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Abstract—To meet the radical technical requirements specified
by ITU-R IMT-2020, the fifth Generation (5G) mobile system will
become more complicated and heterogeneous. It imposes a great
challenge on today’s network managing approaches, which are
already costly, vulnerable, time-consuming and therefore inap-
plicable to the 5G system. By applying machine learning, a pos-
sibility on autonomically self-organizing 5G networks is opened.
With minimal human interventions, autonomic management can
lower operational expenditure, improve user’s experience and
shorten time-to-market of new services. In this paper, the concept
of intelligence slicing, a flexible and scalable framework for
applying machine learning to enable self-organizing 5G networks,
is proposed. The life-cycle management of intelligence slices, as
well as intelligence domain that is defined as the effective area of
a slice, are discussed. Moreover, a proof-of-concept experiment
upon a wireless network test-bed is illustrated.

I. INTRODUCTION

To support the intended usage scenarios of IMT-2020, i.e.,

enhanced mobile broadband, ultra-reliable and low-latency,

and massive machine-type communications, minimum tech-

nical requirements such as spectral efficiency, latency, and

reliability, have been recommended by ITU-R [1]. The forth-

coming fifth Generation (5G) system is envisioned to become

more complicated so as to meet such radical key perfor-

mance indicators, which inevitably impose a high challenge

on network management. However, today’s network managing

approaches are already costly, vulnerable, time-consuming and

therefore inapplicable to the 5G system. By the advent of

Self-Organizing Networks (SON), mobile operators have to

keep an operational group with a large number of network

administrators with high expertise, resulting in a costly Op-

erational Expenditure (OPEX) that is currently three times

Capital Expenditure (CAPEX) and keeps rising [2]. More-

over, troubleshooting is hard to fully avoid an interruption

of network operation, which deteriorates system’s Quality-of-
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Service (QoS) and end user’s Quality-of-Experience (QoE).

The SON concept [3] has been firstly introduced into cellu-

lar networks by 3GPP Release 8 as a driving 4G technology.

However, current SON methods focused on traditional net-

works, which differ with software-defined and virtualized 5G

infrastructure enabled by Software-Defined Network (SDN)

[4] and Network Function Virtualization (NFV) [5]. Further,

the automatic processing in SON usually relies on simple

approaches like triggering and some operations are still carried

out manually. Although the application of Machine Learning

(ML) in SON is recently explored, the focus is mainly on

utilizing a specific algorithm to tackle a single aspect of

network, e.g., clustering to Mobility Load Balancing (MLB)

and Q-learning to Inter-Cell Interference Coordination (ICIC).

To the best knowledge of the authors, an intelligent framework

that is capable of applying diverse ML techniques to manage

a variety of network problems is still an open issue [6].

In this context, the SELFNET project [7] has been es-

tablished to explore self-organizing network management in

virtualized and software-defined 5G infrastructure. Relying on

ML techniques, autonomic management with the capabilities

of self-healing, self-protection and self-optimization can be

realized [8]. As a part of SELFNET efforts, in this paper, we

propose the concept of intelligence slicing, which enables a

flexible and scalable framework for applying machine learning

to implement autonomic management. Following the divide-

and-conquer strategy, each intelligence slice only focuses on

a dedicated network problem and can select the most suitable

algorithm according to its characteristics. Besides, each slice

can be independently on-boarded, updated and scaled, which

provides the flexibility and scalability to handle a wider variety

of existing and emerging network problems by means of

accommodating current and potential ML techniques.

The rest of this paper is organized as follows: the next

section presents the intelligence-slicing framework. The life-

cycle management of slices and the definition of intelligence

domain are discussed in Section III. Section IV illustrates a
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Fig. 1. Machine learning-based autonomic network management architecture.

proof-of-concept experiment upon a wireless test-bed. Finally,

Section V concludes this paper.

II. INTELLIGENCE-SLICING FRAMEWORK

This section first introduces the architecture of autonomic

management for self-organizing 5G networks. Then, the con-

cept of intelligence slicing that enables a flexible framework

applying ML techniques to tackle a variety of network prob-

lems is presented.

A. Autonomic Management

Taking advantage of SDN and NFV techniques, network

programmability is available through Application Program-

ming Interface (API). The function of autonomic management

can be regarded as an external SON Application (APP) on the

top of software-defined and virtualized infrastructure. Apart

from underlying physical and virtual resources, as illustrated

in Fig.1, the autonomic architecture consists of: 1) SDN/NFV

sensors that can extract metrics from networks; 2) Sensing

module, in charge of collecting, aggregating, and analyzing

metrics from sensors to derive network states; 3) the decision-

maker that is responsible for diagnosing network problems and

deciding an effective action; 4) Acting module that manages

and coordinates physical and virtual resources to perform

decided actions. 4) SDN/NFV actuators that are deployed in

the network to perform a dedicated network function.

Once a network problem, such as Distributed Denial-of-

Service (DDoS) attack, is detected, a SON control loop starting

from sensors and terminating at actuators is triggered. The

SON APP analyzes reported network states, diagnoses the root

cause and decides a tactical action. As soon as the Acting

module received an action request, it coordinates physical

and virtual resources to enforce this action for mitigating this

network problem. As shown in Fig.1, the input and output of

the decision-maker are called state and action, respectively,

which are defined as follows:

• State: A set of network-related information, such as

alarms, events or metrics, that can be evaluated to indicate

the characteristics of a network problem.

• Action: It is an implementable countermeasure to tackle

the reported network problem taking into account avail-

able physical and virtual resources.

B. Intelligence Slicing

The 5G network management faces a more challenging

situation than ever before. Most of the traditional problems

in current networks still remain while some probably become

more severe. For instance, the DDoS cyber-attack will be more

impactive due to the introduction of Internet-of-Thing, where

an attacker is able to compromise a large number of machine-

type terminals as zombies. In addition, new management re-

quirements, e.g., guaranteeing ultra-reliability and low-latency

for upcoming industrial applications, will emerge.

In order to provide an affordable OPEX for 5G mobile

operators, management tasks should be carried out in an

autonomic way with the aid of learning techniques. However,

different network problems have different characteristics so

that a specific ML algorithm can only suit a very small portion

of all possible problems. For example, smart antenna selection

in Multi-Input Multi-Output (MIMO) system [9] requires a

very prompt decision since radio channel’s states vary within

milliseconds. The detection of DDoS needs a global view of

the network, leading to a huge data volume to be processed. On

the contrary, only a few local network metrics are enough in

the MIMO case. It is hard, if not infeasible, to find a universal

ML technique to tackle all network problems. Moreover, due

to the dynamicity of 5G infrastructure, the best algorithm for

the current situation might be outdated with time goes.

In large-scale and heterogeneous networks, a centralized

framework with a universal intelligence processing is too com-

plex, inefficient and hard to meet the real-time requirement

[10]. Therefore, in this paper, the concept of intelligence

slicing is proposed to enable a flexible and scalable framework

that can accommodate diverse ML techniques to deal with all

kinds of possible problems. Following the divide-and-conquer
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Fig. 2. The intelligence-slicing-based Decision-Maker.



strategy, each intelligence slice only focuses on a dedicated

network problem. For instance, an MIMO slice is deployed

in a Base Station (BS) to intelligently manipulate its antenna

array, while another slice for DDoS can be instantiated in

a data center to tackle anomalous traffic. The most suitable

algorithm for its target problem is utilized to establish a

slice. That is, the MIMO slice selects an algorithm with a

predictive time as small as possible while the DDoS slice

is capable of processing a big data. Different slices operate

independently so that each slice has a flexibility to on-board,

update, scale in terms of its respective situation. As shown in

Fig.2, a number of exemplary slices for dealing with MIMO,

MLB, ICIC, DDoS and End-to-End (E2E) QoE, respectively,

are established in the SON decision-maker. Once the monitor

reports a network state, it is forwarded to the respective slice

to make a decision. It is noted that these slices are only

logically centralized in the decision-maker and different slices

can be deployed distributively in practice to meet diverse

requirements in the heterogenous infrastructure.

III. LIFE CYCLE AND DOMAIN OF SLICES

Once an intelligence slice is on-boarded to handle a prob-

lem, its life starts. During its operation, the behavioral pattern

of the target problem might vary due to the change of underly-

ing infrastructure or environment. Thus, an updating or scaling

is necessary. Later, after the pattern of this problem is well

recognized by the management system, the slice can be further

upgraded from an ML algorithm to rule-based processing

so as to shorten processing time and simplify the system’s

implementation. In this section, the life-cycle management of

slices and intelligence domain, which is defined as the effective

area of a slice, are explained.

A. Life-Cycle Management

1) On-boarding: Once an unknown pattern indicating an

unidentified network problem is found, the monitor reports

its related network metrics to the decision-maker. These met-

rics are initially analyzed to qualitatively decide a suitable

ML technique among supervised, unsupervised, reinforcement

learning, etc. For each learning technique, there is a num-

ber of different algorithms. For example, supervised learning

includes the following algorithms: Decision Tree (DT), Lin-

ear Discriminant Analysis, Support Vector Machine, Nearest

Neighbor, etc. The decision-maker continues to make a quan-

titative comparison by calculating achievable performance for

all available algorithms. Then, that algorithm achieved the

optimal performance is applied in this slice. As shown in

Fig.3, a slice called E2E QoE is established to guarantee the

perceived quality of video delivery, which is based on a low-

complexity DT algorithm.

2) Updating: There are two possible reasons for updating.

First, the pattern of a network problem is possible to change

due to the dynamicity of network infrastructure or external

environment. For example, a cellular cell close to a shopping

center is prone to be congested. From the perspective of ML,

this situation can be reflected in a learning algorithm such
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Fig. 3. The life cycle of an intelligence slice.

as a specific leaf in a decision tree. Later, a small-cell BS

is deployed there and the corresponding congestion vanishes

from then on. As shown in Fig.3, the E2E QoE slice is updated

by removing this outdated leaf from the previous classification

tree. In addition to the change of a pattern, another motivation

for updating is the emergence of a novel algorithm that can

better process a fixed pattern.

3) Upgrading: Experienced a number of times updating,

an on-boarded slice steps into a stable phase. Here, we do not

discuss the detailed criterion of indicating a stability. Simply

speaking, when a slice can always properly handle a network

problem in a very high accuracy, it can be regarded as a

matured slice. To speed up the processing and simplify the

system’s implementation, a matured slice is upgraded to rule-

based processing, as illustrated in Fig.3. The rules can be

specified simply by script languages, e.g., eXtensible Markup

Language (XML). When the monitor reports this problem

again, the decision-maker invokes the rule-based processing

directly to make a quick decision.

B. Intelligence Domain

We presented the life cycle of a slice, i.e., on-boarding,

updating and upgrading, from a temporal point of view. This

section further discusses intelligence domain, which is defined

as the effective area of a slice, from a perspective of spatial

coverage. As mentioned before, different network problems

have different characteristics, among which its effective area

is an important factor. Using the MIMO slice as an example,

the decision on antenna selection is derived from channel

states between antenna array and the users within a cell and

the impact of this decision is also constrained in this cell.

Due to fast fading of radio channels, such physical layer

decisions should be quickly made and executed. To minimize

transmission delay, the MIMO slice has to deploy as close

to the antenna area as possible. As shown in Fig.4, the cell

coverage of LTE BS 1 is also the effective area of the MIMO

slice, which is referred to as intelligence domain. Mobile

load balancing is an effective SON approach to improve the
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end-user’s QoE and increase system capacity by dynamically

distributing user traffic across several adjacent cells. Those

adjacent BSs participating in load balancing should reports

its metrics to a centralized coordinator. As shown in Fig.4,

intelligence domain 2 covering three LTE BSs stands for the

effective area of the MLB slice. In comparison to fast fading,

traffic’s fluctuation within a cell is relatively slow. Hence, the

MLB slice is able to tolerating the transmission delay and can

be deployed in the Serving/Packet data network Gateway (S/P-

GW) to facilitate a centralized control. Cloud Radio Access

Network (RAN) is a novel mobile architecture, which pools

Base-Band Units (BBUs) of a number of BSs and connects

Remote Radio Units (RRUs) via fiber-optic front-haul. As

shown by intelligence domain 3 in Fig.4, the ICIC slice can

be deployed in the BBU pool, where cooperatively processing

signals originating from several cells is straightforward.

Similar to the life-cycle management, there are two opera-

tions for an intelligence domain, which are given as follows:

1) Mirroring: The establishment of an intelligence slice

is not a trivial work since a learning system needs to be

trained into a learned system. For supervised and unsupervised

learning, a training dataset is necessary. Data acquisition is

sometimes difficult, especially for supervised learning, where

data need to be labeled. Reinforcement learning does not need

training dataset, but the learning system has to iteratively try

all possible actions for each state and observe their outcomes.

The learning process is time-consuming and computationally

complex. In a large-scale network, if each intelligence slice is

independently trained, it will be a tremendous work. In some

cases, fortunately, the learned system can be directly duplicat-

ed to similar situations. For example, as shown in Fig.4, the

MIMO slice trained based on manipulating experiences in the

antenna array of LTE BS 1 can be mirrored to BS 3. That

is because the antenna selection is in terms of channel state

information, which is independent to base stations. Hence, BS

3 can copy an on-boarded slice directly without a training

phase. Even if the situation in BS 3 has some differences with

the original BS, the slice can adapt to the new situation through

a re-training during its operation, which is anyway better than

training from scratch. In this figure, intelligence domain 1-M

denotes a mirrored domain from intelligence domain 1.

2) Scaling: Scaling means an intelligence domain being

enlarged or shrunk since the effective area of a slice needs

to change due to the dynamicity of underlying infrastructure

or external environment. At the early stage, Cloud-RAN 1

covers two RRUs, i.e., RRU 1 and 2. When a new RRU is

deployed, this cloud is extended to a larger coverage with three

RRUs, as indicated by Cloud-RAN 1 Ext illustrated in Fig.4.

Accordingly, the intelligence domain of the ICIC slice should

be scaled to a larger effective area to coordinate the inter-

cell interferences among three RRUs. As illustrated in Fig.4,

intelligence domain 3-S is scaled from intelligence domain 3.

IV. EXPERIMENTAL DEMONSTRATION

To justify the ML-based network management framework,

a proof-of-concept experiment in terms of an end-to-end video

transmission is carried out in a wireless network test-bed. As

shown in Fig.5, the test-bed is differentiated into several layers:

physical infrastructure, virtual network, SON, and application

layer. The physical infrastructure mainly consists of several

high-volume servers, Mini-PCs, two switches and Radio Fre-

quency (RF) units. A switch is utilized to interconnect the

servers and acts also as a gateway to Internet. OpenStack

[11], an open-source software to create a cloud environment,

is installed in a server to support NFV-based networking.

Another server equipped with a special graphical card is

allocated to run ML algorithms in a parallel-computing way

with its powerful Graphical Processing Units. Other servers

and Mini-PCs act as computing nodes under the manage-

ment of an OpenStack controller, which is responsible for

instantiating virtual machines so as to carry Virtual Network
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Functions (VNFs). To emulate a realistic wireless scenario,

OpenAirInterface [12], an open-source LTE implementation, is

utilized. It provides a full set of VNFs for LTE radio access and

core networks, such as eNodeB, Mobility Management Entity

(MME) and S/P-GW. Besides, software-defined radio modules

(i.e., USRP B210) with antennas are applied to support a radio

link with User Equipment (UE).

The scenario of video transmission is used as an example to

show self-optimization capability of an intelligence slice [13].

As shown in Fig.5, a virtual network consisting of two virtual

base stations and related core network functions is instantiated

on the top of the physical infrastructure. A mobile user

accesses the YouTube server to watch high-definition video

programs. Meanwhile, this user sets up a peer-to-peer (P2P)

video talk with another user. As shown in Fig.5, two dashed

lines in the virtual network denote two video flows for P2P

communication and YouTube down-streaming, respectively. To

emulate traffic congestion in a real network, the transmission

bandwidth of the virtual network is deliberately selected. Thus,

once either video flow generates a high-volume traffic, the

congestion that leads to a worse QoE occurs.

To guarantee the perceived QoE of end users, an intelligence

TABLE I
LIST OF EXEMPLARY METRICS

Index Feature Definition

1 EPC Traffic In Incoming trafffic of EPC

2 EPC Traffic Out Outgoing trafffic of EPC

3 Server Traffic In Incoming trafffic of iPerf3

4 PLR Average Packet Loss Rate

5 Delay Round trip delay

6 eNB CPU Util eNodeB’s CPU utilization

7 eNB Mem Util eNodeB’s memory utilization

8 eNB CPU Temp eNodeB’s CPU temperature

9 UE CPU Util UE’s CPU utilization

10 UE Mem Util UE’s memory utilization

slice called E2E QoE is on-boarded in the SON decision-

maker. This slice’s function is identifying congestion’s oc-

currence and deciding a countermeasure action. Here, an

instance of supervised learning, i.e., classification, is selected

as the ML technique. A number of typical classifiers, i.e.,

Decision Tree (DT), Linear Discriminant Analysis (LDA),

Support Vector Machine (SVM) and Nearest Neighbor (NN),

are implemented. These algorithms that are applied in the test-

bed are briefly reviewed as follows:

a) DT: Decision Tree [14] is a classical supervised learn-

ing method used for classifying. Decision rules are inferred

from a training dataset and a tree-shaped diagram is built.

Each node of the decision tree relies on a feature to separate

the data, and each branch represents a possible decision. DT

is simple, interpretable and fast, whereas it is hard to apply in

a complex and non-linear case.

b) LDA: Discriminant analysis is a classification method,

which assumes that different classes generate data based on

different Gaussian distributions. LDA [15] is to find a linear

combination of features that maximize the ratio of inter-class

variance to the intra-class variance in any particular dataset so

as to guarantee maximal separability.

c) SVM: SVM [16] utilizes a so-called hyperplane to

separate all data points of one class from another. The number

of features does not affect the computational complexity of

SVM, so that it can perform well in the case of high-

dimensional and continuous features. However, it is a binary

classifier and a multi-class problem can be solved only by

transferring into multiply binary problems.

d) NN: Another algorithm called Nearest Neighbor is

applied for data classification following the hypothesis that

close proximity in terms of inter-data distance have an simi-

larity. The class of an unclassified observation can be decided

by observing the classes of its nearest neighbors. It is among

the simplest algorithms with a good predictive accuracy. But

it needs high memory usage, is vulnerable to noisy data and

is not easy to interpret.

Since classification algorithms are data-driven, a training

dataset is necessary for both training and prediction phases.

In the experiment, by means of different SDN/NFV sensors

such as Zabbix [17], a wide variety of network metrics such
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as those listed in Table I, can be collected. Accordingly,

a training dataset consisting of the listed network metrics

with 600 observations has been acquired. By exhaustively

evaluating predicative accuracies of each classifier in terms of

different combinations of network metrics, we can conclude

that Decision Tree and Nearest Neighbor can achieve the

optimal accuracy of 100% merely by using two metrics:

eNB Mem Util and EPC Mem Util, which are the memory

usages of virtual machines running network functions for

eNodeB and EPC, respectively.

To observe the data separability of collected network met-

rics, some metrics in the dataset are visualized. Randomly

selecting a data observation, whose features have the fol-

lowing normalized values: EPC Traffic In=0.996, PLR=0,

Server Traffic In=0.034, eNB CPU Temp=0.667, and its la-

bel Congestion=0. In the lower part of Fig.6, two most

relevant features PLR and EPC Traffic In are applied. The

mark ’+’ denotes the presence of congestion, while ’�’ stands

for the absence of congestion. Similarly, in the upper figure,

two irrelevant features are used. As shown in Fig.6, in the

case of applying two relevant features, the congested and non-

congested data have a clear border with highly separability. In

comparison, the data in the case of applying two irrelevant

features are hard to be separated. It implies that the correct

selection of metrics with the high relevance plays an important

role in the data classification.

Thus, the E2E QoE slice is on-boarded by means of

applying the trained classifier. The sensor continuously collect

these two metrics from the wireless network. Once a video

traffic congestion is detected, the SON framework responds

to provide an effective action, e.g., allocating more resources

to a virtual switch or degrade the definition of video. In the

experiment, as illustrated in the application layer of Fig.5,

there is no congestion and the quality of video is good in the

case of light traffic. Before the on-boarding of the slice, once

the traffic increases beyond a threshold, the video becomes

blurry due to congestion, as shown in the case of high traffic.

On the contrary, the E2E QoE slice can avoid traffic congestion

even if the traffic is high and guarantee the perceived QoE.

We can make a conclusion here that the applied intelligence

slice is effective to the target problem.

V. CONCLUSIONS

In this paper, we proposed an intelligence-slicing framework

for applying machine learning to autonomically manage the

upcoming 5G networks. Instead of focusing on a specific

network problem or exploring a universal algorithm, this

framework was designed to provide flexibility and scalability

for accommodating diverse learning techniques to tackle a

wider variety of network problems. A proof-of-concept exper-

iment in terms of video QoE provisioning was carried out in

a wireless test-bed to demonstrate this framework. In the next

step, more ML algorithms and other representative network

problems will be experimented in the test-bed to further verify

the effectiveness of the intelligence-slicing framework.
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