduction and Multiagent Systems Lab, DFKI GmbH, Saarbriicken, Germany

JIANGUO LU jglu@cs.toronto.edu
Computer Science Department, University of Toronto, Canada

Abstract. Service matchmaking among heterogeneous software agents in the Internet is usually done
dynamically and must be efficient. There is an obvious trade-off between the quality and efficiency of
matchmaking on the Internet. We define a language called LARKS for agent advertisements and requests,
and present a flexible and efficient matchmaking process that uses LARKS. The LARKS matchmaking
process performs both syntactic and semantic matching, and in addition allows the specification of con-
cepts (local ontologies) via ITL, a concept language. The matching process uses five different filters:
context matching, profile comparison, similarity matching, signature matching and constraint matching.
Different degrees of partial matching can result from utilizing different combinations of these filters. We
briefly report on our implementation of LARKS and the matchmaking process in Java. Fielded applica-
tions of matchmaking using LARKS in several application domains for systems of information agents are
ongoing efforts.

Keywords: interoperability, multi-agent systems, matchmaking, capability description

1. Introduction

The amount of services and deployed software agents in the most famous offspring
of the Internet, the World Wide Web, is exponentially increasing. In addition, the
Internet is an open environment, where information sources, communication links
and agents themselves may appear and disappear unpredictably. Thus, an effective,
automated search and selection of relevant services or agents is essential for human
users and agents as well.

We distinguish three general agent categories in the Cyberspace, service providers,
service requester, and middle agents. Service providers provide some type of service,
such as finding information, or performing some particular domain specific problem
solving. Requester agents need provider agents to perform some service for them.
Agents that help locate others are called middle agents [6]. Matchmaking is the

*This research has been sponsored in part by Office of Naval Research grant N-00014-96-16-1-1222,
and by DARPA grant F-30602-98-2-0138.

M Klusch, 2008 142/466

174 SYCARA ET AL.

process of finding an appropriate provider for a requester through a middle agent,
and has the following general form: (1) Provider agents advertise their capabilities
to middle agents, (2) middle agents store these advertisements, (3) a requester asks
some middle agent whether it knows of providers with desired capabilities, and (4)
the middle agent matches the request against the stored advertisements and returns
the result, a subset of the stored advertisements.

While this process at first glance seems very simple, it is complicated by the fact
that not only local information sources but even providers and requesters in the
Cyberspace are usually heterogeneous and incapable of understanding each other.
This gives rise to the need for a common language for describing the capabilities
and requests of software agents in a convenient way. Besides, one has to devise an
efficient mechanism to determine a structural and semantic match of descriptions
in that language. This means in particular using methods for reconciling potentially
semantic heterogeneous informations [23]. There is an obvious trade-off between
the quality and efficiency of matchmaking on the Internet.

In the following, we briefly present the agent capability description language,
LARKS, and then discuss the matchmaking process using LARKS. The paper con-
cludes with a brief comparison with related works. We have implemented LARKS
and the associated powerful matchmaking process, and are currently incorporating
it within our RETSINA multi-agent infrastructure framework [44].

2. Matchmaking among heterogeneous agents

In the process of matchmaking (see Figure 1) three different kinds of collaborating
agents involved are:

1. Provider agents provide their capabilities, e.g., information search services, retail
electronic commerce for special products, etc., to their users and other agents.

@& [nformation Brokering

Request-for-Service >
Requester ¢ Reply-Result-of-Service

chuest-for-ServiceI

Provider

Broker

Adbvertise/Unadvertise-Services

@& [nformation Matchmaking

Request-for-Service >
.Regly-Provider-Agents—Names Matchmaker

r' r'
Reply-Result-of-Service

Requester

Reques[.fgr.Seryjce' Provider Advertise/Unadvertise-Services

Figure 1. Service brokering vs. matchmaking.

M Klusch, 2008 143/466

LARKS 175

2. Requester agents consume informations and services offered by provider agents
in the system. Requests for any provider agent capabilities have to be sent to a
matchmaker agent.

3. Matchmaker agents mediate among both, requesters and providers, for some
mutually beneficial cooperation. Each provider must first register himself with
a matchmaker. Provider agents advertise their capabilities (advertisements) by
sending some appropriate messages describing the kind of service they offer.
Every request a matchmaker receives will be matched with his actual set of
advertisements. If the match is successful the matchmaker returns a ranked set
of appropriate provider agents and the relevant advertisements to the requester.

In contrast to a broker agent, a matchmaker does not deal with the task of
contacting the relevant providers, transmitting the service request to the service
provider and communicating the results to the requester. This avoids data transmis-
sion bottlenecks, but it might increase the amount of interactions among agents.

2.1. Agent capability description language requirements

There is an obvious need to describe agent capabilities in a common language
before any advertisement, request or even matchmaking among the agents can take
place. In fact, the formal description of capabilities is one of the major problems
in the area of software engineering and Al Some of the main desired features of
such a agent capability description language are the following.

e Expressiveness: The language is expressive enough to represent not only data and
knowledge, but also to describe the meaning of program code. Agent capabilities
are described at an abstract rather than implementation level.

e Inferences: Inferences on descriptions written in this language are supported. A
user can read any statement in the language, and software agents are able to
process, especially to compare any pair of statements automatically.

e Ease of Use: Every description should not only be easy to read and understand,
but also easy to write by the user. The language should support the use of domain
or common ontologies for specifying agents capabilities.

e Application in the Web: One of the main application domains for the language
is the specification of advertisements and requests of agents in the Web. The
language allows for automated exchange and processing of information among
these agents.

In addition, the matchmatching process on a given set of capability descriptions
and a request, both written in the chosen ACDL, should be efficient, accurate—not
only relying on keyword extraction and comparison—and fully automated.

3. The agent capability description language LARKS

Representing capabilities is a difficult problem that has been one of the major
concerns in the areas of software engineering, Al, and more recently, in the area of

M Klusch, 2008 144/466

176 SYCARA ET AL.

Internet computing. There are many program description languages, like the Vienna
Development Method (VDM), VDM++ [29] or Z [35], to describe the program
functionality. These languages concern too detail-rich to be feasibly searched. Also,
reading and writing specifications in these languages require sophisticated training.
On the other hand, the interface definition languages, like WIDL [47], go to the
other extreme by omitting the functional descriptions of the services entirely. Only
the input and output signature information are provided.

In Al, knowledge description languages, like KL-ONE [3], or knowledge inter-
change formats such as KIF [22] are meant to describe the knowledge instead of
the actions of a service. The action representation formalisms like STRIPS are too
restrictive to represent complicated service. Some agent communication languages
like KOML [10] and FIPA ACL [11, 12] concentrate on specifying communication
performatives (message types) between agents but leave the content part of the
language unspecified.

In Internet computing, various description formats are being proposed, notably
the Web Interface Definition Language (WIDL) [47] and the Resource Description
Framework (RDF) [36]. Although the RDF also aims at the interoperablity between
Web applications, it is intended rather to be a basis for describing metadata. RDF
allows different vendors to describe the properties and relations between resources
on the Web. That enables other programs, like Searchbots, to automatically extract
relevant information, and to build a graph structure of the resources available on the
Web, without the need to give any specific information. However, the description
does not describe the functionalities of the services available in the Web.

Since no existing language satisfies our requirements, we propose an ACDL,
called LARKS (Language for Advertisement and Request for Knowledge Sharing)
that enables advertising, requesting and matching agent capabilities.

3.1. Specification in LARKS

A specification in LARKS is a frame with the following slot structure.

Context Context of specification

Types Declaration of used variable types
Input Declaration of input variables
Output Declaration of output variables
InConstraints Constraints on input variables
OutConstraints Constraints on output variables

ConcDescriptions Ontological descriptions of used words
TextDescription Textual description of specification

The frame slot types have the following meaning.

e Context: The context of the specification in the local domain of the agent.

e Types: Optional definition of the data types used in the specification.

e Input and Output: Input/output variable declarations for the specification. In
addition to the usual type declarations, there may also be concept attachments

M Klusch, 2008 145/466

LARKS 177

to disambiguate types of the same name. The concepts themselves are defined in
the concept description slot ConcDescriptions.

e InConstraints and OutConstraints: Logical constraints on input/output
variables that appear in the input/output declaration part. The constraints are
described as Horn clauses.'

e ConcDesriptions: Optional description of the meaning of words used in the
specification. The description relies on concepts defined in a given local domain
ontology. Attachment of a concept C to a word w in any of the slots above is done
in the form: w*C. That means that the concept C is the ontological description
of the word w. The concept C is included in the slot ConcDescriptions.

e TextDescription: Optional text description of the meaning of the specification
as a request for or advertisement of agent capabilities. In addition, the meaning
of input and output declaration, type and context part of the specification may
be described by attaching textual comments.

In our current implementation we assume each local domain ontology to be
written in the concept language ITL (Information Terminological Language) [43].
Following section gives examples for how to attach concepts defined in this language
in a LARKS specification, and also shows an example domain ontology in ITL. A
generic interface for using ontologies in LARKS expressed in languages other than
ITL will be implemented in near future.

Every specification in LARKS can be interpreted as an advertisement as well as
a request; this depends on the purpose for which an agent sends a specification to
some matchmaker agent(s). Every LARKS specification must be wrapped up in an
appropriate KQML message by the sending agent indicating if the message content
is to be treated as a request or an advertisement.

3.2. Examples of specifications in LARKS

The following two examples show how to describe in LARKS the capability to sort
a given list of items, and return the sorted list. Example 3.1 is the specification of
the capability to sort a list of at most 100 integer numbers, whereas in Example 3.2
a more generic kind of sorting real numbers or strings is specified in LARKS. Since
the ConcDescriptions slot is empty, i.e., there is no concept attachment in the
specification, the semantics of used words in it are assumed to be known to the
matchmaker. Examples of how to use concept attachments in a specification are
given in the next section.

Example 3.1 (Sorting integer numbers)

IntegerSort

Context Sort

Types

Input xs: ListOf Integer;
Output ys: ListOf Integer;

M Klusch, 2008 146/466

178 SYCARA ET AL.

InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < — ge(xy);
in(x,ys) < — in(x,xs);
ConcDescriptions
TextDescription sort list of at most 100 integer numbers

Example 3.2 (Generic sort of real numbers or strings)

GenericSort

Context Sorting

Types

Input xs: ListOf Real | String;

Output ys: ListOf Real | String;

InConstraints

OutConstraints before(x,y,ys) < —ge(x,y);
before(x,y,ys) < —preceeds(x,y);
in(x,ys) < —in(x,xs);

ConcDescriptions

TextDescription sorting list of real numbers or strings

The next example is a specification of an agent’s capability to buy stocks from
particular companies, e.g., IBM, Apple or HP, at a stock market.

Example 3.3 (Selling stocks by a portfolio agent)

sellStock

Context Stock, StockMarket;

Types StockSymbols = {IBM, Apple, HP, SIEMENS, Daimler-Chrysler},
Money = Real;

Input symbol: StockSymbols;

yourMoney: Money;
shares: Money;
Output yourStock: StockSymbols;
yourShares: Money;
yourChange: Money;
InConstraints yourMoney >= shares*currentPrice(symb);
OutConstraints yourChange = yourMoney — shares*currentPrice(symb);
yourShares = shares; yourStock = symbol;
ConcDescriptions
TextDescription buying stocks from IBM, Apple, HP, SIEMENS, or
Daimler-Chrysler at the stock market.

Given the name of the stock, the amount of money available for buying stocks
and the shares for one stock, the agent is able to order stocks at the stock market.
The constraints on the order are that the amount for buying stocks given by the
user covers the shares times the current price for one stock. After performing the

M Klusch, 2008 147/466

LARKS 179

order the agent will inform the user about the stock, the shares, and the gained
benefit.

3.3. Using domain knowledge in LARKS

As mentioned before, LARKS offers the option to use application domain knowledge
in any advertisement or request. This is done by using a local ontology for describing
the meaning of a word in a LARKS specification. An example for such a domain
ontology is given in the next section.

Local ontologies can be formally defined using, for example, concept languages
such as ITL, BACK, LOOM, CLASSIC or KRIS, a full-fledged first order predicate
logic, such as the knowledge interchange format (KIF) [22], or even the unified
modeling language (UML) [13].

The main benefit of using domain knowledge in LARKS specifications is twofold:

—_

the user can specify in more detail what she/he is requesting or advertising, and
2. the matchmaker agent is able to make automated inferences on such kind of
additional, formally defined semantic descriptions while matching LARKS speci-
fications, thereby improving the overall quality of matching.

As mentioned before, our current implementation of LARKS assumes the domain
ontology to be written in the concept language ITL [43]. The research area on con-
cept languages (or description logics) in Al has its origins in the theoretical defi-
ciencies of semantic networks in the late 70’s. KL-ONE [3] was the first concept
language providing a well-founded semantics for a more natural language-based
description of knowledge. Since then different concept languages have been inten-
sively investigated; they are almost all decidable fragments of first-order predicate
logic. The following is a simple example for a request and an advertisement written
in LARKS in the air combat mission domain.

Example 3.4 (A request and advertisement of agent capabilities). We applied the
matchmaking process using LARKS in the application domain of air combat mis-
sions. As an example for specification consider the following request and adver-
tisement, ‘ReqAirMissions’ and ‘AWAC-AirMissions,” respectively. The request is to
find an agent which is capable to give information on deployed air combat missions
launched in a given time interval. Some provider agent in this domain advertises his
capability to provide information about a special kind of (AWAC) air combat mis-
sions.

ReqAirMissions

Context Attack, Mission* AirMission
Types Date = (mm: Int, dd: Int, yy: Int),
DeployedMission =
ListOf(mType: String, mID:String||Int)
Input sd: Date, ed: Date

M Klusch, 2008 148/466

180

SYCARA ET AL.

Output missions: Mission

InConstraints sd <=ed.

OutConstraints deployed(mID), launchedAfter(mID,sd),
launchedBefore(mID,ed).

ConcDescriptions AirMission =
(and Mission (atleast 1 has-airplane)
(all has-airplane Airplane) (all has-MissionType
aset(AWAC,CAPDCA,HVAA)))

TextDescription capable of providing information on
deployed air combat missions launched in a
given time interval

AWAC-AirMissions

Context Combat, Mission* AWAC-AirMission

Types Date = (mm: Int, dd: Int, yy: Int)
DeployedMission =
ListOf(mt: String, mid:String| Int,
mStart: Date, mEnd: Date)

Input start: Date, end: Date

Output missions: DeployedMission;

InConstraints start <= end.

OutConstraints deployed(mID), mt = AWAC,
launchedAfter(mid,mStart),
launchedBefore(mID,mEnd).

ConcDescriptions AWAC-AirMission =
(and AirMission (atleast 1 has-airplane)
(atmost 1 has-airplane) (all has-airplane
aset(E-2)))

TextDescription capable of providing information on

deployed AWAC air combat missions launched
in some given time interval

Suppose that a provider agent such as, for example, HotBot, Excite, or even a
meta-searchbot, like SavvySearch or MetaCrawler, advertises the capability to find
informations about any type of computers. The administrator of the agent may
specify that capability in LARKS as follows.

Example 3.5 (Finding informations on computers)

FindComputerInfo
Context Computer*Computer;
Types InfoList = ListOf (model: Model* ComputerModel,

M Klusch, 2008

brand: Brand*Brand,
price: Price*Money, color: Color*Colors);

149/466

LARKS 181

Input brands: SetOf Brand*Brand;
areas: SetOf State;
processor: SetOf CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer;

Output Info: InfoList;
InConstraints
OutConstraints sorted(Info).

ConcDescriptions Computer = (and Product (exists has-processor CPU)
(all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800) (exists in-currency aset(USD)));
HighPrice = (and Price (1e 50000) (exists in-currency aset(USD)));
ComputerModel =
aset(HP-Vectra,PowerPC-G3,Thinkpad770,Satellite315);
CPU = aset(Pentium,K6,PentiumII,G3,Merced)
[Product, Colors, Brand, Money]

Please note that provider and requester agents do not have to share the meaning
of any words used in LARKS specifications. For example, suppose that the agents do
not share the meaning of the word ‘Computer’ listed as a keyword in the Context
slot of both, an advertisement and request, respectively. Without any concept attach-
ment the matchmaker agent matches both specifications to be in the same context
though they may refer to different domains of discourse.

Any knowledge on relations among concepts attached to a pair of words to
be compared when matching two specifications helps the matchmaker agent to
determine the semantic similarity between these words. All attached concepts in
a given specification are formally defined in a local domain ontology? of provider
or requester agent.

When multiple domain ontologies exist the matchmaker agent has to cope with
the known ontological mismatch problem. If the agents share a common domain
ontology equal or different names of concepts possess the same or different seman-
tics, respectively. However, the more difficult case occurs when the agents do not
share the same domain ontology; this may occur, for example, when agent capabili-
ties were specified in the same application domain by different people. In this case,
equality of concept names does not necessarily mean the equality of their semantics
but has to be determined by the matchmaker agent using the concept definitions.?
For this purpose the matchmaker agent dynamically builds and maintains a par-
tially global terminology based on the received concept definitions. It is assumed
that the vocabulary of basic words used in the definition of concepts of this ter-
minology is dynamically shared by the providers and requesters. This provides a
minimal common basis for a well-founded canonical interpretation of any concept
in the ontology of the matchmaker.

3.3.1. Example for a domain ontology in the concept language ITL. Conceptual kno-
wledge about a given application domain, or even common-sense, may be defined
by a set of concepts and roles as terms in a given concept language. In the current
implementation of LARKS we use the concept language ITL for this purpose. Each
term as a definition of some concept C is a conjunction of logical constraints which

M Klusch, 2008 150/466

182 SYCARA ET AL.

are necessary for any object to be an instance of C. The set of terminological
definitions forms a particular style of an ontology, the terminology. Any definition
of concepts in a terminology relies on

e a set of concepts and roles already defined in the terminology and/or

e a given basic vocabulary of words (primitive components) which are not defined in
the terminology, that is, their semantics are assumed to be known and consistently
used across boundaries.

The following terminology, is written in the concept language ITL and defines
concepts in the computer application domain. It may be used in Example 3.5 in the
former section.

Product = (and (all is-manufactured-by Brand) (atleast 1 is-manufactured-by)
(all has-price Price))

Computer = (and Product (exists has-processor CPU) (all has-memory Memory)
(all is-model ComputerModel))

Notebook = (and Computer (all has-price

(and (and (ge 1000) (1e 2999)) (all in-currency aset(USD)))

(all has-weight (and kg (le 5)) (all is-manufactured-by Company))

(all is-model aset(Thinkpad380, Thinkpad770,Satellite315))))
Brand = (and Company (all is-located-in State))

State = (and (all part-of Country) aset(VA,PA,TX,OH,NY))

Company = aset(IBM,Toshiba,HP, Apple, DEC,Dell,Gateway)

Colors = aset(Blue,Green, Yellow,Red)

Money = (and Real (all in-currency aset(USD,DM,FEY,P)))

Price = Money

LowPrice = (and Price (1e 1800) (exists in-currency aset(USD)))

HighPrice = (and Price (ge 5000) (exists in-currency aset(USD)))
ComputerModel = aset(HP-Vectra,PowerPC-G3,Thinkpad-380, Thinkpad-770,Satellite-315)
CPU = aset(Pentium,K6,PentiumIl,G3,Merced)

Obviously, at some point the providers and requesters must share a certain basic
vocabulary to enable a meaningful comparison of used concepts. It is assumed that
the basic set of primitive words of the partially global terminology of the match-
maker is unique and shared with providers and requesters. The name of the used
local terminology or domain ontology is denoted in the KQML message which
wraps the LARKS specification.

3.3.2. Subsumption relationships among concepts. One of the main inferences on
ontologies written in concept languages is the computation of the subsumption rela-
tion among two concepts: A concept C subsumes another concept C’ if the exten-
sion of C’ is a subset of that of C. This means, that the logical constraints defined
in the term of the concept C’ logically imply those of the more general concept C.

Any concept language is decidable if it is decidable for concept subsumption
between two concepts defined in that language. The concept language ITL, which we
use, is NP-complete decidable. We compromise expressiveness of the NP-complete

M Klusch, 2008 151/466

LARKS 183

decidable ITL for (polynomial) tractability in our subsumption algorithm, which is
correct but incomplete. For the mechanism of subsumption computation we refer
the reader to, for example, [24, 32, 41, 42].

The computation of subsumption relationships between all concepts in a ontology
yields a so-called concept hierarchy. Both the subsumption computation and the
concept hierarchy are used in the matchmaking process (see Section 4.1.2).

We assume that the subsumption relation between two concepts may be identified
with a real world semantic relation. Like in [39], we utilize an injective, domain-
independent mapping between primitive components that occur in the concept def-
initions on the basis of given synonym relations.*

The matchmaker computes the subsumption relations between the concepts
included in any advertisement he receives from registered provider agents. This
yields a (set of) subsumption hierarchies of available concepts from a variety of
local domain ontologies. An extension of the partial global ontology of the match-
maker with additional types of relations is presented in Section 4.1.4. Please note,
that this ontology is not necessarily the union of all local domain ontologies of
providers, and is dynamically built by the matchmaker while processing advertise-
ments from registered provider agents. Any user or agent, requester or provider,
may browse through the matchmaker’s ontology and use the included concepts for
describing the meaning of words in a specification of a request or advertisement in
LARKS.

4. The matchmaking process using LARKS

As mentioned before, we differentiate between three different kinds of collaborating
information agents: provider, requester and matchmaker agents. Figure 2 shows an
overview of the matchmaking process using LARKS.

The matchmaker agent processes a received request in the following main steps:

e Compare the request with all advertisements in the advertisement database.

e Determine the provider agents whose capabilities match best with the request.
Every pair of request and advertisement has to go through several different filters
during the matchmaking process.

e Inform the requesting agent by sending them the contact addresses and related
capability descriptions of the relevant provider agents.

For being able to perform a steady, just-in-time matchmaking process the infor-
mation model of the matchmaker agent is comprised of the following components.

1. Advertisement database (ADB). This database contains all advertisements written
in LARKS the matchmaker receives from provider agents.

2. Partial global ontology. The ontology of the matchmaker consists of all ontological
descriptions of words in advertisements stored in the ADB. Such a description is
included in the slot ConcDescriptions and sent to the matchmaker with any
advertisement.

M Klusch, 2008 152/466

184 SYCARA ET AL.

Matchmaker Agent x
Matching ; AdvertisementDB
ConceptDB
AuxiliaryDB

Result-of-Matching
pability Descriptions

Requester Agent

Provider Agent 1

2@ =
otocol provider Agent n ConceptDB 1
for providing 3

the service

)
Process Request c — @
on Local IS ConceptDB n

Figure 2. Matchmaking using LARKS: An overview.

Service Request
in LARKS

3. Auxiliary database. The auxiliary data for the matchmaker comprises a database
for word pairs and word distances, basic type hierarchy, and internal data.

As mentioned before, the ontology of a matchmaker agent is not necessarily
equal to the union of local domain ontologies of all provider agents who are actually
registered at the matchmaker. This also holds for the advertisement database. Thus,
a matchmaker agent has only partial global knowledge on available information in
the overall multi-agent system; this partial knowledge might also be not up-to-date
concerning the actual time of processing incoming requests. This is due to the fact
that for efficiency reasons changes in the local ontology of a provider agent will
not be propagated immediately to all matchmaker agents he is registered at. In the
following we will describe the matchmaking process using LARKS in more detail.

4.1. Filtering stages of the matchmaking process

Agent capability matching is the process of determining whether an advertisement
registered in the matchmaker matches a request. But when can we say two descrip-
tions match against each other? Does it mean that they have the same text? Or the
occurrence of words in one description sufficiently overlap with those of another
description? When both descriptions are totally different in text, is it still possi-
ble for them to match? Even if they match in a given sense, what can we then say
about the matched advertisements? Before we go into the details of the matchmak-
ing process, we should clarify the various types of matches of two specifications.

M Klusch, 2008 153/466

LARKS 185

4.1.1. Types of matching in LARKS

4.1.1.1. Exact match. Of course, the most accurate match is when both descrip-
tions are equivalent, either equal literally, or equal by renaming the variables, or
equal logically obtained by logical inference. This type of matching is the most
restrictive one.

4.1.1.2. Plug-in match. A less accurate but more useful match is the so-called
plug-in match. Roughly speaking, plug-in matching means that the agent whose
capability description matches a given request can be “plugged into the place” where
that request was raised. Any pair of request and advertisement can differ in the
signatures of their input/output declarations, the number of constraints, and the
constraints themselves. As we can see, exact match is a special case of plug-in
match, that is, wherever two descriptions are exact match, they are also plug-in
match.

A simple example of a plug-in match is that of the match between a request to
sort a list of integers and an advertisement of an agent that can sort both list of
integers and list of strings. This example is elaborated in Section 5. Another example
of plug-in match is between the request to find some computer information without
any constraint on the output and the advertisement of an agent that can provide
these informations and sorts the respective output.

4.1.1.3. Relaxed match. The least accurate but most useful match is the
so-called relaxed match. A relaxed match has a much weaker semantic interpre-
tation than a exact match and plug-in match. In fact, relaxed match will not tell
whether two descriptions semantically match or not. Instead it determines how
close the two descriptions are by returning just a numerical distance value. Two
descriptions match if the distance value is smaller than a preset threshold value.
Normally the plug-in match and the exact match will be a special case of the
relaxed match if the threshold value is not too small.

An example of a relaxed match is that of the request to find the place (or address)
where to buy a Compaq Pentium233 computer and the capability description of an
agent that may provide the price and contact phone number for that computer
dealer.

Different users in different situation may want to have different types of matches.
Although people usually may prefer to have plug-in matches, such a kind of match
does not exist in many cases. Thus, people may try to see the result of a relaxed
match first. If there is a sufficient number of relaxed matches returned a refined
search may be performed to locate plug-in matching advertisements. Even when
people are interested in a plug-in match for their requests only, the computational
costs for this type of matching might outweigh its benefits.

4.1.2. Different filters of matching in Larks. For the matchmaking process we
adopt several different methods from the area of information retrieval, Al and
software engineering for computing syntactical and semantic similarity among
agent capability descriptions. These methods are particularly efficient in terms of

M Klusch, 2008 154/466

186 SYCARA ET AL.

performance as needed for dynamic matchmaking in the Internet. To summarize,
the matching process is designed with respect to the following criteria:

e The matching should not be based on keyword retrieval only. Instead, unlike the
usual free text search engines, the semantics of requests and advertisements
should be taken into consideration.

e The matching process should be automated. A vast amount of agents appear and
disappear in the Internet. It is nearly impossible for a user to manually search or
browse all agents capabilities.

e The matching process should be accurate. For example, if the matches returned by
the match engine are claimed to be exact match or plug-in match, those matches
should satisfy the definitions of exact matching and plug-in matching.

e The matching process should be efficient, that is, it should be fast.

e The matching process should be effective, that is, the set of matches should not be
too large. For the user, typing in a request and receiving hundreds of matches is
not necessarily very useful. Instead, we prefer a small set of highly rated matches
to a given request.

To fulfill the matching criteria listed above, the matching process is organized as
a series of five increasingly stringent filters on candidate agents:

Context matching
Profile comparison
Similarity matching
Signature matching
Constraint matching.

Nk L=

All filters are independent from each other; each of them narrows the set of
matching candidates with respect to a given filter criterion. The computational costs
of these filters are in increasing order. Users may select any combination of these
filters on demand. For example, when efficiency is the major concern, a user might
select only the context and profile filters (similar to most conventional SearchBots
in the Internet).

Context matching selects those advertisements in the ADB which can be com-
pared with the request in the same or similar context. This filter roughly prunes off
advertisements which are not relevant for a given request. The comparison of pro-
files, similarity and signature matching compare the request with any advertisement
selected by the context matching. The request and advertisement profile comparison
uses a weighted keyword representation for the specifications and a given term fre-
quency based similarity measure [38]. The last filter, constraint matching, focus on
the (input/output) constraints and declaration parts of the specifications. It checks
if the input/output constraints of any pair of request and advertisement logically
match (see Section 4.1.5).

Concerning the different types of matching there is the following relation to the
different filters used in our matchmaker. The first three filters are meant for relaxed
matching, and the signature and constraint matching filter are meant for plug-in
matching.

M Klusch, 2008 155/466

LARKS 187

4.1.3. Different matching modes of the matchmaker. Based on the given types and
filters of matching we did implement four different modes of matching for the
matchmaker:

1. Complete Matching Mode. In this mode all filters are considered for matching
requests and advertisements in LARKS.

2. Relaxed Matching Mode. Only the context, profile and similarity filter are consid-
ered.

3. Profile Matching Mode. Only the context matching and comparison of profiles is
done.

4. Plug-In Matching Mode. In this mode, the matchmaker performs only the signa-
ture and constraint matching.

If the considered advertisement and request contain conceptual attachments, i.e.,
ontological descriptions of used words, then in most of the filters, except for the
comparison of profiles, we need a way to determine the semantic distance between
the defined concepts. For that we use the computation of subsumption relationships
and a weighted associative network.

4.1.4. Computation of semantic distances among concepts. We have presented the
notion of concept subsumption in Section 3.3.2. But the concept subsumption gives
only a generalization/specialization relation based on the definition of the concepts
via roles and attribute sets. In particular for matchmaking the identification of addi-
tional relations among concepts is very useful because it leads to a deeper seman-
tic understanding. Moreover, since the expressivity of the concept language ITL
is restrictive so that performance can be enhanced, we need some way to express
additional associations among concepts.

For this purpose we use a so-called weighted associative network, that is a
semantic network with directed edges between concepts as nodes. Any edge
denotes the kind of a binary relation among two concepts, and is labeled in addi-
tion with a numerical weight (interpreted as a fuzzy number). The weight indicates
the strength of belief in that relation, since its real world semantics may vary.® We
assume that the semantic network consists of three kinds of binary, weighted rela-
tionships: (1) generalization, (2) specialization (as inverse of generalization), and
(3) positive association among concepts [7]. The positive association is the most
general relationship among concepts in the network indicating them as synonyms
in some context. Such a semantic network is called an associative network (AN).

In our implementation an AN is created by the matchmaker by using the com-
puted concept subsumption hierarchy and additional associations extracted from
the WordNet ontology [9]. We assume that the terminological subsumption relation
among two concepts in the partial global ontology of the matchmaker may be identi-
fied with a real world semantical relation among them. That means, all subsumption
relations are used for setting the generalization and specialization relations among
concepts in the corresponding AN. Positive association, generalization and special-
ization relations are transitive.

M Klusch, 2008 156/466

188 SYCARA ET AL.

Table 1. Kind of paths in an AN

g s P
g g P P
s p S p
P p P P

As mentioned above, every edge in the AN is labeled with a fuzzy weight. These
weights are set by the user or automatically by default. The distance between two
concepts in an AN is then computed as the strength of the shortest path among
them. For performance reasons the matchmaker does not deal with dynamically
resolving ambiguities due to potential genericity and polysemy in the AN (see, e.g.,
[8]). Combining the strength of each relation in a path is done by using the following
triangular norms for fuzzy set intersections [27]:

7 (o, B) = max{0, o + B — 1} n=-1
(e B) = o B n=

73(a, B) = min{a, B} n=oo

Since we have three different kinds of relationships among two concepts in an
AN the kind and strength of a path among two arbitrary concepts in the network
is determined as shown in Tables 1 and 2. For a formal discussion of that issue we
refer to the work of [7, 8, 26].

For all 0 < a,B < 1 holds that 7,(a,B) < (e, B) < 13(t, B). Each triangular
norm is monotonic, commutative and associative, and can be used as axiomatic
sceletons for fuzzy set intersection. We restrict ourselves to a pessimistic, neutral,
and optimistic t-norm T, T, and T;, respectively.

Since these triangular norms are not mutually associative the strength of a path
in an associative network depends on the direction of strength composition. This
asymmetry in turn might lead to unintuitive derived results: Consider, e.g., a path
consisting of just three relations among four concepts C,, C,, C5, C; with C; =, ¢
C, =408 G5 = 09 Cy. It holds that 7,(7;(0.6, 0.8),0.9) = 0.54, but the strength
of the same path in opposite direction is 7,(7,(0.9, 0.8), 0.6) = 0.43. According to
Fankhauser and Neuhold [8] we can avoid this asymmetry by imposing a precedence
relation (3 > 2 > 1) for strength combination (see Table 3).

The computation of semantic distances among concepts is used in most of the
filters of the matching process. We will now describe each of the filters in detail.

Table 2. Strength of paths in an AN

g S p
g T3 T T
s T T T
p T Ty T

M Klusch, 2008 157/466

LARKS 189

Table 3. Computational precedence for the strength

of a path
g s P
g 2 3 1
s 1 2 1
p 1 1 3

4.1.5. The filters of the matchmaking process

4.1.5.1. Context matching. Any matching of two specifications has to be in an
appropriate context. In LARKS to deal with restricting the advertisement matching
space to those in the same domain as the request, each specification supplies a list
of keywords meant to describe the semantic domain of the service. When comparing
two specifications it is assumed that their context or domains are the same (or at
least sufficiently similar) as long as (1) the real-valued distances between the roots of
considered words do not exceed a given threshold, and (2) the distance between the
attached concepts of the pairs of most similar words does not exceed a threshold.

Word distance is computed using the trigger-pair model [37]. If two words are
significantly co-related, then they are considered trigger-pairs, and the value of the
co-relation is domain specific. In the current implementation we use the Wall Street
Journal corpus of one million word pairs to compute the word distance.

For example, both specifications ‘ReqAirMissions’ and ‘AWACS-AirMissions’ (see
Example 3.4) pass the context filter as to be in a sufficiently similar context. The
most similar word pairs are (Attack, Combat), (Mission, Mission), and the concept
AirMission subsumes the concept AWACS-AirMission.

To summarize, the context matching consists of two consecutive steps:

1. For every pair of words u, v given in the Context slots compute the real-valued
word distances d,,(u, v) € [0, 1]. Determine the most similar matches for any
word u by selecting words v with the minimum distance value d,,(u, v). These
distances must not exceed a given threshold.

2. For every pair of most similar matching words, check that the semantic distance
among the attached concepts does not exceed a given threshold.

4.1.5.2. Comparison of profiles. The comparison of two profiles relies on a stan-
dard technique from the Information Retrieval area, called term frequency-inverse
document frequency weighting (TF-IDF) (see [38]). According to that, any specifi-
cation in LARKS is treated as a document.

Each word w in a document Req is weighted for that document in the following
way. The number of times w occurs throughout all documents is called the doc-
ument frequency df (w) of w. The used collection of documents is not unlimited,
such as the advertisement database of the matchmaker.

Thus, for a given document d, the relevance of d based on a word w is pro-
portional to the number wf(w, d) of times the word w occurs in d and inverse
proportional to df (w). A weight h(w, d) for a word in a document d out of a set D

M Klusch, 2008 158/466

190 SYCARA ET AL.

of documents denotes the significance of the classification of w for d, and is defined
as follows:

h(w, d) = wf (w, d) -10g<%>.

The weighted keyword representation wkv(d, V') of a document d contains for
every word w in a given dictionary V' the weight h(w, d) as an element. Since most
dictionaries provide a huge vocabulary we cut down the dimension of the vector by
using a fixed set of appropriate keywords determined by heuristics and the set of
keywords in LARKS itself.

The similarity dps(Req, Ad) of a request Req and an advertisement Ad under
consideration is then calculated by:

Req - Ad
dps(Req, Ad) = W

where Req - Ad denotes the inner product of the weighted keyword vectors. If the
value dps(Req, Ad) does exceed a given threshold B € R both documents pass the
profile filter. For example, the profiles of both specifications in Example 3.4 are
similar with degree 0.65.

The matchmaker then checks if the declarations and constraints of both specifi-
cations for a request and advertisement are sufficiently similar. This is done by a
pairwise comparison of declarations and constraints in two steps:

1. Similarity matching and
2. Signature matching

4.1.5.3. Similarity matching. The profile filter has two limitations. It does not
consider the structure of the description. That means the filter, for example, is
not able to differentiate among input and output declarations of a specification.
Besides, profile comparison does not rely on the semantics of words themselves.
Thus the filter is not able to recognize that the word pair (Computer, Notebook),
for example, should have a closer distance than the pair (Computer, Book).

Computation of similarity relies on a combination of distance values as calculated
for pairs of input and output declarations, and input and output constraints. Each
of these distance values is computed in terms of the distance between concepts and
words that occur in their respective specification section. The values are computed
at the time of advertisement submittal and stored in the matchmaker database.

Let E;, E; be variable declarations or constraints, and S(E) the set of words
in E. The similarity among two expressions E; and E; is determined by pairwise
computation of word distances as follows:

Sim(E,, E;) =1 ((Y dyw) /IS(E) x S(E,-)|))

(u, v)eS(E;)xS(E;)

M Klusch, 2008 159/466

LARKS 191

The similarity value Sim(S,, S,) among two specifications S, and S, in LARKS is
computed as the average of the sum of similarity computations among all pairs of
declarations and constraints:

Sim(S,, S,) = > Sim(E;, Ej)/

(Eis Ej)e(D(S4)xD(S))U(C(Sa)x C(Sp))

[(D(S,) x D(Sp))U(C(S,) x C(S,))]

with D(S) and C(S) denoting the input/output declaration and input/output con-
straint part of a specification § in LARKS, respectively. Both specifications in
Example 3.4 pass the similarity filter with a similarity value of 0.83.

4.1.5.4. Signature matching. The similarity filter takes into consideration the
semantics of individual words in the description. However, it does not take the
meaning of the logical constraints in a LARKS specification into account. This is
done in our matchmaking process by the signature and constraint filters. The two
filters are designed to work together to look for a so-called semantic plug-in match
known in the software engineering area [16, 20, 50].

The signature filter first considers the declaration parts of the request and the
advertisement, and determines pairwise if their signatures of the (input or output)
variable types match following the type inference rules given below.

Definition 4.1 (Subtyping Inference Rules). Consider two types ¢, and ¢, as part of
an input or output variable declaration part (in the form Input v : f;; or Output
v : t,;) in a LARKS specification.

1. Type t, is a subtype of type ¢, (denoted as ¢, <, t,) if this can be deduced by
the following subtype inference rules.
2. Two types t,, t, are equal (¢, =, t,) if t; <, t, and ¢, <, ¢, with
(a) t, =, t, if they are identical ¢, = ¢,
d) 4 |, =, 1, | t; (commutative)
() (1, | t) |t =1, | (¢, | t;3) (associative)

Subtype Inference Rules:

(1) #, =, t, if ¢, is a type variable

t, =t
(2) 1 st ‘2
Lh 2yt

L Ct
(3) t,, t, are sets, ——=

@) 4 =.t10

O L=t
6) b 25 1y 81 2 S
(tl’ Sl) 551 ([2’ SZ)

13 b

M Klusch, 2008 160/466

192 SYCARA ET AL.

b 2 b, 81 2t 8

(7
hls 24t s
3 L2y b
)
SetO£f(t)) <,, Set0f(t,)
t, <.t
(9) 1 —st 2

ListOf(#) <,, ListO£(s,)

Matching of two signatures sig and sig’ is defined by a binary string-valued func-
tion fsm on signatures with

sub sig <, sig
Sub sig =<,, sig’
eq sig =, sig
disj else

fsm(sig, sig") =

Having described both filters of the syntactical matching we now define the mean-
ing of syntactical matching of two specifications written in LARKS.

Definition 4.2 (Syntactical matching of specifications in LARKS). Consider two
specifications S, and S, in LARKS with n, input declarations, m, output decla-
rations, and v, constraints n,, m; € N,k € {a, b}, two declarations D;, D;, and
constraints C;, C; in these specifications, and V' a given dictionary for the compu-
tation of weighted keyword vectors. Let B, y, 6 be real threshold values for profile
comparison and similarity matching.

e Declarations D; and D; syntactically match if they are sufficiently similar:
Sim(D;, D;) > y A fsm(D;, D;) # disj.
e Constraints C; and C; syntactically match if they are sufficiently similar:
Sim(C;, C;) > .

If both words in every pair (u, v) € S(E;) x S(E;) of most similar words are
associated with a concept C and C’, respectively, then the distance among C and
C’ in the so-called associative network of the matchmaker must not exceed a
given threshold value 6.

The syntactical match of two declarations or constraints is denoted by a boolean
predicate Synt.

e The specifications S, and S, syntactically match if

1. their profiles match, that is, dps(S,, S,) > 8, and
2. for each declaration or constraint E;, i € {1, ...n,} in the declaration or con-
straint part of S, there exists a most similar matching declaration or constraint

M Klusch, 2008 161/466

LARKS 193

E;, je{l,...,n,} in the declaration or constraint part of S, such that
Synt(E;, E;) A Sim(E;, E;) = max{Sim(E;, E,),y € {1,...,n,}}

(Analogous for each declaration or constraint in S,.)

3. for each pair of declarations determined in (2.) the matching of their signatures
is of the same type, that is, for each (D;, D;) in (2.) it holds that the value
fsm(D;, D;) is the same, and

4. the similarity value Sim(S,, S,) exceeds a given threshold.

4.1.5.5. Constraint matching. By using the syntactical filter many matches might
be found in a large agent society. Hence, it is important to use some kind of seman-
tic information (other than optionally attached concepts and the associative net-
work) to narrow the search, and to pin down more precise matches. This is done
by the constraint filter.

The most common and natural interpretation for a specification (even for a soft-
ware program) is using sets of pre- and post-conditions, denoted as Preg and Posty,
respectively. In a simplified notation, any specification S can be represented by the
pair (Preg, Posty).

A software component description D, ‘semantically plug-in matches’ another
component description D, if (1) their signatures match, (2) the set of input con-
straints of D, logically implies that of D,, and (3) set of output constraints of
D, logically implies that of D,. In our implmentation the logical implication
among constraints is computed using polynomial 6-subsumption checking for Horn
clauses [31].

Definition 4.3 (Constraint-based semantic matching of two specifications). Con-
sider two specifications S(Preg, Postg) and T (Prey, Posty).
The specification T semantically matches the specification § if

(Preg = Pre;) A (Post; = Posty)

That means, the set of pre-conditions of S logically implies that of T, and the set
of post-conditions of S is logically implied by that of 7.

Plug-in matching of LARKS specifications is valuable for selecting advertisements
which are not as constrained in the input parameters as the considered request, but
will return equal or greater number of more specific output parameters. For exam-
ple, the advertisement ‘AWAC-AirMission’ plugs into the request ‘ReqAirMissions’
in Example 3.4.

The problem in performing the semantical matching is that the logical implica-
tion is not decidable for first order predicate logic, and even not for an arbitrary
set of Horn clauses. To make the matching process tractable and feasible, we have
to decide on the expressiveness of the language used to represent the pre- and
post-conditions, and to choose a relation that is weaker than logical implication.
The 6-subsumption relation [31] among two constraints C, C' (denoted as C <, C’)
appears to be a suitable choice for semantical matching, because it is computation-
ally tractable and semantically sound.

M Klusch, 2008 162/466

194 SYCARA ET AL.
Plug-in Semantical Matching in LARKS

It is proven in the software engineering area that if the condition of semantical
matching in Definition 4.3 holds, and the signatures of both specifications match,
then T can be directly used in the place of S, that is, 7 plugs in S.

Definition 4.4 (Plug-in semantical matching of two specifications). Given two
specifications Specl and Spec2 in LARKS then Spec2 plug-in matches Specl if

e The signatures of their variable declaration parts matches (Section 4.1.4.3).

e For every clause C1 in the set of input constraints of Specl there is a clause C2
in the set of input constraint of Spec2 such that C1 <, C2.

e For every clause C2 in the set of output constraints of Spec2 there is a clause C1
in the set of output constraints of Specl such that C2 <, C1.

where <, denotes the §-subsumption relation between constraints.

0-Subsumption between constraints. One suitable selection of the language and
the relation is the (definite program) clause and the so-called 6-subsumption rela-
tion between clauses, respectively [31].7 In the following we will only consider Horn
clauses. A general form of Horn clause is a, Vv (—a;) Vv --- Vv (—a,), where each
a;,i € {1,...,n} is an atom. This is equivalent to a, vV —(a; A --- A a,,), which in
turn is equivalent to (a; A --- A a,) = a,).> We adopt the standard notation for that
clause as a, < ay, ... , a,; in PROLOG the same clause is written as a,: a;, ... ,a

> Yno

Examples of definite program clauses are

ne

e Date.year > 1995, sorted(computerlnfo),

e before(x, y, ys) < ge(x, y), and

e scheduleMeeting(groupl, group?2, interval, meetingDuration, meetTime) < belongs x
(pLgroupl), belongs(p2,group?2), subset(meetTime, interval), length(meetTime) =
meetingDuration, available(pl,meetTime), available(p2,meetTime).

We say that a clause C 6-subsumes another clause D (denoted as C »=, D) if
there is a substitution 6 such that C6 € D. C and D are 9-equivalent if C <y D and
D preceq,C.

Examples of 8-subsumption between clauses are

o P(a) < Q(a) 54 P(X) < O(X)
o P(X) < O(X), R(X) =y P(X) < O(X).

Since a single clause is not expressive enough, we need to use a set of clauses to
express the pre and post conditions (that is, the input and output constraints) of a
specification in LARKS. A set of clauses is treated as a conjunction of those clauses.

Subsumption between two set of clauses is defined in terms of the subsumption
between single clauses. More specifically, let S and T be such sets of clauses. Then,
we define that S 0-subsumes 7 if every clause in 7T is 6-subsumed by a clause in S.

There is a complete algorithm to test the 8-subsumption relation, which is in gen-
eral NP-complete but polynomial in certain cases. On the other hand, 8-subsumption

M Klusch, 2008 163/466

LARKS

is a weaker relation than logical implication, that is, from C <4 D we can only infer

that C logically implies D but not vice versa.’

5. Examples of matchmaking using LARKS

Consider the specifications ‘IntegerSort’ and ‘GenericSort’ (see Examples 3.1 and
3.2) as a request of sorting integer numbers and an advertisement for some agent’s

capability of sorting real numbers and strings, respectively.

Assume that the requester and provider agent sends the request IntegerSort and
advertisment GenericSort to the matchmaker, respectively. Figure 3 describes the

IntegerSort

Context Sort

Types

Input xs: ListOf Integer;

Output ys: ListOf Integer;

InConstraints le(length(xs),100);

OutConstraints before(x,y,ys) < — ge(x,y);
in(x,ys) < — in(x,xs);

ConcDescriptions

TextDescription sort of list of at most 100 integer numbers

GenericSort

Context Sorting

Types

Input xs: ListOf Real | String;

Output ys: ListOf Real | String;

InConstraints

OutConstraints before(x,y,ys) < — ge(x,y);
before(x,y,ys) < — preceeds(x,y);
in(x,ys) < — in(x,xs);

ConcDescriptions

TextDescription sorting a list of real numbers or strings

overall matchmaking process for that request.

1. Context Matching. Both words in the Context declaration parts are sufficiently
similar. We have no referenced concepts to check for terminologically equity.
Thus, the matching process proceeds with the following two filtering stages.

2. Syntactical Matching.

(a) Comparison of Profiles. According to the result of TF-IDF method both spec-

(b) Signature Matching. Consider the signatures f, = (ListOf Integer) and
t, = (ListOf Real|String). Following the subtype inference rules 9., 4.,
and 1. it holds that #; <, t,, but not vice versa, thus fsm(D,,, D,;) = sub.

M Klusch, 2008

ifications are sufficiently similar:

Analogous for fsm(D,,, D,,) = sub.

164/466

196 SYCARA ET AL.

“Find agent that

can sort integer
» @ ~ Requester Agent]
Ranked Set of Agents

IntegerSort with capability to sort /==
| g integer numbers
AdvertisementDB

Auxilie}ryDB ConceptDB

(WordDistance, (Ontology)

Type Hierarchy)
GenericsAon/

Context Syntactical | Semantical
Matching | Matching ”| Matching

Figure 3. An example of matchmaking using LARKS.

(c) Similarity Matching. Using the current auxiliary database for word distance
values similarity matching of constraints yields:

le(length(xs),100) null =1.0
before(x,y,ys) < —ge(xy) in(xys) < —in(x,xs) = 0.5729
in(xys) < —in(x,xs) before(x,y,ys) < —preceeds(x,y)) = 0.4375

before(x,y,ys)< —ge(x,y)) before(x,y,ys) < —preceeds(x,y)) = 0.28125
The similarity of both specifications is computed as:
Sim(IntegerSort, GenericSort) = 0.64.

3. Constraint Matching. The advertisement GenericSort also plug-in matches
with the request IntegerSort, because the set of input constraints of
IntegerSort is 0-subsumed by that of GenericSort, and the output con-
straints of GenericSort are 0-subsumed by that of IntegerSort. Thus
GenericSort plugs into IntegerSort. Please note that this does not hold
vice versa.

6. Implementation

We did implement the language LARKS and the matchmaking process using LARKS
in Java. Figure 4 shows the user interface of the matchmaker agent.

To help visualize the matchmaking process, we devised a user interface that traces
the path of the advertisement result set for a request through the matchmaker’s fil-
ters. The filters can be configured by selecting the checkboxes beneath the desired

M Klusch, 2008 165/466

LARKS 197
Matchmaker Demo
» Provider Agent » Requester Agent ®
@ 1. Submit Ads @ 2. Submit Request | 3. View Results
T Z
Matching IntegerSort

@ x Receive Request

l Matchmaker Agent

Advertisement DB Concept DB Word Freq DB Word Dist DB
8 Ads 17 Concepts 50 Word Freqs 2 Word Dists
View Contents View Contents View Contents View Contents
[N
s L D 1
1 1 1 .
Context Profile \ I Signature IConstraint| Similarity
Filter Filter Filter Filter Filter
4] 4

Use Profile Mode Use Relaxed Mode

Use Plug-In Mode Use Complete Mode

Figure 4. The user interface of the matchmaker agent.

filters—disabled filters are darkened and bypassed. As the result set passes from one
filter to the next, the filter’s outline highlights, the number above the filter incre-
ments as it considers an advertisement, and the number above its output arrow
increments as advertisements successfully pass through the filter. Pushing the but-
tons above each inter-filter arrow reveals the result advertisement set for the pre-
ceding filter.

7. Related work

For dealing with semantic heterogeneity among distributed, autonomous informa-
tion sources there exist solutions in the multidatabase and information systems area
for years. Many of them are based on a database-style modeling of data, global
schema, and use of meta-information such as provided by a common ontology or
different domain ontologies for a content-based source selection [2, 14, 15, 39].
Others focus on information retrieval (IR) techniques for best-match queries, and
relevance assessment. Alternative solutions towards an adaptive process for reveal-
ing semantic interdependencies among heterogeneous data objects is proposed, for
example, by SCOPES [34].

However, the main problem of dynamic matchmaking in the Internet is to deal
with the trade-off between performance and quality of matching. Complex reasoning
has to be restricted to allow meaningful semantic matches of requests and advertise-
ments in a reasonable time. Unlike other approaches to matchmaking or brokering
in multi-agent systems [2, 28, 33], the presented matchmaking process using LARKS
offers a flexible approach to satisfy both requirements. It does not deal with a global
integration of heterogeneous source descriptions in terms of database schemas, but

M Klusch, 2008

166/466

198 SYCARA ET AL.

with comparing descriptions of functional capabilities such as constrained actions to
provide services. For this purpose it combines techniques from IR, software engi-
neering and description logics area in an appropriate way to perform such filtering
efficiently. The matchmaker agent does not need to perform any complex query
activities such as, for example, by broker agents in InfoSleuth [33] or the mediator
agent in SIMS [2]. In addition, we have developed protocols for efficient, distributed
matchmaking among multiple matchmaker agents [19]. We now discuss some of the
related works in a more detail.

7.1. Work related to matchmaking and mediation

The earliest matchmaker we are aware of is the ABSI facilitator, which is based
on the KOML specification and uses the KIF as the content language. The KIF
expression is basically treated like the Horn clauses. The matching between the
advertisement and request expressed in KIF is the simple unification with the
equality predicate. Matchmaking using LARKS performs better than ABSI in both,
the language and the matching process. The plug-in matching in LARKS uses the
0-subsumption test, which select more matches that are also semantically matches.

The SHADE and COINS [28] are matchmakers based on KQML. The content
language of COINS allows for the free text and its matching algorithm utilizes the
tf-idf. The contect language of SHADE matchmaker consists of two parts, one is
a subset of KIF, another is a structured logic representation called MAX. MAX
uses logic frames to declaratively store the knowledge. SHADE uses a frame like
representation and the matcher uses the prolog like unifier.

A more recent service broker-based information system is InfoSleuth [18, 33].
The content language supported by InfoSleuth is KIF and the deductive database
language LDL++, which has a semantics similar to Prolog. The constraints for both
the user request and the resource data are specified in terms of some given cen-
tral ontology. It is the use of this common vocabulary that enables the dynamic
matching of requests to the available resources. The advertisements specify agents’
capabilities in terms of one or more ontologies. The constraint matching is an inter-
section function between the user query and the data resource constraints. If the
conjunction of all the user constraints with all the resource constraints is satisfiable,
then the resource contains data which are relevant to the user request.

Another related research area is that on mediators among heterogenous infor-
mation systems [1, 45]. Each local information system is wrapped by a so-called
wrapper agent and their capabilities are described in two levels. One is what they
can provide, usually described in the local data model and local database schema.
Another is what kind of queries they can answer; usually it is a subset of the SQL
language. The set of queries a service can accept is described using a grammar-like
notation. The matching between the query and the service is simple: it just decides
whether the query can be generated by this grammar. This area emphasizes the
planning of database queries according to heterogeneous information systems not
providing complete SQL sevices. Those systems are not supposed to be searched
for among a vast number of resources on the Internet. The description of capabil-

M Klusch, 2008 167/466

LARKS 199

ities and matching are not only studied in the agent community, but also in other
related areas.

7.2. Work related to capability description

The problem of capability and service descriptions can be tackled at least from the
following different approaches:

1. Software specification techniques. Agents are computer programs that have some
specific characteristics. There are numerous work for software specifications in
formal methods, like model-oriented VDM and Z [35], or algebraic-oriented
Larch. Although these languages are good at describing computer programs in
a precise way, the specification usually contains too much details to be of inter-
ests to other agents. Besides, those existing languages are so complex that the
semantic comparison between the specifications is impossible. The reading and
writing of these specifications also require substantial training.

2. Action representation formalisms. Agent capability can be seen as the actions that
the agents perform. There are a number of action representation formalisms
in Al planning like the classical one the STRIPS. The action representation
formalism are inadequate in our task in that they are propositional and not
involving data types.

3. Concept languages for knowledge representation. There are various terminological
knowledge representation languages. However, ontology itself does not describe
capabilities. On the other hand, it provides auxiliary concepts to assist the spec-
ification of the capabilities of agents.

4. Database query capability description. The database query capability description
technique is developed as an attempt to describe the information sources on
the Internet, such that an automated integration of information is possible. In
this approach the information source is modeled as a database with restricted
quering capabilities.

7.3. Work related to service retrieval

There are three broad approaches to service retrieval. One is the information
retrieval techniques to search for relevant information based on text, another is
the software component retrieval techniques [16, 20, 50] to search for software
components based on software specifications. The third one is to search for Web
resources that are typically described as database models [30, 45].

In the software component search techniques, Zaremski and Wing [50] defined
several notions of matches, including the exact match and the plug-in match,
and formally proved the relationship between those matches. Goguen et al. [16]
propsed to use a sequence of filters to search for software components, in order to
increase the efficiency of the search process. Jeng and Cheng [20] computed the dis-
tance between similar specifications. All of these works are based on the algebraic

M Klusch, 2008 168/466

200 SYCARA ET AL.

specification of computer programs. No concept description and concept hierarchy
are considered in their work.

In Web resource search techniques, Li and Danzig [30] proposed a method to look
for better search engines that may provide more relevant data for the user concerns,
and rank those search engines according to their relevance to user’s query. They
propose the directory of services to record descriptions of each information server,
called a server description. A user sends his query to the directory of services, which
determines and ranks the servers relevant to the user’s request. Both the query and
the server are described using boolean expression. The search method is based on
the similarity measure between the two boolean expressions.

8. Conclusion

The Internet is an open system where heterogeneous agents can appear and dis-
appear dynamically. As the number of agents on the Internet increases, there is a
need to define middle agents to help agents locate others that provide requested
services. In prior research, we have identified a variety of middle agent types, their
protocols and their performance characteristics. Matchmaking is the process that
brings requester and service provider agents together. A provider agent advertises
its know-how, or capability to a middle agent that stores the advertisements. An
agent that desires a particular service sends a middle agent a service request that
is subsequently matched with the middle agent’s stored advertisements. The middle
agent communicates the results to the requester (the way this happens depends on
the type of middle agent involved). We have also defined protocols that allow more
than one middle agent to maintain consistency of their advertisement databases.
Since matchmaking is usually done dynamically and over large networks, it must be
efficient. There is an obvious trade-off between the quality and efficiency of service
matching in the Internet.

We have defined and implemented a language, called LARKS, for agent adver-
tisement and request and a matchmaking process using LARKS. LARKS judiciously
balances language expressivity and efficiency in matching. LARKS performs both
syntactic and semantic matching, and in addition allows the specification of con-
cepts (local ontologies) via ITL, a concept language.

The matching process uses five filters, namely context matching, comparison of
profiles, similarity matching, signature matching and semantic matching. Different
degrees of partial matching can result from utilizing different combinations of these
filters. Selection of filters to apply is under the control of the user (or the requester
agent).

Acknowledgments
We would like to thank Davide Brugali for helpful discussions, and Zhendong Niu

and Seth Widoff for help with the implementation of the matchmaker agent using
LARKS.

M Klusch, 2008 169/466

LARKS 201

Notes

34

In the future, we plan to allow for using ISO/IEC 13211-1 standard compliant Prolog programs to
describe constraints and functional capabilities.

For syntax and set-theoretical semantics of used concept language ITL we refer to [43].

For methods of determining subsumption or equality of concepts defined in an ontology using a
concept language such as ITL we refer to Section 3.3.2.

For a further discussion on possible loss of semantics due to mapping among multiple different
ontologies we refer to for example [40].

This is similar to the common use of domain namespaces in XML [49] for semantically tagging Web
page contents.

The relationships are fuzzy, and one cannot possibly associate all concepts with each other.

A clause is a finite set of literals, which is treated as the universally quantified disjunction of those
literals. A literal may be positive or negative. A positive literal is an atom, a negative literal is the
negation of an atom. A definite program clause is a clause with one positive literal and zero or more
negative literals. A definite goal is a clause without positive literals. A Horn clause is either a definite
program clause or a definite goal.

The literal a, is called the head of the clause, and (a; A --- A a,) is called the body of the clause.
Please also note that the 6-subsumption relation is similar to the query containment in database.
When advertisements are database queries, specification matching is reduced to the problem of
query containment testing.

References

1.

2.

10.

11.

12.
13.

J. L. Ambite and C. A. Knoblock, “Planning by rewriting: Efficiently generating high-quality plans,”
in Proc. Fourteenth National Conf. Artif. Intell., Providence, RI, 1997.
Y. Arens, C. A. Knoblock, and C. Hsu, “Query processing in the SIMS information mediator,” in
A. Tate (ed.), Advanced Planning Technology, AAAI Press: CA, 1996.

. R. J. Brachman and J. G. Schmolze, “An overview of the KL-ONE knowledge representation sys-

tem,” Cognitive Science, vol. 9, no. 2, pp. 171-216, 1985.

. J. E. Caplan and M. T. Harandi, “A logical framework for software proof reuse,” in Proc. ACM

SIGSOFT Symp. Software Reusability, April 1995. ACM Software Engineering Note, 1995.

. S. Cranefield, A. Diaz, and M. Purvis, “Planning and matchmaking for the interoperation of infor-

mation processing agents,” The Information Science Discussion Paper Series No. 97/01, University
of Otago, 1997.

. K. Decker, K. Sycara, and M. Williamson, “Middle-agents for the internet,” in Proc. 15th IJCAI,

Nagoya, Japan, August 1997, pp. 578-583.

. P. Fankhauser, M. Kracker, and E. J. Neuhold, “Semantic vs. structural resemblance of classes.

Special issue: Semantic issues in multidatabase systems,” ACM SIGMOD RECORD, vol. 20, no. 4,
pp- 59-63, 1991.

. P. Fankhauser and E. J. Neuhold, “Knowledge based integration of heterogeneous databases,” in

Proc. IFIP Conf. DS-5 Semantics of Interoperable Database Systems, Lorne, Victoria, Australia, 1992.

. C. Fellbaum (ed.), WordNet: An Electronic Lexical Database, MIT Press, 1998. http://www.cogsci.

princeton.edu/wn/

T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KOML as an Agent Communication Language,”
in Proc. 3rd Int. Conf. Information and Knowledge Management CIKM-94, ACM Press, 1994.

FIPA: Foundation for Intelligent Physical Agents. http://drogo.cselt.it/fipa/, see also, L. Chiariglione,
“FIPA—Agent technologies achieve maturity,” AgentLink Newsletter, vol. 1, November 1999, http://
www.agentlink.org

FIPA Agent Communication Language. http://www.fipa.org/spec/fipa99spec.htm, 1999.

M. Fowler, UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley:
Reading, MA, 1997.

M Klusch, 2008

170/466

202 SYCARA ET AL.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

H. Garcia-Molina, et al., “The TSIMMIS approach to mediation: Data models and languages,” in
Proc. Workshop NGITS, 1995. ftp://db.stanford.edu/pub/garcia/1995/tsimmis-models-languages.ps
M. R. Genesereth, A. M. Keller, and O. Duschka, “Infomaster: An information integration system,”
in Proc. ACM SIGMOD Conference, May 1997.

J. Goguen, D. Nguyen, J. Meseguer, Luqi, D. Zhang, and V. Berzins, “Software component search,”
J. Systems Integration, vol. 6, pp. 93-134, 1996.

G. Huck, P. Fankhauser, K. Aberer, and E. J. Neuhold, “Jedi: Extracting and synthesizing informa-
tion from the web,” in Proc. Int. Conf. Cooperative Information Systems CooplS’98, IEEE Computer
Society Press, 1998.

N. Jacobs and R. Shea, “Carnot and InfoSleuth—Database technology and the WWW,” in ACM
SIGMOD Int. Conf. Management of Data, May 1995.

S. Jha, P. Chalasani, O. Shehory, and K. Sycara, “A formal treatment of distributed matchmaking,”
in Proc. Second Int. Conf. Autonomous Agents (Agents 98), Minneapolis, MN, May 1998.

J-J. Jeng and B. H. C. Cheng, “Specification matching for software reuse: A foundation,” in Proc.
ACM SIGSOFT Symposium Software Reusability, ACM Software Engineering Note, Aug. 1995.

V. Kashyap and A. Sheth, “Semantic heterogenity in global information systems: The role of meta-
data context and ontology,” in M. P. Papazoglou and G. Schlageter (eds.), Cooperative Information
Systems: Trends and Directions, Academic Press, 1998.

KIFE. Knowledge Interchange Format: http://logic.stanford.edu/kif/

W. Kim, et al., “On resolving schematic heterogeneity in multidatabase systems,” Intl. J. on Distributed
and Parallel Databases, vol. 1, pp. 251-279, 1993.

M. Klusch, “Cooperative information agents on the Internet,” Ph.D. Thesis, University of Kiel,
December 1996 (in German) Kovac Verlag, Hamburg, 1998, ISBN 3-86064-746-6.

M. Klusch (ed.), Intelligent Information Agents, Springer, ISBN 3-540-65112-8, 1999.

M. Kracker, “A fuzzy concept network,” in Proc. IEEE Int. Conf. Fuzzy Systems, 1992.

R. Kruse, E. Schwecke, and J. Heinsohn, Uncertainty and Vagueness in Knowledge Based Systems,
Springer, 1991.

D. Kuokka and L. Harrada, “On using KQML for matchmaking,” in Proc. 3rd Int. Conf. on Infor-
mation and Knowledge Management CIKM-95, AAAI/MIT Press, 1995, pp. 239-45.

K. C. Lano, Formal Object-oriented Development. Formal Approaches to Computing and Information
Technology Series, Springer-Verlag, 1995.

S.-H. Li and P. B. Danzig, “Boolean similarity measures for resource discovery,” IEEE Trans. on
Knowledge and Data Engineering, vol. 9, no. 6, November/December, 1997.

S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and methods,” J. of Logic
Programming, vol. 19, no. 20, pp. 629-679, 1994.

B. Nebel, Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in Artificial Intel-
ligence LNAI Series, vol. 422, Springer, 1990.

M. Nodine and J. Fowler, “An overview of active information gathering in Infosleuth,” Proc. Int.
Conf. on Autonomous Agents, USA, 1999, submitted.

A. Ouksel, “A framework for a scalable agent architecture of cooperating heterogeneous knowledge
sources,” in M. Klusch (ed.), Intelligent Information Agents, chap. 5, Springer, 1999.

B. Potter, J. Sinclair, and D. Till, Introduction to Formal Specification and Z, Prentice-Hall Interna-
tional Series in Computer Science, 1996.

Resource Description Framework (RDF) Schema Specification. http://www.w3.0org/TR/WD-rdf-
schema/.

R. Rosenfield, “Adaptive statistic language model,” Ph.D. thesis, Carnegie Mellon University, 1994.
G. Salton, Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by
Computer, Addison-Wesley, Reading, MA, 1989.

A. Sheth, E. Mena, A. Illaramendi, and V. Kashyap, “OBSERVER: An approach for query process-
ing in global information systems based on interoperation across pre-existing ontologies,” in Proc.
Int. Conf. on Cooperative Information Systems CooplS-96, IEEE Computer Soc. Press, 1996.

A. Sheth, A. Illaramendi, V. Kashyap, and E. Mensa, “Managing multiple information sources
through ontologies: Relationship between vocabulary heterogeneity and loss of information,” in
Proc. ECAI-96, Budapest, 1996.

M Klusch, 2008

171/466

LARKS 203

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

G. Smolka and B. Nebel, “Representation and reasoning with attributive descriptions,” IWBS
Report 81, IBM Deutschland Wissenschaftl, Zentrum, 1989.

G. Smolka and M. Schmidt-Schauss, “Attributive concept description with complements,” A7 vol. 48,
1991.

K. Sycara, J. Lu, and M. Klusch, “Interoperability among heterogeneous software agents on the
Internet,” Carnegie Mellon University, PA, Technical Report CMU-RI-TR-98-22.

K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng, “Distributed intelligent agents,” IEEE
Expert, pp. 36-46, December 1996.

V. Vassalos and Y. Papakonstantinou, “Expressive Capabilities Description Languages and Query
Rewriting Algorithms,” available at http://www-cse.ucsd.edu/yannis/papers/vpcap2.ps

G. Wickler, “Using Expressive and Flexible Action Representations to Reason about Capabilities
for Intelligent Agent Cooperation,” http://www.dai.ed.ac.uk/students/gw/phd/story.html

WIDL, “The W3C Web Interface Definition Language,” http://www.w3.org/TR/NOTE-widl
WordNet—A Lexical Database for English. http://www.cogsci.princeton.edu/wn/

XML, “Extensible markup language,” World Wide Web Consortium (W3C) Working Draft,
17 November 1997. http://www.w3.org/TR/WD-xml-link.

A. M. Zaremski and J. M. Wing, “Specification matching of software components,” Technical Report
CMU-CS-95-127, 1995.

M Klusch, 2008

172/466

5

Hybrid Semantic Matching of OWL-S Services

M. Klusch, B. Fries, K. Sycara: Automated Semantic Web Service
Discovery with OWLS-MX. Proceedings of the 5th International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS),
Hakodate, Japan, ACM Press, 2006.

M Klusch, 2008 173/466

Automated Semantic Web Service Discovery with
OWLS-MX "’

Matthias Klusch,

German Research Center for
Artificial Intelligence
Multiagent Systems Group
Saarbruecken, Germany

klusch@dfki.de

ABSTRACT

We present an approach to hybrid semantic Web service
matching that complements logic based reasoning with ap-
proximate matching based on syntactic IR based similarity
computations. The hybrid matchmaker, called OWLS-MX,
applies this approach to services and requests specified in
OWL-S. Experimental results of measuring performance and
scalability of different variants of OWLS-MX show that un-
der certain constraints logic based only approaches to OWL-
S service I/O matching can be significantly outperformed by
hybrid ones.

Categoriesand Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; H.4 [Information Systems Applications]: Mis-
cellaneous

Keywords

OWL-S, matchmaking, information retrieval

1. INTRODUCTION

Key to the success of effectively retrieving relevant ser-
vices in the future semantic Web is how well intelligent ser-
vice agents may perform semantic matching in a way that
goes far beyond of what standard service discovery proto-
cols such as UPnP, Jini, or Salutation-Lite can deliver. Cen-
tral to the majority of contemporary approaches to semantic
Web service matching is that the formal semantics of services
specified, for example, in OWL-S or WSMO are explicitly

*This work has been supported by the German Ministry of
Education and Research (BMBF 01-IW-D02-SCALLOPS),
the European Commission (FP6 IST-511632-CASCOM),
and the DARPA DAML program under contract F30601-
00-2-0592.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

AAMAS 2006 May 8-12, 2006, Hakodate, Hokkaido, Japan

Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

M Klusch, 2008

Benedikt Fries

University of the Saarland
Computer Science
Department
Saarbruecken, Germany

Develin@gmx.de

Katia Sycara

Carnegie Mellon University
Robotics Institute
Pittsburgh PA, USA

katia+@cs.cmu.edu

defined in some decidable description logic based ontology
language such as OWL-DL [8] or F-Logic, respectively. This
way, standard means of description logic reasoning can be
exploited to automatically determine services that semanti-
cally match with a given service request based on the kind
of terminological concept subsumption relations computed
in the corresponding ontology. Prominent examples of such
logic-based only approaches to semantic service discovery
are provided by the OWLS-UDDI matchmaker [16], RACER
[11], MAMA [5], and the WSMO service discovery approach
[20].

These approaches do not exploit semantics that are im-
plicit, for example, in patterns or relative frequencies of
terms in service descriptions as computed by techniques
from data mining, linguistics, or content-based information
retrieval (IR). The objective of hybrid semantic Web ser-
vice matching is to improve semantic service retrieval per-
formance by appropriately exploiting means of both crisp
logic based and approximate semantic matching where each
of them alone would fail.

Consider, for example, a pair of real world concepts that
are semantically synonymous or very closely related, but
differing in their terminological definitions which are part of
the underlying ontology. In particular, the crisp conjunc-
tive logical concept expressions are differing with respect to
a few pairs of unmatched logical constraints only. In this
case, both concepts would be logically classified as disjoint
siblings in a concept subsumption hierarchy such that any
description logic reasoner would fail to detect the original
real world semantic relationship. As a consequence, if the
semantic comparison of both concepts is essential to dis-
cover services that are relevant to a given request, any logic
based only matching approach would necessarily fail. The
underpinning general problem is that standard logical spec-
ification of real world concept semantics is known to be in-
adequate. One operational way to cope with this problem
would be to tolerate logical matching failures up to a speci-
fied extent by complementary approximate matching based
on syntactic concept similarity computations. Of course, we
acknowledge that the adaptation to the latter eventually is
on the user’s end.

In this paper, we present the first hybrid OWL-S ser-
vice matchmaker called OWLS-MX, that exploits means of
both crisp logic based and IR based approximate matching.
Our experimental evaluation shows that under certain con-
straints this way of matching can indeed outperform logic

174/466

based only approaches.

The remainder of the paper is structured as follows. After
brief background information on OWL-S in section 2, we
present the hybrid matching filters, the generic algorithm of
OWLS-MX together with its variants, and a simple example
in section 3. Some details on the implementation of OWLS-
MX version 1.1 are given in sections 4. The experimental
results of measuring performance and scalability of OWLS-
MX are presented in section 5, before we briefly comment
on related work in section 6, and conclude in section 7.

2. OWL-SSERVICES

In the following, we briefly introduce the essentials of the
semantic Web service description language OWL-S that are
needed to understand the concepts of hybrid service match-
ing. For more details, we refer the reader to, for example,
[13].

<rdfs:subPropertyOf
“#hasParameter” i>

I/O param
= ObjectProperty

...... P DatatypeProperty
....... » SubClass/Property

Figure 1: Parametric structure of OWL-S service
profiles

OWL-S is an OWL-based Web service ontology, which
supplies a core set of markup language constructs for de-
scribing the properties and capabilities of Web services in
unambiguous, computer-intepretable form. The overall on-
tology consists of three main components: the service profile
for advertising and discovering services; the process model,
which gives a detailed description of a service’s operation;
and the grounding, which provides details on how to inter-
operate with a service, via messages. Specifically, it specifies
the signature, that is the inputs required by the service and
the outputs generated; furthermore, since a service may re-
quire external conditions to be satisfied, and it has the effect
of changing such conditions, the profile describes the precon-
ditions required by the service and the expected effects that
result from the execution of the service.

To the best of our knowledge, the majority of current

OWL-S matchmakers performs service I/O based profile match-

ing that exploits defined semantics of concepts as values of
service parameters haslnput and hasOutput (cf. figure 1).
Exceptions include service process based approaches like in
[3]. There exists no implemented matchmaker that performs
an integrated service IOPE matching by means of additional
reasoning on logically defined preconditions and effects. Re-
lated work on logic based semantic web rule languages such
as SWRL and RuleML is ongoing.

M Klusch, 2008

3. HYBRID SERVICE MATCHING

Hybrid semantic service matching performed by the match-
maker OWLS-MX exploits both logic-based reasoning and
content-based information retrieval techniques for OWL-S
service profile I/O matching. In the following, we define the
hybrid semantic filters of OWLS-MX, the generic OWLS-
MX algorithm, and its five variants according to the used
IR similarity metrics.

3.1 Matching filtersof OWLSMX

OWLS-MX computes the degree of semantic matching for
a given pair of service advertisement and request by succes-
sively applying five different filters EXACT, PLUG IN, SUB-
SUMES, SUBSUMED-BY and NEAREST-NEIGHBOR. The first
three are logic based only whereas the last two are hybrid
due to the required additional computation of syntactic sim-
ilarity values.

Let T be the terminology of the OWLS-MX matchmaker
ontology specified in OWL-Lite (SHIF(D)) or OWL-DL
(SHOIN(D)); CTr the concept subsumption hierarchy of T';
LSC(C) the set of least specific concepts (direct children)
C'" of C, i.e. C’ is immediate sub-concept of C in CTr;
LGC(C) the set of least generic concepts (direct parents)
C' of C, ie., C' is immediate super-concept of C' in CTr;
Simrr(A, B) € [0, 1] the numeric degree of syntactic similar-
ity between strings A and B according to chosen IR metric
IR with used term weighting scheme and document collec-
tion, and « € [0, 1] given syntactic similarity threshold; =
and > denote terminological concept equivalence and sub-
sumption, respectively.

Exact match. Service S EXACTLY matches request R < V
INs d INg: INg = INg AV OUTR 3 OUTs: OUTR =
oUTg. The service I/O signature perfectly matches
with the request with respect to logic-based equiva-
lence of their formal semantics.

Plug-in match. Service S PLUGS INTO request R < V INg 3
INg: INg > INg AV OUTR 3 0UTs: OUTs € LSC(OUTR).
Relaxing the exact matching constraint, service S may
require less input than it has been specified in the re-
quest R. This guarantees at a minimum that S will
be executable with the provided input iff the involved
OWL input concepts can be equivalently mapped to
WSDL input messages and corresponding service sig-
nature data types. We assume this as a necessary con-
straint of each of the subsequent filters.

In addition, S is expected to return more specific out-
put data whose logically defined semantics is exactly
the same or very close to what has been requested by
the user. This kind of match is borrowed from the soft-
ware engineering domain, where software components
are considered to plug-in match with each other as de-
fined above but not restricting the output concepts to
be direct children of those of the query.

Subsumes match. Request R SUBSUMES service S < V INg
3 INg: INg > INg A YV OUTR 3 OUTs: OUTR > OUTs.
This filter is weaker than the plug-in filter with re-
spect to the extent the returned output is more spe-
cific than requested by the user, since it relaxes the
constraint of immediate output concept subsumption.
As a consequence, the returned set of relevant services
is extended in principle.

175/466

Subsumed-by match. Request R is SUBSUMED BY service
S & VINg JINg: INg > INg AV OUTR 3 OUTs: (OUTs
= OUTR V 0UTg € LGC(0oUTRr)) A SIM1r(S, R) > a.
This filter selects services whose output data is more
general than requested, hence, in this sense, subsumes
the request. We focus on direct parent output con-
cepts to avoid selecting services returning data which
we think may be too general. Of course, it depends
on the individual perspective taken by the user, the
application domain, and the granularity of the under-
lying ontology at hand, whether a relaxation of this
constraint is appropriate, or not.

Logic-based fail. Service S fails to match with request R
according to the above logic-based semantic filter cri-
teria.

Nearest-neighbor match. Service S is NEAREST NEIGH-
BOR of request R < VINg dINg: INg > INg A Y OUTR
3 0UTs: OUTR > OUTs V SIM7r(S, R) > a.

Fail. Service S does not match with request R according to
any of the above filters.

The OWLS-MX matching filters are sorted according to
the size of results they would return, in other words accord-
ing to how relaxed the semantic matching. In this respect,
we assume that service output data that are more general
than requested relaxes a semantic match with a given query.
As a consequence, we obtain the following total order of
matching filters

ExAcT < PLUG-IN < SUBSUMES < SUBSUMED-BY <
LoGIC-BASED FAIL < NEAREST-NEIGHBOR < FAIL.

3.2 Generic OWLS-MX matching algorithm

The OWLS-MX matchmaker takes any OWL-S service as
a query, and returns an ordered set of relevant services that
match the query each of which annotated with its individ-
ual degree of matching, and syntactic similarity value. The
user can specify the desired degree, and syntactic similarity
threshold. OWLS-MX then first classifies the service query
I/0 concepts into its local service I/O concept ontology. For
this purpose, it is assumed that the type of computed ter-
minological subsumption relation determines the degree of
semantic relation between pairs of input and concepts.

Auxiliary information on whether an individual concept is
used as an input or output concept by any registered service
is attached to this concept in the ontology. The respective
lists of service identifiers are used by the matchmaker to
compute the set of relevant services that 1/O match the
given query according to its five filters.

In particular, OWLS-MX does not only pairwisely deter-
mine the degree of logical match but syntactic similarity
between the conjunctive I/O concept expressions in OWL-
Lite. These expressions are built by recursively unfolding
each query and service input (output) concept in the local
matchmaker ontology. As a result, the unfolded concept
expressions are including primitive components of a basic
shared vocabulary only. Any failure of logical concept sub-
sumption produced by the integrated description logic rea-
soner of OWLS-MX will be tolerated, if and only if the de-
gree of syntactic similarity between the respective unfolded
service and request concept expressions exceeds a given sim-
ilarity threshold.

M Klusch, 2008

The pseudo-code of the generic OWLS-MX matching pro-
cess is given below (cf. algorithms 1 - 3). Let INPUTSs = {
INg,;|0 < ¢ < s}, INPUTSR = { INg;|0 < j < n}, OUTPUTSg
={ 0UTs |0 <k <7}, ouTPUTSR = { OUTR+|0 <t < m},
set of input and output concepts used in the profile I/O
parameters HASINPUT and HASOUTPUT of registered service
S in the set Advertisements, and the service request R,
respectively. Attached to each concept in the matchmaker
ontology are auxiliary data that informs about which regis-
tered service is using this concept as an input and/or output
concept.

Algorithm 1 Match: Find advertised services S that best
hybridly match with a given request R; returns set of
(S,degreeO f Match, SIMrr(R,S)) with maximum degree
of match (dom) unequal FAIL (uses algs. 2 and 3 to com-
pute dom), and syntactic similarity value exceeding a given
threshold a.

1: function MATCH(Request R, «)
2: local result,degreeO fMatch, hybridFilters = {

SUBSUMED-BY, NEAREST NEIGHBOUR}

3: for all (S,dom) € CANDIDATES;nputset(INPUTSR) A
(S,dom’) € CANDIDATESoutputset(OUTPUTSR) do

4: degreeO f Match «— MiN(dom, dom')

5: if degreeOfMatch > minDegree A (

degreeOfMatch ¢
siMir(R,S) > «) then

hybridFilters V

6: result := result U { (S, degreeOfMatch,
siMmrr(R,S)) }

T end if

8: end for

9: return result

10: end function

In the following section, we present five variants of this
generic OWLS-MX matchmaking scheme.

3.3 OWLSMX variants

We implemented different variants of the generic OWLS-
MX algorithm, called OWLS-M1 to OWLS-M4, each of which
uses the same logic-based semantic filters but different IR
similarity metric SIM;r(R, S) for content-based service I/O
matching. The variant OWLS-MO performs logic based
only semantic service I/O matching.

OWLS-MO. The logic-based semantic filters EXACT, PLUG-
IN, and SUBSUMES are applied as defined in section
3.1, whereas the hybrid filter SUBSUMED-BY is utilized
without checking the syntactic similarity constraint.

OWLS-M1 to OWLS-M4. The hybrid semantic match-
maker variants OWLS-M1, OWLS-M3, and OWLS-
M4 compute the syntactic similarity value SiMrr (OUTsg,
OUTR) by use of the loss-of-information measure, ex-
tended Jacquard similarity coefficient, the cosine sim-
ilarity value, and the Jensen-Shannon information di-
vergence based similarity value, respectively.

Based on the experimental results of measuring the per-
formance of similarity metrics for text information retrieval
provided by Cohen and his colleagues [4], we selected the top
performing ones to build the OWLS-MX variants. These
symmetric token-based string similarity measures are de-
fined as follows.

176/466

Algorithm 2 Find services which input matches with that
of the request; returns set of (S, dom) with minimum degree
of match dom unequal FAIL.

1: function CANDIDATES;nputset(INPUTSR)

2:
3:

4:

10:
11:

12:

13:
14:
15:

16

17:
18:

19:

20:

local H, dom, r

> If a service input matches with multiple request
inputs the best degree is returned

H = { (8 Ws; dom) € U,_,,
CANDIDATESinput(INr;) | dom = argmaz{
(S, INg,3, dom) |1 <1<n,1<i<s}}

> If all inputs of service S are matched by those of
the request, S can be executed, and the minimum
degree of its potential match is returned

for all S € Advertisement do
if { (S, INg,, dom1), -+, (S, INg,, doms) } C H

then
r:=rUJ{ (S, MIN(domy, -

end if

end for

> Services with no input can always be exe-
cuted and are preliminary EXACT-match can-
didates: sERVNOIN() = { (S, ExXACT) | S €
Advertisements A INPUTSs = () }

> Remaining, unmatched services are at least
NEAREST NEIGHBOUR-match candidates: REM-
SERv() = { (S, NEAREST NEIGHBOUR) | S €
Advertisements A (S, degreeO fMatch') ¢ r }

return r := r U SERVNOIN() U REMSERV()

-, doms)) }

end function

: function CANDIDATESinput(INR,;) >
Classify request input concept into ontology, and use
the auxiliary concept data to collect services that at
least plug-in match with respect to its input.
local r
r = rU { (S, INg, EXACT) | S € Advertisements,
INg € inputss, INs = INR_j, }

r:=rU{ (S, INg, PLUG-IN) | S € Advertisements,
INs € inputss, INs > INgr;, }

return r

21: end function

M Klusch, 2008

Algorithm 3 Find services which output matches with that
of the request; returns set of (S, dom) with minimum degree
of match unequal FAIL.

1

10:
11:
12:
13:

14:
15:
16:
: function CANDIDATESoutput(OUTR,¢) > Classify request

17

18:
19:
20:
21:
22:

23:
24:

: function CANDIDATESoutputset(OUTPUTSR)

local r,dom
if ouTPUTSR = 0 then
return { (S, EXACT) | S € Advertisements }
end if
for all S € Advertisements do
if (S, domi) € CANDIDATESoutput(OUTR,:) A
dom; > SUBSUMES for ¢t = 1..m then
r:=r U{ (S, MIN{dom1, ---, domm})}
else if (S, dom;) € CANDIDATESoutput(OUTR,¢)
A domy € { EXACT, SUBSUMES } for t = 1..m
then
r:=r U{ (S, SUBSUMED-BY }
end if
end for
> Any remaining, unmatched service is a potential
NEAREST NEIGHBOUR-match: REMSERV() = { (S,
NEAREST NEIGHBOUR) | S € Advertisements A
Sé¢r}

return r := r U REMSERV()

end function

output concept into ontology, and use the auxiliary

concept data to collect services with output concepts

that match with OUTR ;.

local r

r:=r U{ (S, EXACT) | OUTs = OUTR, }

r:=r U{ (S, PLUG-IN) | ouTs € LSC(OUTR+) A S
¢r}

r:=7rU{ (S, SUBSUMES) | 0UTs < OUTR: A S ¢ r

r:=rU{ (S, SUBSUMED-BY) | oUTs € LGC(OUTR,)

}

return r

end function

177/466

e The cosine similarity metric

Simcon(S,R) = —2 (1)
[RI3 - 115113

with standard TFIDF term weighting scheme, and the
unfolded concept expressions of request R and ser-
vice S are represented as n-dimensional weighted index
term vectors K and § respectlvely RS = Z _, Wi, R X

wy,s, || X]||2 = /207 w? i, and w; x denotes the weight

of the i-th index term in vector X.
e The extended Jacquard similarity metric Simgs(S, R) =
R-S
I1RI13 + 115113 -
with standard TFIDF term weighting scheme.

73 @

e The intensional loss of information based similarity
metric Simror(S, R) =

1- LOI]N(}{7 S) + LOIOUT(R, S) (3)
2

‘PCRVI U PCsyg;| — ‘PCR@ N PCs,z| (4)

with z € {IN,OUT?}, PCr,» and PCgs,, set of primi-
tive components in unfolded logical input/output con-
cept expression of request R and service S

LOIL.(R,S) =

e The Jensen-Shannon information divergence based sim-
ilarity measure Simys(S, R) = log2 — JS(S,R) =

21092 Z h(pi,r) + h(pi,s) — h(pi,r + pi,s) (5)

with probability term frequency weigthing scheme, e.g.,
pi,r denotes the probability of i-th index term occur-
rence in request R, and h(z) = —zlogz,

The extended Jacquard metric is a standard for mea-
suring the degree of overlap as the ratio of the number of
shared terms (primitive components) of unfolded concepts
of both service and request, and the number of terms pos-
sessed by either of them. In contrast to the TFIDF /cosine
similarity metric, it does not favor the document with com-
mon terms. The Jensen-Shannon measure is based on the
information-theoretic, non-symmetrical Kullback-Leibler di-
vergence measure. [t measures the pairwise dissimilarity of
conditional probability term distributions between service
and request text rather than looking at the whole collec-
tion as it is the case for the TFIDF /cosine, or the extended
Jacquard metric. The loss of (intensional) information in
case some concept A is terminologically substituted by con-
cept B, can be measured as the inverse ratio of the number of
matching primitive components with those which remain un-
matched in terminologically disjoint unfolded concept con-
straints. The symmetric LOI-based similarity value for a
given pair of service and request is then computed analo-
gously for all I/O concept definitions involved.

3.4 Example

Let us illustrate the hybrid service retrieval with OWLS-
MX by means of a simple example. Suppose the concept

M Klusch, 2008

subsumption hierarchy or taxonomy of the OWLS-MX match-
maker ontology, the service request R for physicians of hos-
pital h that provide treatment to patient p, and relevant
service advertisements S7 and S are as shown in figure 2.

[.]

Local matchmaker ontology

¥
Medical
Organisation
\ |

[
First-Aid P Health
e {1 mAsH Resort
Out: {2}
Beauty Clinic) Eye Clinic

Service 1:

Emergency-
Physician

Hospital-
Physician

In: Person, Hospital

Out: Surgeon

Request R: Service 2:

In: Person, Hospital
Out: Emergency-Physician

Plug-In

In: Patient, Hospital |«
Out: Hospital-Physician N

Nearest-Neighbour

Figure 2: Example of hybrid service matching with
OWLS-MX

Service S is considered semantically relevant to request
R, since it returns for any given person p and hospital A,
the individual surgeon of h that operated on p. Likewisely,
service So is relevant to R, since it returns those emergency
physicians who provided emergency treatment to p before
her transport to hospital h. Hence, both services S1 and S2
should be returned as matching results to the user.

However, the logic based only variant OWLS-MO deter-
mines S7 as plug-in matching with R but fails to return Ss,
since the formal semantics of the output concept siblings
”emergency physician” and ”hospital physician” in the on-
tology are terminologically disjoint. In this example, the set
of terminological constraints of unfolded concepts ¢ corre-
spond to the set of primitive components (c¢?) of which the
individual concepts are canonically defined in the match-
maker ontology T'. Hence, the unfolded concept expressions
are as follows.

e unfolded(Patient, T') = (and Patient” Person?)

e unfolded(Hospital, T') = (and Hospital? (and
MedicalOrganisation? Organisation?))

e unfolded(HospitalPhysician, T') = (and
HospitalPhysician? (and Physician? Person”))

e unfolded(Surgeon, T') = (and Surgeon® (and
HospitalPhysician? (and Physician” Person?)))

e unfolded(EmergencyPhysician, T) = (and
EmergencyPhysician? (and Physician? Person®))

As a result, for example, OWLS-M1 would return S; as
plug-in matching service with syntactic similarity value of
Simror (R,S1) = 0.87. In contrast to OWLS-MO, it also
returns S2, since this service is nearest-neighbor matching
with the request R: Their implicit semantics exploited by
the IR similarity metric LOI (cf. (5), (6)) with Simror

178/466

5—4 4—2
A-357)+0-333

(R, S2) = = 0.78 > a = 0.7 is sufficiently
similar. Our preliminary experimental results show that this
kind of matching relaxation may be useful in practice.

4. IMPLEMENTATION

We implemented the OWLS-MX matchmaker variants ver-
sion 1.1 in Java using the OWL-S API 1.1 beta with the tab-
leaux OWL-DL reasoner Pellet developed at university of
Maryland (cf. http://www.mindswap.org). As the OWL-S
API is tightly coupled with the Jena Semanic Web Frame-
work, developed by the HP Labs Semantic Web research
group (cf. http://jena.sourceforge.net/), the latter is
also used to modify the OWLS-MX matchmaker ontology.

£ OWLS-MX: Hybrid OWL-S Service Matchmaker vl.1 i [=| 4]
File About
Services | Requests | Relevance set | Test collection |~

[Testing | answer set | Resutt |

Registered services []Selectall

Service requests

BookPriceService
Car Bicycle price

Comp. AuthorService
DataMiningAuthorSence
HeitlelburgLuxuryHotelinfoService
JJ Car price service
MuseumCamera
MYDESTINATIONService

Relevance set for query Car Bicycle price Select all
4 Car price senvice
MyDESTINATIONService
HeidelburgLuxurytotelinfoSenace

‘ Audd selected services to relevance set ‘

‘ Remove selected services ‘

Figure 3: OWLS-MX v1.1 screenshot: Definition of
service request and relevance set

Figures 3 to 5 show some screenshots of the OWLS-MX
version 1.1 graphical user interface.

£ owLs-MX: Hybrid OWL-S Service Matchmaker v1.1 _|olx]
File About
Services | Requests | Relevance set | Testcollection | Matchmaker | Testing | Answerset | Result |

Please select avariant of the matchmaker
© OWLS-MO - Logic based semantic filters onty

® OWLSM1 loss of

© OWLS M2 i ing extended imilarity measure
) OWLS-M3 il

) OWLS-M4 I

of the variant
match i
O exact —_—
O plugin 0 % 50 5 100
© subsumes

© subsumed-by

® nearest neighbour

Apply matchmaker to test collection

Figure 4: OWLS-MX v1.1 screenshot: Selection of
OWLS-MX variant

After parsing service advertisements and requests, the re-
spective input and output concepts are analysed and, if nec-
essary, added to the local matchmaker ontology together
with auxiliary data on their unfolding. As a consequence,
the matchmaker ontology is dynamically built and grow-
ing with the number of services and underlying ontologies
loaded. In addition, the matchmaker ontology is extended
with auxiliary information for each concept whether it is
used as an input or output concept of which service reg-
istered at the matchmaker. Service requests are treated

M Klusch, 2008

similarly, except that they are not stored in the extended
matchmaker ontology.

£ OWLS-MX: Hybrid OWL-S Service Matchmaker wi.1 - (o]]
File About
Services | Requests | Relevance set | Test collection |~

| Testing | Answer set

Recall/Precision
oes{
080 == \\
oss
¥
o7s R e e =i
o7 e
N
ass N
080
Show graph _

) Average query response time 8 050

@ Recall Precision @ 045

< Memory consumption Lkl

LES

01 02 03 04 05 08 07 08 o0
Precision

Figure 5: OWLS-MX v1.1 screenshot: Display of
selected type of results (performance)

For each service request concept, the service identifiers
attached to its immediate parent and child concepts of the
enhanced matchmaker ontology are retrieved. The semantic
degree of matching for each service is then determined by
applying the semantic filters on this set of matching candi-
dates. After this step, the syntactic similarity is computed
by applying the selected IR similarity metric to the strings
of unfolded concepts of the query and each registered ser-
vice. Both the semantic degree of match and the syntactic
similarity value determine the hybrid degree of matching of
one service with the request. If this hybrid degree is better
than or equal to the minimum degree specified by the user,
then this service will be returned as potentially relevant.

In practice, OWLS-MX spend the largest amount of time
with classifying the ontologies used by the registered services
to check for new concepts not known to the matchmaker,
and then to classify them into the matchmaker ontology.

5. EXPERIMENTAL EVALUATION

For measuring the service I/O retrieval performance of
each OWLS-MX variant we used the OWL-S service re-
trieval test collection OwWLS-TC v2. This collection consists
of more than 570 services specified in OWL-S 1.1 covering
seven application domains, that are education, medical care,
food, travel, communication, economy, and weaponry. The
majority of these services were retrieved from public IBM
UDDI registries, and semi-automatically transformed from
WSDL to OWL-S. OwLs-TC v2 provides a set of 28 test
queries each of which is associated with a set of 10 to 20 ser-
vices that two of the co-authors subjectively defined as rel-
evant according to the standard TREC definition of binary
relevance [17] *. The collection OWLS-TC V2 is available as
open source at
http://projects.semwebcentral.org/projects/owls-tc/.

In terms of measuring the retrieval performance of each
OWLS-MX variant, we adopted the evaluation strategy of

!Please note, that no standardized test collection for OWL-
S service retrieval does exist yet. Therefore, like with any
other reported results on retrieval performance of alterna-
tive OWL-S service matchmakers developed by different re-
search groups world wide, we have to consider both our test
collection and experimental results as preliminary.

179/466

micro-averaging the individual precision-recall curves [18].
Let @Q be the set of test queries (service requests) in OWLS-
TC, A the sum of relevant documents of all requests in @,
AR the answer set of relevant services (service advertise-
ments) for request R € Q. For each request R, we consider
A = 20 steps up to its maximum recall value, and measure
the number By g| of relevant documents retrieved (recall) at
each of these steps. Similarly, we measure related precision
with the number B) of retrieved documents at each step .
The micro-averaging of recall and precision (at step A) over
all requests, as we used it for performance evaluation is then
defined as

Recy — Z |AR |r;”B/\R‘ Precy — Z |AR‘gB/\R‘ (6)
REQ REQ Al

The micro-averaged R-P curves of the top and worse per-
forming IR similarity metric together with those for the
OWLS-MX variants as well as the average query response
time plots are displayed in figures 4 and 5, respectively.

. Logic based OWLS-MIO Recall-Precision Curve
T T T T

09 q
0.8 q

0.7 4

0.5 OWLS-MO —— 1
OWLS-M4 ——
Worst IR 10 (JS) —*—

0.4 Best IR SNTdIO (Cos) —— b

0.3 L L L n
0 0.2 0.4 0.6 .8 1

Recall Final recall level for OWLS-MO

Precision

Figure 6: Recall-precision performance of logic
based OWLS-MO vs best hybrid OWLS-M4 vs IR
based service I/O matching

Scalability

1400 i

IR 10unfolded

1200

1000

800

600

400 8 g

average query response time [ms]

200 b

100 150 200 250 300 350 400
Services

Figure 7: Average query response time of OWLS-
MX vs IR based service matching

M Klusch, 2008

T OWLS-MO ——
OWLS-M1 ——
OWLS-M2 —e—
OWLS-M3 —=—
OWLS-M4 —e—

These experimental results provide, in particular, evidence
in favor of following conclusions.

e The best IR similarity metric (Cosine/ TFIDF) applied
to the concatenated unfolded service profile I/O con-
cept expressions performs close to the pure logic based
OWLS-MO (see figure 6: Best IR SnTdIO (Cos) vs
OWLS-M0). But OWLS-MO is only superior to IR
based matching (cf. figure 6: Worst IR IO (JS) denot-
ing Jensen-Shannon divergence based similarity met-
ric) at the very expense of its recall. However, for dis-
covering semantic web services, precision may be more
important to the user than recall, since the set of rel-
evant services is supposed to be subject to continuous
change in the semantic Web in practice.

e Pure logic based semantic matching by OWLS-MO can
be outperformed by hybrid semantic matching, in terms
of both recall and precision. That is the case, for exam-
ple, by use of the best performing hybrid matchmaker
OWLS-M4 (cf. figure 6). The main reason for this
is, that the additional IR based similarity check of the
nearest-neighbor filter allows OWLS-M1 to M4 to find
relevant services that OWLS-MO would fail to retrieve.

e Hybrid semantic matching by OWLS-MX can be out-
performed by each of the selected syntactic IR similar-
ity metrics to the extent additional parameters with
natural language text content are used. That is the
case, for example, by applying the cosine similarity
metric to the extended set of service profile parame-
ters including not only hasInput and hasOutput but
also serviceName and textDescription (cf. figure 6).

e Both pure logic based and all hybrid OWLS-MX match-
makers are significantly outrun by IR based service re-
trieval in terms of average query response time almost
by size of magnitude (cf. figure 7). This is due to the
additional computational efforts required by OWLS-
MX to determine concept subsumption relationships
in NEXPTIME description logic OWL-DL based on
the imported large ontologies the OWL-S services re-
fer to.

6. RELATED WORK

Quite a few semantic Web service matchmakers have been
developed in the past couple of years such as the OWLS-
UDDI matchmaker [16], RACER [11], SDS [12], MAMA [5],
HotBlu [6], and [10]. Like OWLS-MX, the majority of them
does perform profile based service signature (I/O) matching.
Alternate approaches propose service process-model match-
ing [3], recursive tree matching [2], P2P discovery [1], auto-
mated selection of WSMO services [20] and METEOR-S for
WSDL-S services [19]. Except LARKS [15], none of them
is hybrid, in the sense that it exploits both explicit and
implicit semantics by complementary means of logic based
and approximate matching. To the best of our knowledge,
OWLS-MX is the only hybrid matchmaker for OWL-S ser-
vices yet.

The OWLS-MX matchmaker bases on LARKS [15]. How-
ever, LARKS differs from OWLS-MX in that it uses a pro-
prietary capability description language and description logic
different from OWL-S and OWL-DL, respectively. Further-
more, LARKS does not perform any subsumes and subsumed-

180/466

by nor nearest-neighbour matching, and has not been exper-
imentally evaluated yet.

The purely logic based variant OWLS-MO0 of OWLS-MX is
quite similar to the OWLS-UDDI matchmaker [16] but dif-
fers from it in several aspects. Firstly, the latter makes use
of a different notion of plug-in matching, and does not per-
form additional subsumed-by matching. Secondly, OWLS-
MO classifies arbitrary query concepts into its dynamically
evolving ontology with commonly shared minimal basic vo-
cabulary of primitive components instead of limiting query
I/0O concepts to terminologically equivalent service I/O con-
cepts in a shared static ontology as the OWLS-UDDI match-
maker does.

7. CONCLUSIONS

Our approach to hybrid semantic Web service matching,
called OWLS-MX, utilizes both logic based reasoning and
IR techniques for semantic Web services in OWL-S. Ex-
perimental evaluation results provide evidence in favor of
the proposition that building semantic Web service match-
makers purely on description logic reasoners may be insuffi-
cient, hence should give a clear impetus for further studies,
research and development of more powerful approaches to
service matching in the semantic Web across disciplines.

8. REFERENCES

[1] F. Banaei-Kashani, C.-C. Chen, and C. Shahabi.
Wspds: Web services peer-to-peer discovery service.
In Proceedings of International Symposium on Web
Services and Applications (ISWS), 2004.

[2] S. Bansal and J. Vidal. Matchmaking of web services
based on the daml-s service model. In Proceedings of
Second International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS),
Melbourne, Australia, 2003.

[3] A. Bernstein and M. Klein. Towards high-precision
service retrieval. In IEEE Internet Computing,
8(1):30-36, 2004.

[4] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In Proc. IJCAI-03 Workshop on
Information Integration on the Web (IIWeb-03).
DBLP at http://dblp.uni-trier.de, 2003.

[5] S. Colucci, T. D. Noia, E. D. Sciascio, F. Donini, and
M. Mongiello. Concept abduction and contraction for
semantic-based discovery of matches and negotiation
spaces in an e-marketplace. In Proc. 6th Int
Conference on Electronic Commerce (ICEC 2004).
ACM Press, 2004.

[6] I. Constantinescu and B. Faltings. Efficient
matchmaking and directory services. In Proceedings of
IEEE/WIC International Conference on Web
Intelligence, 2003.

[7] T. Grabs and H.-J. Schek. Flexible information
retrieval on xml documents. In Intelligent Search on
XML Data, Applications, Languages, Models,
Implementations, and Benchmarks. Springer, 2003.

[8] I. Horrocks, P. Patel-Schneider, and F. van Harmelen.
From shiq and rdf to owl: The making of a web
ontology language. Web Semantics, 1(1), Elsevier,
2004.

M Klusch, 2008

[9] U. Keller, R. Lara, A. Polleres, and D. Fensel.
Automatic location of services. In Proceedings of
European Semantic Web Conference (ESWC),
Springer, LNAI 3532, 2005.

[10] M. Klein and B. Koenig-Ries. Coupled signature and
specification matching for automatic service binding.
In Proceedings of FEuropean Conference on Web
Services, Springer, LNAI, 183-197, 2004.

[11] L. Li and I. Horrock. A software framework for
matchmaking based on semantic web technology. In
Proc. 12th Int World Wide Web Conference Workshop
on E-Services and the Semantic Web (ESSW 2003),
2003.

[12] D. Mandell and S. Mclllraith. A bottom-up approach
to automating web service discovery, customization,
and semantic translation. In Proc. 12th Int Conference
on the World Wide Web (WWW 2003). ACM Press,
2003.

[13] OWL-S. Semantic markup for web services; w3c
member submission 22 november 2004.
http://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/.

[14] A. Sheth, C. Ramakrishnan, and C. Thomas.
Semantics for the semantic web: The implicit, the
formal, and the powerful. Semantic Web and
Information Systems, 1(1), Idea Group, 2005.

[15] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Larks:
Dynamic matchmaking among heterogeneous software
agents in cyberspace. Autonomous Agents and
Multi-Agent Systems, 5(2), Kluwer, 2002.

[16] K. Sycara, M. Paolucci, A. Anolekar, and
N. Srinivasan. Automated discovery, interaction and
composition of semantic web services. Web Semantics,
1(1), Elsevier, 2003.

[17] TREC. Text retrieval conference.
http://trec.nist.gov/data/.

[18] C. van Rijsbergen. Information Retrieval. 1979.

[19] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil,

S. Oundhakar, and J. Miller. Meteor-s wsdi: A
scalable infrastructure of registries for semantic
publication and discovery of web services. Information
Technology and Management, 2004.

[20] U. Keller, R. Lara, H. Lausen, A. Polleres, D. Fensel.
Automatic Location of Services. In Proceedings of the
2nd European Semantic Web Conference, LNCS 3532,
2005.

181/466

6

Hybrid Semantic Matching of WSML Services

F. Kaufer and M. Klusch: WSMO-MX: A Logic Programming Based
Hybrid Service Matchmaker. Proceedings of the 4th IEEE European

Conference on Web Services (ECOWS), Zurich, Switzerland, pages
162 - 170, IEEE CS Press, 2006.

M Klusch, 2008 182/466

WSMO-MX: A Logic Programming Based Hybrid Service Matchmaker

Frank Kaufer

Matthias Klusch

German Research Center for Artificial Intelligence
Deduction and Multi-Agent Systems Lab
Stuhlsatzenhausweg 3, Saarbriicken
E-mail: {frank.kaufer, klusch}@dfki.de

Abstract

In this paper, we present an approach to hybrid semantic
web service matching based on both logic programming,
and syntactic similarity measurement. The implemented
matchmaker, called WSMO-MX, applies different matching
filters to retrieve WSMO-oriented service descriptions that
are semantically relevant to a given query with respect to
seven degrees of hybrid matching. These degrees are re-
cursively computed by aggregated valuations of ontology
based type matching, logical constraint and relation match-
ing, and syntactic similarity as well.

1 Introduction

The problem of efficiently retrieving relevant services in
the envisioned semantic web has been solved so far by only
a few approaches for services described in OWL-S [15, 10],
and WSML [7, 17]. Though, existing proposals for rule
based service mediation in WSMO do not provide a general
purpose matchmaking scheme for services in WSML.

This, in particular, motivated us to develop a hybrid se-
mantic matchmaker, called WSMO-MX, that applies dif-
ferent matching filters to retrieve WSMO services that are
semantically relevant to a given query including the goal
to be satisfied. Both services and goals are described in a
Logic Programming (LP) variant of WSML, called WSML-
MX, which is based on WSML-Rule. The hybrid matching
scheme of WSMO-MX combines the ideas of hybrid se-
mantic matching realized by OWLS-MX [10], the object-
oriented structure based matching proposed by Klein &
Konig-Ries [9], and the concept of intentional matching in-
troduced by Keller et. al [6].

The remainder of this paper is structured as follows. In
section 2, we introduce WSML-MX, align it with WSML-
Rule, and describe the modelling of services in WSML-
MX. Section 3 presents the hybrid semantic matching ap-
proach of our matchmaker WSMO-MX by means of its dif-

M Klusch, 2008

ferent filters of matching, which is then exemplified in sec-
tion 4. We provide some details of the implementation of
WSMO-MX in section 4, and briefly discuss related work
and conclude in section 5 and 6, respectively.

2 Service modelling with WSML-MX

The web service modelling language WSML is the
formal language for the web service modelling ontology
(WSMO). However, WSML still is under development, and
there is no full-fledged reasoner with WSML parser avail-
able yet. Therefore we developed a formally grounded vari-
ant of WSML called WSML-MX directly in F-Logic [8, 1].
WSML-MX is similar expressive as WSML-Rule, which
has a different (more verbose) syntax as F-Logic but can be
mapped into this.

Central to WSML-MX is the notion of dertvative which
is an extended version of the object set introduced by Klein
and Konig-Ries [9]. A derivative D in WSML-MX encap-
sulates an ordinary concept 1" (in this context called type)
defined in a given ontology by attaching meta-information
merely about the way how 7" can be matched with any other
type. Such information is defined in terms of different meta-
relations of the derivative Dp. As type T is defined to be ei-
ther atomic or a complex type with relations, the derivative
D can also have a set of relations different from 7', though
this set is empty by default. The structure of a derivative
is shown in figure 1. Per naming convention, the identifier
of a derivative Dp of type T is denoted by T_Dn such as
Person_D42 for type Person.

WSML-MX uses the main and clearly motivated el-
ements required for service matching from WSML, that
are goal, service, capabilities, preconditions, and
postconditions but not ef fect and assumption. Please
note that the formal semantics of capabilities in WSML is
still open. Any service in WSML-MX is modelled as a
derivative with a relation called capability and a derivative
of type capability as range. Pre- and postcondition are re-
lations of the latter derivative both referring to a so called

183/466

<derivative>
DerivativelD
type: TypelD
metaRelation1: Value1

.rﬁ-etaReIationM: ValueM

Figure 1. Derivative structure in WSML-MX

state. A state is a set of state parts, which are derivatives
each defined as atomic, or as complex by means of rela-
tions with derivatives as range. Hence, any service deriva-
tive in WSML-MX can be represented as a directed object-
oriented graph with derivatives considered as nodes and re-
lations between them as edges, as shown in figure 2.

Webservice_D...
type: Webservice

capability
Capability _D...
type: Capability
preconditi 2/ \B§stcond|t|on
«---- State
- StatePart

%%% %?

Figure 2. Service derivative in WSML-MX

The language WSML-MX allows for constraints on both
relations and derivatives formulated in the full Horn frag-
ment of F-logic. Hence, WSML-MX constraints are as ex-
pressive and, in general, only semi-decidable as are WSML-
Rule axioms. In WSMO-MX, we use relative query con-
tainment for constraint matching (cf. section 3.2.3). How-
ever, matching of parts of WSML-MX expressions repre-
sented as acyclic object-oriented graphs without constraints
is decidable in polynomial time. The emphasis of WSML-
MX on these parts of service modelling is motivated not
only by clear separation of computationally tractable ele-
ments but the fact that it allows the matchmaker for a more
detailed explanatory feedback to the user in case the match-
ing of given service and goal derivatives failed.

An example for a service in WSML-MX is shown in fig-
ure 3; the service offers tickets for any trip between any
two German towns, but if the user departs from Berlin, her
destination must be Hamburg.

M Klusch, 2008

Webservice_D2

capability

State

postcondition Ticket_D5

po—
constraint->>c2
[
departure ¢ arrival date purchaser
‘ GermanTown_D1‘ ‘ GermanTown_DZ‘ ‘ Date_D4 ‘ ‘ Client_D1 H Town_D8 ‘
‘ param->>in ‘ param->>in ‘ param->>in‘ ‘ param->>in H param->>in ‘

FORALL X. satCons(X,c2) <- (X[dep: berlin] -> X[arrival- ql). ‘ livesAt

Figure 3. Example service in WSML-MX

3 Hybrid matching of derivatives
3.1 Overview

The result of matching a derivative D¢ from a goal
description with a derivative Dy from a service descrip-
tion is a vector v € R" of aggregated valuations of
ontology based type matching, logical constraint match-
ing, relation matching, and syntactic matching. Each
real-valued entry in the so called valuation vector v =
(r=,mc, ™3, TR, T, Mo, 1) With m; € [0,1] (i € {=,C
,d,~,M,0, L})and)" m; = 1, denotes the extent to which
both derivatives D¢ and Dy match with respect to the hy-
brid semantic matching degrees m; of WSMO-MX.

These degrees are the logical relations equivalence,
plug — in known from software component retrieval [18]
or the similar rule of consequences from Hoare logic [4],
inverse — plugin, intersection and disjunction (fail)
as degrees of logic based semantic match. The degree
of fuzzy similarity refers to a non-logic based semantic
match such as syntactic similarity, while the degree neutral
stands for neither match nor fail, hence declares the toler-
ance of matching failure. The set-theoretic semantics of the
hybrid matching degrees are given in Table 1 based on the
relations between the maximum possible instance sets of
the derivatives D¢ and Dy, denoted by G and W. Since
we use the heuristic relative query containment for the con-
straint matching, these sets are restricted to instances in the
matchmaker knowledge base which satisfy the constraints.

In order to compute the degrees of hybrid semantic
matching of given goal and service derivative, WSMO-MX
recursively applies different matching filters to their precon-
ditions and postconditions, and returns not only the aggre-
gated matching valuation vector but also annotations of the
matching process results as a kind of explanatory feedback
to the user. That facilitates a more easy iterative goal refine-
ment by the user in case of insufficient matching results.
The individual matching filters and their valuation for the
degrees of hybrid semantic matching are described in sub-
sequent sections, and exemplified in section 4.

184/466

order | symbol | degree of match pre \ post
1 = equivalence G=W
2 C plugin Gew WcCg
3 | inverse-plugin Gow WDG
4 mn intersection GNWHD
5 ~ fuzzy similarity G~W
6 o neutral by derivative specific definition
7 1 disjunction (fail) GNW=10

Table 1. Degrees of hybrid semantic matching of WSMO service and goal derivatives

3.2 Matching filters

3.2.1 Type matching

The matching of types T and Ty of the goal and ser-
vice derivative Dg and Dy is performed by means of
computing the degree of their semantic relation in the
matchmaker ontology according to a requested type sim-
ilarity relation TSR defined as meta-relation values in
D¢ typeSimRel—TSR]. WSMO-MX offers the follow-
ing derivative type similarity relations (in F-Logic):

e cquivalent: Tw =TV Tw - Ta Ng :: Tw
o sub: Ty :: Tg (Tw subtype of Tp); super: T == Ty

o sibling: ITp.Tq :: Tp NTw = TpA
ﬁ(HTx.aTy.TX S {Tg,Tw}/\TX STy Ny Tp);
types with one immediate common ancestor (parent).

e spouse:
ATeTe :: Ta N = Tw A —\(HTx.HTy.TX €
{Te,Tw} NTc :: Ty ATy :: Tx); types with one
immediate common descendant (child)

e comAnc (common ancestor):
Tpdg :Tp NTw = Tp

e comDes (common descendant):
AT Te :: Ta Ne = Tw

e relative: exists a path in the undirected ontology
graph between T and Ty

The maximum distance 7D € N\{0} between types in the
matchmaker ontology with respect to which each of the lat-
ter three relations gets evaluated to true is specified in the
goal derivative in terms of D¢ [type Distance—TD]. T'D
is the path length between both types in the undirected on-
tology graph; for the type relations com Anc and comDesc
it must hold that the addition of the path lengths from both
derivatives to their nearest common child/parent type is at
most T'D. Optionally, the same restriction can be imposed
on the type relations sub and super with T'D greater or
equal the path length from D¢ to Dy .

M Klusch, 2008

The valuation of the type matching of Dg and Dyy for
each of the hybrid semantic matching degrees of WSMO-
MX is listed in Table 2. If more than one type similarity
relation T'SR is specified in the goal, the maximum of the
valuation vectors is selected as a result.

3.2.2 Relation matching

Given that the Dg and Dy are complex, the hybrid
semantic matching must continue recursively with com-
paring their relations. Let the relation signatures of
D¢ and Dy be defined as follows: Dg[R1==E1;..;
Riy==FEy; Si1==F1;..; Si==F;..; Sn=F,], and
Dw[Rlz»Gl; e RkZ»Gk; Ty=>Hi;...; Tn:»H"],
where Ry, ..., Rg, S1,...s Sm, 11, ..., I}, are unique relation
names with (J; ¢y ,,,1 i 0 Ujep) 5 = 0 and derivatives
Ey, .. Ey,Gy,..Gy, F1, ..., Fpy, Hy, ..., H, the respective
ranges of the relations.

The relations Ry, ..., Ry, of the goal derivative D¢ for
which equally named relations do exist in Dy are valuated
for the hybrid degree of matching by recursively matching
their ranges with each other. That is, WSMO-MX attempts
to match the (goal) derivatives E- with the (service) deriv-
atives G, for all 7 € [1, k| and compute the respective val-
uation vectors.

We assume that for all relations S,, p € [L,{] in
D¢ that cannot be paired with an equally named rela-
tion in Dy (under unique name assumption for shared
namespaces) there exist one so called missing strategy
which indicates the matchmaker how to cope with this prob-
lem. Such a missing relation strategy is specified in the
goal in terms of Dg[missingStrat@(S,,)—MS,], with
MS,, € {assumeFEquivalent, assumeF ailed, ignore}.

The valuations for relations with missing strategies are
given in table 3. It lists also the valuations for the rela-
tions without missing strategy (S;, ... Sy, and Ty, ..., Ty),
which depend on whether they are part of a pre- or postcon-
dition.

The final valuation vector for the recursive relation
matching between D¢ and Dy is an aggregation of all
valuation vectors computed for the missing relations, and
those for the relation range derivative matchings. The cor-

185/466

type

valuation vector

similarity valpre

valpost

relation

B
L
)
g
)
7
3
¢

3
o]

E
—

4
L
3
g
)
7
)
g

)
9

)
}_

equivalent

sub

super

sibling

comAnc

spouse

comDes

o|o|o|o|o|o|o|~|i
SEEEEREE)
o|o|o|o|o|o|—|o|
ol olo|=|=|o|lo|e
»—*HHBEOOO
olo|o|lo|lo|o|o|o

relative

~| |~~~ ~N|~|~|~

(=] Bl o) Heo] Heo] Ren) Hen) Nen]

o|o|o|o|o|o|o|~|
ooouo“oo>—~o|
ooo‘oo~oo|
ololo|=|=|o|lo|o
olo|ololo| ool
SISEEEEREEE

~ |~ |~ |~ [~ |~ [~ [~ |~
~| |~~~ ~|~[~|~
~ |~ |~ |~ [~ |~ [~ [~ |~

Table 2. Valuation of type matching for hybrid matching degrees

missing valuation vector
strategy Ualpre,webservice/Ualpost,goal valpost,webserm’ce/'Ualpre,goal
(T=,7C, T3, To, L) (T=,7C, T3, To, L)
assumeFE quivalent (1,0,0,0,0,0,0) (1,0,0,0,0,0,0)
none (0,1,0,0,0,0,0) (0,0,1,0,0,0,0)
ignore (0,0,0,0,0,1,0) (0,0,0,0,0,1,0)
assumeFailed (0,0,0,0,0,0,1) (0,0,0,0,0,0,1)

Table 3. Valuation of relation matching with missing strategies for hybrid matching degrees

responding relation matching algorithm is outlined in the
subsequent section (cf. algorithm 5).

3.2.3 Constraint matching

Let D a derivative, C' a F-Logic rule body and Xp a
free variable in C, then we call ¢ a constraint of D,
if D[constraint—-c|. and VX p.satCons(Xp,c) «— C.
holds. Variable X p is bound with potential instances of D,
and satCons verifies whether such an instance satisfies c.
A derivative can have zero or many constraints including a
special constraint for nominals; the respective meta-relation
oneOf denoted as D[oneO f—+{i1, ..., i, }] means that an
instance of D has to be one of i1, ..., %y,.

In WSMO-MX, the matching of logical constraints of
goal and service derivatives is performed by means of so
called relative query containment. That is, any clause A
is relatively contained in clause B, or B relatively implies
A, with respect to a given knowledge base B, denoted by
A Cxp B, if the answer set Qicp(A) of querying KB with
A, is a subset of Qicg(B). Under the open world assump-
tion, KCBB does not contain all possible instances of a query
(universal closure), hence relative query containment can
only be considered as an approximation of logical impli-
cation (query containment) which is, in general, undecid-
able for first-order languages such as F-Logic [2]. An al-
ternative would be to approximate logical implication by
means of clause theta-subsumption [13] which is, in gen-
eral, NP-complete decidable [3]. Since fast deterministic

M Klusch, 2008

algorithms for partial testing of theta-subsumption are also
known [14], the correct but incomplete theta-subsumption
relation is used as a consequence relation in many ILP sys-
tems [12], and the matchmaker LARKS [16].

However, for pragmatic reasons of implementation,
WSMO-MX uses relative query containment for matching
constraints over the instances stored in the matchmaker
ontology. For each derivative D of type 7', WSMO-MX
determines a set of potential instances against which its
constraints are evaluated as queries. This set comprises all
instances of the concept 1" and instances of derivatives of
type T
VD, Xp.potentialInstance(D, Xp) «

3T. Dtype—T] A
(XD TV (HDT DT[type—HT] ANXp: DT))

The constraint matching filter then returns only those
instances of this set which satisfy all constraints of D:
VXp,D.satAllCons(Xp, D) «—
potentialInstance(D, Xp) A
(VC. D[constraint—C] — satCons(Xp,C)) A
((3X. D[oneO f—X]) — D[oneO f—Xp]).

The valuation of constraint matching is determined
by the type of the set relation p, which is defined
as Zxp(Dg) p Zxs(Dw) over the set Zxp(D)
{Xp|satAllCons(Xp, D)} of matching instances of
derivative D with respect to the given knowledge base KB
of the matchmaker (cf. table 4).

186/466

set valuation vector
relation valpre Valpost
Ixs(Dg) p Ixs(Dw) (=7, T3, AT, o, L) (T=,mC, T3, Mo, T)
Txs(Dg) = Zxs(Dw) (1,0,0,0,0,0,0) (1,0,0,0,0,0,0)
Ixs(Da) 2 Ixes(Dw) (0,0,1,0,0,0,0) (0,1,0,0,0,0,0)
Trs(Dg) C Zxs(Dw) (0,1,0,0,0,0,0) (0,0,1,0,0,0,0)
Iis(Dg) N Ip(Dw) # O (0,0,0,1,0,0,0) (0,0,0,1,0,0,0)
Txs(Dg) N Ixs(Dw) =0 (0,0,0,0,0,0,1) (0,0,0,0,0,0,1)

Table 4. Valuation of constraint matching for hybrid matching degrees

3.2.4 Syntactic matching

The filter of WSMO-MX for syntactic matching of goal and
service derivatives, D¢ and Dyy, is intended to comple-
ment those for semantic matching as described above. For
this purpose, it transforms the description of each deriv-
ative into a weighted keyword vector as known from in-
formation retrieval, and applies one of the selected syn-
tactic similarity metrics cosine, extended Jaccard, loss-of-
information (LOI), and weighted LOI [10], depending on
the user preferences specified as instances of the following
meta-relations of goal derivatives Dg.

e Dg[synSimUsage—-U] with U € {alternative,
compensative, complementary} specifies whether
syntactic matching shall be performed either as an ex-
clusive alternative to semantic matching, or only in
case of semantic matching failure, or in any case.

e Dg[synSimScope—S] with S € {scpType,
sepRelation, scpDescription} denotes whether only
the types, or the relations, or the whole text of the
description of the derivatives are used for syntactic
matching. In case of scpType, all type names (no rela-
tion names) of the derivative are recursively unfolded
in the matchmaker ontology and the resulting set of
primitive components used to compute a weighted key-
word vector, whereas for scpRelation only the relation
names of the derivative are used for this purpose. Any
combination of scopes is allowed.

e Dg[synSimMetric— M| with M € {cosine, loi,
loiWeighted, jaccard} specifies which IR similarity
metric to use. For details of computation, we refer to
[10].

e Dg[synSimMinDegree—a] with o € [0, 1] spec-
ifies the minimum degree of syntactic similarity re-
quired (threshold).

The valuation of syntactic matching is considered only
with respect to the degree of fuzzy similarity 7. and set to
0, if the computed syntactic similarity value does not exceed
«, and to 1 otherwise.

M Klusch, 2008

3.2.5 Parameter matching

A derivative can be tagged to be an input and/or output pa-
rameter by the meta-relation param. The parameter match-
ing filter checks whether goal and service derivative are dif-
ferently tagged and returns no valuation vector but an an-
notation indicating the deviations. This allows the service
requester to understand the interface of the service and if
needed to adjust the interface as it was expected and de-
noted by the parameters tags in the goal description.

3.2.6 Intentional matching

Optionally, WSMO-MX does perform a kind of intentional
matching of goal and service derivatives. For this pur-
pose, we adopt the approach proposed by Keller et al. [6].
In particular, the semantics of their notions of 3-intention
and V-intention correspond with the evaluation of our meta-
relation existential Intention to true and false, respec-
tively. The valuation vector of hybrid semantic matching
can be “’intentionally recomputed” by its multiplication with
the transformation matrix that corresponds to the requested
combination of intended provision of relevant instances as
it is declared for the goal and the service derivative by the
requester and provider, respectively.

The case in which V-intentions are declared for both
derivatives, D¢ and Dyy, is equal to not using intentions at
all, hence can simply be ignored by WSMO-MX. As a con-
sequence, there remain three cases for each pre- and post-
condition matching. These are computed by means of six
intentional matching matrices (to be multiplied with the val-
uation vector) of which we show only those for the postcon-
dition matching cases L Ipost,3q,ww: only Dg has an
J-intention, (2) Ipost,ve,3w: only Dy has an 3-intention,
(3) Ipost,3c,3w: both derivatives have 3-intentions. The
matrices are defined as follows.

IFor the cases of precondition matching the lines and columns for T
and 3 in the matrices have to be inverted.

187/466

1 000000
1 000000
0010000

Lostagyw =] 0 0 1.0 0 0 0
0000100
00 000T10
0000001
i1 00000
01 000O0 O
1 1 1 1 1

; st iggd

post,VG,IW 3 3 3
000 010 0
00 0001 0
00 0 000 1
1000000
1000000
1 1 1

o= | L0 1000 1

post, 3G, IW 3 3 3
00 0010 0
00 00O0T1 0
00 00O0O0 1

Due to space restrictions, we refer the interested reader
for more details to [5].

3.3 WSMO-MX matching algorithm

The request for a semantically relevant service is speci-
fied by the user as a goal derivative in WSML-MX, together
with a matching configuration Conf. The configuration
contains default values for minimum syntactic similarity de-
gree, weights for the aggregation of different matching filter
results, and the minimum valuation of each degree of hybrid
matching returned by the matchmaker. WSMO-MX takes
the precondition state and the postcondition state of each
advertised service from its local knowledge base (cf. algo-
rithm 1), and then matches them pairwise with the states of
the given goal (cf. algorithm 2). In case of no precondi-
tions, the result of their matching is set to equivalence by
default.

The state of the goal is matched with that of the ser-
vice by matching their state part derivatives (cf. algorithm
3) and then recursively by the pairwise matching of rela-
tion range derivatives of equally named relations (cf. al-
gorithm 5). Subsequently, WSMO-MX computes the max-
imum weighted bipartite graph match, where nodes of the
graph correspond to the goal and service state parts and the
computed valuation vectors act as weights of edges existing
between matched state parts.

At each step in the recursion, the parameter matching fil-
ter is applied first, since its result, an annotation record, is
not valuated for any of the hybrid matching degrees. Then
each of the semantic matching filters (type, constraint, and
relation matching) is applied. Syntactic matching is per-

M Klusch, 2008

formed in case one of these filters fails (compensative), or
complementary in any case, if not specified differently. The
user can also ask for just a first coarse-grained filtering by
means of exclusively syntactic matching without any se-
mantic matching.

Finally, all valuation vectors computed during recursive
matching of goal and service derivatives are aggregated into
one single valuation vector. For aggregation, each individ-
ual valuation vector is weighted for the respective matching
filter as specified in the configuration (C'on f) for the given
goal; the weighting is assumed to be equal by default. This
aggregated valuation of hybrid matching degrees is then re-
computed with respect to the intentions of the considered
derivatives (cf. in section 3.2.6).

The overall result of the matching process is a ranked
list of services with their hybrid matching valuation vec-
tor, and annotations. Services are ranked with respect to
the maximum value of hybrid semantic matching degrees in
descending order (cf. table 1), starting with 7=.

Algorithm 1 WSMO-MX matching of query (goal G, con-
figuration Conf) with registered services in WSML-MX:
matchGoal
1: function MATCHGOAL(G, Conf)
WS := GETREGISTEREDWEBSERVICES()
8¢ pre := GETPRECONDITION(G)
SG.post := GETPOSTCONDITION(G)
Confpre == Conf + (modus : pre)
Confpost := Conf + (modus : post)
Winatched ‘= empty set
forall W € WS do
Sw pre := GETPRECONDITION(IV)
SW post := GETPOSTCONDITION(W)
(Valw,pre, Annw pre) =
MATCHSTATES(SG pre; Sw,pre; Con fore)
(ValW,post; AnnW,post) =
MATCHSTATES(SG, post, Sw,post, COn fpost)
12: Winatched += (Vvy ValW,prea ValW,posta
AnnW,prea AnnW.,post)

R A A S o

—
4

—_

13: end for
14: return W,,qtched
15: end function

3.4 Implementation

WSMO-MX has been fully implemented in Java 5 and
F-Logic using the F-Logic reasoner OntoBroker?. Its main
components are a matching engine which is interfaced
with an ontology manager communicating with the rea-
soner. Type and constraint matching is done directly within
the OntoBroker, whereas the WSMO-MX matching engine

2developed by Ontoprise, http: //www.ontoprise.de

188/466

Algorithm 2 matchStates

1: function MATCHSTATES(S¢, Sw, Conf)

2:

N AW

10:
11:
12:
13:

15:
16:
17:
18:

20:
21:
22:
23:

24:
25:
26:
27:

28:
29:
30:
31:
32:

> build bipartite weighted graph from
> matching state parts of goal and webservice
Graph = empty graph
for all StatePartg € Sg do
for all StateParty € Sy do
(Valw, Annw) :== MATCHDERIVATIVES
(StatePartg, StateParty , Conf)

if = ISFAIL(V aly/) then
Graph += edge(State Partq,
StateParty ,Valw, Anny)
end if
end for
end for

> find maximum weighted graph matching
M = GETGRAPHMATCHING(Graph)
(Val, Ann) := GETVALANN(M, Conf)

> valuate not matched state parts
Sa_nr := NOTMATCHEDSTATEPARTS(S¢, M)
Sw _m := NOTMATCHEDSTATEPARTS(Sw , M)
for all StatePartg € Sg_y do
Val += VALSTATEPART(goal, Con f)
Ann += (G, W, state,
(StatePartq, notMatched, goal))
end for
for all StateParty € Sw—_ do
Val += VALSTATEPART(webservice, Con f)
Ann += (G, W, state,
(State Party , not M atched, webservice))
end for

> normalize cumulated valuation
Vall=|M| 4+ Sc-—m +Sw-m
return (Val, Ann)

33: end function

M Klusch, 2008

Algorithm 3 matchDerivatives

1: function MATCHDERIVATIVES(D¢, Dy, Conf)

2:

*®

29:
30:
31:

32:
33:
34:
35:
36:

37:
38:

NN hw

if Dg = Dy then return ((1,0,0,0,0,0,0), ())
end if

Annparams := MATCHPARAMS(D ¢, D)
synMatchU sage :=

GETSYNMATCHINGUSAGE(D¢, Conf)

if synMatchU sage = alternative then
(Valsyn, Anngyn) =
MATCHSYNTACTIC(D¢g, Dy, Conf)
if "ISFAIL(V alsyy) then
Ann += Annparams + Anngyn
return (Valg,,, Ann)
end if
end if

(Valgsem, Anngem) =
MATCHSEMANTIC(Dg, Dy, Conf)

if ISFAIL(V alge.y,) then
if synMatchU sage = compensative then
(Valgyn, Anngyn) =
MATCHSYNTACTIC(D¢, Dw, Conf)
if —ISFAIL(V alsyy,) then
Ann += Annparams + Anngyn
return (Valg,,, Ann)
end if
end if
else if synMatchU sage = complementary then
(Valsyn, AnnSyn) :=
MATCHSYNTACTIC(D¢g, Dw, Conf)
if —ISFAIL(V alSyn) then
Ann += Annparams + Anngyn + Anngsem
Val :=
AGGREGATEVAL(V alsem, Valsyn, Conf)
return (Val, Ann)
end if
else
Ann += AnnParams + AnnSem
Val :=
AGGREGATEVAL(V algepm, null, Conf)
return (Val, Ann)
end if

39: end function

189/466

Algorithm 4 matchSemantic

1: function MATCHSEMANTIC(D¢, Dy, Conf)

2: (Valrype, Annpype) =
MATCHTYPES(D¢, Dw,Conf)
3: (Valcons, Anncons) =
MATCHCONSTRAINTS(Dg, Dy, Conf)
4: (Valger, Annge) :=

MATCHRELATIONS(D¢, Dy, Conf)

Val .= (Valrype, Valcons, Valrer)
Ann = Annpype + Anncons + Annpge

® W

9: return (Val, Ann)
10: end function

Algorithm 5 matchRelations

1: function MATCHRELATIONS(D¢, Dy, Conf)

2 > Relsq - relations defined only for D¢

3: > Relsy - relations defined only for Dy

4 > Relsq,w - relations defined for both

5 (Relsq, Relsw, Relsg,w) =
GETRELATIONS(D¢g, Dw)

6
7: > for all relations defined in Dg and Dy,
8 > match the derivatives in their range
9: for all R € Relsg,w do
10: Rangeg := GETRELRANGE(Dg)
11: Rangew = GETRELRANGE(Dyw)
12: (Valrange; AnNRange) =
MATCHDERIVATIVES(Rangeg, Rangeyy)
13: Val +=Valrange
14: Ann += Annrange
15: end for
16: > valuate relations defined only for Dg
17: for all R € Relsg do
18: MSg =

GETMISSINGSTRATEGY (D¢, R, Conf)
19: Val +=
VALUATEMISSREL(webservice, M Sg, Conf)
20: Ann += (D¢, Dw,rel,
(R, missing, webservice, M Sg))

21: end for

22: > valuate relations defined only for Dy

23: for all R € Relsy do

24: Val += VALUATEMISSREL(goal, null, Con f)
25: Ann += (D¢, Dw, rel, (R, missing, goal))
26: end for

27:

28: Val /= |Relsg| + |Relsw| + |Relsa,w |
29: end function

M Klusch, 2008

takes the results and does the rest, that is relation matching,
syntactic matching, aggregation of valuation vectors, state
matching including the computation of maximum weighted
bipartite graph matching. The OntoBroker loads the match-
maker ontology from a given set of F-Logic files that con-
tain the types, derivatives (including goals and services), in-
stances, and constraints, as well as the rules for type and
constraint matching, unfolding and some auxiliary tasks.
In an upcoming version of WSMO-MX, the goals will be
passed by the matching engine to the ontology manager
only at the time of the respective request to the matchmaker.

4 Example

Goal, service, ontology. Suppose the user defines a goal
derivative Ticket_D4 as shown in figure 4. That is, she is
looking for any ticket for a trip between two arbitrary towns,
but if it starts in Berlin, then it must not end in Bremen.
Please note, that the user may specify matching relaxations
for any object of the goal as exemplified, but also different
weights for the matching filters to be applied. In this exam-
ple, we assume the filters to be equally weighted.

[Goapz | state
capability) Ticket_D4
)

Capability D3 | typeSimRel->>sub
param->>out

ivalent

purchaseri

missir ia)->>asst
constraint->>c1

deparlurei via arrivali dalel

Town_D3 Town_D5 ‘ Date_D3 ‘ Customer_D1
typeSimRel->>sub typeSimRel->>sub ‘ param->>in ‘ param->>in
param->>in iallntension->>true synSimU: ompensative
v synSimScope->>scpType
Town_D4 synSimMetric->>loi
— synSimMinDegree->0.7
residence
FORALL X. satCons(X,c1) <- (X[dep 1] -> not X[arrival). "

Figure 4. Example goal in WSML-MX

The part of the type hierarchy in the matchmaker ontology
and all instances used in this example are shown in figure 5.

For reasons of efficiency and data privacy, mediation
between service providers and requesters by means of an
autonomous matchmaker is not appropriate for constraint
matching over different instance bases. Alternatively, an
autonomous WSMO-MX matchmaker could perform con-
straint matching without instance sets by polynomial means
of theta-subsumption reasoning for restricted set of Horn
clauses like in LARKS [16]. This is part of our future work
on WSMO-MX.

In this example, the service derivative Ticket_D5 given
in section 2 will be matched against the goal derivative
Ticket_D4. Please note, that the service offers tickets for
any trip between any two German towns, but if the user

190/466

Iy
(Location) (Date) (Tickel) CPerson)

(Toun) (Station) (Traintcket) Customer) (Clent)
CGemnanTown

tl:Ticket D4[departure->>berlin;
arrival->>leipzig; ...].
t2:Ticket D4 [departure->>berlin;
arrival->>kiel; ...].
t3:Ticket D5[departure->>hamburg;
arrival->>bremen; ...].
t4:Ticket D5[departure->>hamburg;
arrival->>hannover; ...].
t5:Ticket D5[departure->>berlin;
arrival->>hamburg; ...].
t6:Ticket D6[departure->>berlin;
arrival->>bremen; ...].

Figure 5. Example ontology (type hierarchy
and instances)

departs from Berlin, her destination must be Hamburg.

Matching. Since the capabilities of both goal and service
derivatives do not include any precondition, the hybrid se-
mantic matching of them is restricted to the matching of
their postcondition states as follows.

1. match types: the types of Ticket_D4 and Ticket_D5
are equal. Hence the valuation is v; =
(1,0,0,0,0,0,0).

2. match parameters: both are output parameters, no
annotation necessary

3. match relations

(a) departure: the types of Town_D3 and German-
Town_D1 are not equivalent, but Town_D3 allows
subtypes. Since GermanTown is a subconcept of
Town, the valuation is v, = (0,1, 0,0,0,0,0,0).

(b) via: this relation is not defined for Ticket_D3,
but the missingStrategy for this relation is as-

sumeEquivalent yielding a valuation vy =
(1,0,0,0,0,0,0,0).

(c) arrival: analogous to departure types of the
ranges of arrival are subtypes and yield the valu-
ation vy = (0,1,0,0,0,0,0,0).

(d) date: is equal in goal and service, hence valuated
as vs = (1,0,0,0,0,0,0,0)

M Klusch, 2008

(e) purchaser: type matching fails for Customer_D1
and Client_ D1, but compensative syntactic
matching is allowed using loss of information
(LOI) metric. For the unfolding only the types of
the derivatives should be used (scpType), yield-
ing the term vectors (Customer : 1,Town :
1, Person : 1, Location : 1,Town : 1) and
(Client : 1,Town : 1, Person : 1, Location :
1,Town : 1) for Customer_D1 and Client D1,
respectively. The similarity degree is 0.75, and
therefore greater than the declared minimum of
0.7. The resulting valuation vector is vg =
(0,0,0,0,0,0,1,0).

The aggregated relation valuation is v7 =
(0.4,0.4,0,0,0,0.2,0)

vat..+v6 __
5

4. match constraints: Ticket_D4 has the constraint c1.
This is satisfied by the instances t1,...,t5. The con-
straint c¢2, which is imposed on Ticket_DS5 is satisfied
by the instances t3,...,t5. That means the instances
for Ticket_D5 are a subset of those of Ticket_D4 and
hence the valuation is vg = (0, 1,0,0,0,0,0,0)

Finally, the aggregated valuation for the derivative matching
of Ticket_D4 and Ticket_D5 is

— witvrtvs _ (7T 7 1
Vg = . 37 S*(ﬁaﬁvovoaoaﬁvo)'

5 Related work

To the best of our knowledge, WSMO-MX is the first
implemented full-fledged matchmaker for WSMO-oriented
services. It borrows the approach to recursive object-
oriented structure matching from [9], the notion of inten-
tional matching from [6], and the hybrid semantic matching
from [10]. The mediator based discovery approaches pre-
sented in [7, 17] do not allow for a general goal-service
matching, but require problem specific mapping, or con-
struction rules. Besides, like in [15], they define their no-
tions of match on the assumption that an advertisement
postcondition has to subsume the goal’s postcondition for a
full match, which is diametrically opposed to our approach
and to the original idea of how to match program capabili-
ties initially proposed in [4, 18].

Other relevant approaches to automated selection of se-
mantic web services include those for retrieving relevant
OWL-S services [11, 15]. Most of them rely on DL based
subsumption reasoning. However, OWL still lacks the sup-
port of rules and subsumption reasoning in the underlying
description logic SHOZN (D) is NEXPTIME. Besides,
unlike WSMO, there is no way in OWL-S to link I/O pa-
rameters in the signature with preconditions and effects as
shared variables. Thus, most OWL-S matchmakers perform

191/466

signature matching only. OWLS-MX [10] complements the
logic based semantic matching of OWL-S service signa-
tures with syntactic matching, which is also rudimentary
performed in LARKS [16]. For WSMO-MX, we did im-
prove on this idea of OWLS-MX by allowing for a more
fine-grained parametrisation, and integrated interleaving of
syntactic and semantic matching.

6 Conclusions

In this paper we presented the general purpose match-
maker WSMO-MX for services described in WSML-MX
which is a LP based variant of WSML-Rule that facilitates
matching of pre- and postconditions of object-oriented de-
scriptions of goals and services. WSMO-MX applies dif-
ferent matching filters to retrieve WSMO services that are
semantically relevant to a given goal with respect to seven
degrees of hybrid matching. Each of these degrees are re-
cursively computed by aggregated valuations of ontology
based type matching, logical constraint and relation match-
ing, and syntactic similarity of goal and service derivatives.
It integrates signature matching with state matching, and re-
turns not only the final aggregated valuation vector for the
hybrid matching degrees but an annotation of the match-
ing results for interactive goal refinement by the user. Cur-
rently, relation cardinalities are not considered by WSMO-
MX but will be integrated as soon as they become stan-
dardised 3 and supported by an F-Logic reasoner. Though
the matchmaker has been fully implemented, the evaluation
of its performance is ongoing work with generating the re-
quired WSMO service retrieval test collection first. Like
with OWLS-MX, we intend to make WSMO-MX (without
OntoBroker*) available to the semantic community under
GPL-like license at the semwebcentral.org portal.

References

[1] J. Angele and G. Lausen. Ontologies in f-logic. In S. Staab
and R. Studer, editors, Handbook on Ontologies, pages 29—
50. Springer, 2004.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Com-
plexity and expressive power of logic programming. ACM
Computing Surveys, 33(3):374-425, September 2001.

G. Gottlob and A. Leitsch. On the efficiency of subsumption
algorithms. Journal of the ACM (JACM), 32(2):280 — 295,
April 1985.

C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM (CACM), 12(10):576-580, 10
1969.

(2]

(3]

(4]

3For more information
semwebcentral.org/
“research licences can be obtained from Ontoprise

see http://forum.projects.

M Klusch, 2008

10

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

F. Kaufer. WSMO-MX: A Logic programming based hybrid
semantic web service matchmaker. Computer Science Dept.,
University of the Saarland, Saarbruecken, Germany, 2006.
U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel.
Automatic location of services. In Proceedings of the 2nd
European Semantic Web Symposium (ESWS2005), Herak-
lion, Crete, June 2005.

M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller,
H. Lausen, and D. Fensel. A logical framework for web ser-
vice discovery. In Proceedings of the ISWC 2004 Workshop
on Semantic Web Services: Preparing to Meet the World of
Business Applications, volume 119, Hiroshima, Japan, No-
vember 2004. CEUR Workshop Proceedings.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. Journal of the
ACM, 42, 1995.

M. Klein and B. Konig-Ries. Coupled signature and spec-
ification matching for automatic service binding. In Pro-
ceedings of European Conference on Web Services (ECOWS
2004), LNCS 3250, page 183, Erfurt, Germany, September
2004. Springer.

M. Klusch, B. Fries, M. Khalid, and K. Sycara. Owls-mx:
Hybrid owl-s service matchmaking. In Proceedings of Ist
Intl. AAAI Fall Symposium on Agents and the Semantic Web,
Arlington VA, USA, November 2005.

L. Li and I. Horrocks. A software framework for match-
making based on semantic web technology. In Proceedings
of the Twelfth International Conference on World Wide Web,
pages 331-339. ACM Press, 2003.

S. Muggleton and L. D. Raedt. Inductive logic pro-
gramming: Theory and applications. Logic Programming,
19(20):629-679, 1994.

J. Robinson. A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM, 12(1), 1965.

T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient algo-
rithms for theta-subsumption. JAIR, 1997.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated discovery, interaction and composition of se-
mantic web services. Journal of Web Semantics, 1(1):28,
2003.

K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dy-
namic matchmaking among heterogeneous software agents
in cyberspace. Autonomous Agents and Multi-Agent Sys-
tems, 5:173-2003, June 2002.

E. D. Valle and D. Cerizza. Cocoon glue: a prototype of
wsmo discovery engine for the healthcare field. In Pro-
ceedings of the WIW 2005 Workshop on WSMO Implemen-
tations, volume 134, Innsbruck, Austria, June 2005. CEUR
Workshop Proceedings.

A. M. Zaremski and J. M. Wing. Specification matching of
software components. In 3rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 10 1995.

192/466

7

Semantic Service Discovery in Pure P2P
Networks

M. Klusch and U. Basters: Risk Driven Semantic P2P Service Re-
trieval. Proceedings of the 6th IEEE International Conference on Peer-
To-Peer Computing (P2P), Cambridge, UK, IEEE CS Press, 2006.

M Klusch, 2008 193/466

Risk Driven Semantic P2P Service Retrieval

Matthias Klusch, Ulrich Basters
German Research Center for Artificial Intelligence (DFKI)
Saarbruecken, Germany
klusch@dfki.de, ulrich@basters.de

Abstract

Inthis paper, we present a novel approach, named RS2D,
to risk driven semantic service query routing in unstruc-
tured, so called pure P2P networks. Following the RS2D
protocol, each peer dynamically learns about the query an-
swering behavior of its direct neighbours. without prior
knowledge on the semantic overlay. The decision to whom
to forward a given service request is then driven by the es-
timated mixed individual Bayes' conditional risk of routing
failure in terms of both semantic loss and high communi-
cation costs. The results of our experimental evaluation of
retrieval performance and robustness show that RS2D top
performs compared to other relevant systems.

1. Introduction

The retrieval of relevant services is one key to service
oriented computing in the web and semantic web. As of to-
day, web services are supposed to be still discovered mainly
by means of central repositories or registries such as UDDI
[1]. In contrast, unstructured P2P service networks are ex-
pected to be robust against dynamic changes in the under-
lying network topology at the very expense of adminis-
trative communication overhead in due course of the self-
regulation of the peers. The major challenge of decentral-
ized semantic Web serviceretrieval in unstructured P2P ser-
vice networksisto keep the communication costs of service
retrieval low with reasonably high precision of the returned
results.

Different approaches to solve this problem have been
proposed in the literature; an accessible survey is provided
in [2]. Whereas broadcast-based approaches are very ro-
bust with high precision they typically suffer from poor
scalability due to their high communication overhead. Ran-
domized routing usually keeps the communication effort
low, but at the expense of low precision of the returned
results. Our solution to this problem is the first risk as-
sessment driven semantic service query routing protocol,

M Klusch, 2008

named RS2D. Key ideaisto let the peers dynamically learn
the average query-answer behavior of their direct neigh-
boursin the network for makingindividual probabilistic risk
based routing decisions with respect to both semantic gain
and communication costs. In contrast to other existing ap-
proaches, RS2D does not require any prior knowledge on
the environment including service distribution, global on-
tologies, or network topology. We implemented the RS2D
protocol and experimentally evaluated its performance and
robustness in randomly generated unstructured P2P net-
works in different scenarios.

The remainder of this paper is organized as follows: Af-
ter brief discussion of related work in section 2, we provide
the outline of the RS2D protocol in section 3, and provide
the details of the underlying Bayesian risk based routing
decision rule in section 4. Section 5 provides and discusses
the results of the experimental evaluation of RS2D com-
pared with other relevant approaches. Section 6 presents
some insights into the implementation of the RS2D system
and its simulation, and section 7 concludes the paper.

2. Related Work

The GSD-algorithm by Chakraborty et al.[4] takes ad-
vantage of the hierarchica structure of a global underly-
ing ontology of the semantic network. Peers advertise their
services not as service description, but with an ontological
classification. When a peer gets a request for a service, it
uses this classification to determine the distance between
the requested and the offered services in the ontology tree.
This approach has the clear disadvantage that only a static
and commonly known ontology can be used. Additionally,
sometimes the ontological classification might not be suffi-
cient to find matching services, e.g. if they differ in their
input and output parameters.

Another approach was proposed by Haase et a. with
Bibster [8]. Their system relies on service advertisements
that build up a semantic topology overlay. Thisis done by
a specia advertisement caching policy: peers add adver-
tised services of neighboursto their list of known services

194/466

only if they are semantically close to at least one of their
own services. This way, peers become experts for seman-
tically similar services. When a query then asks for a cer-
tain service, Bibsters routing mechanism chooses those two
neighbourswhose expertiseis closest to the query. Thusthe
query travels along a path of peers with similar expertise
what increases the result precision and decreases communi-
cation overhead. However, the message traffic induced by
theinitial exchange of service advertisementsis rather high.
Also, prior knowledge about other peers’ ontologiesas well
as their mapping to local ontologiesis assumed.

To the best of our knowledge, there exist no other rel-
evant and implemented solutions to the problem of decen-
tralized semantic service retrieval in unstructured P2P net-
works.

3 RS2D Routing Protocol Overview

One major challenge of decentralized service retrieval
in unstructured P2P networks, is to achieve a reasonably
high retrieval performance with low communication costs
without any prior knowledge about the environment includ-
ing services, ontologies, or network topology. Thereis no
central directory or repository in the system. The basic
idea of our solution to the problem is to allow each peer
to quickly learn which of its direct neighbours in the net-
work will probably return relevant semantic web services
for a given query with minimal risk of both semantic loss
and high communicationin total. Wefirst outline the RS2D
protocal to be followed by each peer, and then provide the
details of it in subsequent sections.

Let be for each peer v, ¢ aservice request (query); S set
of locally known services, S, the current top- relevant ser-
vices (URIs) retrieved; a € R the communication effort of
propagating ¢, that is the number of messages in the rout-
ing subtree for ¢ in the network graph; 7'S the individual
training set of a peer consisting of information about previ-
ous queries and their results; hop € N the distance from v
in the network. Then, each peer v performs the following

steps:

e Determine the set) of services that are semantically
relevanttog: S, = S, U{Vs € S:0(s,q)}.

The function o(s,q) € [0, 1] maps the matching re-
sults of the used semantic web service matchmaker
to [0, 1], where (s, q) = 0 and o(s,q) = 1 repre-
sent a matching failure and exact match, respectively.
For our experiments with RS2D, we used the hybrid
OWL-S service matchmaker OWLS-MX [9] which
renders RS2D independent from any fixed global on-
tology, asthis matchmaker dynamically maintainsalo-
cal matchmaker ontology by means of logic based rea-

M Klusch, 2008

soning upon provided service advertisements and re-
quests (see also sect. 6).

e For each peer vy in the direct neighbourhood of v
(hop = 1):

— Estimate the expected semantic gain E(y), and
communication costs F(a) of forwarding request
r = (g, 5, Sy, a) to vy based on the actud train-
ingsetT'S.

— Compute the individual Bayes' conditional risk
of routing r to vy, or not (cf. section 4).

— Send r to vy, if therisk of forwardingis minimal,
or if (initidly) 'S = 0 then multicast » to all
neighbours.

e Observethe query answer behavior of neighbour peers
v, by storing received replies with a semantic score
L(S;)) of intermediate results S¢ returned and com-
munication costs a per query in the local training set
TS. The semantic score measures the quality of the
set of retrieved services with respect to ¢ by means of

L(Sy) = X es, o(5,q).

e Reject areceived request r, if it has been already pro-
cessed locally, or a fixed number of forwarding steps
(hops) is reached, or the risk of further forwarding is
maximal for each of its neighbours.

e Return set of top-£ semantically matching servicesin
apriority queueif the semantic gain is positive, that is
L(Sy) — L(Sg) > 0.

Each peer collects the replies on query q it receives from
its neighbours and merges them together with its local re-
sults set which is then returned to the one who did forward
q to it. Thisway, the result set for a query is created while
being propagated back to its origin. At the same time, each
peer involved in this process continuously learns about the
guery answering behaviour of each of its neighboursin gen-
era. It cachestheindividua observationsin its local train-
ing set each time it receives areply. This, in turn, enables
each peer to estimate the corresponding risk of forwarding
aquery to individual peers.

4 BayesRisk of Query Routing

The decision of each peer to route agiven query ¢ to any
of its neighbours v;, is based on the individual estimated
mixed risk of doing so in terms of both semantic gain and
communication costs. The estimated semantic gain E(y),
the estimated communication costs F(a) as well as the
probability with which a neighbour will answer are com-
puted from the training set 7S by means of a naive Bayes

195/466

approach [5]. More concrete, the risk assessment driven
routing decision bases on the computation of the individual
Bayes' conditional risk defined as:

IC]

R(ailz) =Y Mai, ¢5) - P(esz) D
j=1

with

e Binary routing aternatives oy and «; for not routing,
respectively, routing the query.

e Query answer class set C' = {c¢g, ¢1} with classes ¢
(= query rejected because it already was processed by
vg) and ¢; (= vy answersto the query with a semantic
gain,i.e. with L(Sy/) — L(S;) > 0.

e Observation = of query answering behavior of v, for
past queries

e Mixed semantic and communication loss A(«;, ¢;) for
routing alternative «; and query answer class ;.

o Conditional probability P of query answering class ¢ ;
for given observation z.

Having computed the mixed risk values for each binary
routing alternative for each of its neighbours, the peer then
routes the query ¢ only to those peers for which the corre-
sponding alternative with minimal risk

o = argmin{R(ag|z), R(a1|z)} 2

is ay, otherwise rejects. This minimizes the overall risk
R = [R(a(xz)|z)P(x)dz in compliance with the known
Bayes Decision Rule, in other words a decision for the al-
ternative with minimal overall risk is optimal.

What does an individual peer observe in concrete terms?
From each reply to a given query q it received from some
neighbour vy, it extracts data into a training record ¢t =
(¢, 84, Sy, L(Sy), L(SY), fid, tid, cj,a) and stores it in a
local training set T'S. These observation data are as fol-
lows:

q: Request in terms of the description of a desired service
written in a semantic web service description language
such as OWL-S.

S+ Set of top- relevant services retrieved before forward-
ing the request.

Sy/+ Set of top-k relevant services retrieved after forward-
ing the request.

L(S;), L(S;): Semantic score of S, S/

fid: Identifier of the peer from which the request was re-
ceived.

M Klusch, 2008

tid: ldentifier of the peer to which the request was for-
warded.

¢;: Query answer result class (co or ¢1).

a: Communication effort entailed by the decision to route
the request to vy, i.e. the number of message hopsin
the routing subtree of the request.

The observation vector z € N? used for risk estimations
isdefined asx = (fid, tid). Our experiments showed, that
already the use of these two parameters yield an reason-
ably well prediction. To be able to predict the values of
X\, E(y), E(a) and P(c;|x), wefilter the training set in dif-
ferent ways. Let T'S,, .. ,. C T'S denote the set of train-
ing records ¢ with parameters p; to p, Set to given values,
for example, T°S t;4 +:q the subset which has the given val-
ues for fid and tid (here: z = 2 having p; = fid and
P2 = tld)

The estimated semantic loss of routing ¢ to apeer vy, (al-
ternatives «y, arp) for possible query answer classes (¢, ¢1)
based on its average Q/A behavior according to the actual
training set is computed as follows:

| Alaol) | Alaa]")
—E(a)k 2K)]
TE(y) | —TE(y)

The average message transmission costs are denoted by
k, and assumed to be constant. In addition, the average ex-
pected semantic gain E(y) and average number of messages
E(a) are defined asfollows:

Co
C1

1
B(y) = —— L(SPle — LSl (9
(y) |T'S fid,tidl teTSfm,m[ol
B(@) i= o
e L als
|T'S tid tid| tETS pia tid

with [z]; extracting the parameter 2: from observation record
tinthetraining set T'S. Thereal-valued user preference pa-
rameter — denotes the weighted relation between maximum
semantic gain (y = 1) and communication costs the user is
willing to accept; in our experiments, we obtained the best
results with 7 = 1000. Each of the above defined cases
of semantic loss of arouting decision by an individual peer
v With respect to forwarding a given reguest to one of its
neighbor peers vy, isjustified as follows:

Aapleo) No routing of the request to the targeted peer vy,
takes place, but it would have been rejected by this peer
anyway. As a consequence, the risk based decision
is of benefit for v in terms of saved communication
efforts (— E(a)k).

196/466

A(apler) Inthiscase, peer v does not forward the query to
v, but would have received a positive reply with se-
mantic gain. Hence, the loss is computed in terms of
the costs of the lost opportunity, that is the semantic
gain weighted by its relation to individually prefered
upper bound of communication costs (7 E(y)).

A(a1|eg) Peer v decides to route the query to vy which re-
jectsit. Hence, the decision was not beneficial for v in
that it produced unnecessary communication costs of
the specific request and reply.

Aaq]er) Therequest of peer v will be answered by v, with
some expected semantic gain for v. Hence, the deci-
sionisbeneficial for v in terms of negativeloss (utility
—TE(y)).

Using A for computing the risk of routing alternatives
«g, o doesreflect the classical loss relation between utility
and costs:

R(ao|z) = —E(a) - k- P(colx) + 7 - E(y) - P(eilz) (6)
R(anlz) =2 k- Pleolr) —7- E(y) - Plez) (7)

Alternatively, one could have defined the semantic loss
of the query answering class ¢; directly as difference be-
tween expected semantic gain and average communication
costs in terms of number and volumes of messages ex-
changed:

| N(awl) | N(a])
€o —E(a)k 2K 8)
a1 | E(y) — E(a)s | —E(y) + E(a)s

However, according to the results of our experimental eval-
uation, this option can be significantly improved by the one
chosen in terms of retrieval performance with only slightly
increased communication efforts.

Then, the conditional probability P(c;|x) of possiblean-
swering result classes of the considered peer v;, based on
its observed Q/A behavior in the past is computed as usual
based on he prior probability P(z|c;), thelikelihood P(c;),
and the normalizing evidence factor P(z) from thetraining
set TS

P(Cj|$) _ P($|CJ) 'P(Cj)

@) ©)
with
TS|
cP(c;) = S| (10)
P(zlc;) = [[P(x1. c;) (11)
=1

|C]
P(z) =Y P(xle;) - P(c)) (12)

j=1

M Klusch, 2008

with the probability P(x;, c;) of the occurence of the ob-
servation feature component x; together with class ¢; de-
fined as

TSz, e,
TSe,|

The decision making process heavily relies on the train-
ing set T'S that each peer maintains individually. Initialy,
when a peer joins the network, itstraining set 7S is empty;
in this case, it sends its queries to all its direct neighbours
until the size (6(7'.5))) of its training set, more specifically
T'S¢ia,tiq is sufficiently large for continuing with risk as-
sessment driven routing decisions from this point. Our ex-
periments provide evidence in favor of 6(T'S fiq,tia) = 1
(s = 8 when using the alternative semantic loss defini-
tion in equ.(8)).

P(x;,z;) = (13)

5 Evaluation

We have implemented the RS2D protocol and evaluated
it by means of simulation. For this purpose, we randomly
generated unstructured, sparsely connected P2P networks
of different size with 50, 100, 200, and 576 peers, and
used the OWLS-TC2 service retrieval test collection [6]
which contains 576 OWL-S services, 36 queries with rele-
vance sets, and the OWLS-M X matchmaker [7] for seman-
tic matching by each peer.

Figure 1. Example of unstructured network of
576 peers used in our experiments

In each simulation run, the queries are sequentially pro-
cessed by each peer to generate the training set, and the top
k (k = 20) services are returned by each peer only. The

197/466

P2P service retrieval performance is measured in terms of
micro-averaged precision and recall against communication
overhead with respect to the maximum hop count for query
propagation.

We evaluated the performance of the RS2D service query
routing mechanism against the following relevant alterna-
tive approaches:

BCST Classic broadcast based routing forwards the query
to all direct neighbours until a maximal number of
hops is reached, or al neighbours reject the query.
BCST aways yields optimal precision but at the very
expense of communication efforts.

RND2 Random peer selection: This method randomly se-
lects two direct neighbours of a peer v,,, to which the
query is forwarded. RND2 has low communication
costs but low precision as well. It is aso used by de-
velopers of BIBL in [8] for the comparison of perfor-
mance.

BIBL Bibster-like routing: This routing mechanism sim-
ulates the one used in the P2P system Bibster [8]. In
particular, peers have prior knowledge about afixed se-
mantic overlay network that isinitially built by means
of a special advertisement caching policy. Each peer
only stores those advertisements that are semantically
closeto at least one of their own services, and then se-
lects for given queries only those two neighbours with
top ranked expertise according to the semantic overlay
it knowsin prior.

5.1 Service retrieval performance

In our experiments, we evaluated two essential aspects of
P2P service retrieval performance measurement:

1. Servicedistribution to peers: Uniformly at randomVs.
Single peer hosts all relevant services per query

2. Query distribution to peers by the user: Random
guerying of peersVs. Onecentral Q/A peer, asasingle
entry point to the system for the user

For reasons of space limitation, we present only represen-
tative results of selected experiments.

Experiment 1: Asfigure 2 shows, in anetwork of 576 peers
with evenly distributed 576 services, and random query-
ing of peers, RS2D outperforms BIBL aswell as RND2 in
terms of precision with lesser number of hops which yields
abetter response time. The same results can be obtained for
RS2D in smaller networks.

However, unlike BCST this nearly optimal performance
of RS2D does not come at the very expense of communi-
cation but only almost one third and twice of that of BCST
and BIBL, respectively, as shown in figure 3.

M Klusch, 2008

— hest PERFORMANCE. p576_startatrnd_ntupestatic
-+ bibl &l 1

eeeeeeeeee t Tecall/precision per hop (over all queries)

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hops

Figure 2. Experiment 1, Precision: RS2D
outperforms BIBL and RND2, and performs
close to optimal BCST.

best COMMUNICATION, p576_startatrnd_ntypestatic
bibl average accunulated overall wessages producsd per hob

rnd2

12840
11556
10272

8988

Sm@mm

8
%17704
06420
¢
£5136
3852
2568
1284

hops

Figure 3. Experiment 1, Communication.

In more detail, RS2D performs as bad as broadcast in
itsinitial training phase while in case of processing the last
query of the test collection in one simulation run, RS2D
outperforms even the more savvy BIBL system (seefig.4).

Please note that this provides evidence in favor of mixed
risk-driven routing based on learned average Q/A behavior
rather than query-specific routing only. It would be interest-
ing to investigate amix of both approachesin future.
Experiment 2: We also simulated the case of single query
authorities and random querying of peers. In this case, one
peer hosts al services that are relevant to a specific query,
thus possesses the complete relevance set of this particular
query. For each query a different peer was chosen at ran-
dom. Then the queries were executed uniformly at random
from different peers as in the first experiment.

In this case, BIBL is more efficient than its competitors
as it heavily benefits from the exploitation of the given se-
mantic overlay structure for optimal routing. RS2D is out-
performed by BIBL because it is difficult to find the au-
thority for aquery when only the average query answer be-
haviour is considered (see fig.5).

Not surprising, in this case the communication costs of
RS2D are higher than that of BIBL with given semantic

198/466

bost COMMUNICATION, p576_startatrnd_ntupestatic
bibl accumulated overall messages produced per hop For GAOC

12840
11556
10272

8988

8

§77od

(6420

I

25136

3852
2568
1284

SzEm

hops

bost COMMUNICATION, pS576_startatrnd_ntupestatic
bibl accumulated overall messages produced per hop for GC27
rnd2
re2d

12840
11556
10272
8988
8
§77od
(6420
I
25136
3852
2568
1284

SzEm

7 fi
AR

p A g 1 1
A A A A A A

© 1 2 3 4 5 6 7 & 9 10 11 12 13 14 1
hops

v 7 -
[Z
4 AN

Figure 4. Experiment 1, Communication (first
and last query): While in the initial train-
ing phase RS2D produces as much traffic as
BCST does, it even outruns BIBL's traffic on
the last executed query due to the learned
average query answering behaviour. BIBL is
more efficient in communication in the first
run because of its exploitation of given se-
mantic overlay knowledge for routing.

topology but till significantly lower than BCST as shown
infigure 6.

Experiment 3: In case where one centrally located peer
executes al 36 queries for the user, thereby acting asa sin-
gle point of entry, with 576 services distributed uniformly
at random in a 576 peer network, and s = 1, RS2D
performed as well as BCST in terms of precision (BCST-
/RS2D curves are overlapping in fig.7) but drastically re-
duced communication overhead.

5.2 Robustness

The remaining question is how robust RS2D enabled
unstructured P2P service networks are against dynamic
changes, when peers can enter or leave the network at any
time. For this purpose, we tested RS2D in a 576 peer net-
work where each peer is hosting exactly one service but
wiht only 80% of all the peers (= 460) being online. Dur-
ing the simulation run, we randomly let new peers join
and leave the network with a rate of about one peer join-
ing/leaving each 5 simulation steps (about 400 join/leave-
operations per simulation run). In case of incomplete return
paths for a query due to relevant peers having left the net-
work, the peer in question tries to find the subsequent peers
inthe path. If this strategy fails, it sends out alimited 2-hop

M Klusch, 2008

—~ best PERFORMANCE . p576_authtop20_startatrnd_ntupestatic

- bibl average result recall/precision per hop (over all queries)

R R e e e e
R *

e e 2
9 2 N
g 8

recall/precision
o
2
3

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hops

Figure 5. Experiment 2, Precision: RS2D still
is almost optimal. BIBL exploits its given se-
mantic topology to its maximum. Both out-
perform RND2.

bost COMMUNICATION, p576_: . Lt ic
bibl average accunulated overall wessages produced per hop

12840
11556
10272

8988

8

§77od
(6420
I
25136

3852
2568
1284

SzEm

rnd2

hops

Figure 6. Experiment 2, Communication.

broadcast of the answer to its neighbours. If this last fall-
back also fails, the answer to the query is discarded yielding
atotal loss of al related intermediate results.

The join operation for a single peer in RS2D enabled
P2P networks is implemented as a simple handshake-
advertisement: Each peer that wants to join the net-
work, broadcasts a one-hop advertisement to all peers
in its direct (one-hop) neighbourhood and then waits for
acknowlegement-messages. If at |east one peer answers, the
requesting peer considersitself to be online, and both peers
mutually take themselve for new routing decisions into ac-
count. The leave operation is completely passive: A peer
just drops out and stops answering to messages. Each of
its neighbouring peers will detect this as soon as it wants to
send a new message to the dropped peer, and removes all
training records that relate to this peer from the local train-
ing set.

As shown in figure 8, RS2D turned out to be reason-
ably robust against dynamic changes in the network topol-
ogy. However, the precision went down for all tested rout-
ing mechanisms due to the following reasons. First, some
of the relevant services are provided by offline peers, hence

199/466

—~ best PERFORMANCE, p576_startatone_ntypestatic
- bibl average result recall/precision per hop (over all queries)
1,00 + rnd2 R R o
e PR ——

- re2d L
0.90 —
B

o
N
3

%

\

ecall/precision
satigPres
PO
3 9 g
\
4
v
EY
v
i
i

I S

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hops

best COMMUNICATION, p576_startatone_ntupestatic
bibl average accunulated overall wessages producsd per hob

12840
11556
10272

8988

8

%17704

06420

¢

£5136
3852
2568
1284

rnd2

Sm@mm

hops

Figure 7. Experiment 3, precision: RS2D per-
forms optimal (curve is on that of BCST).
Central peer searches minimal spanning tree
for all queries after initial multicast; Commu-
nication: RS2D outperforms BIBL with signif-
icantly lower communication effort.

were unreachable. Second, some query answers were not
propagated to the querying peer due to broken links in the
network. Please note that the precision of BCST is optimal
for this scenario, and RS2D is close to it but with only half
of its communication efforts. Thisis because the the initial
training phaseis only repeated for recently joined peers- all
stablepeersare till risk-eval uated when taking the forward-
decision.

Not surprising, Bibster-like routing performs poor in dy-
namic environments since its semantic topology breaks to
the same extent the network topology changes. Building up
asemantictopology isavery costly processas each peer has
to advertise its hosted services at the cost of one advertise-
ment message propagated over 3 hops in our experiments
leading to atraffic load of about 212.000 messagesin a576
peer network, and about 5.800 messages for each of the 36
queries.

For more details on the RS2D performance and robust-
ness experiments, we refer theinterested reader to the RS2D
experiment web page [3].

M Klusch, 2008

—~ best PERFORMANCE . p576_startatrnd_ntypedynamic
- bibl average result recall/precision per hop (over all queries)

1,00 - rnd2
- re2d

o2
2 N
g 3

o
@
&

iy

recall/precision
o
2
3
B
4

0,30 - e
o LT et
e P
0.20 S o
et -

X
g

e

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hops

best COMMUNICATION, p576_startatrnd_ntypedynamic
bibl average accunulated overall wessages producsd per hob
rnd2
rs2d

"
B
q
a
3
Sm@mm

hops

Figure 8. Experiment 4, dynamic: Preci-
sion goes down for all routing methods but
RS2D significantly outruns both Bibster and
random selection, hence is more robust to
network-fluctuation. However, this comes
at the very expense of communication over-
head compared to Bibster, though half of that
of Broadcast.

6 Implementation

The RS2D approach to OWL-S service retrieval in un-
structured P2P networks has been implemented in Java 1.5,
and evaluated by simulation on one server. The architec-
ture of the simulator is shown in figure 9; the simulator
also provides PHP-script based online visualization of the
experimental evaluation results.

For computing the numeric semantic score LS(S ;) used
by RS2D for its risk based routing decision (cf. section 3),
we defined asimple linear mapping (o (s, ¢)) of the oputput
of the semantic Web service matchmaker OWLS-MX [9] to
theinterval [0, 1] as shown in figure 10.

The OWLS-MX code is available at [7]. OWLSMX
takes any OWL-S service description as a query, and re-
turnsan ordered set of rel evant servicesthat match the query
in terms of both crisp logic based and syntactic similarity
according to five different filters and selected IR similar-
ity metric. Logica subsumption failures produced by the
integrated description logic reasoner of OWLS-MX aretol-
erated, if the computed syntactic similarity value is suffi-
cient. What makes OWLS-MX particularly suitable to ser-

200/466

RS2D specific Simulated Peer

Trai Known Known
rgn;ng Servwces Network
e Cache Cache

update get get update update get
from for for neigh-
answerf pridiction matchi msg pat bourhood

traln

match
query sigm:
receive send
message message

Messaging
Interface Simulator

Message Processor ~ |--==E===2=2=22 -

- Encourage Join/Leave
- Start Queries
- Deliver Messages

Global Global Simulation
8:':1 Ser_vice Network Control <
List Represent

Figure 9. Architecture of RS2D Simulator.

viceretrieval in unstructured semantic P2P service networks
is its capability to dynamically maintain a local ontology,
hence renders RS2D independent from the use of any fixed
global ontology like in GSD. It classifies arbitrary query
concepts into its dynamically evolving ontology based on
a commonly shared minimal basic vocabulary of primitive
components instead of limiting query 1/O concepts to ter-
minologically equivalent service 1/O concepts in a shared
static ontology as, for example, the OWLS-UDDI match-
maker does.

For our experiments, we used the OWL-S service re-
trieval test collection OWLS-TC which is available at [6].
The collection consists of 576 OWL-S 1.1 services, its size
in particular limited the maximum size of the unstructured
P2P networks of our experiments as we neither did extend
the collection nor distributed dummy service copiesto peers
for simulation.

7 Conclusion

We presented a first approach, named RS2D, to risk as-
sessment driven semantic service retrieval in unstructured
P2P networks without prior knowledge on the semantic
overlay. It relieson the dynamiclearning of averaged query-
answer behavior of peers for minimal mixed routing risk.
Experimental evaluation of RS2D showed that it is very ro-
bust and fast with reasonably high precision compared to

M Klusch, 2008

sigma

0.0

Exact Plug-In Subsumes NN Fail

1.0 - 0010 - o00/10 - 0010 - 0010 - 00

dom/sim

Figure 10. Used mapping of the degrees of
semantic service matching returned by the
OWLS-MX matchmaker to [0,1] for computing
the numeric semantic score.

other existing relevant approaches. It is, however, weak
in finding single query authority peers, and requires initial
training, though only for an acceptable amount of time. We
intend to make RS2D publicly available under GPL-like li-
cense at semwebcentral.org.

References

[1] OASS Sandard consortium. Universal Description, Discov-
ery and Integration (UDDI) protocol. http://www.uddi.org/.

[2] S. Androutsellis-Theotokisand D. Spinellis. A survey of peer-
to-peer content distribution technologies. ACM Computing
Surveys, 36(4):335-371, December 2004.

[3] U. Basters. RS2D experimenta evaluation results online:
http://www.basters.org/rs2d/.

[4] D. Chakraborty, A. Joshi, T. Finin, and Y. Yeshas GSD:A
novel groupbased service discovery protocol for MANETS.
4th |EEE Conference on Mobile and Wireless Communica-
tions Networks (MWCN), 2002.

[5] C. Elkan. Naive Bayesian
seer.ist.psu.edu/30545.html.

[6] B. Fries and M. Klusch. OWL-S service re-
trieval test collection OWLSTC v2, download at
http://projects.semwebcentral .org/projects/owls-tc/.

[71 B. Fries and M. Klusch. OWLS-MX
matchmaker source code, download at
http://projects.semwebcentral .org/projects/owls-mx/.

[8] P Haase, R. Siebes, and F. van Harmelen. Expertise-based
Peer selection in Peer-to-Peer Networks. Knowledge and In-
formation Systems, Springer Verlag, 2006.

[9] M. Klusch, B. Fries, and K. Sycara. Automated Semantic WWeb
Service Discovery with OWLS-MX. Proc. 5th Intl. Conference
on Autonomous Agents and Multiagent Systems (AAMAYS),
Hakodate, Japan. ACM Press,, 2006.

Learning, cite-

201/466

M Klusch, 2008 202/466

Part 111

Semantic Service Composition

M Klusch, 2008 203/466

M Klusch, 2008 204/466

M Klusch, 2008

Introduction

Semantic Web service composition is the act of taking several semantically an-
notated component services, and bundling them together to meet the needs
of a given customer. Automating this process is desirable to improve speed
and efficiency of customer response, and, in the semantic Web, supported by
the formal grounding of service and data annotations in logics. The following
very brief introduction to Semantic Web service composition planning with
comments on its interrelation to Semantic Web service discovery, open prob-
lems and further readings are taken from the comprehensive book chapter on
semantic service coordination (Klusch, 2008a)[196].

Web Service Composition

In general, Web service composition is similar to the composition of work-
flows such that existing techniques for workflow pattern generation, composi-
tion, and management can be partially reused for this purpose (Henocque &
Kleiner, 2007)[153]. Typically, the user has to specify an abstract workflow of
the required composite Web service including both the set of nodes (desired
services) and the control and data flow between these nodes of the workflow
network. The concrete services instantiating these nodes are bound at run-
time according to the abstract node descriptions, also-called ”search recipes”
(Casati & Shan, 2001)[58].

As mentioned in the first chapter, the mainstream approach to Web service
composition is to have a single administrator responsible for (semi-)manually
scripting such workflows (orchestration and choreography) between WSDL
services of different business partners in BPEL (Papazoglou, 2007; Alonso et
al., 2003)[284, 6]. This is largely motivated by industry to work for service
composition in legally contracted business partner coalitions - in which there
is, unlike in open service environment, only very limited need for automated
service composition planning, if at all. Besides, neither WSDL nor BPEL nor
any other workflow languages like UML2 or YAWL have formal semantics
which would allow for an automated logic-based composition. This is differ-

205/466

M Klusch, 2008

ent with Semantic Web service composition. In fact, the majority of Semantic
Web service composition tools draws its inspiration from the vast literature
on logic-based AI planning (Peer, 2005)[290].

Al-Planning-Based Web Service Composition

The service composition problem roughly corresponds to the state-based plan-
ning problem (I, A, G) in Al to devise a sound, complete, and executable plan
which satisfies a given goal state G by executing a sequence of services as ac-
tions in A from a given initial world state I. Classical AI planning-based
(planning from first principles) composition focuses on the description of ser-
vices as merely deterministic state transitions (actions) with preconditions
and state altering (physical) effects. Actions are applicable to actual world
states based on the evaluation of preconditions and yield new (simulated)
states where the effects are valid. Further, classical AI planning is performed
under the assumption of a closed world with complete, fully observable initial
(world) state. This is not necessarily appropriate for service composition plan-
ning in the dynamic and open-ended Semantic Web (Srivastava & Koehler,
2003)[344]. However, all existing SWS composition planners are closed-world
planners of which some are able to cope with uncertainties about the domain.
A given logical goal expression and set of logic-based definitions of semantic
service signature (I/O) concepts together with logic preconditions and effects
from a DL-based ontology (domain or background theory) can be converted
into one declarative (FOL) description of the planning domain and problem
- which can serve a given logic-based AI planner as input. In particular, ser-
vice outputs are encoded as special non-state altering knowledge effects, and
inputs as special preconditions. The standard target language for the con-
version is PDDL (Planning Domain Description Language) but alternative
representation formalisms are, for example, the situation calculus [271], lin-
ear logic [309], high-level logic programming languages based on this calculus
like GOLOG [252], Petri nets, or HTN planning task and method description
format[338].

In the following, we classify existing Semantic Web service composition plan-
ners and comment on the principled interrelation between composition, dis-
covery, and execution. Approaches to interleaved composition and negotiation
are discussed in the introduction to part four. Please note that the set of pre-
sented examples of Semantic Web service composition planners is representa-
tive but not exhaustive.

Classification of Semantic Web Service Composition Planners

In general, any Al-planning framework for Semantic Web service composition
can be characterized by

206

206/466

the kind of representation of the planning domain and problem to allow
for automated reasoning on actions and states,

the planning method applied to solve the given service composition prob-
lem in the domain, and

the parts of service semantic descriptions that are used for this purpose.

We can classify existing Semantic Web service composition planners according
to the latter two criteria, which yields the following classes.

Dynamic or static Semantic Web service composition planners depending
on whether the plan generation and execution are inherently interleaved
in the sense that actions (services) can be executed at planning time, or
not.

Functional-level or process-level Semantic Web service composition plan-
ners depending on whether the plan generation relies on the service profile
semantics only, or the process model semantics in addition (data and con-
trol flown) [229].

Figure 7.1 shows representative examples of implemented Semantic Web ser-
vice composition planners for each of these categories.

M Klusch, 2008

SWS Composition Planners

Dynamic Static
+ Mo service execution

+ Service execution

at planming time (interlea ng) at planning time
| |
Reactive Advanced Restricted Nen-Classical Classical
« any service » only info gathering »onlyinfo gathering » Contingency® + Deterministic
« Pure reactive, services services « Conformant » Complete
Contingency® + replanning {changes) planning under uncertainty initial state
P ! OWLS-XPlan2 SHOP2 (Sirin+ 02) PLCP (Pistore~ 05)
T::;S {Klusche 06 OWLS-XPlant (Klusch+, 05) Golog-5CP (Mclraith+, 02)5
W-RTC [Agre+ 07) WSPlan (Peer, 05) GOAL [Plalzgraf, 06),
MetaComp (Botelho+ 07)
Functional GRS NS VIERSAWSDE RPCLM-SCP (Lecue+, OF)
unctional GOAL IW-RTC SAWSDL-SCP AGORA-SCP [Rao-+ 06)
Level sHoP? RS-
MetaGomp SAWSDL-SCP (Wiu-+, 07)
OWLS-XPlan Ontolat-§ (Agarwal+, 04)84
GologSCP "
________________________________ N Mediched-, 03
AGORA-SCP
A Semi-automated

Fig. 7.1. Classes of Semantic Web service composition planners.

207

207/466

M Klusch, 2008

Static and dynamic composition planning

The majority of Semantic Web service composition planners such as GOAL
(Pfalzgraf, 2006)[294], MetaComp (Botelho et al., 2007), PLCP (Pistore et al.,
2005), RPCLM-SCP (Lecue & Leger, 2006)[229] and AGORA-SCP (Rao et
al., 2006)[309] are static classical planners. Approaches to dynamic composi-
tion planning with different degrees of interleaving plan generation and execu-
tion are rare. Unlike the static case, restricted dynamic composition planners
allow the execution of information gathering but no world state altering ser-
vices, hence are capable of planning under uncertainty about action outcomes
at planning time. Examples of such composition planners are SHOP2 (Sirin et
al., 2002) [339, 338], GOLOG-SCP (Mcllraith et al., 2002)[252] and OWLS-
XPlanl (Klusch et al., 2005)[206].

Advanced and reactive dynamic composition planners in stochastic domains
even take non-deterministic world state changes into account during plan-
ning. While advanced dynamic planners like OWLS-XPlan2 (Klusch & Ren-
ner, 2006)[210] are capable of heuristic replanning subject to partially ob-
served (but not caused) state changes that affect the current plan at planning
time, their reactive counterparts like INFRAWEBS-RTC (Agre & Marinova,
2007)[3] fully interleave their plan generation and execution in the fashion of
dynamic contingency and real-time planning.

Functional- and process-level composition planning

As shown in figure 7.1, most Semantic Web service composition planners
perform functional-level, also called service profile-based, composition (FLC)
planning. FLC planning considers services as atomic or composite black-box
actions which functionality can solely be described in terms of their inputs,
outputs, preconditions, and effects, and which can be executed in a sim-
ple request-response without interaction patterns. Examples of FLC planners
are GOAL (Pfalzgraf, 2006)[294], SAWSDL-SCP (Wu et al., 2007)[386] and
OntoMat-S (Agarwal et al., 2004)[4].

Process-level composition (PLC) planning extends FLC planning in the sense
that it also takes the internal complex behavior of existing services into
account. Prominent examples are SHOP2 (Sirin et al., 2004)[338], PLCP
(Giunchiglia & Traverso, 1999; Pistore et al., 2001, 2005) [295, 296] and
OWLS-XPlan (Klusch et al., 2005, 2006)[206, 210]. Both kinds of composition
planning perform, in particular, semantic service profile or process matching
which is either inherent to the underlying planning mechanism, or achieved by
a connected stand-alone Semantic Web service matchmaker. We will discuss
the interrelation between composition and semantic matching later.

Support of Semantic Web service description frameworks

Remarkably, most implemented Semantic Web service composition planners
support OWL-S like GOAL, OWLS-XPlan, SHOP2, GologSCP and Meta-
Comp, while there is considerably less support of the standard SAWSDL

208

208/466

M Klusch, 2008

and WSML available to date. In fact, the SAWSDL-SCP planner (Wu et al.,
2006)[386] is the only one for SAWSDL, while the IW-RTC planner (Agre &
Marinova, 2007)[3] is, apart from the semi-automated orchestration of WSML
services in IRS-III, the only fully automated FLC planner for WSML yet.
Most composition planner feature an integrated conversion of Semantic Web
services, goals and ontologies into the internally used format of the planning
domain and problem description, though a few others like the framework
WSPlan (Peer, 2005)[291] for static PDDL-based planning under uncertainty,
and the recursive, progression-based causal-link matrix composition planner
RPCLM-SCP (Lecue & Leger, 2006)[229] do not.

In the following, we discuss each of the above mentioned categories and se-
lected examples of Semantic Web service composition planners in more detail.

Functional-Level Semantic Web Service Composition Planners

Intuitively, FLC planning generates a sequence of Semantic Web services based
on their profiles that exact or plug-in matches with the desired (goal) service.
In particular, existing services S;,S;+1 are chained in this plan such that
the output of S; matches with the input of S;y1, while the preconditions of
Si+1 are satisfied in the world state after execution of S;. Depending on the
considered Semantic Web service description format (cf. chapter 3), different
approaches to logic based, non-logic-based or hybrid semantic service profile
IOPE matching are available for this purpose (cf. figure 3.13).

In order to automatically search for a solution to the composition problem,
FLC planners can exploit different AT planning techniques with inherent logic-
based semantic profile IOPE or PE matching like WSPlan (Peer, 2005), re-
spectively, MetaComp (Botelho et al., 2006). The recursive forward-search
planner GOAL (Pfalzgraf, 2006) as well as the SAWSDL-SCP (Wu et al.,
2007) apply non-logic-based semantic profile IO matching of OWL-S, respec-
tively, SAWSDL services.

In AGORA-SCP (Rao et al., 2006), theorem proving with hybrid semantic
profile IO matching is performed for OWL-S service composition: Both ser-
vices and a request (theorem) are described in linear logic, related to classical
FOL, while the SNARK theorem prover is used to prove that the request
can be deduced from the set of services. The service composition plan then is
extracted from the constructive proof.

The FLC planner in (Medjahed, 2003)[255] uses proprietary composability
rules for generating all possible plans of hybrid semantic I0-matching ser-
vices in a specific description format (CSSL). From these plans the requester
has to select the one of best quality (QoS).

Process-Level Semantic Web Service Composition Planners

Though FLC planning methods can address conditional outputs and effects
of composite services with dynamic planning under uncertainty, considering

209

209/466

M Klusch, 2008

services as black-boxes does not allow them to take the internal complex
service behaviour into account at planning time. Such behavior is usually
described as subservice interactions by means of control constructs including
conditional and iterative steps. This is the domain of process level composition
(PLC) planning that extends FLC planning in the aforementioned sense.
However, only few approaches to process-level composition planning for Se-
mantic Web services exist to date. For example, orchestration of WSML
services in IRS-III (Domingue et al., 2005)[101] synthesizes abstract state
machines to compose individual services in a given process flow defined in
OCML!. Though, the functionality of the WSMX orchestration unit has not
been completely defined yet.

Other automated PLC planners of OWL-S services exploit different AI plan-
ning techniques such as

e HTN (Hierarchical Task Network) planning of OWL-S process models con-
verted to HTN methods like in SHOP2 (Sirin et al., 2004)[338],

e Neo-classical GRAPHPLAN-based planning mixed with HTN planning of
OWL-S services converted to PDDL in OWLS-XPlan (Klusch et al., 2005,
2006)[206, 210],

e Value-based synthesis of OWL-S process models in a given plan template
of situation calculus-based GOLOG programs (Mcllraith et al., 2002)[252,
271],

e Planning as model checking of OWL-S process models converted to equiv-
alent state transition systems (STS) in the PLCP (Giunchiglia & Traverso,
1999; Pistore et al., 2001, 2005) [295, 296].

In the following, we discuss each class of static and dynamic Semantic Web
service composition planners together with selected examples.

Static Semantic Web Service Composition Planners

The class of static AT planning-based composition covers approaches to both
classical and non-classical planning under uncertainty.

Static classical planning

As mentioned above, classical Al planners perform (off-line) planning under
the assumption of a closed, perfect world with deterministic actions and a
complete initial state of a fully observable domain at design time. For example,
Graphplan is a prominent classical Al planning algorithm that first performs
a reachability analysis by constructing a plan graph, and then performs logic-
based goal regression within this graph to find a plan that satisfies the goal.
Classical AI planners are static since their plan generation and execution is
strictly decoupled.

! kmi.open.ac.uk/projects/ocml/

210

210/466

M Klusch, 2008

Examples of static classical Semantic Web service composition planners

One example of a static classical Semantic Web service composition planner
is GOAL (Pfalzgraf, 2006)[294] developed in the SmartWeb project. GOAL
composes extended OWL-S services by means of a classical recursive forward-
search (Ghallab et al., 2004)[130]. Both, the initial state and the goal state are
derived from the semantic representation of the user’s question (goal) obtained
by a multimodal dialogue system in SmartWeb. At each stage of the planning
process the set of services which input parameters are applicable to the current
state is determined by signature (IO) matching through polynomial subgraph
isomorphism checking (Messmer, 1995)[253]: The instance patterns of input
parameters are matched against the graph representation of the state, and
a service is applied to a plan state (simulated world state) by merging the
instance patterns of its output parameters with the state.

As a result, GOAL does not exploit any logical concept reasoning but struc-
tural service I/O graph matching to compose services. If plan generation fails,
GOAL detects non-matching paths within instance patterns and consequently
produces a clarification request (ako information gathering service) conveyed
to the user by the dialogue system; on response by the user the planning
process is restarted in total.

Static service composition in the AGORA-SCP service composition system
(Rao et al., 2006)[309] relies on linear logic (LL) theorem proving. The profiles
of available DAML-S services are translated in to a set of LL axioms, and
the service request is formulated as a LL theorem to be proven over this
set. In case of success, the composition plan can be extracted from the proof,
transformed to a DAML-S process model and executed as a BPEL script. The
AGORA planner is the only approach to decentralized composition planning
in structured P2P networks (Kiingas & Matskin, 2006)[223].

An example of a static classical Semantic Web service composition planner
based on a special logic-based PDDL planner is MetaComp (Botelho et al.,
2007).

Static planning under uncertainty

Work on planning under uncertainty in AT is usually classified according to
(a) the representation of uncertainty, that is whether uncertainty is mod-
eled strictly logically, using disjunctions, or is modeled numerically (e.g. with
probabilities), and (b) observability assumptions, that is whether the uncer-
tain outcomes of actions are not observable via sensing actions (conformant
planning); partially or fully observable via sensing actions (conditional or con-
tingency planning) [93]. As mentioned above, we can have uncertainty in the
initial states and in the outcome of action execution. Since the observation
associated to a given state is not unique, it is also possible to model noisy sens-
ing and lack of information. Information on action outcomes or state changes
that affect the plan can be gathered either at planning time (dynamic) or

211

211/466

M Klusch, 2008

thereafter (static) for replanning purposes.

Static conditional or contingency planning. Static conditional or con-
tingency planners like Cassandra (Pryor & Collins, 1996) and DTPOP (Peot
1998) devise a plan that accounts for each possible contingency that may arise
in the planning domain. This corresponds to an optimal Markov policy in the
POMDP framework for planning under uncertainty with probabilities, costs
and rewards over a finite horizon (Puterman, 1994). The contingency planner
anticipates unexpected or uncertain outcomes of actions and events by means
of planned sensing actions, and attempts to establish the goals for each dif-
ferent outcome of these actions through conditional branching of the plan in
advance 2. The plan execution is driven by the outcome of the integrated sens-
ing subplans for conditional plan branches, and decoupled from its generation
which classifies these planners as static.

Static conformant planning. Conformant planners like the Conformant-
FF (Hoffmann and Brafman, 2007), Buridan (Kushmerick et al., 1995), and
UDTPOP (Peot 1998) perform contingency planning without sensing actions.
The problem of conformat planning to search for the best unconditional se-
quence of actions under uncertainty of intial state and action outcome can be
formalized as fully non-observable MDP, as a particular case of POMDP, with
a search space pruned by ignoring state observations in contingency planning.
For example, conformant Graphplan planning (CGP) [340] expresses the un-
certainty in the initial state as a set of completely specified possible worlds,
and generates a plan graph for each of these possible worlds in parallel. For
actions with uncertain outcomes the number of possible worlds is multiplied
by the number of possible outcomes of the action. It then performs a regres-
sion (backward) search on them for a plan that satisfies the goal in all possible
worlds which ensures that the plan can be executed without any sensory ac-
tions. Conformant planner are static in the sense that no action is executed
at planning time.

Examples of static Semantic Web service composition planners under
uncertainty

The PLCP (Pistore et al., 2005)[297, 296] performs static PLC planning under
uncertainty for OWL-S services. OWL-S service signatures and process models
together with a given goal are converted to non-deterministic and partially
observable state transition systems (STS) which are composed by a symbolic

2 Examples of decision criteria according to which contingency branches are in-
serted in the (conventional) plan, and what the branch conditions should be
at these points, are the maximum probability of failure, and the maximum ex-
pected future reward (utility) as a function of, for example, time and resource
consumption. Uncertainty is often characterized by probability distributions over
the possible values of planning domain predicates.

212

212/466

M Klusch, 2008

model checking-based planner (MBP)[295] to a new STS which implements
the desired composed service. In other words, possible plans modeled as finite
STSs (sequences of applicable actions in the state space) are verified against
the goal specification. This STS eventually gets transformed to an executable
service composition plan (in BPEL) with possible conditional and iterative
behaviors. No action is executed at planning time, and uncertainty is resolved
by sensing actions during plan execution.

An example of static FLC planning under uncertainty is the WSPlan frame-
work (Peer, 2005)[291] which provides the user with the option to plug in
his own PDDL-based planner and to statically interleave planning (under un-
certainty) with plan execution. Static interleaving refers to the cycle of plan
generation, plan execution, and replanning based on the result of the executed
sensing subplans (in the fashion of static conditional planning) until a sequen-
tial plan without sensing actions is generated that satifies the goal. There are
no static classical PLC planner for Semantic Web services with deterministic
(sequential) process models of composite services only available.

Dynamic Semantic Web Service Composition Planners

The class of dynamic AI planning-based composition covers approaches to
restricted, advanced and reactive dynamic planning under uncertainty.

Restricted dynamic planning

Dynamic planning methods allow agents to inherently interleave plan gen-
eration and execution. In restricted dynamic planning, action execution at
planning time is strictly restricted to information gathering about uncertain
action outcomes of services. These special actions (also called book-keeping
services or callbacks) add new knowledge in form of ground facts to the partial
observable initial state under the so-called IRP (Invocation and Reasonable
Persistence) assumption[252] to ensure conflict avoidance® only. The incre-
mental execution of callbacks under IRP assumption during planning has the
same effect when executing them prior to planning in order to complete the
initial state for closed world planning. Like in classical planning, however,
world state altering services with physical effects (in opposite to the so-called
knowledge effects of service outputs) are only simulated in local planning
states and never get executed at planning time.

Examples of restricted dynamic Semantic Web service composition planners

Prominent examples of restricted dynamic composition planners are SHOP2,
and OWLS-XPlan1 (Klusch et al., 2005)[206] for OWL-S. SHOP2 (Sirin et al.,

3 The IRP assumption states that (a) the information gathered by invoking the
service once cannot be changed by external or subsequent actions, and (b) remains
the same for repeating the same call during planning.

213

213/466

M Klusch, 2008

2003, 2004)[339, 337] converts given OWL-S service process models into HTN
methods and applies HTN planning interleaved with execution of information-
gathering actions (callbacks) to compose a sequence of services that satisfies
the given task. By mapping any OWL-S process model to a situation calculus-
based GOLOG program, the authors prove that the plans produced are correct
in the sense that they are equivalent to the action sequences found in situation
calculus. HTN planning is correct and complete but undecidable due to pos-
siblly infinite recursive decomposition of given methods to executable atomic
tasks. SHOP2 detects and breaks decomposition cycles. OWLS-XPlanl will
be described in chapter 8.

Advanced dynamic planning

Advanced dynamic planning methods allow in addition to react on arbitrary
changes in the world state that may affect the current plan already during
planning such as in OWLS-XPlan2. This is in contrast to static planning un-
der uncertainty where sensing subplans of a plan are executed at run time
only. However, in both restricted and advanced dynamic planning the inter-
leaved execution of planning with world state altering services is prohibited
to prevent obvious problems of planning inconsistencies and conflicts.

Ezamples of advanced dynamic Semantic Web service composition planners

To the best of our knowledge, OWLS-XPlan2 (Klusch & Renner, 2006)[210]
is the only one implemented example of an advanced dynamic composition
planner. OWLS-XPlan2 will be described in chapter 9.

Reactive dynamic planning

Finally, reactive dynamic planning like in Brooks’s subsumption architecture,
RETE-based production rule planners, and the symbolic model checking based
planner SyPEM (Bertoli et al., 2004)[33] allows the execution of arbitrary
actions at planning time. Pure reactive planner produce a set of condition-
action (if-then) or reaction rules for every possible situation that may be
encountered, whether or not the circumstances that would lead to it can be
envisaged or predicted. The inherently interleaved planning and execution is
driven through the evaluation of state conditions at every single plan step to
select the relevant if-then reaction rule and the immediate execution of the
respective, possibly world state altering action; This cycle is repeated until
the goal is hopefuly reached.

A variant of reactive dynamic planning is dynamic contingency planning like in
XII (Golden, Etzioni & Weld, 1994) and SAGE (Knoblock, 1995). In this case,
a plan that is specified up to the information-gathering steps gets executed to
that stage, and, once the information has been gathered, the rest of the plan is
constructed. Interleaving planning and execution this way has the advantage
that it is not necessary to plan for contingencies that do not actually arise.

214

214/466

M Klusch, 2008

In contrast to pure reactive planners, reasoning is only performed at branch
points predicted to be possible or likely.

In any case, reactive dynamic planning comes at the possible cost of plan
optimality, and even plan existence, that is suboptimality and dead-end action
planning or failure (Olawsky & Gini, 1990). The related ramification problem*
is usually addressed either by restrictive assumptions on the nature of service
effects on previous planning states (Bertoli et al., 2004)[33] in safely explorable
domains (Koenig and Simmons 1995; 1998; Koenig 2001), or by integrated
belief revision (TMS) in the planners knowledge base at severe computational
costs.

Examples of reactive dynamic Semantic Web service composition planners

One example of an implemented reactive dynamic composition planner is the
real-time composition planner IW-RTC (Agre & Marinova, 2007) developed in
the European research project INFRAWEBS. It successively composes pairs
of keyword-based IO matching services, executes them and proceeds with
planning until the given goal is reached. Unfortunately, the authors do not
provide any detailed description of the composition and matching process nor
complexity analysis.

Problems of Semantic Web service composition planning under uncertainty

One problem with adopting planning under uncertainty for service compo-
sition is that the execution of information gathering (book keeping) or even
world state altering services at design or planning time might not be charge
free, if granted by providers at all. That is, the planning agent might pro-
duce significant costs for its users even without any return value in case of
plan generation or execution failure. Another problem is the known insuffi-
cient scalability of conditional or conformant planning methods to planning
domains at Web scale or business application environments with potentially
hundreds of thousands of services and vast instance bases. Research on ex-
ploiting conditional or conformant planning methods for Semantic Web service
composition has just started.

FLC Planning of Monolithic DL-Based Services

Research on FLC planning with monolithic DL-based descriptions of services
has just started. Intuitively, the corresponding plan existence problem for the
composition of such services is as follows. Given an acyclic TBox 7" describing
the domain or background theory in a DL, ABoxes S and G which interpre-
tations I (consistent wrt T') over infinite sets of individual (object) names are

* The problem of ensuring the consistency of the planners knowledge base and the
reachability of the original goal in spite of (highly frequent) world state altering
service execution during plan generation.

215

215/466

M Klusch, 2008

describing, respectively the initial and goal state, and a set A of operators de-
scribing deterministic, parameterized actions o which precondition and effects
are specified in the same DL and transform given interpretations of concepts
and roles in T (I =1 I'), is there a sequence of actions (consistent with T°) °
obtained by instantiating operators with individuals which transforms S into
G?

It has been shown in (Baader et al., 2005)[20] that the standard reasoning
problems on actions, that are executability® and projection’, are decidable
for description logics between ALC and ALCOIQ. Furthermore, it has been
shown in (Milicic, 2007)[257] only recently that the plan existence problem
for such actions in ALCOIQ is co-NEXPTIME decidable for finite sets of
individuals used to instantiate the actions, while it is known to be PSPACE-
complete for propositional STRIPS-style actions. In addition, the extended
plan existence problem for actions specified in ALCy (with universal role U
for assertions over the whole domain with infinitely countable set of individuals
was prooven undecidable by reduction to the halting problem of deterministic
Turing machines.

However, there is no implemented composition planner for monolithic DL-
based services available to date.

Interrelations

In the following, we briefly comment on the principled relations between se-
mantic service composition planning, discovery, and execution. Selected ap-
proaches to interleaved semantic service composition planning with negotia-
tion are presented in the introduction to the next part of this thesis.

Semantic Web service composition planning and discovery

From the view of semantic service discovery, the composition of complex ser-
vices is of importance if no available service satisfies the given request. In
this case, the matchmaker or requester agent can interact with a composition
planner to successfully generate a composite service that eventually satisfies
the query.

On the other hand, semantic service composition planning agents require a
description of the planning domain and goal to start their planning. Both
can be semi-automatically generated from the set of available semantic ser-
vice descriptions together with related logic-based ontologies, the so-called

5 An action is consistent with TBox T, if for every model I of T there exists I’
such that I —T I'.

6 Action executability is equal to the satisfaction of action preconditions in given
world states: I |=prey, Vi,1 <i<n,I'I =% o I': I Epreit.

" Satisfaction of assertion ¢ as a consequence or conjunctive effect of applying
actions to a given state: For all models I of S and T,I'.1 =%, ., I':I' E¢

216

216/466

M Klusch, 2008

background theories. In fact, from the view of composition planning, seman-
tic service discovery is of importance for the following reasons: A semantic
service matchmaker can be used to

e Prune the initial search space of the composition planner with respect to
given application-specific preferences of available services, and

e Select semantically equivalent or plug-in, and execution compatible ser-
vices during planning as alternative (substitute) services in case of plan-
ning failures (replanning).

There is no agreed-upon strategy for pruning the search space of Semantic Web
service composition planners. Such pre-filtering of services by a matchmaker
can be heuristically performed against non-functional and functional service
semantics in order to speed up the corresponding planning process - but at
the cost of its incompleteness. That is, composition planning over heuristically
pruned search space does not, in general, solve the plan existence problem.
Another source of correct but incomplete composition planning is the naive
interleaving of planning with semantic service matching. For example, the
sequential composition of stateful services from a given intial state by con-
secutive calls of a logic-based semantic service matchmaker by the planner
only does not guarantee to find a solution if it exists: Any (not specifically
planning-oriented) matchmaker usually

e does not maintain any planning state information, thus ignores variable
bindings that hold for service signatures (IO) and specifications (PE) ac-
cording to the actual state reached by the calling (closed-world) planner,
and

e performs pairwise service matching only, hence would not return services
to the calling planner which combined effects (even with provided state-
based instantiation) would eventually lead to a solution.

To the best of our knowledge, all available Semantic Web service matchmak-
ers (cf. introduction to part two) are implemented as a stand-alone tool for
mere semantic service matching without any composition planning support.
However, functional-level composition planning is a kind of state-based se-
mantic plug-in matching of the generated service plan with the given goal:
Any FLC-planner generates a sequence of Semantic Web services based on
their profiles that exact or plug-in matches with the desired (goal) service,
whereas for each consecutive pair of planned services S and S’ the output of
S semantically matches with the input of S’, and the preconditions of S’ are
satisfied in the planning state including the effects of S.

Ezamples of interleaved Semantic Web service matching and composition
planning

There are only a few approaches implemented that explicitly interleave se-
mantic matching with composition planning. These composition planners ex-

217

217/466

M Klusch, 2008

plicitly interact with matchmaking modules, and/or the user (semi-automated
composition) during planning.

In (Lecue et al., 2007)[230], logic-based service matching is extended with con-
cept abduction to provide explanations of mismatches between pairs of service
profiles that are iteratively used as constructive feedback during composition
when searching for alternative services to bridge identified semantic gaps be-
tween considered IOPE profiles of services in the current plan step. A similar
abduction-based matchmaking approach is presented in [99]. This scenario of
explicitly interleaved discovery and composition has been implemented and
tested in a non-public France Telecom research project.

In (Kiisters et al., 2007)[224], the functional-level composition of services spec-
ified in the DIANE service description language DSD is explicitly integrated
with a DSD matchmaker module that matches service requests asking for
multiple connected effects of configurable services. By using a value propa-
gation mechanism and a cut of possible (not actual) parameter value fillings
for service descriptions that cover multiple effects the authors avoid exponen-
tial complexity for determining an optimal configuration of plug-in matching
service advertisements used for a composition.

In (Binder et al., 2004)[36], the syntactic functional-level service composition
is-based on partial matching of numerically encoded service IO data types in
a service directory. Unfortunately, the justification of the proposed numeric
codings for matching services appears questionable, though it was shown to
efficiently work for certain applications.

The composition planner OWLS-XPlan2 (Klusch et al., 2006)[310] integrates
planning-specific service IOPE matching on the grounding level: At each plan
step, the planner calls the component OWLS-MXP of the matchmaker OWLS-
MX 1.1 to check the compatibility of XMLS types of input and output para-
meters of consecutive services. This ensures the principled executablity of the
generated sequential plan at the service grounding level in WSDL.

The interactive OWL-S service composer developed at UMBC (Sirin et al.,
2004)[337] uses the OWLS-UDDI matchmaker to help users filter and select
relevant services while building the composition plan. At each plan step, the
composer provides the user with advertised services which signatures (I0)
plug-in or exact match with that of the last service in the current plan. This
leads to an incremental forward chaining of services which does not guarantee
completeness without respective user intervention.

The Agora-P2P service composition system (Kiingas & Matskin, 2006)[223]
is the only approach to decentralized Semantic Web service composition plan-
ning. It uses a Chord ring to publish and locate OWL-S service descriptions
keyword-based while linear logic theorem proving and logic-based semantic
service I0 matching is applied to compose (and therefore search for relevant
subservices of) the desired service.

218

218/466

M Klusch, 2008

Semantic Web service composition planning and execution

The semantic compatibility of subsequent services in a plan does not guaran-
tee their correct execution in concrete terms on the grounding level. A plan
is called correct, if it produces a state that satifies the given goal (Lecue
& Leger, 2006)[229]. The principled plan executability, also-called execution
composability of a plan, requires the data flow between chained services of
a plan to be ensured during plan execution on the service grounding level
(Medjahed et al., 2003)[255]. This can be verified through complete (XMLS)
message data type checking of semantically matching I/O parameters of every
pair of subsequent services involved in the plan. For example, OWLS-XPlan2
calls a special matchmaker module (OWLS-MXP) that checks plan execution
compatibility at each plan step during planning.

The consistent, central or decentral plan execution can be achieved by means
of classical (distributed) transaction theory and systems. An implemented
approach to distributed Semantic Web service composition plan execution is
presented, for example, in [46, 265]. However, the availability of non-local ser-
vices that are not owned by the planning agent can be, in principle, refused
by autonomous service providers without any prior commitment at any time.
This calls for effective replanning based on alternative semantic matching ser-
vices delivered by a planning-specific matchmaker to the composition planner
prior to, or during planning such as in OWLS-XPlan2.

The Contributions

In the following two chapters, we present the dynamic OWL-S service com-
position planner OWLS-XPlan which comes in two variants: OWLS-XPlanl
performs restricted dynamic planning, while OWLS-XPlan2 is capable of ad-
vanced dynamic planning in stochastic environments. Both variants are avail-
able to the public at the software portal semwebcentral.org. Both variants
have been successfully used in the European research project CASCOM and
the national basic research project SCALLOPS for composing medical assis-
tance services written in OWL-S for selected real-world use case scenarios
in the e-health domain. These contributions are joint work with the Master
students Marcus Schmidt and Kai-Uwe Renner, the software engineer Patrick
Kapahnke, and the PhD students Andreas Gerber and Bastian of my research
team at DFKI. For more details on OWLS-XPlan, I refer to the co-authored
technical report [310].

Chapter 8: OWL-S service composition planning with OWLS-XPlan. In this
chapter, we present the restricted dynamic functional-level composition plan-
ner OWLS-XPlan1 for OWL-S services. Its state-based AI planner XPlanl is
hybrid in the sense that it integrates the relaxed GraphPlan-based FF planner
developed by Hoffmann and Nebel (2003)[156] with HTN (Hierarchical Task
Network) planning of domain-specific complex actions. XPlanl uses enforced

219

219/466

M Klusch, 2008

hill-climbing search to select the best helpful action for reaching the next
state in the plan graph, that is an applicable action in the relaxed plan graph
(no delete lists) with minimal heuristic goal distance, and applies breadth-
first search otherwise to ensure completeness of planning. To start planning,
the user describes an initial world and goal state in OWL-DL supported by
given OWL-S service and respective ontologies. Both states are translated into
PDDL 1.2 by the converter OWLS2PDDL 1.0 of OWLS-XPlanl, and then fed
into its planner XPlanl (supporting the ADL part of STRIPS) which gener-
ates a plan, if it exists (completeness).

Like SHOP2, XPlanl allows the real execution of services via callbacks un-
der IRP assumption at planning time (closed world) for services without any
(world state altering) effects only. This ensures the correctness of plans gen-
erated by XPlanl over determinstic states. It does not allow to cope with
conditional effects of service outcomes (inCondition in OWL-S; if-then-else in
PDDL) in partially observable world states by respective callbacks on output
values. Sequenced planning states cannot be inconsistent by definition; any
single state inconsistency caused by multiple services with contradictory ef-
fects in the state is inherently resolved by XPlanl through serialization with
heuristic choice (of one helpful service with minimal goal distance in the final
plan sequence). Each generated plan is minimal and eventually translated by
the converter of OWLS-XPlanl to a composite OWL-S service with sequen-
tial process model. It has been shown by limited experimental evaluation that
XPlan1 top performs compared to selected planners of the planning competi-
tion IPC3.

Other coauthored publications on OWLS-XPlanl not included in this chap-
ter are (Hutter et al., 2006; 2006b)[174, 175]. They describe the extension
and use of OWLS-XPlanl with an information flow analysis component that
is checking whether the generated composition plan preserves the individual
user data privacy based on given service policies and clearances.

Chapter 9: Advanced dynamic OWL-S service composition with OWLS-XPlan
2.0. OWLS-XPlan2 is an advanced dynamic composition planner since it takes
world state changes into account at planning time. This is achieved through
extending XPlanl with a module that allows the resulting planner XPlan2 to
perform a heuristic-based re-planning that is driven by periodic observation of
state changing events. Such events are service unavailability and fact changes.
In contrast to contingency planning or reactive planning, XPlan2 first checks
whether a certain event affects the current plan, and heuristically determines
the approximately optimal re-entry point for a partial restart of the actual
planning process.

Dynamic planning by XPlan2 turned out to be particularly well suited to
the application environment considered in the projects CASCOM and SCAL-
LOPS. In these environments, any execution of services during planning is
prohibited for reasons of costs and autonomy. Like with XPlanl, planning
with XPlan2 is complete and correct. Besides, XPlan2 calls the matchmaker

220

220/466

M Klusch, 2008

module OWLS-MXP for checking the execution composability of subsequent
services on their WSDL grounding level at each plan step. This ensures that
the final composition plan is correctly executable in principle at the data
flow level. Preliminary experiments show the efficiency of advanced dynamic
planning over iterative full replanning.

While XPlanl is much less expressive than XPlan2, it is in average faster by a
magnitude. Though both variants do not scale well in general, they have been
successfully used in small-scale application scenarios of the above mentioned
e-health projects. An optimized version XPlan3 is planned that relies in part
on the CONFORMANT-FF planner by Hoffmann and Brafman (2006)[155]
which is similar to ConformantGraphPlan (Smith and Weld, 1998).

Open Problems

Some major challenges of research and development in the domain of Semantic
Web service composition are as follows.

e Scalable and resource efficient approaches to service composition planning
under uncertainty coupled with semantic service selection at plan exe-
cution time in the extremely resource constrained environments like the
so-called Internet of Things interlinking all kinds of computing devices
without limit on the global scale.

e Efficient means of composition planning of Semantic Web services in un-
structured or hybrid peer-to-peer and grid computing environments.

e Interleaving of service composition planning with service negotiation in
competitive settings.

e Easy to use tools for the common user to support discovery, negotiation,
composition and execution Semantic Web services in one framework for
different Semantic Web service formats like the standard SAWSDL, OWL-
S, WSML, and SWSL (cf. chapter 3).

221

221/466

M Klusch, 2008 222/466

8

Service Composition Planning with
OWLS-XPlanl

M Klusch, 2008

M. Klusch, A. Gerber, M. Schmidt: Semantic Web Service Composi-
tion Planning with OWLS-XPlan. Proceedings of the 1st International
AAAT Fall Symposium on Agents and the Semantic Web, Arlington
VA, USA, pages 55 - 62, AAAT Press, 2005

M. Klusch and A. Gerber: Fast Composition Planning of OWL-S Ser-
vices and Application. Proceedings of the 4th IEEE European Con-
ference on Web Services (ECOWS), Zurich, Switzerland, pages 181 -
190, IEEE CS Press, 2006

223/466

Semantic Web Service Composition Planning with OWL S-Xplan*

Matthias K lusch, Andreas Ger ber

German Research Center for Artificial Intelligence,
Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany,

{klusch, agerber} @dfki.de

Abstract

We present an OWL-S service composition planner, called
OWLS-Xplan, that allows for fast and flexible composition
of OWL-S services in the semantic Web. OWL S-Xplan con-
verts OWL-S 1.1 services to equivalent problem and domain
descriptions that are specified in the planning domain descrip-
tion language PDDL 2.1, and invokes an efficient Al plan-
ner Xplan to generate a service composition plan sequence
that satisfies a given goal. Xplan extends an action based
FastForward-planner with a HTN planning and re-planning
component.

Introduction

One of the striking advantages of web service technology is
the fairly simple aggregation of complex services out of a
library of simpler or even atomic services. The sameis ex-
pected to hold for the domain of semantic web services such
as those specified in WSMO or OWL-S. The composition of
complex services at design time is awell-understood princi-
ple which is nowadays supported by many broadly available
tools and other composition planners such as SHOP2.

Hierarchical task network (HTN) planners such as
SHOP2 perform well in domains for which complete and
detailed knowledge on at least partially hierarchically struc-
tured action execution patternsis available, such as, for ex-
ample, in scenarios of rescue planning. In domainsin which
thisis not the case, i.e., no concrete set of methods and de-
composition rules that lead to an executable plan are pro-
vided, an HTN planner would not find the solution dueto the
fixed structure of hierarchical action decompositions stored
in its database. That inherently limits the degree of qual-
ity of any HTN planner to that of its used methods that are
created by human experts.

In contrast, action based planners are able to find a so-
lution based on atomic actions as they are described in
the methods, but without using the structure of the latter.
Atomic actions can be combined in multiple ways to solve
a given planning problem. But how to cope with planning
problemsthat arein part hierarchically structured according

*Thiswork has been supported by the German Ministry of Ed-
ucation and Research (BMBF 01-1W-D02-SCALLOPS), and the
European Commission (FP6 1ST-511632-CASCOM).

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

M Klusch, 2008

Marcus Schmidt
DlaL OGIKaGmbH,
Albertstrasse, 66125 Saarbruecken, Germany
Markus.Schmidt@dial ogika.de

to decomposition rules and methods but not solvable exclu-
sively by means of HTN planning?

For this purpose, we developed a hybrid Al planner
Xplan (Schmidt 2005) which combines the benefits of
both approaches by extending an efficient graph-plan based
FastForward-planner with a HTN planning component. To
use Xplan for semantic Web-Service composition, XPlan
is complemented by a conversion tool that converts OWL-
S 1.1 service descriptions to corresponding PDDL 2.1 de-
scriptions that are used by Xplan as input to plan a service
composition that satisfies a given goal. In contrast to HTN
planners, Xplan always finds a solution if it existsin the ac-
tion/state space over the space of possible plans, though the
problem is NP-complete. Xplan also includes a re-planning
component to flexibly react to changes in the world state
during the composition planning process. Together the im-
plementations of Xplan and OWL S2PDDL converter make
up the semantic Web service composition planner OWL S
Xplan.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of the OWL S-Xplan system ar-
chitecture, followed by a brief description of the integrated
converter module OWLS2PDDL in section 3. The core of
OWLS-Xplan, the hybrid planner Xplan, is presented and
compared with SHOP2 in section 4 and 5, respectively. We
concludein section 6.

OWL S-Xplan Overview

OWL S-Xplan consists of several modules for preprocessinf
and planning. It takes a set of available OWL-S services, a
domain description consisting of relevant OWL ontologies
and a planning query as input, and returns a plan sequence
of composed services that satisfies the query goal.

For this purpose, OWL S-Xplan first converts the domain
ontology and service descriptionsin OWL and OWL-S, re-
spectively, to equivalent PDDL 2.1 problem and domain de-
scriptions using its OWLS2PDDL converter. The domain
description contains the definition of all types, predicates
and actions, whereas the problem description includes all
objects, theinitial state, and the goal state. Both descriptions
arethen used by the Al planner Xplanto createaplan (repre-
senting one composed web service) in PDDL that solvesthe
given problemin the actual domain and initial state. For rea-
sonsof convenience, we developed a XML dialect of PDDL,

224/466

called PDDXML, that simplifies parsing, reading, and com-
municating PDDL descriptions using SOAP. Table 1 shows
the corresponding notions of both the Al planning and se-
mantic web service domain.

| planning domain | semantic web service domain |

(atomic) operator service profile
(atomic) action atomic web service,
atomic process
service model
composed web service,
workflow, composite process

complex action
method

Table 1: Correlating notions of the planning and semantic
web service domain

An operator of the planning domain correspondsto a ser-
vice profilein OWL-S: Both operator and profile, in essence,
describe a pattern or template of how an action or web ser-
vice as an instance should look like. A method is a specia
type of operator, that allows the user to describe workflows
or composed web services. The planner may use methods as
ahierarchical task network during its planning process.

Converter OWL S2PDDL

The conversion of OWL-S 1.1 service descriptions to
PDDXML requires not only the straight forward transcrip-
tion of typesand propertiesto PDDL predicates but the map-
ping of servicesto actions (cf. figure 1). Due to space limi-
tations, we only describe the essential translation process.

OWL-S 1.1 service description PDDL 2.1 action description

hasPrecondition parameter s precondition predicate

hasEffect parameter ——)p- ffect predicate

——]p- (NPUt predicate +
additional precondition
,agentHasKnowledgeAbout(input param)*

hasInput parameter

hasOutput parameter

——— effect predicate
,<agentHasKnowledgeAbout(output param)“
J J

Figure 1: Mapping between OWL-S service and PDDL ac-
tion description

Any OWL-S service profile input parameter correlates
with an equally named one of an PDDL action, and the
hasPrecondition service parameter can directly be trans-
formed to the precondition of the action by use of predi-
cates. The same holds for the hasEffect condition parame-
ter. Figure 3 provides an example of such a mapping of an
OWL-S 1.1 servicethat calcul atesthe routefrom given GPS-
position of an accident to the nearest hospital for an emer-
gency physician to the equivalent PDDL 2.1 action descrip-
tion. Either this service already exists, hence its trandation
is part of the planning domain description, or, as arequested

M Klusch, 2008

service (query) becomes part of the planning problem de-
scription.

Part of OWL-S 1.1 service description

- <service: Service rdf:ID="CalculateRoute">
- <service:presents>
- <profile: Profile rdf:ID="CalculateRoute_Profile">
<service:presentedBy rdf:resource="#CalculateRoute" /> Service name
<profile: serviceName
rdfidatatype="http://www.w3.org/2001/XMLSchemad st Jile: servicena
<profile: textDescription rdf: datatype="http://www.w3.0rg/200 3
routes from the emergency station (where the ambulance is at) to the acl:ldent position and
back to the chosen hospital</profile: textDescription>
</profile:Profile>
</service:presents>
<service:describedBy rdfiresource="# CalculateRoute_Model" />
- <service:supports>
- <grounding: WsdlGrounding rdf:ID="CalculateRoute_Grounding">
<service: supportedy rdf:resource="# CalculateRoute" />

</grounding: WsdIGrounding>
</service:supports>
</service: Service>
</service:describes>
<process: hasinput>
- <process: Input rdf:ID="C _Acci ition">
<process:parameterType
rdf:datatype="http://www.w3.0rg/2001/XMLSchema# anyURI">http:/ /www.dfki.de/scallops /healt]
scallops/EMAOntology.owl# GpsPosition</process: parameterTypes
</process: Input>
process:hasinput
<process:hasOutput>
- <process: Output rdf:1D="C: _RouteToAcci
<process: parameterType
rdf:datatype="http://www.w3.0rg/2001/XMLSchema# anyURI">http:/ /www.dfki.de/scallops /healt]

Service 1/0

scallops/EMAOntology .owl#Route</process: parameterTypes>
</process: Output>
</process:hasOutput>
ZProcess name raT datatype="http://vvivi . W3.0rg
- <process:hasinput>

Figure 2: Part of OWL-S 1.1 service description

PDDXML 2.1 action aescription

serviceName N [<action name="CalculateRoute"> |

<param type="Gp: - ici ition</param>
<param type="ListOfHospitals'>?C _Listof

hasInput <param type="GpsPosition">?CalculateRoute_AccidentGpsPosition</params
<param type= EmergencyPhysician'>7CalculateRoute_EmergencyPhysician</param>
</parameters>
- <precondition>
- <and>
- <pred name="agentHasKnowledgeAbout™>

</pred> -
- <pred name="agentHasKnowledgeAbout™>
\ P _ListOfHospit /param>

- <pred name=" *agentHasKnowledgeAbout'>
<param>?C iti

—

- <pred name="agentHasknowledgeAbout">

</pred> -
- <pred name="Person_isAt">

</pred>
- <not>
- <pred name="Person_isAt">
<param>?CalculateRoute_f Emerqeanhyslclan</param>
<param>?C
</pred>
</not>
</and>
</precondition>
- <effect>
- <and>
- <pred name="agentHasKnowledgeAbout">

Figure 3: Part of action description in PDDXML converted
by OWL S2PDDL

However, the conversion of the output of an individual
OWL-S service, that is the information the service offersto
the world, to PDDL turns out to be more problematic. The
problem isthat the service hasEffect condition explicitly de-
scribes how the world state will change whilethisis not nec-
essarily the case for an hasOutput parameter value, though it
indeed could implicitly influence the composition planning
process. However, PDDL does not alow to describe non-
physical knowledge such as train connections produced as
an output of a service.

This problem can be solved by mapping the service output
parameter X to a special type of the service hasEffect pa-

225/466

rameter. In particular, every output variable X is described
in, and added to the current (physical) planning world state
by means of a newly created add-effect predicate in PDDL
uniquely named " agent Has K nowledge About(X)”. Sim-
ilarly, each input variable Y is mapped to an input pa
rameter Y of an PDDL action complemented by precondi-
tion predicate " agent Has K nowledge About(Y)”. OWLS-
Xplan would only use a service description during its
planning process, if the additional precondition predicate
"agentHasKnowledgeAbout(Y)” on avalable knowl-
edge about service input datais satisfied such that X = Y
holds. Otherwise the service execution could fal since
checking the service preconditions may reveal that they are
not satisfied in the actual world state.

<Route rdf:ID="Route_Transport2"/>
<DateTime rdf: ID=”DateT1me‘Arr1valFl1ght2"/>
<PersonName rdf:ID="PersDnName_Emergencyths1c1an"/>
<Route rdf:ID="Route_Transport3"/>
<GpsPosition rdf:ID="Position TransportCompany2"/>
[<EmergencyPhysician rdf:ID="Physician EmergencyPhysician">]
<Person_hasName rdf:resau:ce="#PersonName_EmergencyPhys1|: ian"/,
<Person_hasCreditCard>
<Creditcard rdf:ID="CreditCard_EmergencyPhysician">
<CreditCard_hasCreditCardNumber>
<CreditCardNumber rdf:ID="CreditCardNumber_ Emergen Physician"/>
</CreditCard_hasCreditCardNumber>
</Creditcard>
</Person hasCreditCard>

,Emergency physician is
at some (GPS) position*

<Person_isit>
<GpsPosition rdf:ID="Pos1\:ion_Emergenchhysic1an"/>
</Person isit>

Figure 4: Part of initial world state semi-automatically built
by OWLS-Xplan editor

~suujEL L

= <init>
Part of gl
initial world state - <pred name="Person_isAt">
<param>Physician_EmergencyPhysician</param>
In PDDXML <param>Position_EmergencyPhysician</param>
</pred>

Py — <pred name="Person_isAt">
"i'i’gf;%f:xgziﬁﬁ[?” <param>Patient_Mikka</param>

<param>Hospital_Lisabon</param>
) - / </pred>
,Patient Mikka is at

- <pred name="Patient_hasDisease">
<param>Disease_Injury</param>

a hospital in lisabon
<param>Patient_Mikka</param>

and has a disease

</pred>
or injury* </and>
</init>
-(<goal>)
Goal state - <and>
) =>| _ pred name="Person_isAt'>
in PDDXML <param=>Patient_Mikka</param>

<param>Home_Mikka</param>
,Patient Mikka is at home </pred>
) i - <not>
without any disease or - <pred name="Patient_hasDisease"
injury“ <param=>Disease_Injury</param>
<param=>Patient_Mikka</param>
</pred>
</not>
</and>
\< 4

</define_problem>

Figure 5: Part of problem description in PDDXML con-
verted by OWLS2PDDL

Figure 4 shows an example of an inital world state that
has been semi-automatically built by the OWLS-Xplan ed-
itor. In particular, it currently provides application-oriented
templates to the user that allow her to quickly enter, mod-
ify, and validate the initia world state and the query, i.e,,
the goal state, depending on the specific situation and prob-
lem at hand. If the user wants to query the agent for a

M Klusch, 2008

medical transporation service, she only has to fill in a few
pre-given templates, thereby setting the values of default pa-
rameters of world state and one requested service with re-
lated OWL ontologies attached to the template. This ini-
tial state and request description is then automatically con-
verted to the corresponding PDDXML problem description
by OWLS2PDDL (cf. figure 5). This, in turn, is fed into
the planner Xplan to find a solution, i.e. a plan sequence of
services or actions on the initial world state that satisfy the
given goal.

The Al planner Xplan

Xplan is a heuristic hybrid search planner based on the FF-
planner developed by Hoffmann and Nebel (Hoffmann &
Nebel 2001). It combines guided local search with graph
planning, and asimpleform of hierarchical task networksto
produce a plan sequence of actions that solves a given prob-
lem. Thisyields a higher degree of flexibility compared to
pure HTN planners like SHOP2 (Sirin et al. 2004) whereas
the use of predefined workflows or methodsimprovesthe ef-
ficiency of the FF-planner. In contrast to the general HTN
planning approach, a graph-plan based planner is guaran-
teed to always find a solution independent from whether the
givenset of decompositionrulesfor HTN planning would al-
low to build a plan that contains only atomic actions. Infact,
any graph-plan based planner would test every combination
of actions in the search space to satisfy the goal which, of
course, can quickly become prohibitively expensive.

Xplan combines the strengths of both approaches. It is
a graph-plan based planner with additional functionality to
perform decomposition like aHTN planner. Figure 6 shows
an example of how Xplan of OWLS-Xplan uses only those
parts of a given method for decomposition that are required
to reach the goal state with a sequence of composed services
WSy and WSs. In contrast, HTN planning would com-
pletely decompose M into WS, followed by 1S5, hence
output also 'S5 which is of no use for reaching the goal .

Method M

Goal-State

Figure 6: Using parts of methods to reach a goa state in
OWLS-Xplan

Overview

The Xplan system consists of one XML parsing module, and
following preprocessing modules. First, required data struc-
tures for planning are created and filled, followed by the
generation of theinitial connectivity graph and goal agenda.
The latter two actions are interleaved with replanning. The
core (re-)planning modules concern the heuritically relaxed

226/466

Input:
* Preparing the input data Generation of a
« Creating type-hierarchies ~ Generation of a reachable goal

« Fitering relevant operator ~dependency graph sequence

instances 5 -
Data oner::‘c)tr:wty | Goal Agenda
Preprocessing ot Generation

Preprocessing

PDDXML Building the internal
problem data structures
description

Iy
XML Parser
I

PDDXML
domain
description

heuristics:Relaxed
Graphplan
Generation

Enforced hill

Result:
esu Climbing search

PDDXML

« Generation of a relaxed planning graph
where the operators have no delete lists
« Extracting helpful operators

Core (re-)planning

Figure 7: Architecture of Xplan

graph-plan generation and enforced hill-climbing search (cf.
figure 7).

After the domain and problem definitions have been
parsed, Xplan compiles the information into memory effi-
cient data structures. A connectivity graph is then generated
and efficiently realized by means of alook up table, which
contains information about connections between facts and
instantiated operators, as well as information about numeri-
cal expressions which can be connected to facts. This con-
nectivity graph is maintained during the whole planning pro-
cess and used for the actual search. In case of areplanning
situation, the connectivity graph is adjusted according to the
changed new world state.

Xplan uses an enforced hill-climbing search method to
prune the search space during planning, and a modified ver-
sion of relaxed graph-planning that allows to use (decom-
position) information from hierarchical task networks dur-
ing the efficient creation of the relaxed planning graph, if
required, such as in partially hierarchical domains. Infor-
mation on the quality of an action (service) are utilized by
the local search to decide upon two or more steps that are
equally weighted by the used heuristic.

In addition, Xplan includes a replanning component
which is able to re-adjust outdated plans during execution
time. Therefore, the execution engine informs the planning
module about changed world states, and the Xplan replan-
ning component decides whether the remaining plan frag-
ment to executeis still valid or whether a re-planning has to
beinitiated. Figure 9 shows a fragment of the plan descrip-
tion produced by Xplan, i.e., a sequence of actions, that is
the composed sequence of corresponding OWL-S services,
that can be executed by the agent.

We implemented Xplan modularly in C++, using the Mi-
crosoft MSXML Parser for reading PDDXML definitions
and generating plans in XML format. Alternatively, Xplan
also provides an interface for direct interchange of planning
datawithout having to use PDDXML asinterchange format.
Each component of Xplan will be described in more detail
in subsequent sections.

Data preprocessing component
Solving a planning process can be viewed as a search prob-
lem in the space of al possible combinations of action se-

M Klusch, 2008

PDDL 2.1 plan fragment
+ <facts>
- <plan>
~[<step number="0" name="GetMedicalFlightAccount'>] «—— Plan step 0 =

<param>CreditCardNumber_Mikka</param> First action in plan =
<param>Patient_Mikka</param> " .
<param>AccountPassword_MedicalTransport</param: First service to execute
<param>AccountName_NonMedicalFlight</param>
<param>Address_MikkaHome</param>
<param>Account_MedicalFlight</param>

<param>PersonName_Mikka</param:
- <effects>
—Zeffect id="26399">
- <adds>
- <fact name="agentHasKnowledgeAbout" id="4"
<param>Account_MedicalFlight</param>
</fact>
- <fact name="Patient_hasMedicalFlightAccount| id="30">
<param>Account_MedicalFlight</param>
<param>Patient_Mikka</param>
</fact>
</adds>
<deletes />
<preconditions />
ffect

Effect of execution:
Change of agent &
world state

</effects>
</step>
~(sstep number="1" name="BookMedicalTransport'>__]J+—— Plan step 1
<param>TransportNumber_Transport1</param:>

srmmrams Annnunt MadicalTeancnns - /narams

Figure 8: Part of plan descriptionin PDDXML.

quences. Xplan starts off with preprocessing the input data
assigning initial values to each predicate of the given (prob-
lem and domain) state descriptionin PDDL.

Type relation, conver sion and simplification of formu-
las. In the second step, X plan createsamatrix, that describes
al type relations and type inclusions. Predicates which are
neither negative nor positive in the effect list of an opera-
tor are considered static for the complete planning process,
hence are removed from all preconditions and effect lists.
Then, the preconditionsand effects are converted to disjunc-
tive normal form.

Operator-templates, instantiation and reduction of
search space. Xplan creates templates from these simpli-
fied operators which are instantiated by all possible combi-
nations of input data based on object instances as described
inthe PDDL problem description. The set of instantiated op-
eratorsis then reduced by means of fixed point computation
leading to useable and relevant operators. This is achieved
by iteratively starting with applying all operatorsto the ini-
tial state. Facts that are added to the state by operators will
be stored in a potential positive facts list. The respective
operators are marked as relevant. This process is repeated
until either no new facts nor operators are added to the lists.
Operators and facts that are neither reachable nor able to be
fulfilled, are removed from the basis set of instantiated op-
erators. Relations between instantiated methods, complex
actions and atomic actions are built, to speed up the search
and decomposition later on. Furthermore, to guarantee com-
pleteness while searching, all negative facts that have a cor-
responding fact in the potential positive facts list are also
stored in the list of relevant facts. Both relevant facts and
operators are used to build the connectivity graph.

Generation of the connectivity graph and goal
agenda

The connectivity graphisbuilt upon thelist of relevant facts,
and relevant operatorsin an iterative process that detects the

227/466

dependencies between the precondition, add- and delete lists
of operators and facts. Once created, the connectivity graph
remains static during the search and planning process. In
contrast to traditional plan graph algorithms, Xplan does not
consider the complete set of goals as a whole but computes
an ordered list of goals, the so called goal agenda. The cor-
responding goal graph is generated based upon this agenda
and the FAL SE-sets of each goal. Finaly, the transitive hull
over the goal graph is being computed which is then used to
classify goalsinto goa sets.

Let (O,Z,G) be a planning problem for which a goal
agenda with n goal-sets G'so, ..., Gs, exists. The search
algorithm starts with the initial state I, = Z and the first
goa-set Gsg as the planning goal G. If a solution P is
found which leads from I to G'sg, then the plan is used on
Py, and I. Theresulting state I; = Result(Iy, Py) isthen
used as the starting point for the search using I, as initia
state and planning goal G = Gsg U Gs;. Thus al reached
goas Gsg to G'sj_1 remain valid while searching for a so-
lution for Gsy,. For the current planning goal G, in iteration
k it holdsthat

k
Gr=JGsi
=0
The Xplan search algorithm uses a no-opsfirst-strategy, i.e.,
goals achieved in previous iterations are marked and only
temporally deleted if they will be generated again later on.
This guarantees that the planner generates no sub-optimal
plans with loops.

The Relaxed Graphplan heuristic

After the goal-agenda has been generated, the search pro-
cess starts. The search consists of two interleaved processes.
The Relaxed Graphplan heuristic (Hoffmann 2000) approx-
imates the distance between the initial state Z to all reach-
able states S. These distance values are then used to guide
the forward directed search. After each successful step the
distance values are updated again using the heuristic.

Definition 0.1 Astate S = (Fs, hg, Ng) is defined as

e [gisasetof all factswhich aretruein state S.
e hg isdistanceto the goal given by a heuristic.
e Ngisaset of helpful action which can be used in state S.

Complex actions and hierarchical task networks
within relaxed Graphplan We have expanded the Re-
laxed Graphplan heuristic based algorithm by adding an
HTN planner component, and utilization of numerical and
boolean facts that can be updated online during the planning
phase by external function calls. Asaconsequence, not only
atomic operators but also complex actions and methods are
allowed during planning. If a complex action is used while
generating a plan graph of which preconditions on some
graph layer E; are satisfied, the HTN component then tries
to decompose the complex action using a method-structure
element or complex task. A relevant method is searched
for by looking up the connectivity graph. Since more than
one method could be relevant for decomposition, a heuristic
h¢,. isused to determine the most useful one. The selected

M Klusch, 2008

partial task network itself may contain complex actions that
have to be recursively decomposed. Through selection of
useable operators O; of plan graph layer F; the algorithm
first tries to select complex actions. If a solution cannot be
found by decomposition, Xplan triesto find a solution with-
out using the HTN component.

External procedurecalls Many planners offer the possi-
bility to use numerical values with the standard operators
+, —, %, =+, ... during the planning process. In most cases
these functions are not only bounded in their number but
rather hard-coded in the planner such as in the Metric-FF
planner (Hoffmann 2003). This is a drawback because the
system cannot be expanded without having to change the
code. In contrast, Xplan offers the use of so-called exter-
nal call-back functions. A call-back function is linked to a
predicate by means of afluent variable which containsitsre-
turnvalue. Thisway, Xplanis able to obtain actual informa-
tion on the value of predicates during the planning proces by
calling the linked call-back function. The function returns a
boolean value which indicates whether the linked predicate
is set or removed from the world state in the next layer of the
plan graph. New call-back functions can be added without
changing the code of the planner itself.

The fluents are utilized by the planner on both the global
fluent-layer of the plan graph, that represents the current
state in the computed plan, and the local fluent-layer stor-
ing the changed new states of the fluents for their usein the
next planning steps. An update of the global fluent-layer is
performed each time the fast-forward search finds a better
state with respect to a given utility function. The values of
thelocal fluent-layer are used for calculating those facts that
are satisfied by executable actions of some layer of the plan
graph. The pseudo-code of the algorithm 1 for generating
the relaxed plan graph is provided in the annex of this paper.

Extraction of a relaxed plan from the planning graph
Let (O, Z,,G) the planning problem to solve and PG the
relaxed plan graph with k layers. Figure 9 shows a simple
example of problem and domain description together with
initial part of a corresponding plan graph.

The search for a relaxed plan starts at the top most layer
Ey_ . For every goal of the current layer E;, 1 < k, an ac-
tion of F;_; is selected that satisfies one or multiple goals.
Let F; be the set of facts of layer E;, then the selection of
goalsisdone by use of aheuristic h 4 that measures the bar-
rier for executing an action.

ha(o0) := Z min{i [p € F;} + (1 — QoS(0))

pEpre(o)

with QoS (o) €]0, 1] quality of serviceof action o. Theinter-
section of the set of selected actions' preconditionsof F;_;
and the facts of F;_; makes up the goal set G;_; of layer
E;—1. This goa set then has to be fulfilled by use of ac-
tions of the subsequent layer £;_». The recursion is going
on until the lowest layer of the planning graph with initial
factsis reached. Thisis then the relaxed plan, that consists
of anaction sequence Ay ... Ax_1. k — 1 istheindex of the
first layer which contains all goals of the original problem.

228/466

PDDL problem and domain description
Init (Have(X))
Goal(Have(X) A Used(X))

Action(Use1(X)
Precondition: Have(X)
Effect: = Have(X) A Used(X))

Action(Use2(X)
Precondition: = Have(X)
Effect: Have(X))

Plan graph PG
Goal, Possib/eActions, Goals, PossibleActions, Goals,

H % Have(X) Have(X)
ave(X) reconds effects _{ Use2(X)
Use1(X) = Have(X) = Have(X)

Used(X) W Used(X)

o Used(X) — Use1(X)
T —AUsed(X) — ———— = Used(X)
- . - @
Layer E, Layer E, Layer E,

Figure 9: Part of aplan graph with k£ = 3 layers

To get an approximation how far away it isfrom state Z . to
goal G, aheuristic h(Z,) (described in (Hoffmann 2000)):

k—1
=3 1A
=0

Thevalue h(Z,,) indicates the length of the relaxed, sequen-
tial solution of O starting with Z,.. This value in combina-
tion with the state information Z,, constitutes the new search
state S which is included into the search space of the fast
forward search.

Detecting helpful actions

In addition to the heuristic, Xplan computes the set H ¢ of
helpful executable actions for every search state S' such that
the goal G eventually can be reached.

Definition 0.2 A helpful action of a search state S isan ac-
tion, that satisfies at least one proposition of the goal set G,
of thefirst layer in the plan graph. The set of helpful actions
is described as follows:

Hs(S) :={o] (pre(o) € 5) N (add(0) N G1(S) # 0)}

If there are many helpful actions, then actions of an HTN
decompositionare preferred. Thereason s, that such actions
aremore highly probableto be succeeded by an useful action
in the task network as part of the relaxed plan.

L ocal search with enforced hill-climbing

Xplan uses an enforced hill-climbing search algorithm to
search for best reachable states during generation of the
global plan to satisfy a given goal. It combines the standard
search strategy with a breadth search for a better state than
the given one not only in its direct neighborhood but within
the set of successor states of S that are reachable by apply-
ing a helpful action of Ng. This search strategy performsas
follows.

M Klusch, 2008

e Compute the distance between the starting state Z and the
god state G by use of Relaxed Graphplan, and the set of
helpful actions I.

e Initilize the enforced hill-climbing with Z =
(Fr, hz, N7) asinput.

e Enforced Hill-Climbing analyzes all reachable states that
have been computed. It assigns each state with its approx-
imative distance to the goal by use of Relaxed Graphplan.

e If a better state is found, then include this state into the
current plan, and use it as a basis for further search. Up-
date al fluents on the current layer by invoking the re-
spective call-back functions.

e Terminateif astate S’ = G isreached in which all given
goas are satisfied. Otherwise, if not at least one goal has
been achieved, the search failed. In this case, a new com-
plete breadth search isinstantiated on Z to find a solution,
if it exists.

The pseudo-code of the local search by enforced hill-

climbing a gorithm is shown in algorithm 2.

Re-planning component

During plan execution, the agent hasto check for each action
of the plan whether its preconditions hold, or not. If at least
one precondition is not satisfied, Xplan gets informed about
which facts are invalid, at which position in the plan this
problem occurs, and then checks whether the original plan
still can be executed. Otherwise, it tries to fix the problem
by searching for an alternative path in the connectivity graph
fromthe actual position in the plan to the goal state. In addi-
tion, it may temporally block unnecessary actions to reduce
the search space, thereby avoiding a complete preprocessing
phase.

Plan patterns

Xplan builds ordered service composition plan sequences
only whereas OWL-S allows for more complex plan struc-
tures such as unordered, choice, if-then-else, iterations,
repeat-until loops, repeat-while loops, split, and split+join.
However, complex plan structures can be formed out of the
produced plan sequence based on its appropriate analysis
and interpretation in posterior. For example, figure 10 shows
how a plan sequence looks like, that can be transformed into
a split+join structure. In this case, the input of WS, does
not depend on the output of WS, hence both services may
be executed concurrently. Since both are required to achieve
thegiven goal, their results have to bejoined after execution.

Figure 11 shows an example of how to realize asplit struc-
ture. Likein previous example, both services neither influ-
ence each other, nor share acommon goal to reach, thus can
be executed in parallel.

However, the plan structures” choice” and ” unordered se-
guence’ are not realizable by proper interpretation of plan
sequences created by Xplan. Though, the latter problem is
ahard problem for any Al planner in general, including, for
example, Shop2 (Sirin et al. 2004).

229/466

Goal-State

Figure 10: Split + Join interpretation

Init-State Goakatatya Goal-State 1
K1

ledge

Facts

Goal-State 2

- ‘v fnows
I it -
WS i ledge
TEmect o Facts™

Prec A —
independent

goals
te 1

Figure 11: Split structure of an OWLS-Xplan plan

Related work

A logic-based DAML-S composition planner has been de-
veloped at the UMBC, USA (Sheshagiri, deslardins, &
Finin 2003). This planner uses STRIPS-style services to
compose a plan, given the goal and set of basic services. It
is implemented with JESS (Java Expert System Shell), and
uses a set of JESS rules to translate DAML-S descriptions
of atomic servicesinto planning operations.

One of the currently most prominent service composition
plannersis Shop2 (Simple Hierarchical Ordered Planner 2)
developed at the University of Maryland, USA (Wu et al.
2003). Itisahierarchical task network (HTN) planner well-
suited for working with the hierarchically structured OWL-S
process model. The authors proved the correspondence be-
tween the semantics of Shop2 and situation calculus seman-
tics of the OWL-S process model. The implemented Shop2
soundly and completely plans over sets of OWL-S descrip-
tions, and treats the output of a web service as effects that
either change the planning agent’s knowledge, or the world
state. Shop2, like HTN planner in general, replaces those
elements of the provided methods (workflows) by special
methods or atomic actions until the composition plan con-
tains only atomic actions that correspond to available web
services. During planning, web services are not executed,

M Klusch, 2008

hence do not affect the world state.

Both Xplan and Shop2 base on the closed world assump-
tion, use PDDL for problem description, alow external
(call-back) functions to be bounded to variables and exe-
cuted during planning, and generate total ordered, instan-
tiated plan sequences for agiveninitial state, goa and plan-
ning domain. Among others, the main difference between
Shop2 and Xplan is inherent to the individual planning pro-
cesses. In essence, Shop2 plans are generated by use of
given decomposition rules (methods), hence a solution to
the planning problem is not always guaranteed to be found
(Lotem, Nau, & Hendler 1999). In contrast, hybrid Xplan as
part of OWLS-Xplan tries to plan by means of (a) method
decomposition using only relevant parts of it, discarding
useless actions, thereby reducing the plan size, and (b) if
thisis not successful, uses its relaxed graph plan algorithm
to find asolution, if it exists.

Conclusion

We presented an OWL -S service composition planner, called
OWLS-Xplan, that allows for fast and flexible off-line com-
position of OWL-S services by use of an OWL S2PDDL con-
verter, and ahybrid Al planner that combinesrel axed Graph-
plan FF-planner with local search and HTN based planning,
and a re-planning component. OWLS-Xplan has been im-
plemented in C++ and Java, and is currently in use in a pro-
totyped medical health information service system. Itisin-
tended to make the OWL S-Xplan code package available to
the community at www.semwebcentral.org.

References

Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation Through Heuristic Search. Journal of Artificial
Intelligence Research (JAIR) (14):253-302.

Hoffmann, J. 2000. A heuristic for domain indepndent planning
and its use in an enforced hill-climbing algorithm. Proceedings
of 12th Intl Symposium on Methodologies for Intelligent Systems,
Soringer Verlag.

Hoffmann, J. 2003. The Metric-FF planning system: Trandat-
ing Ignoring Delete Lists to Numeric State Variables. Artificial
Intelligence Research (JAIR), vol 20.

Lotem, A.; Nau, D.; and Hendler, J. 1999. Using planning graphs
for solving HTN problems. Proceedings of AAAI/IAAI confer-
ence, USA.

Schmidt, M. 2005. Ein effizientes Planungsmodul fuer die lokae
Planungsebene eines InteRRaP Agenten. Master’sthesis, Univer-
sitaet des Saarlandes.

Sheshagiri, M.; desJardins, M.; and Finin, T. 2003. A planner
for composing services described in DAML-S. Proceedings of
AAMAS 2003 Workshop on Web Services and Agent-Based Engi-
neering.

Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004. HTN
planning for web service composition using SHOP2. Journal of
Web Semantics, 1(4) 377-396.

Wu, D.; Parsig, B.; Sirin, E.; Hendler, J.; and Nau, D. 2003.
Automating DAML-S web services composition using SHOP2.
Proceedings of the 2nd International Semantic Web Conference
(ISWC2003), pages 20-23, Sanibel Island, Florida, USA.

230/466

function BuildRelaxedPlanningGraph() computes
relaxedPlanningGraph or fails
input: InitialFacts]] : List of Facts
input: GoalFacty[] : List of Facts
local: CurrentLayerFacts[], NextLayerFactg[] : List of
Facts
local: CurrActivActiond[] : List of Actions
local: CurrentLayer : int
begin
CurrentL ayerFacts = Intitial Facts,CurrentLayer = 0;
while! AllGoal sActive(Goal Facts) do
foreach Fact f in CurrentLayerFactsdo
Increment precondition counter of actions
which f isaprecondition of;
end
foreach Fact f in CurrentLayerFactsdo

/* First collect all action,
that are a result of a
method decomposition and
compute the layer, when it
is earliest executed. */

CurrActivHTNActions +=

GetActiveHTNActions(CurrentLayer, f);

/* Select all remaining
executable actions,
are part of the
current-layer */

CurrActivActions +=

GetActivePrimitiveActions(CurrentLayer, f);

end
foreach Action a in CurrActivHTNActions do

if all preconditions of a are satisfied AND

Layer of a == CurrentLayer then
/* a 1s executable, all

preconditions are
fulfilled and is
executable in the layer
*
/
NextLayerFacts +=
GetAddedFactsFromAction(a);

that

RemoveFromList(a,CurrActivHTNACctions);

end
end
foreach Action a in CurrActivActions do
if all preconditions of a are satisfied AND
Layer of a == CurrentLayer then
NextLayerFacts +=
GetAddedFactsFromAction(a);
RemoveFromList(a,CurrentActivateAction
end
end
CurrentL ayerFacts = NextLayerFacts;
NextLayerFacts = <>;
/* Increasing layer counter and
continue with next layer. */
CurrentLayer = Current Layer + 1,
if CurrentLayerFacts== <> then
/* If a fix point is reached
regarding facts and actions
and the goal isn’t fulfilled,
the problem isn’t solvable.
*
/
if I AllGoal sActive(Goal Facts) then
return FAILURE;
end
end
return CurrentLayer;
end

W IgriIsthn2do&senerating a relaxed plan graph

function DoEnforcedHill Climbing() computes
validPlan: Plan or fails
input: InitialSate: Stateinput: GoalState: State
local: S: State /* the current computed
state */
local: S : State /* possible successor of S
*
/
local: currPlan: Plan /* current plan */
local: hs :int /* the distance of S to a
goal computed by use of Relaxed
Graphplan */
local: hg: @ intlocal: Ng] : List of Actions /* List
of helpful action based on state S
*
/
local: Ng/[] : List of Actions
begin
/* The initial plan is empty */
currPlan = <>;
S= InitialState; /* Compute the distance
from starting state to goal * /
hs = BuildRelaxedPlangraph(S Goal Sate);
/* Compute helpful actions for S
*
/
Ng = GetHelpful Actions(S);
while hg # 0 do
/* Searching with breadth search
for a state S’ with Hg: < Hg
within Ng and their
successors. BFS_Expand
computes for every relevant
state the distance between
goal and helpful actions.
This is done by
BuildRelaxedPlangraph and
GetHelpfulActions */

S = BFS Expand(S,Ng);
if S == NULL then

return FAILURE;
else

/* If a state S’ is found,
the action sequence is
attached to the end of the
current plan, that enables
to get from S to S’. */

currPlan =

currPlan + ActionsPath(S, S");

/* Update fuents of the
global fluent-layer */

UpdateGlobal Fluents(S,S);

/* The search goes on
beginning with S’.
computed before by
BFS_Expand and can still be
use. */

S=S;

Ng = Ng/;

end
end
return currPlan;
end

NS/ is

Algorithm 2: Local Search by enforced hill-climbing

231/466

Fast Composition Planning of OWL-S Services and Application’

Matthias Klusch and Andreas Gerber
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
{klusch@dfki.de, andreas.gerber@x-aitment.net}

Abstract

In this paper, we present the implementation,
evaluation, and application of our OWL-S service
composition planner OWLS-XPlan. Medical services
described in OWL-S 1.1 and ontologies are converted to
initial state and goal descriptions in PDDL 2.1, which are
then used by the fast heuristic FF planner XPlan for
generating an execution complete composition plan.
Results of experimental evaluation of XPlan shows its top
performance compared with other selected Al planners.
OWLS-XPlan is used in an agent based mobile e-Health
system for emergency medical assistance planning tasks.

1. Introduction

. Though the composition of complex Web services
attracted much interest in different fields related to
service oriented computing, there are only a few
implemented composition planning tools publicly
available for the semantic Web such as the HTN
composition planner SHOP2 [11, 12] for OWL-S
services. One problem with pure HTN planners is that
they require task specific decomposition rules and
methods developed at design time, hence are not
guaranteed to solve arbitrary planning problems. That, in
particular, motivated the development of our hybrid off-
line composition planner for OWL-S 1.1 services, called
OWLS-XPlan [13], which is guaranteed to find a solution
if it exists, though the corresponding planning problem
remains to be NP-complete.

OWLS-XPlan is integral part of the prototypically
implemented agent based mobile eHealth system, called
Health-SCALLOPS, for secure emergency medical
assistance planning tasks, such as patient repatriation and
relocation to selected hospital. An extended version of
OWLS-XPlan, called OWLS-XPlan+, that allows for
heuristic quasi-online re-planning of composite OWL-S
services has also been implemented and is currently in
use in a different e-health application scenario within the
European project CASCOM.

The remainder of this paper is structured as follows.
Section 2 briefly introduces OWLS-XPlan, followed by
the results of the performance evaluation of its core
planning module XPlan, and its implementation in
sections 3 and 4, respectively. The use of OWLS-XPlan
in the Health-SCALLOPS application is described in
section 5. We briefly refer to related work and conclude
in sections 6 and 7, respectively.

2. OWLS-XPIlan Overview

The semantic web service composition planner
OWLS-XPlan consists of several modules for pre-
processing and planning of composite OWL-S services
(cf. figure 1). It takes a set of available OWL-S 1.1
services, related OWL ontologies, and a planning request
(goal) as input, and returns a planning sequence of
relevant OWL-S services that satisfies the goal.

domain- and
service—
description

OWLS 1.1 PDDXML

e d
OWLS-Xplan

<Name>.oul problem
description
OWLS2PDDL sy N et
plan
converter » Xplan descriptio
PDDXNIL amer Plan i
domain
description
| —

PDDL 2.1
<Name> Domain.xml

Figure 1. OWLS-XPlan overview

For this purpose, it first converts a given domain
ontology and service descriptions in OWL and OWL-S
1.1, respectively, to equivalent PDDL 2.1 problem and
domain descriptions using an integrated OWLS2PDDL
converter. The domain description contains the definition
of all types, predicates and actions, whereas the problem
description includes all objects, the initial state, and the
goal state. Both descriptions are then used by the Al

1
This work has been supported by the German Ministry of Education and Research (BMBF 01-IW-D02-SCALLOPS), and the European Commission

(FP6 IST-511632-CASCOM).

M Klusch, 2008

232/466

planner XPlan to create a plan in PDDL that solves the
given problem in the actual domain. An operator of the
planning domain corresponds to a service profile in
OWL-S, while a method is a special type of operator for
fixed complex services that OWLS-XPlan may use during
its planning process. For reasons of convenience, we
developed a XML dialect of PDDL, called PDDXML,
that simplifies parsing, reading, and communicating
PDDL descriptions using SOAP.

(3) Repeat with (1) + (2):

Input:
+ Preparing the input data Generation of @
Building the intermal + Creating type-hierarchies ~ Generation ofa reachable goal
S?o[mﬂrh data st?uctures « Filtering relevant operator ~ dependency graph sequence
description [T e Connectivity
XML Parser Dta | Graph Goal Agenda
Ly Preprocessing ‘ f Generation
PDDXML | (A Generation
domain
description .
i Preprocessing

heuristics Relaxed
Graphplan
Generation

Enforced hill
Climbing search

« Generation of a relaxed planning graph
where the operators have no delete lists
« Extracting helpful operators

Core (re-)planning

Figure 2. XPlan planning module

The planning module XPlan (cf. figure 2) is a heuristic
hybrid FF planner based on the FF planner developed by
Hoffmann and Nebel [4, 5, 6]. It combines guided local
search with relaxed graph planning, and a simple form of
hierarchical task networks (HTN) to produce a plan
sequence of actions that solves a given problem. If
equipped with HTN methods (composed services), XPlan
uses only those parts of decomposed methods that are
required to reach the goal state

(a) Create RPG

Applyall
actions to =5y

Relaxed
staig Sy

i Del-fsts)

Apply all
actions to Sy

Relaxed
state Syy

Al goal
tacts satisfied

J(Na Del-fsts)

M Klusch, 2008

(b) Extract RP From RPG (Backward)

Marked facts of 5y;
considered as goal facts

(2) Mark: facts, which
are precondition
of marked actions.

(1) Mark actions, which
effects are goal facts.

(13 Apply all helpful actions to 5y

including previoushy ignared

Del-lists (negative effect facts @)

which vields complete states.

() Create RPG
for each successor state
of helpful action (s ()

233/466

{3) Select helpful action for which
the EP of its successer state has
minirnal heuristic length h
as next action in the plan T
Thiz completes plan step 1.

{4 Continue planning at the
successor state (3) = 34)
with (c1) and minimal EP (EPy,)

h(RP))=x = WRP1)=V¥

Figure 3. XPlan planning step example: (a) Create
relaxed planning graph RPG, (b) extract relaxed plan
RP from RPG, (c) Select heuristically optimal helpful

action (bold green) as action in the plan sequence;
h(RP) = Number of actions in the relaxed plan
heuristically equals the length of RP and P.

For each sub-goal g of the determined goal agenda, at
each planning step i, XPlan quickly builds a relaxed
planning graph RPG(i) in a fast goal reachability test
heuristically ignoring negative effects of actions, and the
corresponding relaxed plan RP(i) in a backward pass
from g to S;.

The relaxed plan contains all paths of applicable
actions that lead from g to S;, of which only those in its
first action-layer O are called helpful. In the following,
XPlan focuses on the helpful actions of RP(i) only, hence
reduces the search space. Please note that the relaxed plan
is not necessarily correct.

In order to decide which helpful action to select as the
next action in a valid plan sequence, it applies each of
them to S; and adds the previously ignored Del-list facts
yielding the complete state Sj;, where j in {1,.., 1}, denotes
the j-th helpful action applied to state S; .

For each of these states the relaxed plan RPG(i,j) is
built to heuristically search for the relaxed plan RP(i,j)
with heuristically minimal length h(RP(i,j)). In this
context, the "plan length" h(RP(i,j)) just denotes the sum
of all actions in all action-layers of the RP. Finally, XPlan
retains the action Ay with heuristically minimal goal-
distance and starts the next planning step i+1 with S;. If
there are multiple RPs of equal length, it repeats the same
decision process starting at state S;; (like a breadth first
search restricted on helpful actions), and then Sj, ..., Sy
until a minimum is found.

Eventually, all created plans for sub-goals g of the
goal agenda are respectively concatenated which yields
the final plan sequence P. The plan then gets executed,

M Klusch, 2008

and if it fails, XPlan allows re-planning from the most
recent valid state produced by action execution, to avoid a
total re-planning, if possible. For more details on OWLS-
XPlan in general, and XPlan in particular, together with
examples of service translation from OWL-S to
PDDXML we refer the reader to [13]. The software
package OWLS-XPlan 1.0 is available at [15].

3. Evaluation of XPlan

We evaluated the performance of XPlan, using the
publicly available benchmark of the international
planning competition IPC3 [2], and compared the results
with that of the four top performing IPC3 participants, i.e.
FF planner, Sim-Planner, and the HTN planners TLPlan,
and Shop2. XPlan was tested without task specific
methods. Planning performance was measured in terms of
(a) the planning completeness, i.e. the total
percentage of solved problems (cf. figure 4),
(b) the average plan length (cf. figure 5), and
(c) the average plan quality, i.e. the average distance
of individual plans from the optimal plan length
(cf. figure 6)
in relation to the complexity of the given problems. The
complexity of a planning problem is defined as the
number of objects of the type definitions specified in the
given planning problem domain description. We grouped
all test cases of the IPC3 test scenarios leading to 122
problems in total into complexity classes with an
increasing number of objects.

problems not solved
10
9
8
5§ 7
i
5
3 44
8 39
21
14

o B [1]
100 200 500 1000 5000 10000 15000 30000
complexity groups
[2>Plan m FF o Simplanner 0 TLPlan m SHOP2|

Figure 4. Completeness

First, we tested the completeness of planning (cf. figure
4). It turned out that XPlan fails to find a solution for
problems of mid range complexity only, whereas the FF
planner failed to solve the most complex problems. There
were no results reported for TLPlan and SHOP2 for the
last six test cases, they failed a lot in solving problems of
low and mid range complexity, but performed very well
in solving more complex problems. Main reason is that
the HTN planners turned out to be equipped with methods
that better enabled them to solve highly complex
problems in most domains.

234/466

average plan length

8
8

3
8

plan step

3
S

100 200 500 1000 5000 10000 15000 30000 50000 100000
complexity groups

‘n)@laanFDSirrdamerDTLPla’\lSFO’Z‘

Figure 5. Average plan length

Figure 5 summarizes the results of testing the average
plan length in relation to the complexity of the problem
definition. The HTN planners produced shorter plans than
their competitors with increasing complexity of the
problem, whereas XPlan outperformed all other planners
for given problems of low and mid range complexity.

difference to local optimal plan length
40,00

35,00 -
30,00
25,00 4
20,00

T 15,00
10,00 4
5,00 1
0,00

100 200 500 1000 5000 10000 15000 30000 50000 100000
complexity groups
‘D)PIaanFDSirruannerDTLPlanlSFOPQ‘

Figure 6. Average plan quality

Finally, we measured the average plan quality in terms of
the average distance of individual plans from the optimal
solution of a given problem (cf. figure 6). That is, we
counted the number of additional plan steps of a solution
generated by an individual planner compared to that of
the shortest plan created for the given problem, averaged
over all test cases per complexity class. In this respect,
except for the most complex problems, XPlan
outperformed the other planners

Average Time for converting OWL-S services to PDDXML

14600
12600

8600 —e— Time for converting OWL-S
6600 servicees to PDDXML

4600
2600

600 — T T T T T
19 38 57 76 170 340 680

S

=]
S
=]
3

millisecond

number of services

M Klusch, 2008

Average Time for converting and planning of OWL-S services

2400
2200 _—

2000 ///
1800

1600 7

17 19 34 38 51

‘+ Time for converting and planning

milliseconds

1400

number of services

Figure 7. Average run time for conversion and
planning by OWLS-XPlan

We did not have specific information about the
underlying

computing hardware used in the IPC3 competition for run
time measurement. Figure 7 shows the reasonably fast run
time of converting and planning by OWLS-XPlan on a
Siemens-Fujitsu Amelio 1425 notebook with 1.8 Ghz
Intel Centrino, and 1 GB RAM.

4. Implementation

OWLS-XPlan has been implemented in Java and C++,
and provides an integrated graphical user interface (cf.
figure 8 and 9).

JB OWLS XPian 1.0 [Administrator]
Menu Configuration Help

OWLS-KPlan requires the following files:

- Initial Ontalogy (initial warld state) [file_Initial Ontology owl]

- Goal Ontology (goal state) [file_GoalOntology.owl]

- OWL-5 Services avallable for composition planning [<name>Services owl or sname>Services owls]
Please specify the path to the file containing the initial ontolagy; OWLS-XPlan then searches

for the goal antology and service files in the same directory

nit: | mowLs-DaterenHeatt Sealons Intaiontoiogyov| | view | [setect
Goal: 1 010WLS-Date erHe alth-Seallops_Goalontology.ow| ‘ View ‘
G =_MedicalTranspoCampanySenices owl =l

CAOWLS-Plan_1.DiOWLS-DateienHealth-Scallop
s_NonhedicalF lightcompanyS ervices owl
CAOWLS-Plan_1.DOWLS-DateienHe alth-Scallop
s_NonhedicalTransporCompanySe vices. owl

AT

Load Problem ‘ | Save Problem | ‘ Convert & Plan

Figure 8. OWLS-XPlan graphical user interface (1)
The planning component XPlan is implemented in C++,

uses the Microsoft MSXML parser for PDDXML
definitions and generating plans in XML format. Besides,

235/466

XPlan also provides an interface for direct interchange of
planning data without having to use PDDXML as
interchange format. In addition, OWLS-XPlan provides
an integrated PDDXML editor that allows the
experienced user to directly change the planning goal, and
edit the initial state ontology for a given planning
problem.

0 Plan 1.0 [Ad
Menu Configuration Help

Welcome | Preparation | Planning | Optimization

PDDXML Files

—
[=] compasition Plan

Select .

Domain:

[soiLe-DatetenHeatt-Sealtons Initalontalngy Dorj
Wiew
SelectTransport
Problem Description:
Select
| lOV\/LS—DatEIEn/HEa\IM—SEaanSJNUEIOND\DQ\LPE4 view SelectFlight
Editor GetMedicalF lightAccount

SelectFlight =
SelectTransport
GetMedicalTransportAccount

SelectTransport

BookMedicalTransporiiB

Figure 9. OWLS-XPlan graphical user interface (2)

This initial state ontology is assumed to be provided to
the system for planning; we acknowledge that this
assumption might be a major hurdle for inexperienced
users to actually use the OWLS-XPlan software, so we
are currently working on a novice user query interface for
OWLS-XPlan version 2. The resulting plan is being
displayed (cf. fig. 17) and can be further optimized with
respect to given QoS parameters by means of ILP based
optimization with newly available equivalent services.
OWLS-XPlan v1 has been made publicly available to the
semantic web society at the portal semwebcentral.org on
December 16, 2005 [15].

5. Application Health-SCALLOPS

The service composition planner OWLS-XPlan is used in
an agent based mobile eHealth system for emergency
medical assistance (EMA) planning tasks, called Health-
SCALLOPS. OWLS-XPlan runs on the server of a
national EMA centre to support the planning of patient
relocation to selected hospitals, or patient repatriation.
Medical transport services are offered on line by a variety
of medical transport companies in the internet.

M Klusch, 2008

Use case scenario. For the use case of Health-
SCALLOPS as sketched in figure 10, we developed 33
appropriate business application services in OWL-S 1.0
with imported OWL ontologies. We distinguish between
the following five roles Health-SCALLOPS users can

1. Patient, or someone acting on his/her behalf,

2. EMA centre for medical mission planning,

3. Emergency physician with an ambulance car,

4. Hospital physician for local treatment and triggering
of relocation to a selected hospital, and

5. Health insurance of the patient.

Location Based

— m E. E Missi
Emergency Call mergency Mission
/.

Planning
e | Medical Patient
¥l | Transport Planning

ergency M1ss1on LA
Data
Patlent
Relocation!

Em
" EM Patient
Data

Bl

KH Sulzbach

R
ne
]

Figure 10. Health-SCALLOPS use case (overview)

Suppose, for example, that Mika meets with an accident.
The emergency call to the emergency medical assistance
centre (EMA) is given by Mika using his personal Health-
SCALLOPS software agents on his PDA. In response to
this call, EMA is planning an appropriate medical mission
by use of OWLS-XPlan, and alerts the emergency
medical doctor in an ambulance car requesting him/her to
accomplish this mission. The mission data contain not
only the exact GPS position of and summary of the
situation given by the patient but the route to the scene
and the nearest selected hospital. After providing first aid,
the emergency doctor sends the mission data and pre-
diagnosis to the hospital doctor to allow for preparation
of emergency treatment. Upon arrival at the hospital, the
doctor recognizes an additional fissure of Mika’s eye that
requires further special treatment in an eye-clinic abroad.
On behalf of Mika, the doctor asks the EMA centre to
plan for this mission of medical patient transport
planning. Given that a variety of different medical and
non-medical transport companies provide their services
on the semantic web, EMA is composing an appropriate
transport plan for Mika which a distinguished EMA
assistant is then executing.

236/466

Mobile Health-SCALLOPS. The mobile graphical user
interface of Health-SCALLOPS provides role-based
functionality to the individual user, and has been
implemented in Java for running under WinMobile 2003
on HP's iPAQ PocketPC series 5500 (cf. figure 11).

& g 1614

& 42 1535 (D |£F] scallons
Patient Relocation (2)

»{»j scallops

Mission Description

Ernargency overvism: The following hospitals are available:

Calling Persor: Mikka
Type of emergency: Car accident Choice Mame City ~ Dist.

Nurnber of injured: 2 () Winterbergklinik Sastbruecken 4.9 km
Distance: 14.0 kmn

EMA-Selected Hospital:

O Knappschafts KH Sulzbach 11.9 km

trigger transport

Mame: Winterbergklinik
Street; Winterberg 1
City: Saarbruecken
Distance: 18.3

| Route to emergency | | Route to ho

Emergency | Patienkt Data | Logout [¥n

- -
M 5 ER
- ZDDm out

Emergency | Patient Data | Logout E|A

Figure 11. Mobile Health-SCALLOPS GUI (part of)

It allows for the initialization (by the patient, the
eyewitness of an accident, or hospital doctor),
planning (by EMA centre), and the execution of EMA
missions (by mobile emergency physician in ambulance
car), and also offers GPS-based route planning.

Secure and executable composition plans. In Health-
SCALLOPS, we use a variant of OWLS-XPlan that
generates privacy preserving and executable medical
mission plans. For ensuring the executability of planned
sequences of mission related services on the WSDL-
grounding level (operation modes, message types) we
adopted the approach presented in [16]. In particular, the
planning oriented matchmaker module, OWLS-MXP, a
variant of OWLS-MX [17], is responsible for
continuously checking all pairs of available WSDL
service groundings of advertised OWL-S services for
their I/O composability at data type level. In particular, it
checks whether all pairs of XSLT data types of output-
input parameter bindings as stated in the OWL-S process
models are coherently matching (either type equivalence
or type subsumption). This is to ensure a valid data flow
between consecutive services of the semantic service
composition plan. OWLS-MXP provides OWLS-XPlan
with the set of currently available OWL-S services each

M Klusch, 2008

which annotated with a list of grounding composable
services. This enables OWLS-XPlan to check at the end
of each planning step whether the actual composition plan
extended by one helpful action (cf section 2) is also
executable.

For verifying whether the generated plan preserves the
privacy of patient data before actually executing it, the
secure composition planning agent (SCPA) of the EMA
centre in the Health-SCALLOPS application scenario
performs as follows [18].

Local User's

SWS Discovery / Set F of insecure SWS
Request (Goal) mm—p-
Matchmaking
: Set ES(F.T) of
"""" equivalent, trusted SWS ****%
SWS Composition Yey
Local User's Planning PR
Security Policies: x

Replacement of F m P

Indvidual - | 777 wsing BSET
clearance of No
Web services IWS C ompoqtlon Compliance of plan P
(<.

Plan Security Check | w/ local security policies

Classified

user data of Yes

categories SWS Composition
Plan Execution

Figure 12: Secure Health-SCALLOPS service
composition planning (overview)

The SCPA gets the request for some desired service in
OWL-S from the user, as well as her local security
policies in terms of the security classification of personal
data and clearance of known OWL-S services as input. It
then attempts to discover services that are semantically
relevant to the request using the integrated OWLS-MX
matchmaker.

In addition, it collects the corresponding security types
published by the respective web service provider agents.
If the matchmaker finds services detected as being
equivalent to the requested one, it directly passes the top
ranked one according to its QoS value to the security
checking module for letting it verify whether its
published security policy complies with both given local
security policies and the web service’s security type.

If no equivalent service is found, the OWLS-MX module
passes the set of services to its composition planner,
named OWLS-Xplan. In case a composition plan with
more than one service is generated, the compliance of
published security types of all web services involved in
the plan is checked against the local security policies of
the user.

In contrast to usual access control mechanisms, the
security checking of the SCPA relies on type-based

237/466

information flow analysis. Thereby, the approach also
includes dynamically computed data of web services and
their security classification, and its proliferation to other
services. In any case, the composition plan gets executed
only if the security types of all web services meet the
local security policies. So, the plan as a whole is formally
verified as being secure. Otherwise the SCPA triggers a
re-planning activity to be performed as follows. The
security checker provides the matchmaker module with a
set F(P) of services of plan P that caused P to not comply
with the local security policies, in order to select one
semantically equivalent service with a different published
security policy for each or at least some of them. If
successful, the composition planner simply modifies the
original plan considered by replacing each service in F by
its substitute, and returns the modified plan to the security
checker for verification. If there exists no services in F(P)
for which equivalent service can be found (and which are
not yet tried), the composition planner generates a new
plan by means of heuristic replanning [9]. In any case, if
the modified plan is also provably insecure, the SCPA
repeats the same procedure until a secure composition
plan is generated, or it returns a failure otherwise.

More details on the security checking of OWL-S service
plans generated by OWLS-XPlan are provided in [18].

6. Related work

There exist quite a few different approaches to service
composition planning in the literature. They can roughly
be classified into process oriented approaches, and data or
signature oriented approaches. Members of the first
presumes a goal that specifies the global behaviour of the
desired service in terms of the set of possible desired
conversations, or process flow to be accomplished by
synthesizing the process models of available services that
can either be modified during composition [2], or not [1].
Specification of the behaviour usually takes the form of
FSMs, situation calculus [8], or linear temporal branching
logic formulas. Any signature-oriented or data-driven
composition approach does not take the process of a
service into account but tries to instantiate a goal
specification given by the signature of a desired service,
i.e. its input/output behaviour together with constraints
and user preferences only. Such an instance is a sequence
of atomic or other composite services considered as black
boxes that accomplishes the goal.

OWLS-XPlan falls into the latter category, and is
tightly related to classical planning in Al. An overview of
Al planning techniques and their application to the Web
service composition planning problem is provided in [9].
An accessible approach to solutions of the problem of
cyclic composition planning via model checking is in
[14].

M Klusch, 2008

The service composition planner that is most relevant
to OWLS-XPlan is Shop2 (Simple Hierarchical Ordered
Planner 2) developed at the University of Maryland, USA
[12]. Shop?2 is a hierarchical task network (HTN) planner
well-suited for working with the hierarchically structured
OWL-S process model. Shop2, like HTN planner in
general, replaces those elements of the provided methods
(workflows) by special methods or atomic actions until
the composition plan contains only atomic actions that
correspond to available web services. During planning,
web services are not executed, hence do not affect the
world state.

Both XPlan and Shop2 base on the closed world
assumption, use PDDL, allow external (call-back)
functions, and generate totally ordered and instantiated
plan sequences for a given initial state, goal and planning
domain. However, among others, they differ in their way
of planning. In essence, Shop2 plans are generated by use
of pre-given decomposition rules (methods), hence a
solution to the planning problem is not always guaranteed
to be found [7]. In contrast, the hybrid XPlan as part of
OWLS-XPlan first tries to plan by means of method
decomposition, and if this is not successful, it exploits its
relaxed graph plan algorithm to find a solution, if it
exists. In addition, for decomposition of given methods it
is using only relevant parts by discarding useless actions,
thereby reducing the plan size in total.

7. Conclusion

We presented the implementation, evaluation, and
application of our OWL-S service composition planner
OWLS-XPlan. Selected emergency medical assistance
related services described in OWL-S 1.1 and
corresponding OWL ontologies are converted to initial
state and goal descriptions in PDDL 2.1. These are then
used by the fast planner XPlan for generating an
execution complete composition plan. Results of
experimental evaluation of XPlan show its top
performance compared with other selected Al planners.
OWLS-XPlan is used in an agent based mobile e-Health
system for emergency medical assistance planning tasks.

8. References

[1] D. Berardi, D. Calvanese, G. D. Giacomo, M.
Lenzerini, and M. Mecella. Automatic service
composition based on behavioral descriptions. Journal of
Cooperative Information Systems, 14(4), 2005.

[2] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to the design and analysis
of e-service composition. Proceedings of World Wide
Web Conference WWW, Budapest, Hungary, 2003.

238/466

[3] I. P. Competition. IPC3. Homepage:
http://planning.cis.strath.ac.uk/competition/, 2002.

[4] J. Hoffmann. A heuristic for domain indepndent
planning and its use in an enforced hill-climbing
algorithm. Proceedings of 12th Intl Symposium on
Methodologies for Intelligent Systems, Springer Verlag,
2000.

[5] J. Hoffmann. The Metric-FF planning system:
Translating Ignoring Delete Lists to Numeric State
Variables. Artificial Intelligence Research (JAIR), vol 20,
2003.

[6] J. Hoffmann and B. Nebel. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal
of Artificial Intelligence Research (JAIR), (14):253-302,
2001.

[71 A. Lotem, D. Nau, and J. Hendler. Using planning
graphs for solving HTN problems. Proceedings of
AAAI/TAAI conference, USA, 1999.

[8] S. Mclllraith and T. Son: Adapting Golog for
composition of semantic Web services. Proceedings of
International Conference on Knowledge Representation
and Reasoning KRR, Toulouse, France, 2002.

[9] J. Peer. Web Service Composition as Al Planning: A
Survey. Technical Report, University of St. Gallen,
Switzerland Available at
http:/felektra.mem.unisg.ch/pbwsc/docs/pfwsc.pdf, 2005.
[10] M. Schmidt. Ein effizientes Planungsmodul fuer die
lokale Planungsebene eines InteRRaP Agenten. Master’s
thesis, Universitaet des Saarlandes, 2005.

[11] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau.
HTN planning for web service composition using
SHOP2. Journal of Web Semantics, 1(4), pages 377-396,
2004.

[12] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S web services composition using
SHOP2. Proceedings of the 2nd International Semantic
Web Conference (ISWC2003), pages 20-23, Sanibel
Island, Florida, USA, 2003.

[13] M. Klusch, A. Gerber, M. Schmidt: Semantic Web
Service Composition Planning with OWLS-XPlan.
Proceedings of the AAAI Fall Symposium on Semantic
Web and Agents, Arlington VA, USA, 2005.

[14] A. Cimatti, M. Pistore, M. Roveri, P. Traverso:
Weak, strong, and strong cyclic planning via symbolic
model checking, Artificial Intelligence,147(1/2), pp. 35 -
84, 2003.

[15] OWLS-XPlan:
http://projects.semwebcentral.org/projects/owls-xplan/
[16] B. Medjahed, A. Bouguettya, and A.K. Elmagarmid.
Composing Web services on the semantic Web. Very
Large Data Bases (VLDB), 12(4), 2003.

[17] M. Klusch, B. Fries, K. Sycara: Automated semantic
web service discovery with OWLS-MX. Proceedings of
International Conference on Autonomous Agents and

M Klusch, 2008

Multiagent Sys6tems (AAMAS 2006), Hakodate, Japan,
ACM Press, 2006

[18] D. Hutter, M. Klusch, M. Volkamer, A. Gerber:
Provably secure execution of composed semantic web
services. Proceedings of the 1° International workshop
on Privacy and Security of Agent-Based Collaborative
Environments (PSACE), Hakodate, Japan, 2006

239/466

9

Advanced Dynamic Service Composition with
OWLS-XPlan2

M. Klusch, K-U. Renner: Fast Dynamic Re-Planning of Composite
OWL-S Services. Proceedings of the 2nd IEEE Workshop on Semantic
Web Service Composition, Hongkong, China, IEEE CS Press, 2006

M Klusch, 2008 240/466

Fast Dynamic Re-Planning of Composite OWL-S Services'

Matthias Klusch, Kai-Uwe Renner
German Research Center for Artificial Intelligence
Suhlsatzenhausweg 3, D-66123 Saar br ticken, Ger many
{Klusch, Kai-Uwe.Renner} @dfki.de

Abstract

In this paper, we present an extension of our OWL-S
service composition planner OWLS-XPlan that allows for
guasi-online re-planning of composite OWL-S services
without full restart of the actual planning process, and
preliminary experimental evaluation results.

1. Introduction

Though the Al based composition planning of complex
Web services attracted much interest recently [5, 11], only
a few planning tools are actualy available for the
semantic Web, such as the HTN based composition
planner SHOP2 [7, 8, 4], or OWLS-XPlan [9] for OWL-S
services. However, none of these planners copes with the
open world assumption of OWL, but performs more or
less efficient CWA based off line planning.

In open environments, like the semantic Web, non-
deterministically occurring events such as broken service
links, change of facts, or goal, and availability of new
services may affect the actual planning process of a
composite service. The actual plan, or parts of it, may
become invalid or sub-optimal even before its full
generation. Invalid plans may be caused by, for example,
services that became unavailable, or facts that satisfied a
precondition of some service in the current planning
sequence changed such that the semantic compatibility
with its preceding service is invalid. Newly introduced
services may cause sub-optimality of the current plan in
terms of its path length to the given goal state. None of the
currently available OWL-S service composition planners
does alow for dynamic re-planning, which in turn
motivated us to extend our own planner OWLS-XPlan to
accomplish this task. Basic idea of OWLS-XPlan+ is to
re-use as much as possible of the existing plan such that
the minimally modified plan as a whole remains valid in
the changed world state. Though the state of the world
gets checked for any changes that may affect the current

plan a the end of each plan step, and if so, triggers
immediate re-planning off-line, but actions are executed
only after a plan has been eventually created that is
guaranteed to reach the given goal. Thisis in contrast to
classical on-line planning approaches where typically a
planner generates conditional plans that branch over
observations, while a controller executes actions in the
plan, and monitors observations to decide which branch to
execute. Any kind of interleaving framework, in general,
cannot guarantee that a goal state will be reached, unless
the domain is proven to be safely explorable. Services
provided by autonomous providers cannot be assumed to
be executable under full control and observation of the
planning site, nor to be delivered charge free even in
scenarios of tight collaboration with respective service
providers. We set the context by briefly introducing our
service composition planner OWLS-XPlan in section 2,
and then describe the dynamic re-planning by its extended
planning module XPlan+ in section 3. We present
preliminary experimental evaluation results in section 4,
and conclude in section 5.

2. OWLS-XPlan Overview

The semantic web service composition planner OWLS-
XPlan consists of several modules for pre-processing and
planning of composite OWL-S services (cf. figure 1).

domain= and
service
description ; OWLS-Xplan
=1r PDDXML
|'m-wn problem

description
OWLS2PDDL

FOOL 21 ‘{.
Name>_PBamd
converter

PDDXML

domain
description

PODL 20

PDDXML

XPIa" plan

description

“Hame>_Demainaml

Fig. 1. OWLS-XPlan Architecture

1_,. L .
Thiswork has been supported by the German Ministry of Education and Research (BMBF 01-1W-D02-SCALLOPS) and by the European

Commission under the project grant FP6-1ST-511632-CASCOM .

M Klusch, 2008

241/466

It takes a set of available OWL-S 1.1 services, related
OWL ontologies, and a planning reguest (goal) as input,
and returns a planning sequence of relevant OWL-S
services that satisfies the goal. For this purpose, it first
converts a given domain ontology and service descriptions
in OWL and OWL-S 1.1, respectively, to equivalent
PDDL 2.1 problem and domain descriptions using an
integrated OWLS2PDDL converter. The domain
description contains the definition of all types, predicates
and actions, whereas the problem description includes all
objects, the initia state, and the goal state. Both
descriptions are then used by the Al planner XPlan to
create aplanin PDDL that solves the given problem in the
actual domain. An operator of the planning domain
corresponds to a service profile in OWL-S, while a
method is a specia type of operator for fixed complex
services that OWLS-XPlan may use during its planning
process.

Input: i X
« Preparing the input data Generation of a
« Creating type -hierarchies Generation of a (e
PDDXML Building the internal et reachable goal
problem data structures. « Filtering relevant operator dependency graph sequence
description [N instances

™ Data Connectivity
XML Parser: . Graph —
Ly Preprocessmgj Generation

Preprocessing

Goal Agenda,
Generation

PDDXML 1
MLy
domain
description

heuristics:Relaxed
Graphplan

Enforced hill

Result: o
Climbing searcl

Generation

PDDXML
plan

descriptio

L1

« Generation of a relaxed planning graph
where the operators have no delete lists
« Extracting helpful operators

Core (re-)planning

Fig. 2: The planning module XPlan

The planning module XPlan (cf. figure 2) is a heuristic
hybrid FF planner based on the FF planner developed by
Hoffmann and Nebel [1, 2, 3]. It combines guided local
search with relaxed graph planning, and a simple form of
hierarchical task networks to produce a plan sequence of
actions that solves a given problem. If equipped with
methods, XPlan uses only those parts of methods for
decomposition that are required to reach the goal state
with a sequence of composed services. Due to space
restrictions, for more details on OWLS-XPlan in general,
and XPlan in particular, we refer the reader to [9]. The
sources are available at [12].

3. Dynamic Re-Planning by XPlan+

We modified the original XPlan module of OWLS-XPlan
to alow for event driven heuristic re-planning of
composite services during the actual planning process.
The corresponding OWL-S composition planner is called
OWLS-XPlan+. The modified planner XPlan+ does
perform, in essence, highly frequent event driven off-line
re-planning under closed world asumption with heuristic
computation of best re-entry points for re-planning at the

M Klusch, 2008

end of each planning step if the currently produced plan,
or plan fragment gets affected by the observed change.
External changes in the world state concern converted
OWL ontologies, individuals and the set of available
services during the internal planning process each of
which potentially affecting the respective operators,
actions, predicates, facts and objects in the PDDXML
problem and domain descriptions as well as aready
generated partial plans. For event monitoring, we
equipped XPlan+ with an event listener for distinguished
classes of events (cf. figure 3).

Input

Preprocessing | -

-~
_ s .
/ / ™\
t Heuristic Y 2 e—
Relaxed F Enforced Hill
Graphplan Climbing Search
Generation

I
A 4
Event Listener
Event Type?

» ReplaniewOp
» ReplanLossOp
» ReplanNewGeal

\\ Core (re-)plannil //

!

Output

Fig. 3: Modified planning module XPlan+

In each plan step i, before applying selected helpful
action A to the state S, however, XPlant+ listens for
events of state changes. If no events are in its event queue,
it applies A to S and proceeds with plan step i+1. The
plan fragment from initial state S, to S is correct and, due
to the selection of helpful actions in the minimal relaxed
plan, approximated optimal. XPlan+ triggers re-planning
in the following cases of observed events of world state
changes: (1) An operator (service) instantiation (action)
becomes available. This is the case if () a new operator
has been introduced, or (b) the world state (set of facts)
changed such that an operator whose instantiation was
impossible before can be instantiated now, or (c) new
predicates which are part of the preconditions or effects of
an operator are introduced, making it possible to
instantiate this operator; (2) An operator (service) of the
plan is not possible anymore, if any of the opposites of
cases l.a- 1.c holds; (3) The goal state changed due to a
change of the original planning request. Each of these
cases is handled separately as described in subsequent
sections. If facts or objects change, it searches for the first
operator which precondition is satisfied by the new fact,
and starts re-planning from there, while the helpful actions
get instantiated with the new fact(s). The case in which a
predicate p() changes can be reduced (a) to the latter case
of changed facts, if new facts are added; (b) to the case of

242/466

change of operator o, if preconditions or effects of o
include p(); or (c) to the case of fact changes, if the
deletion of p() implies the deletion of all instances of p().
It is assumed that the planning state consistency is
checked by means of an appropriate module as intergal
part of both XPlan and XPlan+.

3.1. Case of new operator

If a new operator (service) becomes available, XPlan+
first checks whether re-planning might yield a shorter plan
by comparing the old with the newly generated relaxed
plan. If positive, it heuristically determines the point in the
plan where the new operator might first be helpful to start
the re-planning from there.

Re-planning decision. XPlan+ first uses the same
initial state asfor the origina (partial) plan P plus the new
operator o to build the relaxed plan graph RPG, and
extract a new relaxed plan RP'. Second, it estimates the
length h(RP) of RP' by applying the same relaxed plan
length heuristic as done for determining h(RP), that is the
sum of all actionsin all action-layers of the RP'. It is the
number of all (helpful) actions of RP' as solution paths in
the RPG for the initial state. If h(RP) < h(RP) holds, it
continues with re-planning. Otherwise no re-planning is
performed.

Re-planning. How much of the old plan P can be
reused for the new plan P, means what would be the best
position to restart planning with the new operator 0? In
order to determine this position, XPlant+ heuristically
takes the index of the layer of the new RP' at which o
occurs first as position e, else (if o is not in RP) sets
position e = -1 and stops, and retains the old plan
(fragment) P until this position. In other words, the
position e of starting re-planning is the minimal number of
actions before first occurrence of 0. Second, it applies all
operators from the old plan occurring before e in the new
plan, and then tries to identify the instances of o which are
applicable to the current state. For this purpose it checks
whether the precondition of o is satisfied in the RP'. If no
instance of o is applicable, it tries to apply more operators
from the old plan until an instance of o eventualy
becomes applicable. If this fails, a complete re-planning
has to be started. Otherwise it applies the new operator o.
That is, XPlan+ identifies a re-entry point in the original
plan by searching for already planned operators (actions)
which correspond to helpful ones in the current state, and
continues with the first step from this position. If no such
position can be found, start full re-planning of the plan. If
the goal is not yet reached, extend the plan until the goal
is reached by continuing with the normal planning process
like XPlan.

3.2. Case of lost operator
If a planned operator becomes unavailable, the actual
plan is invalid. XPlan+ tries to replace the affected

M Klusch, 2008

operator(s) by replacing it with aternative ones which
achieve the same effect as the lost one. In case of success,
the remainder of the plan can be re-used, which reduces
re-planning time significantly.

Re-planning decision. XPlan+ first marks all actions
in the plan which are affected, because of the fact that the
respective operator does not exist anymore, or some
precondition does not hold anymore. If no actions are
marked, it continues with the normal planning process like
XPlan.

Re-planning. For each affected action, XPlan+ creates
arelaxed plan RP' from S,. It then uses (inverse) enforced
hill climbing search to circumvent the affected operator by
applying alternative operators if possible. Basically, the
planner identifies a re-entry point in the old plan P by
searching for aready planned actions in P which
correspond to helpful actions in the current state, and
continues with re-planning from this position. If no such
position can be found, the remainder of the plan has to be
re-planned completely. Otherwise, if the goal is not yet
reached, extend the plan until the goal is reached by
continuing with the normal planning process like X Plan.

3.3. Case of new goal

If the given planning goal did change, re-planning is
necessary in case the new goal cannot be satisfied by the
current plan at all, or could even be achieved by a shorter
plan.

Re-planning decision. XPlan+ quickly creates a
relaxed plan for the new goal from the initial state Sy, and
marks al actions in the aready existing plan P which are
also contained in the new relaxed plan.

Re-planning. For each non-marked action, XPlan+
uses enforced hill climbing search to circumvent the
action by applying alternative operators, identifies a re-
entry point in the old plan by searching for planned
actions in the old plan P which correspond to helpful
actions in the current state, and continues planning from
this position. That is, XPlan+ starts heuristic re-planning
with the action in currently valid P that precedes first
occurrence of o. If no such position can be found, the
remainder of the plan has to be re-planned completely. If
the goal is not yet reached, XPlan+ extends the plan until
it is reached by continuing with the normal planning
process like XPlan.

4. Preliminary Evaluation

The comparative anaysis of the computational
complexity of planning with XPlan+ and XPlan, as
depicted in figure 5, is concerned with situations where a
new operator becomes available, or an operator is deleted
just before the initial planning is finished (for plans with
at least 20 steps). The denotation "Onling(n)", with n =

243/466

0,1,2 refers to the case where an observed event does
affect the plan at n positions. As a consegquence, XPlan+
has to build n relaxed plans during its partial re-planning,
whereas the pure off-line planner XPlan denotated in the
figure as " Offline" would do afull re-planning.

Planning Time Offset in %

800

700

/

600
500 / —e Online (0)
400 / —+—Online (1)

300 —i—Online (2)
/‘/://.‘ —=—Offline
I

o\lllll\
c 1 2 3 4 5 6

Events during
planning
Fig. 4: Computational complexity of planning with
XPlan+ (quasi.-)online vs. XPlan (full restart/offline)

The resulting planning time offsets for all cases applied
to a simple blocks world related plan of 28 steps with
initially five operators is shown in figure 4. Only new
operators where introduced during the planning process
that theoretically would lead to a shorter plan. XPlan+
gained more momentum compared to XPlan with
increasing number of such events, and the later in the plan
they did occur. This is also experimentally confirmed by
the measured run time of XPlan+ (cf. figure 5) which
decreased in absolute terms mainly due to its heuristic re-
use of plan parts as described above.

-+~ XPlan -= XPlan+

e

T
M

0,9 T T T T L T L T L T L L T L T L T L T
1 3 5 7 9 11 13 15 17 19 21 23 25 27
event at plan step

Fig. 5: Measured run time of XPlan+ vs. XPlan

15

=
w

=
[y

time (seconds)

5. Conclusion

We presented an extension of the planning module of
our OWL-S service composition planner OWLS-XPlan,
named XPlan+, that allows for quasi-online re-planning of

M Klusch, 2008

composite OWL-S services with reasonable performance
according to preliminary evaluation results. We are
currently working on the integration of the implemented
XPlan+ into OWLS-XPlan, and plan to make the resulting
service composition planner OWLS-XPlant+ publicly
available at semwebcentral.org

6. References

[1] J. Hoffmann. A heuristic for domain independent
planning and its use in an enforced hill-climbing
algorithm. Proceedings of 12th Intl Symposium on
Methodol ogies for Intelligent Systems, Springe, 2000.

[2] J. Hoffmann. The Metric-FF planning system:
Trandating Ignoring Delete Lists to Numeric State
Variables. Artificial Intelligence Research, 20, 2003.

[3] J. Hoffmann and B. Nebel. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Artificial
Intelligence Research, 14, 2001.

[4] A. Lotem, D. Nau, and J. Hendler. Using planning
graphs for solving HTN problems. Proceedings of
AAAI/IAAI conference, USA, 1999.

[5] J. Peer. Web Service Composition as Al Planning: A
Survey. Technical Report, U . Gallen, Switzerland
http: /el ektra.mcm.uni sg.ch/pbwsc/docs/pfwsc. pdf, 2005.
[6] M. Schmidt. Ein effizientes Planungsmodul fuer die
lokale Planungsebene eines InteRRaP Agenten. Master
Thesis, U Saarland, Germany, 2005.

[7] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau. HTN
planning for web service composition using SHOP2.
Journal of Web Semantics, 1(4), 2004.

[8] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S web services composition using
SHOP2. Proceedings of the 2nd International Semantic
Web Conference (1S\MC2003), Florida, USA, 2003.

[9] M. Klusch, A. Gerber, M. Schmidt: Semantic Web
Service Composition Planning with OWLS-XPlan.
Proceedings of the AAAI Fall Symposium on Semantic
Web and Agents, Arlington VA, USA, AAAI Press, 2005.
[1Q] L. Pryor, G. Collins. Planning for Contingencies: A
Decision-based Approach. Artificial Intelligence
Research, 4:287-339, 1996.

[11] B. Medjahed, A. Bouguettya, A.K. Elmagarmid.
Composing Web services on the semantic Web. Very
Large Data Bases (VLDB), 12(4), 2003

[12] OWLS-XPlan:

http://projects.semwebcentral .org/projects/owl s-xplan/

[13] R. Dearden et al.. Incremental Contingency Planning.
Proc. Int. Conf. on Automated Planning and Scheduling
ICAPS, Workshop on Planning under uncertainty and
incomplete information, Trento, Italy, 2003

244/466

Part IV

Agent-Based Service Negotiation

M Klusch, 2008 245/466

M Klusch, 2008 246/466

M Klusch, 2008

Introduction

In competitive environments, business application services may not be for
free but available via pay-per-call only. For example, service agents could be
charged for every single invocation of a Web service according to selected
flat-fee or differentiation-based pricing models. As a consequence, service con-
sumer and provider agents have conflicting interests, in principle, that are
minimization of service charges, respectively, maximization of profits.

Service Negotiation in the Web and Semantic Web

Standard solution of this problem in service-oriented computing is to nego-
tiate the terms and conditions of the service usage between service provider
and consumer agents in mutually beneficial, so-called extended contractual
service level agreements (SLAs). Such agreements specify guarantees for (a)
the delivery of certain functionalities of configurable services, and (b) the non-
functional service qualities concerning the availability of the service, through-
put and latency bounds based on mutually agreed measures, respective pric-
ing, and privacy policy!.

In the context of the Semantic Web, semantic service composition planning
and discovery as described in the previous parts can be performed by either
the service requester agent, or the provider agent, or distinguished middle
agents on behalf of either parties. A composed service can be executed as a
whole, when the terms and conditions of the execution of its usually config-
urable subservices are successfully negotiated. In principle, service discovery
and composition can be performed before entering the negotiation of relevant

! Note that in computer networking literature, the traffic-engineering term SLA is
restricted to non-functional service quality guarantees for network service con-
sumers that is mostly achieved by prioritizing traffic for considered services such
as streaming multimedia applications, video conferencing (VT'C), or Internet tele-
phony (VoIP).

247/466

M Klusch, 2008

services with the respective providers, or in an interleaved fashion during ne-
gotiation.

However, in most approaches to agent-based service negotiation, the negoti-
ation phase between the agents starts after the discovery of existing or com-
posed service candidates that semantically match a given user query, and
ends with a set of mutually binding, enforceable SLAs, that are signed ser-
vice contracts (Preist, 2007)[299] (cf. chapter 1, section 1.3.4)2. To the best
of our knowledge, the problem of dynamically interleaving semantic service
negotiation with composition planning at run time to improve the efficiency
and quality of the result of both planning and negotiation of relevant services
remains open; research on this field has just started.

In general, existing approaches to agent-based service negotiation in the lit-
erature can be classified with respect to the following criteria.

e What is being negotiated? Agents can negotiate the terms of using single or
multiple different concrete services (single-item vs many-item negotiation)
in the respective SLA(s) based one single or multiple non-functional and/or
functional service parameters (single-issue vs multiple-issue negotiation).

e How is service negotiation be performed? What negotiation model and
protocol is used by the agents to reach an agreement? Prominent micro-
economic negotiation mechanisms for trading goods are bargaining, equi-
librium markets, auctions, contracting, and coalition formation. Negoti-
ation items can be any kind of goods, tasks, resources, data sets, time,
and concrete services. Second, what kind of interaction between negotiat-
ing agents is allowed by the mechanism such as one-to-many, many-to-one
or many-to-many negotiation? Third, what are the guaranteed features of
possible agreements according to the chosen negotiation model and proto-
col? Are the negotiation solutions individual rational and Pareto-optimal?
Are negotiated coalitions stable with respect to given criteria? Is the ne-
gotiation protocol safe against manipulation via deceipt and fraud? Other
issues are the preservation of data privacy with minimal loss of profit,
incentive compatibility, trust, and dynamic reaction to changes of the en-
vironment during negotiation. Finally, how does the negotiation mecha-
nisms scale in practice like for large domain-specific virtual markets with
potentially thousands of agents and services?

Negotiation Models for Rational Agents

In general, a negotiation model specifies the problem domain in which rational
agents are supposed to reach an agreement on the distribution of goods and
payoffs by means of a chosen negotiation protocol. The choice of a negotiation
protocol depends on whether it allows the agents to solve the given negotiation
problem, and what features the system designer wants the overall agent system
to exhibit in the considered environment.

% In the literature, the notion of a binding SLA and service contract is often used
interchangeably.

248

248/466

M Klusch, 2008

Negotiation problem domain

The specification of the negotiation problem domain by the system designer
concerns assumptions and constraints about the negotiation environment and
desired kind of agreements:

(a) Negotiation environment: This concerns, for example, the number and type
of trading items and agents (e.g., self-interested, non-cooperative, or col-
laborative agents; agent capabilities, responsibilities, and knowledge about
other agents), the preference modeling and respective utility theory, and
the norms, policies and rules of agent interaction (e.g., one-to-one, one-to-
many, or many-to-many, or mixed negotiations).

(b) Negotiation agreement: This concerns the desired features of the solu-
tion. For example, whether a negotiated agreement between the agents
(SLAs and payoff distribution) shall be (non-)binding, exogeneously (not-
)enforceable by third party, Pareto-optimal, individual rational, or social-
welfare maximizing.

Choice of negotiation protocol

A negotiation protocol (also called mechanism) is used by agents to solve a
given negotiation problem in a cooperative or non-cooperative fashion. For ex-
ample, in cooperative distributed problem solving (DPS) settings, all agents
work on a commonly shared goal, and are designed to help each other. That
is, in any DPS-based negotiation protocol like the prominent contract net pro-
tocol (CNP), the collaborative agents use strategies imposed by the system
designer to jointly accomplish the goal, hence maximize the social outcome
or welfare. In competitive multiagent negotation settings, agents are provided
with a negotiation protocol which determines the interaction and possible ac-
tions or strategies but, in contrast to DPS settings, individually select the best
strategy for their own without concern for the social welfare. A negotiation
protocol can be evaluated with respect to its (a) communication and compu-
tational complexity, and (b) the guaranteed properties of payoff distributions
as a solution to the given negotiation problem such as

Social welfare, that is the sum of all agents’ payoffs in a given solution,
Pareto optimality, means that there is no solution other than the negoti-
ated one such that each agent is better off and no one is worse off;

e Individual rationality, that is an agent’s payoff in the negotiated solution is
at least as high as it would get when not participating in the negotiation;

e Stability, that is no agent is better off behaving differently than specified by
the solution such as breaking a coalition as its member due to its assigned
payoff.

A negotiation protocol is said to be incentive-compatible if truth-telling (of the
individual valuation of negotiated items) forms a Bayesian-Nash equilibrium,

249

249/466

M Klusch, 2008

and strategy-proof if truth-telling is a dominant strategy. Thus, strategy-
proofness is a stonger property. However, for many kinds of negotiation, it
has been shown that efficient, incentive-compatible, budget-balanced (i.e., all
payments between agents sum to zero) and individually rational mechanisms
do not exist, or are at least very hard to find (see e.g. [269, 266, 233]). Individ-
ual quantitative utility functions are used to determine individually optimal
strategies during negotiation based on given user preferences and valuations.
Mechanisms for negotiation under uncertainty deal with uncertain, partial,
tentative or generic information such as the kind and valuation of traded items,
and the payoff distribution to the agents involved. These mechanisms usually
make use of the notion of expected value of information (Howard, 1996)[166]
and utility [375], as well as possibility or fuzzy theory. Some mechanisms allow
the agents to determine which negotiation strategy would be more successful
by means of Bayesian learning (Sycara & Zeng, 1997)[354], mixed evolutionary
computing and case-based reasoning (Matos & Sierra, 1998)[251], and fuzzy
similarity rules (Sierra et al., 1999)[336].

In the following, we briefly introduce the prominent negotiation models of
bargaining, auctions, markets and coalition formation together with selected
representative examples of their application to rational agent-based service ne-
gotiation. Each of these models can be used by self-interested service provider
agents in order to maximize their individual profits without concern for the so-
cial welfare. Such self-interest naturally prevails in negotiations among agents
on behalf of autonomous businesses or individuals. We comment on the prin-
cipled interrelation between semantic service composition and negotiation,
and then present our contributions to the field, that are negotiation protocols
for safe, privacy preserving, and dynamic coalition formation among service
provider agents.

Bargaining

Game-theoretic bargaining theory deals with situations in which pairs of com-
peting agents on a market try to make a mutually beneficial agreement about
how to distribute a given good such as an abstract objective, a herd of sheeps,
Web service values, or monetary amount, but have a conflict of interest about
which agreement to make (Sandholm, 1999)[323]. Besides, parts of the con-
sidered good may become subject to bargaining during different stages of the
negotiation.

The agents have to decide on an object distribution, that is an agreed outcome
o € O of the bargaining, or a fixed fallback outcome f € O occurs when no
such agreement is reached. It is assumed that the preferences of each agent
i on the possible outcomes o € O can be represented by a von-Neumann-
Morgenstern utility function (u; : O — R). Both agents try to maximize their
utility by means of bilateral (one-to-one) non-cooperative negotiation, that
is without binding agreement or forming coalitions with other agents. Unlike
non-cooperative games (von Neumann & Morgenstern, 1944)[375], bargaining

250

250/466

M Klusch, 2008

games are also cooperative in the sense that the agents can (a) make a binding
agreement on the fallback outcome in prior that is exogeneously enforceable,
and (b) communicate with each other in several rounds in so-called sequential
(strategic) bargaining games to find a solution.? There are two major models
of bargaining theory: axiomatic bargaining, and strategic bargaining.

Axziomatic bargaining

In axiomatic bargaining, each agent is supposed to make an individually ra-
tional choice between possible agreements such that the negotiation solution
satisfies certain axiomatic imposed properties. The behavior of the agents in
terms of their strategies in the game is modelled only implicitly by the de-
sired features of the agreement: The axiomatic bargaining game abstracts from
the respective bargaining process, that is the exchange of offers and counter-
offers, and the making of concessions. The 2-agent Nash bargaining solution
is a prominent example. *

Other bargaining solutions postulate different desiderata in form of ax-
ioms with different utility combination as outcome. However, unlike non-
cooperative games, axiomatic bargaining games are often not considered ap-
propriate to explain the behavior of rational utility maximizing agents, since
these games are not based on what individual strategies agents could choose
to reach some form of equilibrium. This is done in strategic bargaining, a
rather more popular variant of bargaining in practice.

Strategic bargaining

In strategic bargaining (Sutton, 1986)[353], rational agents enter a sequential
bargaining game with potentially infinitely rounds of alternating offers and
counter-offers in a prespecified order until an agreement is reached, or not.
Prominent solutions are the Rubinstein game with a subgame perfect Nash

% In the literature, bargaining games are termed both a cooperative game in a
general sense, and a non-cooperative game - with additional constraints that
determine the result of a cooperative game like a binding contract and disagree-
ment payoffs. Every cooperative game can be represented as a sequence of non-
cooperative games. Most readings on the subject use the term ”non-cooperative
bargaining”; a compromise is the term ”individualistic-cooperative game” (Holler
& Illing, 2000)[157].
Nash bargaining game (F,d) is defined by a set F' of possible agreements, that
are the possible joint utility allocations (u1(0),u2(0)) € [d, 2], z is the total good,
to the agents i, and the disagreement point d = (ui(f)):, ¢ € {1,2} such that if
u1(0) + uz2(o) < z, agents 1,2 receive ui(0), respectively us2(0), otherwise both
get d (often d = 0). The bargaining game can have possibly many Nash equi-
libria for individually rational agents but has a unique Nash bargaining solution
ox = argmazo{(ui(0) — ui(f)), (u2(0) — u2(f))} that satisfies the axiomatic im-
posed properties of Pareto efficiency, symmetry, independence from irrelevant
alternatives, and invariance to equivalent utility representations.

251

251/466

M Klusch, 2008

equilibrium reachable in the first round by use of a time-based discount factor
of utilities ®, and the two-round Zeuthen-Harsanyi game with Nash equilib-
rium solution.

In (Kraus, 2001)[219], other sequential bargaining games for strategic nego-
tiation of multiagent systems with several applications are presented. These
mechanisms allow for bargaining (a) without using discounts but fixed bar-
gaining costs per negotiation round, (b) over time without perfect rationality
and information (as assumed in one-shot bargaining) when agents do not fully
comprehend the space of deals, in particular do not know each others’ types in-
cluding individual capabilities and preferences, and (c) cases where one agent
gains and loses over time. Sandholm (1999)[323] remarks that strategic bar-
gaining models should trade off the bargaining gains with the computational
costs of two kinds of searches: The intra-agent deliberative search (e.g., local
generation of offers, alternatives, evaluating them, counterspeculating, and
doing a lookahead in the negotiation) and the inter-agent committal search
(e.g., iterative re-negotiation of agreements) for an agreement in which the
agents’ strategies are in equilibrium.

For a more comprehensive coverage of strategic bargaining, we refer to the
standard literature on game theory like (Osborne & Rubinstein, 1994; Holler
& Tlling, 2000)[282, 157]. Different strategic negotiation models for multiagent
systems to resolve conflicts on the allocation of items such as tasks, time, or
data sets in different environments and real world applications are presented
in, for example, the excellent volumes (Rosenschein & Zlotkin, 1994)[319], and
(Kraus, 2001)[219].

Ezxamples of agent-based service bargaining

Jonker et al. (2007)[178] propose a bilateral bargaining protocol for multi-
attribute negotiation under incomplete preference information of the agents.
For each non-functional service attribute except price, given attribute eval-
uation values, and importance factors are used to compute an overall non-
financial utility (so-called ease utility), and a normalized financial utility is
employed. These two utilities are then combined into an overall utility with a
rationality factor, which allows service agents to negotiate over the price and
other service qualities simultaneously. Besides, agents may selectively disclose
their preferences over the negotiated attributes to other agents in order to (a)
prevent the misuse of known preference information by other agents to get a
better deal, and (b) to satisfy externally imposed privacy requirements. Us-
ing this protocol agents can heuristically assess the other agents’ preferences
based on the changes in their offers such that, as shown by experiment, the
reached agreements are close to Pareto optimal.

® The Rubinstein bargainig solution of the 2-agent bargaining game is (u1, uz),
ur = (1=101)/(1 —6162), us =1 — u;, with time-based discount factor d, (d2) for
agent 1 (2).

252

252/466

M Klusch, 2008

However, this neither prevents agents from behaving maliciously nor from cor-
rectly guessing each others’ preferences, thereby violating both data privacy
and incentive compatibility. Further, the protocol allows bilateral (one-to-one)
negotiation only, hence does not allow agents to coordinate their negotiation
of multiple, interdependent services of a compound service with respective
providers (one-to-many). Thus, an agent risks to fail bargaining all services
involved in its service composition plans.

Hung et al. (2004)[171] propose a declarative XML-based language for speci-
fying one-to-one (bilateral) alternating offers protocols for bargaining of Web
services in terms of negotiation message formats, chosen negotiation protocol,
and negotiation decision-making by each agent. The specification of decision
making consists of two parts: The actual negotiation strategy based on a cost-
benefit (utility) model for each agent which is kept private, and an agreement
template used to construct the offers and counter-offers exchanged during the
bargaining process. This template is then incrementally refined into a binding
service level agreement (SLA) at the end of a successful negotiation.
However, the approach covers negotiation of SLAs over multiple issues includ-
ing price via bilateral bargaining, but leaves the choice of the actual negotia-
tion protocol open. In particular, it does not solve the problem of coordinating
the negotiation of multiple interdependent services of a service composition
plan.

Dang and Huhns (2006)[82] propose a protocol service bargaining agents that
allows them to concurrently perform multiple bilateral negotiations of multiple
services, that are so-called many-to-many bilateral service negotiations. This
alternating-offers protocol for bargaining services with SLAs over multiple
(non-functional) issues including price is defined as a Colored Petri Net for
modeling state changes of the negotiation process, and is proven to terminate
under certain constraints on used offer generation and evaluation methods
(such as minimum increments of an offered price, and automatic rejection if
this is not abided by). One important feature of the protocol is that agents
can decommit from pre-accepted proposals and agreements without penalty
payments.

However, no methods for offer generation and evaluation strategies are pre-
sented such that it, in essence, remains unclear how bilateral service bargain-
ing will proceed in practice.

Rahwan et al. (2002)[304] propose a bargaining protocol that allows an agent
to coordinate its multiple concurrent single service negotiations other ser-
vice trading agents. For this purpose, each agent ("master”) controls a set of
”slave” agents, that are one coordinator agent, and buyer and seller agents,
one for each service it wants to purchase from, or sell to other master agents.
The respective bargaining between buyer and seller agents on behalf of differ-
ent master agents is controlled by the respective coordinator agents according
to individual negotiation strategies of the master agents. In the proposed
alternating-offers protocol, buyer and seller agents generate and evaluate of-
fers on behalf of their master agents by means of multi-attribute utility theory

253

253/466

M Klusch, 2008

and constraint-based reasoning. This allows agents negotiating services with
SLAs over multiple (non-functional) issues including price and quality.
However, from the informal description of the protocol and the 3-agent exam-
ple the actual decision-making of the "master” agents upon pre-agreements
made by their ”slave” agents (buyers and sellers), and the proceeding of ne-
gotiation in more complex settings remains unclear.

General Equilibrium Markets

An efficient allocation of goods and resources can be performed in a more gen-
eral and distributed way based on market prices or quantities (of commodities,
or resources) by means of so-called general equilibrium market mechanisms.
On such markets, prices for commodity goods may change, and the agents pro-
viding (producer) and requesting (consumer) these goods may change their
behavior but actual production and consumption of goods only occurs once
the market has reached a general (so-called Walrasian) equilibrium. The Wal-
rasian equilibrium is reached if the market clears, and, given the prices, the
consumers and providers maximized their preferences, respectively, profits.
General equilibrium solutions for markets exist under certain conditions (but
may not be unique), are Pareto efficient and coalitional stable (in the sense
that no subgroup of consumers can increase their utilities by deviating from
the actual equilibrium and forming their own market). Prominent example of
a price-based market mechanism is the distributed price tatonnement algo-
rithm for distinguished price adjuster, service (good) consumers, and service
(good) providers. For more information on general equilibrium theory for mar-
kets from microeconomics, speculative strategies in, and general properties of
equilibrium markets, we refer to the vast literature on the subject, in partic-
ular the relevant part of the survey (Sandholm, 1999)[323].

However, the computational efforts of each self-interested agent to generate
its optimal supply and demand decision given the current price at every it-
eration of the market protocol (in case of price change) might hinder them
to even participate in such markets from the very beginning. On the other
hand, the general equilibrium approach allows one to build reasonably non-
manipulatable platforms for agent-based service negotiation. There is a small
but quite active research community working on market-based multiagent sys-
tems for some time (Wellman & Wurman, 1998). However, equilibrium market
mechanisms have not been used for agent-based service negotiation like for
speculative open Web service markets yet.

Contracting
The notion of contracting originates from economics and game theory, where
it models contracts between two agents only. More concrete, an agent may

try to contract out some of the tasks that it cannot perform by itself, or that
may be performed more efficiently by other agents. For this purpose, the first

254

254/466

M Klusch, 2008

agent (or principal) specifies the terms of the contract, i.e., how much it is
willing to pay for certain actions performed by the second agent (or actor)
on its behalf. The actor then chooses what actions it will perform, while the
principal pays a fee based on its observations, and the contract to the actor
(cf. chapter 9 in (Kraus, 2001)[219]).

In the multiagent systems literature, the concept of contracting was first used
to delegate or contract tasks to other agents for distributed problem solving
(DPS). A prominent example is the contract net protocol (CNP)[341]. As men-
tioned above, in a DPS domain, agents collaborate to achieve a common goal
by means of (recursive) task decomposition, distribution, and solution synthe-
sis, thereby maximizing the social outcome or welfare. Issues of self-interest
such as individual rationality and strategic negotiation are not relevant for
DPS-based contracting approaches such as the CNP, hence are not directly
applicable in competitive domains.

Ezxamples of agent-based service contracting

Only recently, collaborative multi-agent contracting has been extended to
competitive business service domains such as logistics. One prominent ex-
ample is Sandholm’s extension of the CNP to a competitive transportation
domain (TRACONET) [324]. According to TRACONET, the CNP initiator
agents issue a request for proposals with reservation prices, and the partic-
ipating agents only bid on requests if they can offer a transport (service)
cheaper than these prices. Another example is Sandholm and Lesser’s leveled
commitment contracting, which allow agents to decommit from contracts by
paying a pre-determined penalty (Sandholm & Lesser, 2001)[325]. However,
the authors do not provide concrete means for negotiating the conditions of
such decommitment or contract-termination.

Vokrinek et al. (2007)[376] introduce another extension of the original CNP
for competitive environments that mixes strategic bargaining with leveled
commitment contracting. On one hand, the initiator of the CNP may not
only accept or refuse proposals from participants, but also make counter-
proposals. Thus, a bilateral bargaining process is integrated into the protocol,
enabling the negotiation of price and other quality levels of a service. On
the other hand, the protocol does not conclude with the contracting phase,
but follows the leveled commitment contracting approach by means of an
optional decommitment and termination phase. In the decommitment phase,
the initiator or any participant can propose to decommit from the contract,
whereupon a negotiation over the respective decommitment penalty is entered.
Unfortunately, no concrete strategies for each of the above mentioned con-
tracting phases is proposed by the authors. Besides, the protocol still requires
any service agent to obtain all services of a given individual composition plan
but lowers its financial risk in case of failing to do so: It can possibly de-
committ from already made service contracts at penalty costs that are lower
in total than the contracted price of these services. However, the analysis of

255

255/466

M Klusch, 2008

concrete strategies for agents using this protocol is missing such that its use-
fulness in practice remains unclear.

Auctioning

Auction theory (Wolfstetter, 1996)[383] analyzes protocols and agents’ strate-
gies in auctions. An auction is a price-fixing mechanism of an auction house
in which negotiation is subject to a very strict coordination process. In this
process, an auctioneer wants to mediate the exchange of goods or items be-
tween providers and requesters for sale at the highest possible price over a
given reservation price, and potential bidders want to buy them at a lowest
possible price. Any auction is a sequence of bidding rounds. Asynchronous
bidding mechanisms are mostly based on open-outcry with price changes or
sealed bids with their periodic partial revelation. The private value of an item
depends only on the individual agent’s preferences while its common value is
the agent’s value of the item determined by the values of other agents for it.
The correlated value of an item depends partly on the agent’s own preferences
and partly on others’ values for it. Reverse auctions are initiated by requesters
themselves to buy relevant items offered by providers who act as bidders to
sell the items for the lowest price possible.

Any auction may be classified along three dimensions of (1) the bidding rules
including, for example, bid format, and one-to-many or many-to-many par-
ticipation, (2) the clearing policy that concerns pricing, clearing schedule and
closing of the auction, and (3) the revelation policy for information like price
quotes and quoting schedule.

Prominent auction protocols

Prominent examples are the following one-to-many auction protocols.

e First-price, open-cry, so-called English auction: The bidders successively
raise a bid for an item until one bidder remains. The winner is the last
bidder remaining at the price of the second-highest bidder. The dominant
strategy for consumers here is to bid up to their true (private), maximum
value, then drop out.

e Descending price, open-cry, so-called Dutch auction: The auctioneer calls
out a descending price for an item and the bidders call out their bids in
response. The winner, however, is the first bidder to call out at a price
bid. Optimal strategy is to bid just below the private value of item. This
auction mechanism guarantees the auctioneer the sale of items at highest
possible price.

o First-price, sealed-bid auction: Each bidder submits one sealed bid in ig-
norance of all other bids. The highest bidder wins and pays the amount of
her bid. This has the potential to force buyers and seller into price wars
since the sealed bid of any bidder depends on what she believes of all other
opponents bids.

256

256/466

M Klusch, 2008

e Second-price, sealed-bid, so-called Vickrey auction: The winning bidder
pays the price of only the second highest bid.

Auctions in which multiple (identical or different) items are for sale in so-called
bundles include the one-to-many combinatorial auction, the many-to-many
double, and the matrix auction. In combinatorial auctions, bidders can bid for
such bundles or combinations of items. This is particularly useful in situations
in which the value of some item to a bidder depends on which other items
the bidder can get in the auction. However, main problem of combinatorial
auctions is the NP-complete computation of the revenue-maximizing set of
nonconflicting bids by the auctioneer.

Winner’s curse and security issues

Assuming the private value of auctioned items, any of the above listed types
of auctions yields the same expected price and revenue for the seller when
the participating bidders are not risk-averse but risk neutral and symmet-
ric (means they use the same measurements to estimate their valuations).
However, revenue equivalence does not hold true under the common value as-
sumption when bidders have similar valuations. Furthermore, bidders suffer,
in principle, from the so-called winner’s curse, that is, the winner of any auc-
tion always offers (and has to pay) the winning bid for an item that is higher
than its (actual) value such that any auction is basically a win-lose game.
Main security issues of auctioning for bidders are so-called shills, lying auc-
tioneers, and the revelation of private values of items. On the other hand,
collusions of bidders and shills are illegal but hard to detect by any auction
house in practice. In particular shills violate the trust in auctioneers and the
integrity of offers for English auctions like in eBay, and all-pay auctions. How-
ever, Vickrey, first-price sealed-bid, and Dutch auctions are not vulnerable to
shills. Further, a coalition of bidders can legally participate in an auction by
means of one distinguished bidder representing the coalition.

For a more in-depth discussion of the pros and cons of different types of
auctions, we refer to, for example, (Sandholm, 1999)[323] and (Fischer et al.,
1998)[120].

Ezxamples of agent-based service auctioning

One particular problem of service auctioning, from the perspective of bidders,
is the efficient auctioning of all services of a given service composition plan.
This can be achieved by participating in appropriate combinatorial auctions,
many-to-many double auctions, or multiple auctions with respective services
for sale at the same time. There are quite a few approaches to agent-based
service auctioning in the literature of which we only present representative
examples.

(Preist et al., 2003)[300, 301] present an approach to agent-based service com-
position through simultaneous negotiation between service consumers, dedi-
cated service composition agents, and service providers in forward and reverse

257

257/466

M Klusch, 2008

auctions. Each service consumer agent initiates a reverse English auction for
service composition agents to satisfy a complex service request at minimum
costs. In turn, the composition agents try to generate service composition
plans that satisfy these requests, and to obtain the services of these plans
from the respective providers for a fixed price, or through bidding on possibly
multiple English auctions that are initiated by service providers to maximize
their profits.

Since all auctions are executed simultaneously, the composition agents face
two kinds of risk: (a) The risk of winning reverse auctions for which it has not
yet obtained all services of its plans that can satisfy the respective requests,
and (b) the risk of winning English auctions by service providers before having
won any reverse auction for service requests it can satisfy by the respectively
generated composition plans. In order to minimize these risks, each composi-
tion agent continously monitors auctions and computes the expected utility
for its bidding on a set of auctions (which is a function on the agent’s current
bids in these auctions, and the expected cost of winning each of these auc-
tions). Simplifying heuristic strategies for deciding on which set of auctions
to actually bid on for relevant services reduce the otherwise combinatorial
number of options at the cost of optimality.

However, the proposed approach has not been experimentally evaluated. The
interleaving of negotiation with composition planning and discovery is static
in the sense that the service composition plans are generated by the composi-
tion agents from the set of available services before any negotiation with the
relevant service providers takes place.

Sandholm (2002)[326] advocates the use of combinatorial auctions for agent-
based service negotiation. In a combinatorial auction, providers offer individ-
ual services for sale, but requester agents are allowed to bid for individual
and combinations of services (so-called service bundles). The auctioneer de-
cides which one of these bids maximizes the revenue for which provider. As
a consequence, service agents can reduce their risk to obtain only some but
not all services of their composition plans by bidding for the whole set in
form of service bundles at once.® The author presents a bidding language for
combinatorial auctions, and, in particular, a search algorithm that copes with
the NP-complete winner determination problem of combinatorial auctions.
The search algorithm performs efficiently in cases where the bid space is
sparsely populated, as it is argued to be common in practice. It is also shown
that it is impossible to approximate a solution within a finite bound from
the optimum in polynomial time in the general case. Further, two expressive
bidding languages are introduced, allowing bidders to express both compli-
mentary and substitutable preferences. Finally, it is shown that the so-called

6 Alternatively, reverse combinatorial auctions can be initiated by a service compo-
sition agent to find providers that are offering service bundles (as bidders) which
would cover either individually or in combination the set of services required to
execute its service composition plan at the lowest possible price, if at all.

258

258/466

M Klusch, 2008

VickreyClarkeGroves mechanism can be employed such that each bidder’s
dominant strategy is to bid truthfully.

However, combinatorial auctions are designed for only one auctioneer, or a set
of collaborating auctioneers. Thus, in situations where a service composition
consists of services which are offered by competing providers, a bidder still has
to participate in and win more than one auction at respective costs and risk
of succeeding. This weakens the original advantage of combinatorial auctions
over single-item auctions.

In the FEuropean research project AgentCities, my research team at DFKI
developed and actually deployed an agent-based online auction house (AD-
MIT) in which registered agents can concurrently participate in multiple one-
to-many auctions (but not combinatorial) auctions. The integrated payment
services were developed and hosted at EPFL in Lausanne, Switzerland.

Coalition Formation

Self-interested service provider and consumer agents may form rational coali-
tions to maximize their individual payoffs by coordinating their activities with
other agents. Cooperative game theory offers solution concepts, so-called coali-
tion theories, to the problem of what coalition to form among individually
rational agents with what stable joint payoff distribution. It does not provide
any mechanism for agents to actually negotiate these coalitions; coalition for-
mation protocols are developed in multi-agent systems research.”.

In the following, we briefly introduce to cooperative game theory, comment on
possible types of coalitions between service provider and consumer agents, and
provide examples of agent-based coalition negotiation protocols. For further
readings on the subject, we refer to the standard literature on cooperative
game theory, and the excellent readings of Kahan and Rapoport (1984)[180]
in particular.

Classic coalition games

In game theory, a cooperative (or coalition) game (A4,v) in normal form is
defined by a set A of agents, and a characteristic function v that assigns each
subset C (coalition) of agents in A its maximum profit, the so-called coali-
tion value v(C')®. A coalition value shall not depend on the actions of agents

" In the literature, the interpretation of the term coalition often differs from the

utility driven principle of ”bellum omnium contra omnes” favored in game theory.
Alternative approaches to cooperation often rely instead on the collaborative
use of complementary individual skills to enhance the power of each agent to
accomplish its goals such as in team formation.
In other words, the value of a coalition C' is the maximum amount of monetary
utilities (payoffs) its members can jointly obtain in a given application environ-
ment. Any coalition game in normal form can be equivalently described in an
extensive form (sequential coalition game).

259

259/466

M Klusch, 2008

outside the considered coalition. Any coalition C' forms through a binding
agreement on the distribution of its joint payoff v(C') among its members, the
so-called payoff distribution. A coalition formation environment is superaddi-
tive or subadditive, depending on the type of all cooperative games it allows.
In subadditive games, at least one pair of potential coalitions is not better off
by merging into one, while in superadditive games coalition merging is always
beneficial.

The solution of a cooperative game with side-payments is a so-called coalition
configuration (S, u). It consists of a partition S of A, the so-called coalition
structure, and an n-dimensional payoff distribution vector which components
are computed by a utility function u. In other words, each agent a € A gets
assigned an utility u(a) (or payoff) out of the value v(C') of the coalition C' it
is member of in a given coalition structure S. A configuration (S, u) is stable
if no agent has an incentive to leave its coalition in S due to its assigned
individually rational payoff u(a) > v(a) according to an agreed-upon stability
concept (also called coalition theory). The negotiation of stable coalitions
includes two main activities which are not independent from each other: The
building of a coalition structure S, and the distribution of joint payoffs v(C)
among the members of each coalition C' formed in S.

Classic coalition theories

Prominent coalition theories (solution spaces for coalition games) are the
Shapley-value, the Core, the Bargaining Set, the Nucleolus, and the Kernel.
Our own contributions to the field rely on the Shapley-value and the Kernel.

Core-stable coalitions. One approach to form stable coalition configura-
tions consists of the following two steps: searching for a coalition structure in
a corresponding coalition structure graph for the given game (A4, v) and then
computing its payoff according to the stability concept of the Core (Sandholm,
1999). The Core of a coalition game for coalition structure S is the set of in-
dividually rational payoff distributions, so-called not dominated coalitional
rational imputations, that maximizes the social-welfare, i.e., the sum of all
coalition values of coalitions in S. Unfortunately, the Core is often empty for
coalition games. Besides, searching for an optimal coalition structure S among
the exponential number of |A||A|/ 2 possible coalition structures is computa-
tionally difficult, because we have to try 2|4/ coalition structures.

Shapley-value-stable coalitions. A payoff division according to the pop-
ular Shapley-value provides an agent with the added value or so-called mar-
ginal contribution it brings to the given coalition structure, averaged over all
of its possible joining orders - which makes the Shapley-value individual ra-
tional and fair for agents to use in superadditive games, but exponentially
hard to compute. Algorithms for negotiating coalitions that rely on this sta-
bility concept, and a variation of it, the bilateral Shapley-value (Ketchpel,

260

260/466

M Klusch, 2008

1994), have been developed and successfully used in cooperative information
systems (Klusch, 1998; Klusch & Shehory, 1996)[211, 191], and decentralized
power transmission planning (Contreras et al., 2004)[77]. In chapters 10 and
11, we present coalition algorithms based on the bilateral Shapley-value, and
its fuzzy variant.

Kernel-stable coalitions. The Kernel of a coalition game for a coalition
structure S is the set of payoff distributions u of so-called Kernel-stable con-
figurations (S,u) in which all coalitions in S are in equilibrium. Coalition C
is in such an equilibrium if each pair of agents in C is in equilibrium, that
is, if any pair of agents in C is balanced so that none of both agents can
outweigh the other in (S,u) by having the option to get a better payoff in an
alternative hypothetical coalition. In other words, in Kernel-stable configura-
tions, no agent a in some coalition C' € S can object to its assigned payoff by
making the claim against any other agent ax in C' that a could obtain more
payoff in alternative coalitions (not in S) without a*, than ax without a. That
requires each agent a € C to compare its surplus s(a,ax*) in all alternative
coalitions over all agents ax € C', which makes the Kernel exponentially hard
to compute unless a constant limits the size of coalitions.

However, the Kernel appears to be attractive for many applications because
it is unique for any three-agent game, it assigns symmetric agents of some
coalition in a given coalition structure for equal payoff, and it is locally
Pareto-optimal. Polynomial-time coalition algorithms for negotiating polyno-
mial Kernel-stable coalition configurations have been developed and applied
to the domain of cooperative information systems in (Klusch, 1998; Kraus &
Shehory, 1999). In chapters 11 and 12, we present coalition algorithms that
base on the Kernel and its fuzzy variant.

Fuzzy-valued and fuzzy coalition games. In so-called fuzzy-valued coali-
tion games, agents negotiate fuzzy payoff distributions in order to deal with
uncertainties about joint payoffs in coalitions. Respective negotiation proto-
cols additionally provide a defuzzification method for fuzzy payoffs that guar-
antees stability of the defuzzified payoff assignment. In non-classical so-called
fuzzy coalition games, each agent can vary its degree of membership in one or
multiple overlapping coalitions.

A fuzzy-valued coalition game consists of a set of agents, a fuzzy characteristic
function v, and the membership function m of the fuzzy quantities v(C') that
can be interpreted as expectation of the common coalitional profit that is
to be distributed among its members (Mares, 2001)[249]. That is, the worth
v(C) of a fuzzy-valued coalition C' is a fuzzy set of its possible real-valued
coalitional profits. This set of fuzzy quantity v(C') has at least one modal value
determined by the membership function m. If, for a given fuzzy cooperative
game, the coalition value v(C') is equal to one modal value of C for all possible
coalitions C, it is equivalent to a (deterministic) cooperative game.

261

261/466

M Klusch, 2008

In chapter 11, we present negotiation protocols that allow agents to solve
fuzzy-valued coalition games by configurations that are stable according to
the fuzzy bilateral Shapley-value, or the fuzzy Kernel. Chapter 12 presents
a coalition algorithm for negotiating risk-bounded, Kernel-stable fuzzy coali-
tions of service providers.

Stochastic coalition games. A cooperative game with stochastic (proba-
bilistic) payofs is defined by a set of agents, a set of possible actions coalitions
might take, and a function that assigns each action of a coalition a real-valued
stochastic variable with finite expectation, representing the payoff to a coali-
tion when this particular action would be taken (Suijs, 1999)[350]. In contrast
to classical, deterministic coalition games, the payoffs can be random vari-
ables, and the actions a coalition can choose from are explicitly modeled,
because the payoffs are not uniquely determined.

Dynamic coalition formation

Frequent changes of tasks, resources, user preferences, or service availability,
as well as the set of trading partners affect the respective coalition games.
However, the majority of coalition formation protocols for multi-agent systems
are static in the sense that the agents cannot react on such changes during
the negotiation but have to perform a complete restart of the negotiation.
This problem of dynamic coalition forming (DCF) is more general (Klusch
& Gerber, 2002) than the equally named problem considered in cooperative
game theory.

In fact, the (classical) latter variant of dynamic coalition formation only refers
to possible changes of coalition memberships by the agents during negotia-
tion such that the underlying coalition game is not affected. Since the agent
society and the coalition values are assumed to be not affected by environ-
mental changes that occur during the actual negotiation, we categorize this
classical ”dynamic coalition theory” and respective solutions that have been
proposed by, for example, Arnold and Schwalbe (2002)[12], and Konishi and
Ray (2003)[216] as static.

Types of coalitions among service provider and consumer agents

We distinguish between three types of coalitions between rational service
provider and consumer agents.

e Service provider coalitions. In this case, only service providers form
coalitions to maximize their individual profits obtained from the joint sat-
isfaction of service requests issued by consumer agents which are exogenous
to the respective coalition game. In particular, each provider charges its
own local customers (consumer agents) and those of other providers for the

262

262/466

M Klusch, 2008

9

10

satisfaction of their service requests with a fixed price, and then tries to
maximize its individual profits by coalition forming with other providers.
The joint value of each provider coalition is the maximum amount of ser-
vice charges its members can obtain from their consumers for individ-
ually and jointly satisfying service requests. In case of fuzzy or proba-
bilistic charges, hence uncertain coalition values such as in reverse auc-
tions?, stochastic or fuzzy-valued coalition mechanisms can be used. In
non-classical coalition forming, providers can reduce their individual risk
of monetary losses by participating in (or distributing its resources over)
multiple (fuzzy) coalitions with varying degree of involvement.

Service consumer coalitions. Service consumers may form coalitions to
exploit synergies none of them could accomplish alone. The joint value of
a consumer coalition is the sum of maximal individual service valuations
its members can obtain from their users reduced by the joint payment
of fixed service charges by the voted coalition leader to exogeneous ser-
vice providers. For example, if one concrete service would benefit multiple
consumer agents, these agents could coalesce to request and pay for this
service only once. The same holds in case the services are offered as a bun-
dle only and each consumer agent is only interested in paying for parts of
it.10

Mixed service provider and consumer coalitions. In general, coop-
erative game theory does not distinguish between different types of ratio-
nal agents such as service consumers or service providers but focuses on
how joint values are generated and distributed in stable coalitions. In con-
trast to pure service provider or consumer coalitions, it is assumed that
providers advertise their service execution costs only without pre-defined

For example, in a consumer-initiated reverse auction providers can form coalitions

based on their acceptable minimum service charges in order to bid for satisfying
requests (and consequently make profits), and the consumer selects the winning
coalition as the one with the lowest sum of service charges. The value of a provider
coalition is uncertain since it is not known for which charges the coalition can
actually win the auction.

For example, a provider offers concrete services A and B as a bundle [A, B] for
a fixed price of 10 Euros covering both the cost of executing the bundle and
additional charge for profit. Consider two service consumer agents ai,as each
interested in only part of the advertised bundle. Consumer a; values service A
with 8 Euros but service B with 0 Euros, while consumer a» values A with 0
Euros and service B with 7 Euros. None of them is able to pay for the bundle as
a whole such that both individually fail in providing their users with the desired
service. However, by forming a coalition C' (without the exogeneous provider) with
voted coalition leader ai responsible to purchase the bundle from the provider (on
behalf of C), both consumers could obtain the service they are interested with
joint profit (v(C) = (8 - 10) + (7 - 0)) of 5 Euros. Any agreed-upon solution of
this 2-agent coalition game ({a1,a2},v) with side-payments distributes this joint
payoff between the consumers which minimizes their individual service charges
respectively.

263

263/466

M Klusch, 2008

(fixed) profits; these profits are determined by the negotiated payoff dis-
tribution with other provider and consumer agents in respectively mixed
coalitions based on an agreed-upon coalition theory.

For example, a mixed coalition of one pure service consumer and multiple
pure service providers that can only jointly satisfy the consumer’s service
requests draws its complete joint value from the utility of the consumer.
That is, the consumer agent contributes the maximum valuation of desired
services by its user to this coalition, while the providers contribute their
service execution costs. If the utility of the consumer is higher than these
costs, a stable payoff distribution will specify side-payments from the con-
sumer to the providers such that each coalition member benefits.!® The
same holds in cases where agents are acting both as provider and consumer
at the same time.

In the following, we discuss selected negotiation protocols for static and dy-
namic coalition formation among rational agents. These protocols are, in prin-
ciple, applicable to each of the above types of service agent coalitions. The
majority of approaches in the literature focuses on the negotiation of payoff
distributions in service provider coalitions with exogeneous consumer agents
and non-negotiable (fixed) service charges.

Ezamples of static coalition formation protocols

Kraus et al. (2003)[220] propose and analyse negotiation protocols for heuris-
tic coalition formation among service provider agents that try to satisfy issued
service requests. These requests have deadlines and offer a fixed price for their
successful satisfaction with time discount (price declines over time). For each
request, the first provider coalition that forms for its satisfaction is chosen,
such that optimal quality of service is not an issue. Coalitions are formed
using a synchronized, turn-based negotiation protocol which is coordinated
by a central manager. Two heuristics are proposed for the providers during
coalition forming. The marginal heuristic ranks coalitions according to their
overall utility, whereas the expert heuristic favors coalitions for an agent if it
is an expert in a required task. It was experimentally shown that the mar-
ginal heuristic outperforms in settings with complete information, while the

1 In the above example, the provider only states the bundle execution costs (without
additional fixed profit), and enters a coalition negotiation with both consumer
agents a1, a2. This may eventually yield a grand coalition with individual rational,
stable payoff distribution and respective side-payments from the consumer to
the provider such that each coalition member benefits: While the provider can
cover its bundle execution costs plus some possible extra charge, each consumer
is able to obtain its desired service for a possibly lower price than its original
maximal service valuation - depending on the negotiated payoff distribution. In
other words, the provider’s profit is maximal and consumers’ charges are minimal
in the sense of the agreed-upon coalition theory.

264

264/466

M Klusch, 2008

expert heuristic is better for negotiation under incomplete information. Under
complete information, near optimal results can be reached.

However, in contrast to traditional game-theoretic coalition formation, the
joint profit of each coalition is distributed equally among members, hence
raises the question of fairness and individual rationality of the solution. Be-
sides, agents are assumed to report their costs for offered service values (ser-
vice execution costs) truthfully, although they could (unfairly) increase their
individual payoffs by lying.

In a follow-up work, Kraus et al. (2004)[221] investigate different payoff dis-
tributions and show that under given time contraints, the willing of agents to
compromise up to 20% of their payoff is beneficial, because coalitions can be
formed faster in these cases. It is also shown that using the game-theoretic
stability concept of the Kernel does not lead to more stable coalitions.
Miller et al. (2006)[268] propose a negotiation protocol for the static forma-
tion of complimentary-based coalitions (teams) among Web service providers.
This is not a game-theoretic coalition formation protocol, since no coali-
tion theory is applied to form stable coalitions. According to the negotiation
protocol, service requests are satisfied by respectively formed coalitions of
providers. The coalition (team) building process starts with an initially con-
tacted provider that invites other providers that are relevant to realize some
part of the given composition plan to contribute to the solution. Coalition
leaders are responsible for such invitations, while coalition members perform
majority voting on their acceptance. However, the decision making of the
agents except the coalition leader, as well as the stability concept, and the
service composition remains unclear from the description.

Ezxamples of dynamic coalition formation protocols

To the best of our knowledge, there are only two solutions to the hard DCF
problem, that are the general DCF-S scheme of Klusch and Gerber (2002)
(see chapter 13), and the DCF model for resource allocation presented by Soh
and Tsatsoulis (2002)[342].

In the DCF-S scheme, each agent simulates, selects, and negotiates coalitions
each of which is able to accomplish one of its goals with an acceptable ratio
between estimated risk of failure and individual profit. In other words, the
agents strive to solve a set of single goal-oriented coalition games (A,v)|G
by forming potentially overlapping coalitions with stable payoff distributions.
For this purpose, the game-theoretic stability concepts for strict coalitions
either have to be properly adapted such as proposed for Kernel stable fuzzy
coalitions (cf. chapter 12), or to be replaced by other notions of stability
such as the asymptotic, SIBO or BIBO stability of a distributed system of
complementary-based coalitions, that are teams of agents.

Soh and Tsatsoulis (2002)[342] propose a dynamic coalition forming scheme
for the task allocation domain[342]. They model coalition formation as an
ongoing, continuous process where new tasks can appear, agents can join

265

265/466

M Klusch, 2008

coalitions, and existing coalitions can finish their tasks and disband at any
time. Agents initiate the coalition formation process for given tasks by looking
for promising partners, regarding their potential utility for the coalition. The
potential utility is based on their previous behaviour in negotiations as well
as their performance of tasks executions, using reinforcement learning. How-
ever, the approach does not cope with the problem of payoff distribution at all.

Interrelations

We can distinguish between static and dynamic interleaving of service com-
position planning and negotiation.

Static interleaving of service composition with negotiation

Statically interleaved composition and negotiation is sequential, that is, nego-
tiation can take place either after or before planning. A service composition
agent can negotiate every single service of its composition plan after its gener-
ation, or the set of services available for composition planning in advance. In
the first case, negotiation fails if at least one service (or its functional replace-
ment by additionally interleaved service discovery) of the given composition
plan cannot be negotiated. Negotiation failures may trigger service compo-
sition replanning and require a complete restart of negotiation. In principle,
the choice of a static negotiation protocol is independent from the choice of a
Semantic Web service composition planner that can be used by trading agents.
Approaches for such sequential interleaving of composition and negotiation
those in Preist et al. (2003)[300] for service composition planning agents on
multiple auctions, and the negotiation protocols in Kraus et al. (2003) and
Miiller et al. (2006) for static coalition, respectively, team formation among
service provider agents for given service composition plans. Our static coalition
formation protocols are presented in chapters 10 to 12.

As mentioned above, negotiation could also take place even before composi-
tion planning starts. For example, a coalition of agents representing a joint
venture of enterprises can negotiate a common set of services as a basis for
composition and joint trading. Thus, the search space for any composition
planning within the coalition is restricted to these pre-selected services. In
such settings, the determination of the joint payoff of the grand coalition, and
its stable distribution to all members is of interest only. Negotiation protocols
restricted to the grand-coalition are presented, for example, by Goradia and
Vidal (2007)[135, 134] and Rahwan et al. (2007)[306, 305].

Dynamic interleaving of service composition with negotiation

Dynamic interleaving of negotiation with service composition allows agents
to negotiate services even during their composition planning such that both
activities become mutually dependent. For example, the planning agent may
check at each plan step whether services required to reach the given goal

266

266/466

M Klusch, 2008

state'? can be successfully negotiated under given budgetary constraints. If
some intermediate negotiation result exceeds the given limit before the goal is
actually reached the planning has to be either fully or heuristically restarted.
In turn, the selected negotiation protocol should allow for leveled or defeatable
precommitments until the planning process is actually completed.

An example of a negotiation protocol supporting two phases of accept and
reject is the alternating-offers bargaining protocol by Dang and Huhns (2006)
which bases on the two-phase commit protocol from database transaction
theory. However, to the best of our knowledge, there is no approach to agent-
based service negotiation in the literature that dynamically interleaves with
Semantic Web service composition planning.

The Contributions

The following four chapters present solutions to various open problems of
game-theoretic coalition negotiation between rational service agents. We start
with an analysis of manipulation-safe and privacy-preserving coalition forming
based on selected coalition theories (chapter 10). This is followed by negoti-
ation protocols for non-classical coalition games with fuzzy coalition values
(chapter 11). In addition, we propose non-classical coalition negotiation pro-
tocols that allow the agents to bound their individual risk of coalition failure
by negotiating their involvement in multiple overlapping coalitions to a cer-
tain degree (chapter 12). Finally, we present solutions to non-classical dynamic
coalition forming in open environments (chapter 13). In such environments,
non-deterministically occuring changes to the set of tasks and agent society
may affect the running coalition negotiation. These contributions are joint
work with colleagues at the University of Southampton, the PhD students
Bastian Blankenburg and Andreas Gerber, and master student Wosseok Park
of my research team at DFKI.

Chapter 10: Secure Negotiation of Coalitions. In this chapter, we first propose
a coalition formation protocol, called BSCA-P, that allows rational service
agents to keep certain kinds of financial data private during the negotiation of
stable coalitions with minimum loss of assigned payoff. In particular, we show
that by using this protocol no agent has to reveal its local service sales value
and final payoff, and can achieve a certain degree of both agent and service
anonymity while still successfully participating in coalition negotiations.

Further, we analyse to what extent a special game-theoretic coalition algo-
rithm, called KCA (Klusch, 1998)[191], for forming Kernel stable coalitions
among rational agents is manipulation-safe against frauds in face of imper-
fect information on actual coalition values, and safe against changes of the
agent society. We prove a negative result for the latter case: If agents are

12 These services correspond to, for example, helpful actions with minimal goal
distance selected by XPlan2 at each plan step (cf. chapter 9).

267

267/466

M Klusch, 2008

leaving the actual coalition game (A,v) then a K-stable solution of the re-
spectively changed game (A’,v") cannot be guaranteed without a total restart
of the coalition negotiation using the KCA protocol. Besides, it is also not
manipulation-safe against frauds: The agents can neither prevent nor detect
a certain type of fraud which would lead to an unjustified increase of individ-
ual profits during the negotiation - though this comes at the very expense of
exponentially high computation costs for the deceiving agent.

As one positive result for the KCA protocol, we showed that coalition nego-
tiations with the KCA are privacy-preserving in the sense that they allow for
non-disclosing self-values without any loss of profits. The proof relies on the
fact that the computation of Kernel stable payoff distributions is not depen-
dent on such self-values such that individual agents can hide the respective
local financial data from other agents without causing a loss of benefit for
them and anyone else involved in the negotiation.

Related work on trusted coalition forming in the national BMB+F project SE-
MAS at DFKI includes the development and experimental evaluation of the
coalition protocol BSCA-TR*. Using this protocol, agents can negotiate bilat-
eral Shapley-value-stable coalition configurations with trust and reputation.
This work is not included in this chapter; for more details on the BSCA-TR*
(and its variants), I refer to the diploma thesis of my diploma student Wooseok
Park (Park, 2004)[285].

Chapter 11: Negotiation of Fuzzy-Valued Coalitions. One major underlying
assumption of classical game-theoretic coalition algorithms is that the given
coalition values of the considered game are crisp. This does not necessarily
hold in service negotiation settings with potentially uncertain coalition out-
comes. In this chapter, we first propose a novel solution to the problem of
negotiating stable coalitions with fuzzy-valued coalitions. For this purpose,
we combine concepts from fuzzy set theory with the game-theoretic stability
concept, of the Kernel to deduce the new concept of a so-called fuzzy Ker-
nel, and provide a low-complexity algorithm, called KCA-F, for forming fuzzy
Kernel-stable coalitions among rational agents.

We complement this non-classical game-theoretic negotiation protocol with
another one, called BSCA-F. This protocol enables agents to negotiate a so-
lution of fuzzy-valued coalition games that is stable according to the so-called
fuzzy bilateral Shapley-value based on the fuzzy Shapley-value introduced by
Mares (2001)[249]. In particular, we show that utilizing the proposed pos-
sibilistic mean value for eventually defuzzifying the negotiated fuzzy agent
payoffs is reasonable, and that fuzzy ranking methods can be utilized to im-
plement optimistic, or pessimistic strategies of individually rational agents.

Chapter 12: Negotiation of Fuzzy Coalitions. Classical cooperative game the-
ory restricts each rational agent to be member of one coalition only. In this
chapter, we show that non-classical game theoretic negotiation of overlapping
coalitions with our negotiation protocol, called RFCF, allows agents to make

268

268/466

M Klusch, 2008

better use of their resources, hence gain more profits. In particdular, agents
can control and bound the risk caused by possible failure or default of some
potential coalition partner by spreading their involvement in multiple coali-
tions to a certain degree. In other words, agents can lower their individual
risk of monetary losses by participating in a number of appropriate coalitions,
if coherent risk measures are considered.

Service provider agents can split their computational resources for service ex-
ecution to concurrently participate in different coalitions each of which trying
to realize one service composition plan. Hence, the degree of membership of
providers in a coalition is fuzzy, which results in overlapping (fuzzy) coalitions.
If one group of providers decides to execute an additional plan, it simply forms
an additional fuzzy coalition. Due to strict deadlines given by consumer agents
for the delivery of a complex service in their request, the joint payoff of each
coalition depends on the individually estimated runtime of services in a plan
that satisfies the request, hence relies on the probability of failure and success
of timely plan execution by a potential coalition. We assume each provider
agent to assess the other agent’s risk of failure in a coalition and consider
membership in a coalition as an investment with shared rewards for timely
joint service delivery. Consequently, each provider can specify bounds of its
individual financial risk based on the financial risk measure TCE (tail condi-
tional expectation) that is coherent for continuous probability (of failure and
success) distributions. The RFCF protocol guarantees providers to respect
these risk bounds while negotiating Kernel-stable fuzzy coalitions.

Chapter 13: Dynamic Coalition Forming. The coalition negotiation protocols
presented in previous chapters are not safe against dynamic changes of the
environment (e.g., goals, tasks, agent society) that affect the actual coali-
tion game to solve, and require a total restart of negotiations in such a case.
This chapter provides an adaptive solution to this problem of dynamic coali-
tion forming by means of an opportunistic and high-risk coalition formation
scheme, called DCF-S. It allows agents to respond to changes in their set of
goals and the agent society even during their coalition negotiation.

Basic idea of the DCF-S scheme is that each agent concurrently simulates,
selects, and negotiates coalitions each of which able to accomplish one of its
goals with an acceptable ratio between estimated risk of failure and individ-
ual profit. In case of changes that affect the bilateral negotiations for one of
its coalitions to realize, it restarts the simulation of potential alternatives for
this particular coalition keeping those agents with which it has already suc-
cessfully reached an agreement (opportunistic) and updates local knowledge
about the environment. This way, the agent gradually learns how to select best
coalitions avoiding a full restart with implied penalty payments for removing
agents from other valid coalitions and respective decrease of its reputation
for other agents. Using the DCF-S scheme agents continuously approximate
the best solutions to their coalition games based on local knowledge about
the dynamic environment. Instances of this scheme, so-called DCF-S coalition

269

269/466

M Klusch, 2008

algorithms have been successfully demonstrated for dynamic joint resource
re-planning among farmers for cereal harvesting. For more details on these
algorithms and their experimental evaluation, I refer to the PhD thesis of
Andreas Gerber (Gerber, 2004)[126].

Open Problems

Some major research challenges of agent-based semantic service negotiation
are the following.

Theory and practice of dynamic and efficient interleaving of game-theoretic
negotiation models with semantic service composition (re-)planning and
discovery.

In-depth analysis of the impact of logic based, or hybrid forms of semantic
annotation of negotiated services on both the efficiency of the negotia-
tion process, and the quality of possible service level agreements for given
negotiation mechanisms.

Development of negotiation protocols for dynamic, privacy preserving and
trusted coalition forming in open environments with uncertainties on the
coalitional outcomes. Each of the contributions presented in the following
chapters provide a separate solution to each part of this challenge. Though,
research in this direction has started, and can build on the vast literature
on trust, and trusted negotiation; for accessible reviews of the field, we refer
to, for example, (Artz & Gil, 2007)[15], (Ramchurn & Jennings, 2004),
[308], and (Sabater & Sierra, 2005)[321].

270

270/466

10

Secure Negotiation of Coalitions

B. Blankenburg and M. Klusch: BSCA-P: Privacy Preserving Coali-
tion Forming Among Rational Web Service Agents. Kuenstliche Intel-
ligenz, 1/06, pages 19 - 25, BoettcherIT Verlag, February 2006.

B. Blankenburg and M. Klusch: On Safe Kernel Stable Coalition Form-
ing Among Agents. Proceedings of the 3rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), New York,
USA, pages 580 - 587, ACM Press, 2004.

M Klusch, 2008 271/466

BSCA-P: Privacy Preserving Coalition
Forming Among Rational Web Service Agents

Bastian Blankenburg, Matthias Klusch

In this paper, we propose a coalition formation protocol, called BSCA-P, that allows intelligent agents to negotiate game-
theoretically stable coalitions for Web service trading with a maximum of individual monetary profit, while keeping certain
kinds of financial data private. We show that no agent has to reveal its local service sales value and final payoff, and can
achieve a certain degree of both agent and service anonymity while still successfully participating in rational coalitions.

1 Introduction

In today's increasingly networked and competitive world, the ap-
propriate utilization of pay per use Web services are considered
as one major key to the success of commercial service oriented
business applications in domains such as e-logistics, tourism, and
entertainment. In the near future, intelligent service agents are
not only supposed to search for, interact with, and compose, but
also negotiate access to, and execute such Web services on be-
half of its user, or other agents. In fact, they may exhibit some
form of economically rational cooperation by forming coalitions
to share the created joint monetary value while at the same time
maximizing their own individual payoff. According to classical
microeconomics, means and concepts of cooperative game the-
ory are inherently well suited to this purpose.

However, the public revelation of quantity and value of local ser-
vice sales, and individual requests for particular services required
to play cooperative games with complete knowledge could lead
to an unsolicited competitive advantage in web service oriented
business. The problem is, how can certain kinds of local finan-
cial data be kept private while still successfully participating in
coalition negotiations to maximize individual profits? Research
on privacy preserving coalition formation is in its infancies; first
solutions to this problem have been presented in [1, 2]*.

The remainder of this paper is organized as follows. In sec-
tion 2, we introduce basic notions of service agents, coalition
theory, and negotiation used throughout this paper. Section 3
provides an analysis and examples of how certain types of fi-
nancial information can be kept private during negotiation of
coalitions, whereas in section 4, we prove that at the communi-
cation level, service requests can only be anonymized by means
of an anonymous routing protocol. Finally, the overall coalition
formation protocol BSCA-P is then presented with its computa-
tional and communication complexity in section 5. We conclude
in section 6.

2 Coalitions of Service Agents

In this section, we introduce the basic notions of Web service
agents and cooperative game theory that are required to under-
stand the approach proposed in subsequent sections.

IThis paper is an extended version of [2].

M Klusch, 2008

2.1 Service Agents

We consider a Web service to be any kind of task-oriented, XML-
based business application software that is location transparent,
i.e., network accessible from anywhere with one or multiple pro-
tocols of the IP suite, possibly enlarged with additional descrip-
tive metadata to describe its semantics for service consumers,
programmable via an API, and loosely coupled with other soft-
ware applications to implement processes within, or across en-
terprises. It is supposed to be registered and located by means
of web service registries, or intelligent middle agents [5]. Ex-
amples of ontology languages for describing Web services range
from WSDL for the contemporary Web, to WSDL-S, OWL-S,
and WSMO for the future semantic Web.

Unfortunately, in recent literature, the terms agent and Web
service are often used interchangeably. An autonomous service
agent is a special kind of intelligent information agent [4] that is
supposed to pro-actively search for, interact with, and compose,
but also negotiate access to, and execute atomic, or composed
Web services on behalf of its user, or other agents. In con-
trast, Web services are considered passive in that they are not
expected to be able to, for example, autonomously decide upon
its invocation, or intelligently (re-)plan the composition of its
own or other services either individually, or in joint cooperation
with other services.

There are, in principle, three different ways of how an indi-
vidual service consumer or provider agent can interact with an
network accessible Web service, that is via (1) the service inter-
face, or communication with another service agent that either
(2) provides this and possibly multiple other services, or even
(3) temporarily integrates parts of the service code into its own
on demand, thereby changing the individual reactive agent be-
haviour accordingly. In this paper, we adopt the second perspec-
tive of interaction, and do not differentiate between the offering
of atomic, or composite web services WS by service agents.

However, we do assume that each agent a is equipped with
an individual model of monetary valuation w, (W S) of each lo-
cal, or remote service W S it can deliver to its users. Besides,
the local execution of its own services does produce a certain
amount of costs ¢, (W S) per invocation. Any pair of service
agents a, a’ is interested to access or execute, respectively, a
particular service WS provided by a’ only if is possibly prof-
itable to do so, i.e., we(WS) > co/(WS). Since we further
assume an individual service agent to act economically rational,
it will try to negotiate a profitable joint agreement for cooper-

272/466

offers: . . offers:

-Web service ws, (local execution cost: 1 k€) cws; (c: 1 k€)
requests: requests:
-Web service ws, (local sales value: 2 k€) <ws; (v: 3 k€) l

lwl({L?’}):O_cl(WSl) =-1
iy ({1.3}) =v,(ws)-0=3

offers:

- ws,(c: 1 k€)
‘ - ws, (c: 2 k€)
. ' requests:

- ws3 (v: 2 k€)

I ({L,2}) = v, (ws,)—0=2
I, ({1,2})=0—c,(ws,) =-1

3-Agent c | @ |02 03] @3]|023)
CoalionGame "vc) | 0 | 1 | 2 | 1 | 4

Figure 1: Example coalition game for three web service agents.

ation with other service agents in a coalition to maximize its
individual payoff. Such an agreement includes the commitment
of each coalition member to deliver both relevant local services
and those it is planning to compose jointly with other members,
as well as the implementation of the negotiated payoff distribu-
tion among them. Such kind of rational cooperation between
Web service agents can be described in terms of cooperative, or
coalition games.

2.2 Coalition Games

According to microeconomics, a coalition game (A,v) is con-
stituted by a given set A of service agents, and the value v of
every possible joint coalition C' C A among them. Each coali-
tion value v(C)

0(C) =Y lw,(C) (1)

acC

is the maximum monetary gain that can be achieved by cooper-
ation between the members of coalition C. This gain is defined
by the sum of the so called local worth lwq(C') of each agent
a € Ain C as its member.

Let E,(C) denote the set of services that are executed by
a € A, and R,(C) the set of services of members of C' which
are accessed by a. The local worth of a in C'

wa(C) = > wa(WS)— >

WSERL(C) WSEE,(C)

ca(WS) (2)

is its total monetary contribution to C' (without sidepayments),
that is the difference between the local income of the service
agent by charging its users for relevant data produced by local,
or remote services offered by another coalition member, and the
cost of executing its local services as requested.

Example 1 Consider a 3-agent coalition game as shown in fig-
ure 1. Service agent a1, for example, offers its own web service
ws1 to any other known agent of the game, that are service
agents a2 and as. Each local execution of its service would cost
a1 an amount of lke, but produces no monetary income as it is
of no relevance for its own users. Hence, its self value is zero.
Agent as is requesting access to service wsy from ai, as
it can charge its local users with an total amount of 3ke per

M Klusch, 2008

use, but does not offer any service of interest for users of a1
in turn. As a consequence, the local worth of a1 in a joint
coalition with a3 is lwa, (C1) = —cq, (ws1) = —1 whereas that
of asg is lwa, (C1) = —cay(ws1) = 3. Summing up the local
worths of all agents in every possible coalition yields the set
of coalition values which is the cooperative game to solve by
negotiation: What coalitions shall the agents form, and how
then to distribute the coalition values to their members?

2.3 Stable coalitions

A solution (S, u) of a cooperative game (A, v) is a partition S
of the set of agents, means a set of disjunct coalitions that have
been formed together with a distribution u of their coalition
values to each agent as member of respective coalitions. This
payoff distribution is assumed to be efficient, that is the joint
benefit is distributed completely without any loss, and individual
rational, such that no agent gets less than it could obtain by
staying alone.

As soon as the coalitions have been formed, the computed
payoff distribution will be implemented by means of certain side-
payments that are to be exchanged among the agents. In our
case, each service agent a as a member of a certain coalition C
may only claim for some sidepayment sp,,(a, C) by other agents,
if the difference

spu(a, C) := u(a) — lw.(C); (3)
spu(C*,C) =Y spu(a,C),C* C C (4)
acC*

between its assigned payoff u(a), that is the money it shall get,
and its local worth {w,(C') in C, that is its local income based
on charging its own users, is positive. Otherwise, it has to make
a sidepayment of an amount of |sp.(a,C)| to other agents in
C. If the payoffs u are distributed without loss, the same holds
for its implementation by exchange of sidepayments between
members of a coalition.

Corollary 1 Let C € S, (S,u) be a solution of a game (A, v).
If C* = C, we write sp,(C). Then sp.(C) =0, if an only if u
is efficient wrt. S.

A solution is called stable, in case no agent could have an
incentive to leave its coalition due to its assigned payoff. There
exist different stability concepts in game theory from which we
adopted, for the work reported in this paper, an efficient vari-
ant of the Shapley value [7], the so called bilateral Shapley value.

Definition 1 The union C' of two disjoint coalitions C1,C2 C
A\@ is called a bilateral coalition, with Cy and Cs called founders
of C. A bilateral coalition C is called recursively bilateral iff it is
the root node of a binary tree denoted by Tc for which (a) every
non-leaf node is a bilateral coalition, and its founders and sub-
coalitions are its children, and (b) every leaf is a single agent
coalition. For the depth d(C*,Tc) of a node C* in Tc with
either C* = C, or C* C C**, C** € T¢ it holds that

d(C*, Tc) =0 ifC* =C

d(C”,To) = { d(C*,Te) = d(C**,Tc) + 1 otherwise

A coalition structure S for (A, v) is called (recursively) bi-
lateral ifVC € S : C is (recursively) bilateral, or C' = a, a € A.

273/466

S=1{{1,2,3}},
u=<1.51,1.5>

S ={{1.3}{2}}
U= <0.5,0.5, 0>

{1} {3
v=0 V=
u=1.5

u

Il
—

5
_

Figure 2: Binary tree of bilateral coalitions for the example game.

The bilateral Shapley value 0,,(C, C;, v),Ci,1 € {1,2} of the
bilateral coalition C' is defined as the Shapley value of C; in the
game ({C17 02}7 ’U).'
1 1
73(Ci, C,0) = 50(Ci) + 5 (0(C) —(CR)) (5)

with k € {1,2},k # i.

Given a recursively bilateral coalition structure S for a game
(A, v), a payoff distribution u is called recursively bilateral Shap-
ley value stable iff for each C € S, every non-leaf node C* in
Te : u(Cf) = o (CF, CF, ve=),i € 1,2 with VO™ C A :

os(Cr, CP, vor) ifCP € I¢,
Cr=C"=Ckel,2
otherwise
(6)

In other words, when merging two recursively bilateral coali-

tions into one its value will be distributed down the correspond-
ing coalition tree to its members by means of recursively replac-
ing the coalition value of the respective parent coalition with its
payoff, that is the bilateral Shapley value.
Example 2 Consider our example game, and the bilateral coali-
tion C1 = {a1} U {as}. Since v({a1}) = v({as}) = 0, it
holds that o, ({a1}, {a1}U{as},v) = oy ({a1}, {a1 }U{as},v) =
0+ 3(2—0) = 1. Merging of Cy with Cy = {az} (C = C1UC})
yields v(C) = 4 and v(C2) = 0, thus 0,(C1,C,v) =2+ 3(4 —
2) =3 and 0,(C2, C,v) = 0+ 3(4—2) = 1. Recursively replac-
ing the coalition value v(C;) in (5) with the bilateral Shapley
value of C; then leads to the following payoff distribution (cf. fig-
ure 2): u(a1) = op({ar},{a1}U{as},v*) =0+ 3(3-0) =15
and u(as) = os({as},{a1} U{as},v*) =0+ 2(3 - 0) = 1.5.

Vo (C**) _
U(C**)

2.4 Negotiation of stable coalitions

The BSCA protocol for negotiating such stable coalitions does
restrict negotiation to pairs of voted leaders of coalitions of given

M Klusch, 2008

maximum size, thereby reducing the communication complexity.
Each coalition leader recursively distributes the potential joint
coalition value to those agents that are members of its current
coalition according to the bilateral Shapley values (cf. figure
2). Coalitions are formed bilaterally per round based on coali-
tion proposals that are mutually accepted based on the expected
maximum of individually rational payoffs for the agents involved.
However, to determine these potential payoffs, the BSCA proto-
col requires each agent to reveal its local worth to every potential
coalition partner per round.

From the knowledge about the local worth of an agent in
some coalition, one could easily deduce, for example, its mone-
tary self value, that is the local income of the agent from selling
its own services exclusively to its own users. Further, from the
distribution of service requests, and the known set of local worth
values, any third party could easily deduce that some agent does
apparently have a stronger interest in certain services offered by
some agents than by others. These kinds of revelation could
lead to an unsolicited competitive advantage of these parties in
web service oriented business after, or in parallel to playing this
particular coalition game.

In general, that is the problem of how to preserve data pri-
vacy in cooperative games playing: To what extent an individual
service agent could keep its self values, and expected final pay-
offs private to other agents such that all agents are negotiating
a solution of still the same game that is stable according to the
bilateral Shapley value? More general, what is the trade off for
any service agent between hiding certain kinds of private finan-
cial data from potential collaboration partners, and collectively
rational profit making?

3 Non-Disclosure of Financial Data

The basic idea to solve this problem is that each agent should
not disclose its total local worth in a potential joint coalition to
any other agents but the amount resulting from collaboration
only. This so called additional local worth is the difference be-
tween its local worth in the merger C' and its current coalition.
In fact, any coalition (leader) Ci can locally compute its bilat-
eral Shapley value uc(C1) = v(C1) 4+ 3av(Ci,C2) in a joint
coalition C' with some other coalition C5 simply by means of
its self value, and an equal distribution of the additional joint
coalition value av(Ci,C2). The latter value is computed by
summing up the additional local worths of the agents in each
of the bilateral coalition founders. As a consequence, coalition
C1 could compute its expected payoff without knowing anything
about the total local worth of its potential coalition partner Cs.
In more detail, (5) can be rewritten as

o5(Ci,C,v) =v(Ci) + 5 - (v(C) —v(Ch) —v(Ca)) (7)

DN

with ¢ € {1,2}. Thus, the additional coalition value
av(C1,C2) == v(C1 U C) —v(Ch) — v(C2) (8)

produced by forming coalition C; U Cs is evenly distributed

among C; and Cs. For recursively bilateral Shapley value stable

payoff distributions, this means that each child node in the coali-
tion tree gets half of the additional payoff of its parent node.

274/466

The share of the total payoff that a node gets is thus directly de-
pendent on its depth in the tree, which is shown by the following
lemma.

Lemma 1 Let (S1,u1) and (S2,u2) configurations for a game
(A,v), with ui and ua being recursively bilateral Shapley value
stable, and 3C1,C2 € §1 : C =C1UCy € Sa. Then

av(Ch CQ)

VO™ € To : u2(C7) = w1 (C™) + 2d(C™,T¢)

Proof: Induction over d(C*,T¢). The case d(C*,Tc) =
0 is obvious because of the efficiency of o, and definition of
av. For d(C*,Tc) = 1, we have C* = C;, i € {1,2} and
u2(Ci) = 0u(Ci, C,v) = v(Cy) + sav(C). Again because of the
efficiency of ov, v(C;) = u1(Ci), and thus v(C;) + sav(C) =
u1(Cy) + 2;&;2%. In case d(C*,Tc) = k > 1 and lemma
1 holds for all C** with d(C**,Tc) < k, we have C* = C?,
i€ {1,2}, C? € Te, d(C?,Tc) = d(CP,Tc)+1 and uz (C?) =
a5(C?, P, ve,) withver (C7) = u2(C?) = w1 (CP)+ afcb 2y -
Applying 6 and 7, we get

us(CP) = 0(CP) + + (ua(C”) — v(CP) — v(C))

2

1 av(C
= 0(CP) 2 () + O (0P) —u(cp)
= o(CF) + 5(w(C7) — o(CF) — (D)

av(C)
2d(CP,Tc)+1

_ av(C)
=u1(CF) + 2407 Te)

For the merge of C1 and C to form C = C1UC5, we further
define the additional local worth of agent a € Cj, i € {1,2}:

alwe (Cs, C) := lwe (C) — lwa(C5), 9)

and the summarized additional local worth for a subcoalition
C* e Tci

alw(C*,C;,C) = Z alw, (C;, C) (10)

acC*

Also, note that

av(Cr,Ca) = Y lwa(C) = > lwe(Cr) — Y lwa(Co)

acC acCy acCa

= alw(Cl,C’l,C) -I—al’w(CQ,CQ,C) (11)

The following theorem shows that in order to compute its

sidepayment when merging coalitions C1 and C3, each subcoali-
tion C* € T¢, only needs to consider its sidepayment for the
case without the merge and the additional local worths of C1,
C2 and C™:
Theorem 1 Let (S1,u1) and (S2,uz2) configurations for a game
(A,v), with ui and uz being recursively bilateral Shapley value
stable, and 3C1,Cy € §1 : C = C1UC2 € S3. ThenVC* € T,
i€ {1,2}:

Spuy (C*, C) =spu, (C*, C;) — alw(C™, C;, C)

alw(C1,Ch,C) + alw(Ce,Cs, C)
+ 2d(C*,T¢c)

M Klusch, 2008

Negotiation round 1:

ws, (c: 1 k€)
ws, (v: 2 k€)

alw, ({1}, {1,2) = 2, alw,({2}, {1,2) = -1
av({1}, {2h) = 1, u(1) = v1H+.5*av{1}{2})
u;=<0.5,0.5, 0>
Expected benefit agent 1 from coalition {1,3} ?
alw, ({1}, {1,3}) = -1, alw,({2}, {1,2}) = 3
av({1}, {3} = 2, u(1) = v({1h+.5*av({1}{3})
u,;=<17,0,1>

I Expected benefit of agent 1 from coalition {1,2} ?

ws, (c: 1 k€) Preferences: 3 > 2

ws, (c: 2 k€)

.' ws; (v: 2 k€)

Expected benefit of agent 2 from coalition {2,3} ? .
alw,({2}, {2,3)) = 2, alw;({2}, {1,2}) = -1 ws; (c: 1 k€)
av{2), 3p = 1 | LSIVERS

u,;=<0, 0.5, 0.5> Preferences: 1=3 Preferences: 1> 2

Figure 3: Privacy preserving negotiation of coalitions (round 1).

Proof: Remember that for any u, sp.(C*,C) = 3> ccx u(a) —
lwa (C) = u(C*) =3, cox lwa(C) (see 4). Because of lemma 1,
9, 10 and 11, we can rewrite

. . av(Cq, C
5puy (C7,C) = ua (C7) — ZC lwa(C) + ﬁ
acC*
acC*
av(C1, C2)
T9d(C*To)

. “ av(Ch,C
= 8pu, (C*, C;) — alw(C™,C;, C) + 7201((01,%?))
= spu, (C*,C;) — alw(C*,C;, O)

alw(Cl, 01, C) —+ alw(Cg, CQ, C)
+ 9d(C*,Tc)

Please note that in case of C* = (;, it holds that
spu, (C*,Cy) = 0, because of C; € S1 and corollary 1. Hence,
in order to obtain recursively bilateral Shapley value stable pay-
off distributions by repeatedly merging coalitions, all subcoali-
tions have to inform each other only about their additional local
worths. Absolute local worths as well as coalition values do not
have to be revealed at all. This is in contrast to the tradi-
tional way of negotiating stable coalitions with complete prior
knowledge about local worth and coalition values that constitute
the game to be solved. We acknowledge that this does hold in
particular for the bilateral Shapley value but not necessarily for
other game-theoretic stability concepts.

Example 3 Consider, again, our example coalition game (cf.
fig. 1). During the first negotiation round, it turns out that
agents a1 and as would prefer each other as a coalition partner,
since both of them could obtain a higher individually rational
payoff in a joint coalition than each could get in a separate coali-
tion with agent ay (cf. figure 3). Agent az is even indifferent in
respect to the coalition it would prefer.

More concrete, {a1} and {as} form a coalition C1, with
alwg, {a1},Cr) = —1-0= -1 and alwa, ({az},C1) = 3—-0 =
3. According to theorem 1 we get

-D+3

spu(fan}) = 04+ 2 — (1) =2

275/466

Negotiation round 2:
Expected benefit from grand coalition
Cc={1,2,3}?

alw,({1,3},0) = 2

alw;({1,3}, C) = -
alw,({2], ©) = 1

av({1,3},{2) =2

S, =1{{1,2,3}},
u,=<1.5,1, 1.5>

u({2h) = v({2)h + .5 *av({1,3}, {2}

. ' =1 > v({2}) = 0 individual rational
u,({1,3) = v({1,3}) + .5 *av({1,3}, {2) = 3
recursively distributed down the tree:
u,{1h) = v{1D + .5 * u,{1,3)=1.5

U (3D = vd3) + .5 *F w,({1,3)=1.5
> v({1}) = v({3}) individual rational

S,={{1,3), (21}
u;=<0.5, 0.5, o>/

Figure 4: Privacy preserving negotiation of coalitions (round 2).

and

(-)+3

spu({az2}) =0+ —-3=-2

Thus, the net amount received by a1 and a3 are

u(ar) = lwa, (C1) + spu({ar}) = —1+2 =1
=op({a1},{a1} U{as},v)

and

u(ag) = lwey (C1) + spu({as}) =3-2=1
= op({az2}, {a1} U {az},v).

In the second round, agent a> negotiates with the leader
of the newly formed coalition C for joining as it is individu-
ally rational to do so: Its expected payoff in a potential grand
coalition amounts to lke, that is it may obtain more by means
of cooperation than it would by staying alone. On the other
hand, forming of coalition C is consent with this proposal for
the same reason: Its bilateral Shapley value of 3ke, recursively
distributed down the coalition tree to agents a1 and ag, yields
a rational expected payoff for both members.

More concrete, their additional local worths in the grand
coalition C' are

alway ({ar}, C) = 1 - (~1) = 2,
alwgs ({asz},C)=2-3=-1

alw(Cy,C,C) = alwa, ({a1}, C) + alwas ({az2},C) =1
CLl’u)(CQ,Cz,) =1-0=1

The additional coalition value is thus
(M}(Cl, 02) = alw(Cl, Cl, C) =+ CLZ’W(CQ, CQ, C) =2
Applying theorem 1 again, we get the new payoff distribution u*
with
1+1
21

(= spu=(C2))

spux(C1) =0+ —-1=0

M Klusch, 2008

The net payoffs of C1 and C2 are equal to their bilateral Shapley
values:

u”(C1) = lwa, (C) + lway (C) + spu= (Ch)
=1424+0=3=0,(C1,C,v)

u*(C2) = lway (C) + spu+(C2)
:1+O:1:ab(Cg,C,v)

For sidepayments within C, we again apply theorem 1:

1+1
SPu* ({a‘l}v C) = Spu({a1}7 Cl) + 22 -2
=2+05-2=0.5
1+1
spe ({as}, €) = spu({as}, C1) + = + 1

=-24+05+1=-0.5

Consequently, the net payoffs of a1 and as are equal to their
recursively bilateral Shapley value stable payoffs:

u”(a1) = lwa, (C) + spu~(ar)
=1405=15=0{a1},C,v)

u” (a3) = lway (C) + Spux (a2)
=2+ (-0.5) =15 =0p({as},C,v)

4 Anonymity of Service Requests

Another issue of privacy concerns the non-disclosure of private
non-financial information of an individual service agent such as
the number and kind of services it does request from some other
agent. Even if service agents were enforced to negotiate stable
coalitions based on the exchange of their additional local worths
only, the question is whether they still would be able to deduce
such kind of knowledge about service oriented interests of po-
tential competitors from the set of additional local worths?

Unfortunately, it turns out that this indeed is possible.
For example, consider a bilateral coalition C' = Cy |JC2 with
alw(Cy,C) > 0. From this information, one can deduce that
lw(Ch,C) > lw(C1,C1) = v(Ch), which implies that agents in
C1 produce more value, and/or less costs than in C. That, in
turn, means that at least one agent in C; did request services
that are offered by agents in C2. This kind of reasoning chain
can be recursively applied to every sub-coalition of Cy in the
coalition tree. In particular, the first coalition partners of an
agent, that are its direct siblings in the coalition formation tree,
know that it did request some services from them. There is no
way to hide this fact other than by committing each of them to
keep it private, and trust them to do so.

Though the existence of service requests of any individual
agent in coalition C'1 can be detected by other agents in coalition
Ca, it turns out that they can be anonymized, thus providing
the agents with a weaker notion of privacy at least. To measure
degrees of anonymity, different notions have been proposed in
the literature, such as total, or group anonymity, under possi-
bilistic or probabilistic interpretations [6, 3]. In fact, if some
agent in C; does request some service offered by another agent
in Cy, the rest of the agents in C1 could readily observe that,
but do not know what kind of service it is. Likewise, the service

276/466

Checking of desired service and agent anonymity in C = C, U {2}
before proposal submission:

aa(sr,,) wrt C, = 2

alw({a,}, =2 av(C)=2 alw({2},0)=-1
offers: offers:
-ws, (c: 1 k€) , _ -ws; (c: 1 k€)
requests: l\alw(CT,C)J .l requests:
<Ws, (v: 2 k€) -ws, (v: 3 k€)
sa(sr,,) inC, =2
agent 3 does not know . alw({2},0)=2 sa(sr..)in {3} = 1 ‘
ws3 =
x?eg;evl\'l:gent 1 requests . offers: et i @ =
2 4 \/ ‘ws, (c: 1 k€)
“ws, (C: 2 k€) agents 1 and 3 know

agent 2 does not know requests: that agent 2 requests
whether agent 1 or 3 -ws; (v: 2 k€) W3 \/

requests ws,

Figure 5: Individual service request anonymities.

I l Option 2

Figure 6: Options of encrypted service request message "onion”
routing from agent a2 to agent as.

provider agent in C, with |C2| > 2 knows that its service has
been requested by an agent in C; but not which one (cf. figure
5).

We can quantify these kinds of possibilistic anonymity for
each service WS requested by an individual agent ¢ € C in
terms of

e service anonymity sa(WS,C1) = [U,cq, OSa| within

C'1 in terms of the number of services offered by members
of (2, such that, in the extreme, no agent knows which
of its coalition partners does access what specific service,
and

e agent anonymity aa(W S, Cs) = |C1| with respect to Cs

in terms of the size of its actual coalition C1, since from
the perspective of agents in C3, any agent in C7 might
be the originator of the service request.
Assuming that each agent specifies its desired (default) min-
imum degrees of service and agent anonymity for each web
service WS' it is interested in, any request and coalition pro-
posal to potential cooperation partners will be submitted, i.e.,
WS € R,(C), if and only if these requirements are met.

To maintain the above mentioned types of anonymity also
at the communication level, we adopt the simple onion rout-
ing protocol [8] to anonymize the exchange of service request
messages between the service agents. In essence, each service
request message gets routed between sender and receiver via
randomly selected intermediate agents each of which encrypting
the message with its individual public key (cf. figure 6). This
way, for communication paths consisting of at least three agents,
no intermediate agent is able to determine both the origin and
the receiver of a service request message nor to decrypt its con-
tent to some extent as guaranteed by the underlying encryption

M Klusch, 2008

protocol.

5 Coalition Formation Protocol

BSCA-P

In this section, we finally propose the coalition formation pro-
tocol BSCA-P that makes use of all concepts and means that
have been introduced in the previous sections. We assume that
service offers along with service execution costs are known in
prior.
Algorithm 1 For a game (A,v), So := {{a}la € A}, r :== 0
and VC € Sy : spo(C) := 0. In every coalition C € S, every
agent a € C performs:

1. LletCeS,,acCandS" :=S\C.

2. Communication:

(a) For all C* € §* do:

i. Determine set R,(C™) of requests, subject to
the sets OSq+ of offers for each a™ € C*, costs
and minimum anonymity degrees.

ii. For each service request which is in R,(C) N
Ro(C™) keep the one with minimum costs.

iii. Set alwsq(C*) := alwe,(C,C™).

iv. For each bilateral coalition C*, C* € T¢, a €
C* a = Rep(C,), wait for a message from
Rep(CY), i € 1,2,a ¢ C{ containing
alwspepcy(C*) and set alws.(C*) =
alwsa(C™) + alwsgepc)(C).

v. If a = Rep(C) then send alws.(C*) to
Rep(C*); else send alws,(C*) to Rep(CT)
with Ct € Tc, a = Rep(CH), i € 1,2,a #
Rep(C™).

(b) If a = Rep(C) then receive alwsgepc+)(C) and
set
alws(C™) = alwsgepc+)(C) + alws.(C™) for all
C* € §*; else go to step 3i.

3. Coalition Proposals:

(a) Set Candidates := 8*, New := () and Obs := ()

(b) Determine a coalition CT € Candidates with
VC* € Candidates : alws,(CT) > alws,(C*).

(c) Send a proposal to Rep(C") to form coalition C'U
ct.

(d) Receive all coalition proposals from other agents.

(e) If no proposal from Rep(CYt) is received and
Candidates # (),
set Candidates := Candidates \ {CT} and go to
step 3b.

(f) If a proposal from Rep(C™) is received, then form
the coalition C U C™ :

i. Ifo(Rep(C)) < o(Rep(C™)) then set Rep(C'U
C™T) := Rep(C); else set Rep(C U CT) :=
Rep(C™).

ii. Inform all other Rep(C*),C* € §*\ C* and
alla™ € C, a* # a about the new coalition and
Rep(CUC™)

iii. New := {CUC+}, Obs := {C’, C’+}

(g) Receive all messages about new coalitions. For
each new coalition Ci1 U C> and Repc,uc,, set
Candidates := Candidates \ {C1,C32}, New :=
New U {C1 UC2} and Obs := Obs U {C1,Cs}.

277/466

(h) Send the sets New and Obs to all other coalition
members o* € C, a* # a

(i) If a # Rep(C') then receive the sets New and Obs
from Rep(C).

() Setr:=r+1,8,:=(S—-1\ Obs) U New.

(k) For each (sub-)coalition C* € Tc with Rep(C*) =
a, determine sp,(C™) according to theorem 1 (using
spr—1(C™) instead of sp,(C™)).

(1) If C = Cr_1then stop; else go to step 2

Theorem 2 Let n = |A| and m := mazaca{|Ra|}. The com-
putational complexity of the protocol BSCA-P is in O(n3m?).
The communication complexity in terms of the number of ex-
changed messages per agent is in O(n?).

Proof: cf. [2]

After stable coalition configurations have been negotiated
among service agents following the BSCA-P protocol, it will be
implemented by exchange of actual sidepayments. For this pur-
pose, each leader of a (sub-)coalition C' makes or receives pay-
ments sp to, or from other leaders of immediate parent and child
coalitions in the binary coalition tree. this way, only leaders of
2-agent coalitions get informed about individual sidepayments,
that are its own, and that of the other agent. As a consequence,
only the very first coalition partner of an individual agent a, that
is its direct neighbour leaf in the coalition tree, might ever know
a's exact sidepayment, though its individual utility value still
remains private. To ensure anonymous service requests and ac-
cess, we require each agent to follow the simple onion routing
protocol.

6 Conclusions

We proposed a protocol for privacy preserving and stable
coalition formation among rational web service agents. In
particular, the payoffs and utilities of these agents can almost
or even completely be kept private, respectively, during bilateral
negotiations of recursively bilateral Shapley value stable coali-
tions. Further, following the BSCA-P protocol, there is no need
to reveal absolute coalition values to successfully participate
in coalition negotiations at all. However, we showed that the
existence of service requests might not be hidden in general but
anonymized to a specified degree. In summary, the negotiation
protocol BSCA-P allows service agents in the Internet to keep
personal financial data private, while increasing their individual
profits by means of rational cooperation with others in coalitions.

Acknowledgement: This work has been supported by the
German ministry for education and research (BMBF) under
project grant SCALLOPS-01-IW-D02.

References

[1] B. Blankenburg and M. Klusch. On safe kernel stable coali-
tion forming among agents. In Proc. 3 Int. Conference
on Autonomous Agents and Multiagent Systems (AAMAS
2004), New York, USA, 2004.

M Klusch, 2008

[2] B. Blankenburg and M. Klusch. Bsca-p: Privacy-preserving
coalition formation. In F. Kluegl et al., editor, Proc. 3rd
German Conference on Multi-Agent System Technologies
(MATES), Koblenz, Germany. Springer, LNAI, 3550, 2005.

[3] Joseph Halpern and Kevin O'Neill. Anonymity and infor-
mation hiding in multiagent systems. Journal of Computer
Security, Special Edition on CSFW 16:75-88, 2003.

[4] M. Klusch. Information agent technology for the internet:
A survey. Data and Knowledge Engineering, 36(3), 1980.

[5] M. Klusch and K. Sycara. Brokering and matchmaking for
coordination of agent societies: A survey. In A. Omicini
et al., editor, Coordination of Internet Agents. Springer,
2001.

[6] A. Pfitzmann and M. Kéhntopp. Anonymity, unobservability
and pseudonymity: a proposal for terminology. In Interna-
tional Workshop on Designing Privacy Enhancing Technolo-
gies, pages 1-9, New York, 2001. Springer-Verlag.

[7] L. S. Shapley. A value for n-person games. In H. W. Kuhn
and A. W. Tucker, editors, Contributions to the Theory of
Games Il, volume 28 of Annals of Mathematics Studies,
pages 307-317. Princeton University Press, Princeton, 1953.

[8] P F Syverson, D M Goldschlag, and M G Reed. Anonymous
connections and onion routing. In IEEE Symposium on Se-
curity and Privacy, pages 44-54, Oakland, California, 4-7
1997.

Kontakt

Bastian Blankenburg

DFKI GmbH

Stuhlsatzenhausweg 3, 66123 Saarbriicken

Tel.: +49 (0)681 302-64823 Email: blankenb@dfki.de
Dr. Matthias Klusch

DFKI GmbH

Stuhlsatzenhausweg 3, 66123 Saarbriicken

Tel.: +49 (0)681 302-5297 Email: klusch@dfki.de

Bastian Blankenburg is a PhD student of

the university of the Saarland and researcher
of the multi-agent systems group of the Ger-
man research center for Artificial Intelligence
(DFKI). His research interests include coop-
eration, risk, trust and privacy in multi-agent
systems. He received a diploma from the
University of the Saarland, Germany.

Matthias Klusch is a research fellow and se-

nior researcher of the German research cen-
ter for Artificial Intelligence (DFKI) where
he is leading a research team on intelli-
gent information agents and systems. His
research interests include agent-based and
service-oriented computing, intelligent infor-
mation search and management, innovative
applications of Al, rational cooperation and
decision-making, and the semantic Web. He
received a PhD in computer science from the
University of Kiel, Germany.

278/466

On Safe Kernel Stable Coalition For ming among Agents

Bastian Blankenburg, Matthias Klusch
German Research Center for Artifical Intelligence,
Deduction and Multiagent Systems,
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
e-mail: {blankenb, klusch} @dfki.de

Abstract

We investigate and discuss safety and privacy preserv-
ing properties of a game-theortic based coalition algorithm
KCA for forming kernel stable coalitions among informa-
tion agentsin face of imperfect information on actual coali-
tion values, and changing agent society. In addition, we an-
alyze the chances of deceiving information agents to suc-
ceed in coalition negotiations using the KCA protocol. We
show that a certain type of fraud which leadsto an increase
of individual profit can neither be prevented nor detected,
but this comes at the expense of exponentially high compu-
tation costs for the deceiving agent.

1. Introduction

Game-theoretic coalition algorithms can be used by in-
telligent agents as coordination means in a variety of appli-
cationsin different environments. Applicationsin the health
care and m-commerce domain are required to preserve the
privacy of user information to alarge extent. In this respect,
one interesting question concerns the relation between the
safety poperties of a given coalition negotiation protocol,
and the privacy of information required to specify the under-
lying coalition gameto be solved by the agents according to
the protocal. In particular, what is the minimum amount of
information required for a given coalition algorithm to out-
put stable solutions? Will it beindividually beneficial to de-
celve negotiation partners on local information that is used
to determinethe value of joint coalitions? What kinds of in-
formation can be hidden by an agent from selected agents
at what costsin terms of its bargaining position in the coali-
tion negotiation?

As to our knowledge, there is no work on this topic
available yet. Hence, in this paper, we provide some first
thoughts on, and preliminary answers to these questions,
taking a special coalition algorithm KCA [4] for kernel sta-
ble coalition forming as an example.

M Klusch, 2008

In section 2, we introduce the reader to the basics of co-
operative gametheory, with focus on Kernel stable coalition
forming, to an extent that is necessary to understand the re-
sults presented. Readers who are familiar with the field can
skip this section. In section 3, we analyze and discuss some
safety properties of the KCA protocol for negotiation set-
tings with imperfect information on coalition values, and
changesin the set of negotiating agents. Finally, the chances
of deceiving agents to succeed in coalition negotiations ac-
cording to the KCA protocol are discussed in section 4.

2. Kernel stable coalition forming

In this section, we briefly introduce the reader to the ba-
sic concepts of coalition games, kernel stable coalitions, and
a specific negotiation protocol KCA [4] that can be used by
agents to form such coalitions. For a more comprehensive
introduction to co-operative gametheory we refer the reader
to, for example, [2, 5].

2.1. Basics

A co-operative or coalition game (A, v) is defined by a
set A of agents wherein each subset of A is caled a coali-
tion, and areal-val ued characteristic or coalition valuefunc-
tionv : A — R that assigns each coalition C C A its
maximum monetary gain. Any set of coalition values for
all possible coalitions defines a coalition game. The self-
value v({ar}) = v(ax) of an agent a;, denotes the maxi-
mum profit it may gain without any cooperation with other
agents. It is assumed that each value v(C') does not depend
on the actions of agents outside C, any coalition C' forms
by a binding agreement on the distribution of v(C') among
its members, and no side-payments are allowed from C' to
any agents outside C' within the given game.

The sum of both self-value and marginal contribution to
acoalition C'is called thelocal value or worth lworth ,(C)
of agent a for C. An individual agent production utility
function U, determines the worth of task-related produc-

279/466

tions of agent a;,. Agents coalesce to increase their individ-
ual profits that may result from jointly accomplishing their
tasks. The value lworth, (C') of agent a for coalition C' is
the total revenue a may obtain for accomplishing its tasks
in C on behalf of its user or other agentsin C. Each coali-
tion value is the sum of the local values of its members
((C) = > e lworthy (C)).

Sable Solutions of Coalition Games. The solution of a co-
operative game with side paymentsis a coalition configura-
tion (S, w) which consists of a partition S of A, the coali-
tion structure, and a n-dimensional, real-valued payoff dis-
tribution vector which components are computed by areal-
valued payoff or utility function «. The payoff distribution
assignseach agent in A itsutility u(a) out of thevaluev(C)
of coalition C it is member of in a given coalition structure
S.

In individually rational payoff distributions each agent
gets at least its self-value u(a) > v({a}). For group ratio-
nal distributions, it holds that the group of all agents max-
imises its joint payoff. In Pareto-optimal payoff distribu-
tions no agent is better off in any other valid payoff distri-
bution for the given game and coalition structure.

A configuration (S, u) is called stable if no agent has an
incentiveto leaveits coalition in S due to its assigned pay-
off u(a). Different characteristics and criterions of stability
define different solution spaces for a co-operative game.

In general, non-super-additive games at least one pair of
potential coalitions is not better off by merging into one.
The meaning of stability of coalitions depends on the con-
sidered discipline and application domain. Many if not most
of the coalition formation algorithms today rely on chosen
game-theoretic concepts for stable pay-off division within
coalitions according to, for example, the Shapley-value, the
Core, the Bargaining Set, or the Kernel [2]. In this paper,
we focus on the latter concept of coalition stability.

Kernel Stable Configurations. The kernel of a co-operative
game (A, v) with respect to a given coalition structure S is
aset of K-stable configurations (S, «) wherein each coali-
tionin S isinequilibrium. Each pair of agentsa, a; inC'is
in equilibrium, if they cannot outweigh each other in (.5, u)
by having the option to get a better payoff in coalition(s) not
in S excluding the opponent agent. The surplus of agent
ar € A with respect to the opponent a; in a given con-
figuration (S,u) iS sk = MaTrgs a,era¢ric(R,u)},
wheree(R,u) = v(R) — u(R) denotes the excess of alter-
native coalitions R. Agent ay, outweighsa,, if sg; > s;, and
u(a;) > v(a;). Any pair of agents ay, a; is in equilibrium
with respect to (.5, u), if one of the following constraintsis
satisfied: (Skl = SZk-). or (Skl = S|k and u; = v(al), or
Skl < Sik and U = v(ak).

To compute a K-stable payoff distribution, agents trans-
fer side payments among each other; the demand of agent
ay, from a; is defined as dy,; = mm{(S“T*S””, u(a)) —

M Klusch, 2008

v(a;)} > «a, and zero else, as an upper limit of any side-
payment « to be added (subtracted) from the payoff u(a)
(u(a;). The transfer scheme converges against a K-stable
(S,u) after O(nlog(re/e)) iterations with O(n2™) steps
each, where re(u) denotes the relative error.

The kernel of a game is exponentialy hard to com-
pute unless, for example, the size of the coalition is lim-
ited by a constant. The kernel appearsto be attractive, since
it is unique for any 3-agent game (A4, v), assigns symmet-
ric agents of some codlition in a given codlition structure
for (A, v) equal payoff, and islocally Pareto-optimal in the
set K. Polynomial coalition algorithms for polynomial K-
stable coalition configurations have been devel oped for co-
operative information agents with perfect [4] or imperfect
knowledge[1].

2.2. KCA coalition algorithm

Any set of rational agents can negotiate kernel stable so-
lutions (S, u) of co-operative games (A, v) by using the so
called KCA coalition algorithm [4] which proceeds as fol-
lows.

Each agent a performs

1. Communication
@ Set ({a1}, ..., {an}, (v({a1}),...,v({as})) to
be the current configuration.

(b) Set each agent to be the coalition leader of its
coalition.

(c) Generateatotally orderedlist of all agents sorted
by their overall computational power. The sort-
ing of thislist is the same for all agents. It is not
important here how thisis exactly done.

(d) Send the set of tasks T, to al other agents.
(e) Receivethe set of tasks of each other agent.

(f) Evauatethe set of tasks accomplishableby a and
send it to all other agents.

(g) For each other agent, receive the set of accom-
plishable tasks.

(h) For every codlition C C A, evaluatelworth,(C)
and send it to all other agents.

(i) Receiveall local values from each other agent.
2. Generating Proposals
(& If aisnot codlition leader of C,a € C, goto 4e.

(b) For each other codlition C* € S,a ¢ C* com-
pute a Kernel-stable configuration (S*, u*) with
CUC* € §* and dl other codlitions unchanged.
If u* strictly dominatesw, send (S*, u*) asacon-
figuration proposal to the leader of coalition C'*.

3. Evaluating Proposals

280/466

(a) Receive configuration proposals from the other
coalition leaders.

(b) Evaluatethereceived proposals. Choose one pro-
posal (ST, u™) that is most beneficial to accept,
i.e. for which u* strictly dominates v and is not
strictly dominated by »* of any other received
proposal (S*, u*).

(c) Inform all other coalition leaders about the ac-
cepted proposal .

4. Deciding Upon Coalition Configuration

(@) Receive al accepted proposas from the other
coalition leaders.

(b) If no proposal was accepted, stop.

(c) Choose one proposal to become the new config-
uration. To do this, determine an order of prefer-
ence of the proposals according to the following
keys, priority in descending order:

i. Bilaterally accepted proposals are preferred
to unilaterally accepted ones. An accepted
proposal (S*,u*) of codition C* for coali-
tion O is bilaterally accepted iff C* ac-
cepted a proposal of C*.

ii. If any two proposals (S*,u*) and (S*, u™),
Dareau’ (@) > Y,.cqut(a”) holds,
(S*,u*) ispreferredto (S, u™).

iii. If any two proposals are equaly pre-
ferrable according to the above proper-
ties, the one which was made by the agent
with the greater computational power is pre-
ferred.

(d) Inform &l other coalition members in C about
the new configuration.

(e) If a is not codlition leader, receive the new con-
figuration.

(f) If a isin the coalition, determine the new coali-
tion leader as the agent in the new coalition with
the greatest computational power.

(g) If aiscodlitionleader, do: if a isin the new coali-
tion, inform all other coalition leadersabout a be-
ing the new coalition leader. If a isnot in the new
coalition, receive the new coalition leader of the
new coalition.

(h) If the grand coaltion was formed or a previously
defined time for the coalition formation process
is exceeded, stop.

(i) Goto 2.

It is assumed that the time for message exchange is lim-
ited, and inter-agent communication is correct. Please note
that according to the KCA protocol, in each round at most

M Klusch, 2008

one new coalition isformed (as amerger of two coalition of
the p