
Analysing layout information: searching PDF documents for pictures

Brigitte Mathiak, Andreas Kupfer, Richard M ünch, Claudia Täubner, and Silke Eckstein
Institut für Informationssysteme, TU Braunschweig, Germany

Institut für Mikrobiologie, TU Braunschweig, Germany
b.mathiak, a.kupfer, r.muench, c.taeubner, s.eckstein@tu-bs.de

Abstract
Roughly 5 percent of the web’s content consists
of PDF documents, yet most web mining appli-
cations simply ignore them or make a standard
to-ASCII conversion. We believe that PDF doc-
uments contain valuable information, eg. most
scientific publications are stored in PDF, and
should therefore be analysed more thoroughly,
by not only using the text information, but also
the layout including the pictures. In this paper
we address some of the issues involved with this
approach and present an example application to
help scientists search for specific pictures in a
scientific PDF corpus.

1 Introduction
Most web mining applications center around HTML only,
but in fact the Internet is much more diverse. For example,
a short investigation of common terms like ”have”, ”after”
and ”group” shows a ratio of overall hits to hits in PDF
documents between 3.5 and 6.1 percent. The real number
of PDFs might be even higher since, not all PDFs convert
into legible text (see Chap. 3). Also, PDF documents are
quite relevant, especially since research papers are often
published in PDF and Postscript (see CiteSeer[Bollacker
et al., 1998]).

The basic problem of handling PDFs is that the text in-
formation is not freely available. While an HTML file
stripped of its tags usually delivers legible text, even the
simple task of text extraction from a PDF is rather com-
plicated. Down to the basics, PDF is foremost a visual
medium, describing for each glyph (= character or pic-
ture) where it should be printed on the page[Ado04, 2004].
Most PDF converters simply emulate this glyph-by-glyph
positioning in ASCII, HTML or any other formats[BCL04,
2004], but information about reading order and overall se-
mantic connection of the text is lost.

Still, since the position of all glyphs is known, the orig-
inal layout can be deduced and the semantical connection
can be restored. For HTML, the layout information has
successfully been used to improve the classification of web
pages[Kovacevicet al., 2004]. We extract the same lay-
out information for PDF documents. To prove the viability
of our approach, we used the layout information to imple-
ment a special search for PDF embedded pictures in scien-
tific publications. Since the figure captions contain much
information about the figure, we implemented a search en-
gine, similar to Google Images, to find images not in reg-
ular HTML web pages, but in PDFs. We use layout infor-
mation to associate the picture with the caption. So, if the

user wishes to find pictures containing UML-diagramms,
he can just enter ”UML” to find what he needs.

For evaluation, we took a problem from bioinformatics:
quality assessment of pictures documenting experiments.
The special problem posed by experimental data is that
keywords searches in abstracts or even full text are ambigu-
ous. The experimental procedures are rarely mentioned in
the abstract and in the full text, experimental methods be-
longing to the overall topic are often referenced eg. in lit-
erature overview. By using the figure captions we can ac-
curately find pictures for each experiment.

In bioinformatics, text mining is usually done by inspect-
ing abstracts, since they are most easily available. Yet,
more information can be obtained by searching through full
text paper[Faulstichet al., 2003]. In [Yeh et al., 2003], it
has been observed that analyzing the figure caption is of
great value. Classifying the different sections of a paper to
analyse them seperately like in[Shahet al., 2003] has been
successfully attempted, but curiously, the figure captions
have not been examined.

The paper starts with a general section about the internal
PDF structure. Section 3 describes how the text is put into
PDF and how it can be extracted again, while maintaining
the layout information. In section 4 we explain the same
process for images and section 5 finally describes image
and text coming together as figure and caption. Section
6 describes the overall process of the example application
CaptionSearch and in Section 7 we present some results.
In the last section we draw some conclusions and discuss
further improvements on our search engine.

2 PDF Structure

Before we start discussing the actual text and picture ex-
traction in the sections 4 and 5, we first have to explain
some basics about PDF and how its raw data structure
works like. PDF documents are all organized the same
way: a header, objects and a trailer. The header contains in-
formation about the PDF version. The trailer is a bit more
complicated containing structural information such as the
length of the document, a reference to the root object, and
more. Everything else like text information, fonts, images
and structuring information is encoded into objects, an ob-
ject each.

The example below shows two objects. Line numbers
are included for readability. Objects are structured into an
object designation (line 1 and 9), that gives the number the
object can be referenced with and object data. The data is
often proceeded by a dictionary (lines 2-4) that gives addi-

tional information about the data.

1 1 0 obj
2 << /Length 2 0 R
3 /Filter /FlateDecode
4 >>
5 stream
6 inserted here are 108 bytes of data
7 endstream endobj
8
9 2 0 obj

10 108
11 endobj

In line 2 the length of the stream is determined by ref-
erencing the second object with the ID2 0 in line 9 that
contains 108 as its data (line 10). In line 3 information is
given on how the following stream can be decoded. There
are a number of possibilities,FlateDecode is the most
common and identical to ZIP[Deutsch, 1996]. The seman-
tics of the decoded stream depend on the function of the
object given by the context the object is referenced in or
given explicitly in the dictionary. This object could for ex-
ample describe how text is to be printed on a page.

The overall structure of the document is mostly hierar-
chical. The root object, which is given in the trailer, refer-
ences a pages container object, which references the pages
and so on. Mutual information may be shared by refer-
encing the same object several times. The objects are all
readable from all objects and may not contain other objects
only reference them. Hencefore, the order of the objects
does not matter, as all are treated in the same way. The
number of objects in the document varies depending on the
way it was produced: an average 5 pages document may
contain between 20 and 300 objects.

3 Text in PDF
When looking for captions, we first have to analyse all the
text that is on the page. For that, we have to take the page
object (like the one in the example before) and decode the
text stream (the binary code in line 6), the result is a chain
of commands that describes the text to be written on that
page. The above example shows a short sample taken from
a real PDF:

1 BT
2 8 0 0 8 52 757.35 Tm
3 /F2 1 Tf
4 0 -1.706 TD
5 (page 354)Tj
6 T*
7 [(J) -27 (OURN) 27 (AL) -378 (1)]TJ
8 ET

By convention, the parameters of a command are written
before the command and all commands are abbreviated to
two letters. All text-related commands are between a BT
(line 1) and an ET (line 8) which stands for Begin Text and
End Text, respectively.

There are 3 different matrices that keep track of the cur-
rent writing position. The matrices are given as 6 values,
like the values in line 2. The first four represent a rota-
tion matrix. The rotation matrix can be used to write land-
scape text or up-side-down. Also it gives scaling parame-
ters, which are multiplied with the actual fontsizes. The
next 2 values give the position on the paper in pixels. The
matrix that is set in line 2 with the Tm (set Text matrix)

command is the text matrix. The other two matrices are
the transformation matrix, which can be set outside the BT-
ET environment to move whole text passages and the CTM
(Current Transformation Matrix) that is supposed to keep
track of the beginning of the line to enable carriage return.

The font size can be set either by the scaling of the matrix
or directly when setting the font. The command Tf (see line
3) has two parameters, first the font object, here referenced
by name, and the font size. Although the font size is set to
1pt the matrix scales it up to 8pt. In the next line line spac-
ing is defined in text matrix coordinate system, the next line
is supposed to start 1.706 times the current font size below
the start of the current line. There are also possibilities to
define word spacing and character spacing.

In line 5 at last text is written to the screen. The Tj
command has a string parameter. Strings are denoted by
the brackets around them. The text is now written, using
the current matrices and the chosen font. The T* in line 6
marks a carriage return. The text matrix is set to the CTM
that stored the coordinates from the beginning of the line.
Then the line padding operation as defined in line 4 is exe-
cuted and the CTM is set to this new coordinates.

In line 7 the second line of text is written. The TJ com-
mand, opposing to the Tj command, allows ligatures in-
side the string. The numbers between the strings modify
the horizontal space between the letters. Contra-intuitively,
positive numbers mean less space, while negative numbers
mean more space. A very large negative number, like the
-378 in the example can even be used to produce a space
between the words without using the space literal. Since
every kind of movement can be such an implicit space or
carriage return, we need some algorithm to decide which
one is which.

For indexing purposes it is vital to identify correct word
borders, otherwise terms may be glued together or torn
apart. In those cases it is not possible to find the terms any-
more. Unfortunately, the spaces are sometimes not given
directly, but instead the characters are just a little more
apart from each other than usual. The problem sharpens
as theoretically all characters can be written in any kind of
order by jumping around with explicitly set coordinates.

In order to identify the spaces anyway, our first run
through the text stream just extracts the characters one by
one and calculates their bounding boxes. Then the differ-
ence vector~xdiff between two adjacent characters is calcu-
lated and rotated in writing directionR.

rotationmatrix R =(
xold, right− xold, left yold, right− yold, left
−yold, right + yold, left xold, right − xold, left

)
~xdiff = (~xnew, left− ~xold, right)

R
|R|

The resulting vector is compared to the current modified
font size to determine whether this is a space, no space,
carriage return or a new block of text. Next, the blocks are
sorted and go through a similar procedure. This way the
initial information about the order is conserved best.

The blocks bounding boxes are conserved to allow fur-
ther investigation of their layout, also all changes in fonts or
font size and all lines are denoted with their own bounding
boxes.

Additional problems which arise are: text overlaps,
when e.g. a special font is used to write the accent over
à that overlaps the original a and the overall handling of

non-identifiable fonts and fonts that give wrong bounding
boxes.

4 Images in PDF
Since we want to present the picture along side with the
caption, we need to do two things: firstly, we have to know
where the image is and secondly, we have to extract the
image into a standard readable image format.

The images themselves are stored in so called XObjects.
From the text stream an XObject can be called by using the
command Do (execute the named XObject).

1 22 0 obj
2 << /Type /XObject
3 /Subtype /Image
4 /Name /Im3
5 /Width 580
6 /Height 651
7 /BitsPerComponent 8
8 /ColorSpace /DeviceGray
9 /Length 31853
10 /Filter /DCTDecode>>
11 stream ... endstream endobj

This example object represents an image that can be called
by enteringIm3 Do into the text stream. What happens
then is that the object called Im3 is identified and executed.
From the object dictionary, we can gain some information
like width (line 5) and height (line 6), although this infor-
mation might not be acurate. The true hight and width are
calculated and give, together with the current position the
bounding box of the picture.

To actually extract the picture, we need the filter (as
given in line 10), in this case DCTDecode, which is the
PDF name for Jpeg encoding[International Organization
for Standardization, 1994]. The stream simply contains the
a jpg-file that can be copied out without further modifica-
tions.

Aside from this case, there are a number of possible
complications. Natively, all images are given as raster im-
ages, like a BitMap. Width and height are given to de-
termine the dimensioning of the raster, BitsPerComponent
(see line 7) give the color depth. The Colorspace (given in
line 8) maps the colors to the RGB values they are painted
in. For filters, there are a number to chose from, some
of those are quite old and unfortunately not all have open
source libraries to convert them to more publicly known
formats. Also it is possible for an image to consist of draw-
ing instructions in the PDF text stream language or they can
be inserted in PostScript language.

Since a relatively high number of pictures can not be ex-
tracted easily, our next idea is to use a third-party applica-
tion to extract the pictures seperately. We would then try
to match the coordinates given by the program with coor-
dinates of our own. Unfortunately, this is still in prototype
phase.

5 Finding the Caption
What we have at this point is the converted text (see section
4), together with its bounding boxes and the pictures with
their bounding boxes (see section 5). The next step is to
find out which text belongs to which picture.

To achieve this, every text block is weighted according
to 2 factors:ydiff, the y-proximity in pixels from the bottom
line of the picture andxdiff , the x-proximity from the left

border of the picture. The weighing of these factors can be
seen from the following equation.

weightω = 10ydiff + xdiff

In order to find captions that are next to the figure or
above it, we also introduced a semantic criterion. Figure
captions do traditionally begin with ”Figure 1:” or some-
thing similar. The block that we found with the method
described above, is first checked whether or not it has such
a denotation. If not, we look at the other blocks in prox-
imity and check them. If there is no ”Figure”-block to be
found, we stick with the block right below. This is the case,
for example, when the caption is prefaced with a filler (dots
or a special symbol), or when the image is not scientifical,
like for example a logo.

Finding the end of the caption is much less deterministic.
Fortunately, most captions have a significant gap before the
main text begins again. Also, normally captions are single-
column even if the text is two-column. Although we do
keep track of the font and the captions are usually written
in another font, we do not use this information, since there
are just too many publications, that do use the same font
and font size for both purposes. Instead we keep strictly
to the layout information on where an untypical large gap
between line is.

6 CaptionSearch: Our example application
As a simple demonstration, how the layout information can
be used, we decided to write a web based search engine for
images. It is called CaptionSearch, since we are technically
not searching through the images, but through the caption
text beneath them.

The process consists of 6 steps from the download to the
actual query execution (see Fig. 1), all of them are currently
implemented in Java.

B
picture
extraction

A
text
extraction C

caption
identification

1. download 3. XML 4. index files

6. executing
 user queries

2. caption extraction

5. webserver

 literature

Figure 1: Overview of the CaptionSearch dataflow

Step 1 is straightforward downloading any kind of liter-
ature that might be interesting into a file pool. The techni-
cal details of step 2 were mainly already given before. In
order to allow for future extensions, we split the process
into three parts. Part A works like any PDF to text con-
verter and in fact is based on the Java converter PDFBox
[PDF04, 2004]. We made a few changes, like refining the
coordinate calculations and changing the space detection
algorithm. We also keep a lot of the meta-information that
is usually lost in the process, like the bounding boxes of all
the text blocks, the fonts and font sizes. That information
could also be used by a different algorithm.

Part B extracts the pictures into files and adds fake pic-
ture text blocks that contain information on the position of
the picture and the filename as a link. In part C we perform
the algorithm outlined in section 5 to get pairs of picture
blocks and text blocks for each pdf.

In step 3 these pairs are written to an xml file (see exam-
ple below).

1 <?xml version="1.0"
encoding="iso-8859-2"?>

2 <pdf src="10094677.pdf">
3
4 <caption>FIG. 4. DNase I

footprint analysis of ...
5 </caption></pdf>

Each publication is represented by one file containing a
PDF element (line 2-5), which may contain many image
elements (like the one in line 3-5), which have the link to
the picture as an attribute (line 3) and the caption as a fur-
ther element (line 4-5).

In Step 4 we use the Digester package[Dig05, 2005]
to extract the information from the xml files into the in-
dexer. For each figure a virtual document is put into the
indexer containing the figure caption to be indexed and
the image link and pdf link as metainformation. For the
indexing itself, we use the Lucene package[Hatcher and
Gospodnetic, 2004], which offers fast, Java-based index-
ing, but also some additional functionality, like a built-in
query parser and several so-called analyser that allow us to
vary how exactly the captions are indexed and what defines
a term.

For step 5 we set up a Tomcat webserver[Tom05, 2005],
using Java servlets[Coward and Yoshida, 2003] to produce
the website and to present the query results. In step 6, all
queries are executed by a servlet that uses Lucene to fetch
the results from the index files and builds a new web page
to display the results according to the pre-selected schema.

7 Results
In the last few years, the number of biological databases has
grown exponentially, from 548 in January 2004 to 719 in
January 2005[Galperin, 2005]. Yet, one of the most time-
consuming tasks when setting up new databases is the an-
notation of literature. There already exist a number of very
interesting search engines. Via PubMed[PubMed, 2004],
for example, almost every abstracts ever written in life sci-
ence can be searched. Unfortunately, abstracts often do not
mention the exact methods that were used, so for databases
that contain experimental data, like the PRODORIC data-
base[Münch et al., 2003], literature annotation becomes
the proverbial search for the needle in the haystack.

The PRODORIC database contains very special data like
DNA binding sites of prokaryotic transcriptional regula-
tors. This data is generated via specific experiments like
DNAse I footprints or ElectroMobility gel Shift Assays
(EMSA) that are generally not mentioned in the abstracts
of scientific literature. The search for general key words
classifying this comprehensive field like ”gene regulation”,
”promoter” or ”binding site” results in over 150,000 hits,
and even with additional refinement only 10-20% contain
appropriate data. Therefore it is necessary to screen all
the hits manually to obtain literature references suitable for
database annotation. Of these, those are especially valuable
that contain pictures of the DNAse I footprint or EMSA
assay, because they represent verified information of high
quality. This quality assessment can be important on fur-
ther exploration of the subject.

Out of 188 papers that were known to contain informa-
tion about DNA binding sites, 170 did contain extractable
pictures. All in all there were 1416 pictures in the PDFs

of which 586 could not be extracted, but we identified and
indexed the caption anyhow. The relatively high number
of pictures attributes mostly to the fact that some PDF pro-
ducing programs use pictures for symbols like list bullets.
A random sample of 236 captions showed that 15 % of
the found captions were just random text pieces, like page
numbers or single sentences, mostly due to the said sym-
bol pictures. 6 % were wrong text that means whole para-
graphs of text, just not belonging to the figure. The main
reasons here were again symbol pictures, which naturally
had no genuine caption and also some cases of figure cap-
tions written left or right of the picture. We had 3 cases
of duplication, where one figure was internally composed
of several pictures, all of which rightly claimed the same
caption. We had text conversion problems with only 3 out
of these 236 captions. In one no spaces were found, in the
second one, some spaces were missing and in the third one
some symbols like∆ converted into wrong strings. We had
only one case, where the end of the caption was not found
correctly. For a summary confer table 1.

No. of paper No. of papers containing pictures
188 170 (90%)

No. of pictures No. of extractable pictures
1416 830 (59%)

No. of captions short text wrong wrong
in sample pieces text conversion

236 37 (15%) 17 (7%) 3 (1%)

Table 1: Results of Evaluation

To search for DNAse I footprints, we used the keywords
”footprint”, ”footprinting” and ”DNAse”. Overall, 184 hits
were scored of which 163 actually showed experimental
data. As a byproduct, the thumbnails mostly sufficed to
make a fast quality assessment. Another positive effect was
that the data was much faster available than with the usual
method of opening each PDF independently.

The search for EMSAs was a lttle bit more difficult, since
there exist a wide range of naming possiblities. The most
significant terms in those names were ”shift”, ”mobility”,
”EMSA” and ”EMS” to catch ”EMS assay”. We had 91
hits of which 81 were genuine.

Recall could not be tested thoroughly, due the sheer
numbers of pictures and the limited time of experts, but
the random sample did not include pictures that would not
have been found by the keywords, which suggests a rather
high recall.

We are still in an early test phase with the user accep-
tance. For legal reasons we cannot just put the information
on the Web and see what is coming, but instead, we only
have our local biologist work group as users, who supply
us with the literature anyway.

8 Conclusion and Future Work
Although we have just started to explore the possibilities
of layout-enhanced analysis of PDF files, our first applica-
tion looks promising. To bypass the legal problems posed
by the copyrights, we plan on publicizing a demo version,
that does not link to the full text, but to the PubMed entry
instead. We also plan to cross-check whether or not the full
texts are available on the Internet and then give appropri-
ate addresses, so users can download from the source. This
demo version should then be able to give some data about
user behaviour.

Figure 2: A screenshot from our search engine

We are in process of finding more areas of application for
our search engine, as we broaden our spectrum of function-
alities, especially those mentioned in the sections above,
like finding the context a certain figure is mentioned in
(eg. ”...as you can see in Fig. 2...”) to add more text to
be searched through and be presented to the user and the
extraction of more pictures.

The groundwork of knowing the layout of the publica-
tion can also be used for other purposes. On long term, we
are working on reading order recognition to improve shal-
low parsing, which is still a problem in text mining appli-
cations[Schmeieret al., 2003]. Also, we are investigating
the feasibility of a ”table search engine” similar to what has
already been investigated by[Wanget al.,] for HTML web
pages. The overall goal is to make PDF a multi-functional
format that can easily be used with any kind of text mining
application, just as easily as HTML or plain text.

References
[Ado04, 2004] PDF Reference Fourth Edition. Adobe

Network Solutions, http://partners.adobe.com/asn/acro-
bat/sdk/publicdocs/PDFReference15v6.pdf, 2004.

[BCL04, 2004] BCL Jade. http://www.bcltechnologies
.com/document/products/jade/jade.htm, 2004.

[Bollackeret al., 1998] Kurt Bollacker, Steve Lawrence,
and C. Lee Giles. CiteSeer: An autonomous web
agent for automatic retrieval and identification of in-
teresting publications. In Katia P. Sycara and Michael
Wooldridge, editors,Proceedings of the Second Inter-
national Conference on Autonomous Agents, pages 116–
123, New York, 1998. ACM Press.

[Coward and Yoshida, 2003] Danny Coward and Yutaka
Yoshida. Java Servlet Specification. http://jcp.org/
aboutJava/communityprocess/final/jsr154/index.html,
2003.

[Deutsch, 1996] L. Deutsch. Deflate compressed data for-
mat specification.Request for Comments No 1951, Net-
work Working Group, 1996.

[Dig05, 2005] Digester. http://jakarta.apache.org/com-
mons/digester/, 2005.

[Faulstichet al., 2003] Lukas C. Faulstich, Peter F.
Stadler, Caroline Thurner, and Christina Witwer. litsift:
Automated text categorization in bibliographic search.
In Data Mining and Text Mining for Bioinformatics,
Workshop at the ECML / PKDD 2003, 2003.

[Galperin, 2005] Michael Y. Galperin. The Molecular Bi-
ology Database Collection: 2005 update.Nucleic Acids
Research, 33(Database-Issue):5–24, 2005.

[Hatcher and Gospodnetic, 2004] Erik Hatcher and Otis
Gospodnetic.Lucene in Action. Manning Publications,
2004.

[International Organization for Standardization, 1994]
International Organization for Standardization.ISO/
IEC 10918-1:1994: Information technology — Dig-
ital compression and coding of continuous-tone still
images: Requirements and guidelines. International
Organization for Standardization, Geneva, Switzerland,
1994.

[Kovacevicet al., 2004] Milos Kovacevic, Michelangelo
Diligenti, Marco Gori, and Veljko Milutinovic. Visual
Adjacency Multigraphs - a Novel Approach to Web Page

Classification. InProceedings of SAWM04 workshop,
ECML2004, 2004.

[Münchet al., 2003] Richard M̈unch, K. Hiller, H. Barg,
H. Heldt, S. Linz, E. Wingender, and D. Jahn. Prodoric:
prokaryotic database of gene regulation.Nucleic Acids
Research, 31(1):266–269, 2003.

[PDF04, 2004] PDFBox. http://www.pdfbox.org/ or
http://sourceforge.net/, 2004.

[PubMed, 2004] PubMed.
http://www.ncbi.nlm.nih.gov/pubmed/, 2004.

[Schmeieret al., 2003] S. Schmeier, J. Hakenberg,
A. Kowald, E. Klipp, and U. Leser. Text mining for sys-
tems biology using statistical learning methods. In”3.
Workshop des Arbeitskreises Knowledge Discovery”,
2003.

[Shahet al., 2003] P. Shah, C. Perez-Iratxeta, P. Bork, and
M. Andrade. Information extraction from full text sci-
entific articles: Where are the keywords?BMC Bioin-
formatics, 2003.

[Tom05, 2005] Tomcat. http://jakarta.apache.org/tomcat/,
2005.

[Wanget al.,] Y. Wang, I.T. Phillips, and R.M. Haralick.
Table detection via probability optimization. InPro-
ceedings of the 5th IAPR Workshop on Analysis Systems
(DAS 2002), pages 272–283.

[Yehet al., 2003] A. Yeh, L. Hirschman, and A. Morgan.
Evaluation of text data mining for database curation:
lessons learned from the kdd challenge cup.Bioinfor-
matics, 19(1), 2003.

