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Abstract

We describe the BesMan learning platform which allows learning

robotic manipulation behavior. It is a stand-alone solution which can

be combined with different robotic systems and applications. Behavior

that is adaptive to task changes and different target platforms can be

learned to solve unforeseen challenges and tasks, which can occur during

deployment of a robot. The learning platform is composed of components

that deal with preprocessing of human demonstrations, segmenting the

demonstrated behavior into basic building blocks, imitation, refinement by

means of reinforcement learning, and generalization to related tasks. The

core components are evaluated in an empirical study with 10 participants

with respect to automation level and time requirements. We show that

most of the required steps for transferring skills from humans to robots can

be automated and all steps can be performed in reasonable time allowing

to apply the learning platform on demand.

1 Introduction

Autonomous robotic systems can be deployed in unknown or unpredictable,

dynamic environments, e.g., in space, search and rescue, and underwater scenarios.

These robots require behaviors to manipulate their environment and will face

tasks that have not been thought of during design. It is possible to learn solutions
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to these unforeseen tasks from humans during operation even though the human

operators might be far away.

Learning complex behaviors in these cases at once is time consuming or

sometimes impossible. An alternative approach is to learn complex behaviors

incrementally: small behavioral building blocks are learned separately and are

later on combined during consolidation of the complex behavior by concatenation.

This strategy has been observed in studies with rodents (Graybiel, 1998) and

children (Adi-Japha et al., 2008) which indicates that it is efficient.

Learning methods for behavioral blocks often combine various approaches to

leverage intuitive knowledge from humans. Most of these fall into the categories

imitation learning (IL) and reinforcement learning (RL). A standard approach

to learn behaviors is to initialize with a demonstrated movement and then refine

the skill with RL. See for example Kober and Peters (2012); Deisenroth et al.

(2013) for a detailed overview of the state of the art. Complete descriptions

of robot skill learning frameworks are hardly present in the literature. To our

best knowledge the only work that gives a complete overview of a learning

architecture and is comparable to the work that we present here has been

published by Peters et al. (2012). They do not provide a thorough evaluation

in terms of automation level and time consumption to learn new skills. Their

work includes IL and RL methods to learn so-called motor primitives as well as

generalization methods for these motor primitives and even describes methods to

learn operational space control. However, in this work as well as in the majority

of similar works the relevant behaviors are directly presented by kinesthetic

teaching so that the correspondence problem (Nehaniv and Dautenhahn, 2002)

that stems from the kinematic and dynamic differences of the demonstrator

and the target system is neglected. In addition, only the relevant behavior is

presented or it is not discussed how the relevant part that should be transferred

is extracted. In contrast to that, we would like to let a human demonstrate

the behavior as naturally as possible. With this approach, the system can

be situated in a far away place or environment hostile to man and could still

learn from a human demonstration although a direct kinesthetic teaching is

not possible or would only be possible indirectly in case that a second identical

system would be available. To allow the demonstrator to act naturally, we

use behavior segmentation methods and solve the correspondence problem as

automatically as possible.

In this paper, we focus on the question whether learning from human demon-

strations can be used for realistic robotic manipulation tasks and whether the
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Figure 1: Dataflow diagram of the BesMan Learning Platform. A behavior is
demonstrated and segmented into smaller behavioral building blocks. Motion
plans corresponding to these building blocks are imitated and refined using
reinforcement learning and/or transfer learning. Acquired motion plans are
specific for a task but can be generalized to more generic behavior templates.
Once a new specific task is encountered, the behavior template is instantiated
and yields a task-specific motion plan. Numbers show the corresponding sections
in this article that explain the module in detail.

approach can be highly automated and is fast enough to be considered for solving

unforeseen tasks during a system’s application in real scenarios. The presented

learning platform provides a robot with human demonstrations of behaviors

suited for some specific situation. These demonstrations are autonomously de-

composed into atomic building blocks which are learned by means of imitation

learning. Based on this, RL and transfer learning are used within the learning

platform to adapt and generalize the learned behavioral building blocks. While

this is not the scope of the presented work, those building blocks can then form

the basis for learning more complex behavior in a life-long learning scenario.

The learning platform was developed based on learning from human demonstra-

tion since for kinematically complex robotic systems it is typically infeasible to

generate behavior from scratch within a robot due to high-dimensional state

and action spaces and the limited number of trials a robot can conduct. The

presented learning platform will be described and evaluated with respect to its

components’ and its overall performance. For this purpose, we will solve the

problem of target-directed ball-throwing with a robotic arm.
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2 Learning Platform

This section describes the architecture of the learning platform (see Figure 1)

which was developed within the project BesMan1 to transfer movement behavior

from a human demonstrator to a robotic system. During this process so-called

motion plans and behavior templates are generated. Motion plans represent

solutions to generate specific behaviors and behavior templates represent generic

movements to generate a flexible behavior able to, e.g., reach different points in

space and to be executed on different systems with different morphology.

Demonstrations are recorded and preprocessed as described in Section 3.1.

The “Behavior Segmentation” will decompose demonstrations into simple behav-

ioral building blocks. Segments that belong to the same type of movement are

grouped together to obtain multiple demonstrations for the same motion plan.

Details of the behavior segmentation and classification approach are described in

Section 3.2. This part of the learning platform generates labeled demonstrated

behavioral building blocks that are independent of the target system.

For each relevant segment, IL methods are used to represent the recorded

trajectory segments as motion plans (see Section 3.3). Motion plans describe

trajectories that could be executed by the robot and mimic the trajectories

presented by the human demonstrator during a single behavioral building block.

However, human demonstrators usually have considerably different kinematic

and dynamic properties in comparison to the robotic target systems, hence,

these motion plans might not produce the same result on the target system.

To account for this, the “Motion Plan Refinement” module can use RL (see

Section 3.4) to adapt the motion plan. This requires interaction with the real or

simulated target system and the specification of a reward function which tells

the learning algorithm how well a motion plan solves the task. Alternatively

or in conjunction with RL, transfer learning as described in Section 3.5 can be

used to adapt motion plans. Using this method, differences between learned

behaviors in simulation and on the real robot are also considered during the

motion plan refinement.

Motion plans are solutions for very specific settings. It is often necessary to

learn more generic behavior templates that can be applied to similar settings.

This is achieved by the “Behavior Template Learning” module (see Section 3.4).

Behavior templates are capable of generating motion plans for new but similar

1For more details, see http://robotik.dfki-bremen.de/en/research/projects/besman.

html
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settings. Once a behavior template has been learned, it is added to the “Behavior

Template Pool” which is accessible from the robotic system. The behavior

templates in this pool can be used directly during online operation.

In the following sections, detailed descriptions of the modules are given.

2.1 Behavior Acquisition and Preprocessing

The movements of the demonstrator that should be transferred to a robotic

system are recorded using a Qualisys motion capture system. Visual markers

are attached to the human demonstrator and to objects which are involved

in a particular task. In this way, movements and important changes in the

environment can be recorded at a high accuracy.

Markers are placed at shoulder, elbow, and hand of the human demonstrator.

Three markers at one position can be used to infer orientations. This is important

in manipulation task which require the robot to imitate the orientation of the

hand. By placing three markers at the back, all marker positions can be

transformed into a coordinate system relative to the demonstrator to make the

recordings independent from the global coordinate system of the camera setup.

Additional markers can be placed on manipulated objects. An example of a

recording setup for ball-throwing behaviors is shown in Figure 3.

Because a passive marker-based motion-capture system is used, we imple-

mented an automatic marker identification based on the relative positions of the

markers to each other. Similar methods are provided by manufacturers of motion

capture systems, for example, the Qualisys track manager2 offers “automatic

identification of markers” which is based on previously labeled motion capture

data. Other works rely on manually defined or otherwise inferred skeletons.

Refer to Meyer et al. (2014); Schubert et al. (2015, 2016) for details about some

of these approaches.

2.2 Behavior Segmentation

In the recorded demonstrations the main movement segments have to be identified

to transfer the movements to a robotic system. We segment the behavior into

its main building blocks and classify each building block into a known movement

class. By using an automatic approach, movement sequences needed to solve a

certain task with a robotic system can easily be selected without manual user

2For more details, see http://www.qualisys.com/software/qualisys-track-manager/
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interference.

To decompose demonstrated behaviors into simple building blocks, we have to

identify the characteristics of the movements. Manipulation movements usually

have bell-shaped velocity profiles (Morasso, 1981). Based on this knowledge, we

developed the velocity-based Multiple Change-point Inference (vMCI) algorithm

for the segmentation of manipulation behavior (Senger et al., 2014). The vMCI

algorithm is an extension of the Multiple Change-point Inference presented by

Fearnhead and Liu (2007), in which Bayesian inference is used to determine

segment borders in a time series. We extended this algorithm to detect building

blocks in human manipulation movement (Senger et al., 2014). Each segment is

represented with a linear regression model. In the vMCI algorithm, the velocity

of the data is independently modeled with a bell-shaped basis function. The

algorithm identifies segment borders at positions where the underlying model

of the data changes. These borders can be determined using an online Viterbi-

algorithm in a fully unsupervised manner. By including the velocity into the

inference in the vMCI algorithm, segments with a bell-shaped velocity can be

detected automatically without need for parameter tuning, as shown in several

experiments (Senger et al., 2014; Gutzeit and Kirchner, 2016).

Because in general there is no ground truth segmentation available for human

movements, the vMCI algorithm has been compared to other segmentation

algorithms on synthetic data generated from sequenced dynamical movement

primitives (DMP; Ijspeert et al. (2013)) as well as on real human manipulation

movements. It has been shown, that the vMCI algorithm is very robust against

noise and to the selected parameters. These are very important properties

because noise in the data as well as differences in the movement execution can

be handled. Furthermore, the manual user input needed can be kept low.

Resulting segments need to be annotated in order to select movement se-

quences that should be learned and transferred to the robot. To minimize manual

effort, this annotation should work with small training data sizes. As detailed

in Gutzeit and Kirchner (2016), we use a k-Nearest Neighbor (kNN) classifier to

assign predefined movement classes to the acquired segments. The kNN algo-

rithm is chosen because it has only one parameter, k, which needs to be selected.

No further parameter tuning is needed. We choose k = 1, because we want to

classify the segments with a low number of training examples. A higher k could

result in a higher number of miss-classifications using very small training set

sizes. We showed, that using this simple Euclidean based classification algorithm,

it is possible to classify human movements into different movement classes at a
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high accuracy.

2.3 Imitation Learning

We use imitation learning (IL; Schaal (1997)) to obtain motion plans from the

recorded trajectories. A workflow for learning from demonstrations must address

the correspondence problem as well as the representation of the motion plan. In

this section we introduce motion plan representations used within the BesMan

learning platform and discuss the correspondence problem.

2.3.1 Motion Plan Representation

One of the currently most popular motion plan representations to imitate

movements are so-called dynamical movement primitives (Ijspeert et al., 2013).

The DMP representation has a unique closed-form solution for IL which makes

it very appealing for our purpose. After imitation, the parameters of the DMP

can be adjusted easily which makes it suitable for policy search (see Section

3.4.1). The standard DMP formulation allows to set the initial state, goal state,

and execution time as meta-parameters. The DMP converges to a velocity of 0

at the end of a discrete movement.

There are several variants of DMPs. An extension that allows to set a

goal velocity has been developed by Mülling et al. (2011, 2013). We use this

DMP formulation for trajectories in joint space. Representing three-dimensional

orientations in a DMP is not straightforward. A solution has been proposed by

Pastor et al. (2009) and improved by Ude et al. (2014) through correct handling

of orientation represented by unit quaternions. To represent trajectories in

Cartesian space, we use a combination of a position DMP as formulated by

Mülling et al. (2011, 2013) and an orientation DMP by Ude et al. (2014).

2.3.2 Correspondence Problem

Demonstrated actions must be executable by the target system to apply IL. Is is

not possible to directly transfer joint angles from a human arm to a robot arm

because it has different joints, degrees of freedom, and link lengths. The reason

is the correspondence problem (Nehaniv and Dautenhahn, 2002), which consists

of two subproblems (Argall et al., 2009). The following mappings have to be

defined: the record mapping, which maps marker trajectories to a sequence of
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actions or system states, and the embodiment mapping, which maps the recorded

sequence to a trajectory that is executable on the target system.

The record mapping gR : AT → D maps from some not directly observable

space AT in which the teacher performs the demonstration (e.g. joint angles of

a human, muscle activity, applied torque, etc.) to a corresponding observation

space D. We cannot directly observe the actions of the agent but we can observe

the marker positions, which means that a part of the record mapping is already

given. Instead of using the observed marker positions directly to represent D,

we reduce the marker positions to a representation that is more meaningful

to describe manipulation behavior and is independent of the platform: we use

observed marker positions to extract end-effector poses in some reference frame,

that is D ⊂ SE(3). The calculation of end-effector poses from observed marker

positions is specific for a marker setup and has to be defined. The reference frame

depends on the application. For goal-directed manipulation behavior Wirkus

(2014) proposes to use the target as a reference frame, e.g. a box that we want

to grasp. For behaviors like ball-throwing it is better to use a reference frame on

the teacher, e.g., the back, because the target object (the ball) will be moved

with the end-effector.

The embodiment mapping gE : D → AL maps from the observations d ∈ D
to a corresponding action a ∈ AL that the learner has to perform to achieve a

similar result. It is specific for the task and the target system. Although one

might think that transfering end-effector poses to the target system is simply

an inverse kinematics problem, it can actually be much more complicated: the

target system might not have the same workspace, kinematic structure, and

dynamic capabilities as the teacher. Hence, we propose to use multiple methods

sequentially to determine the embodiment mapping automatically:

• black-box optimization to determine synchronization frames,

• spatial and temporal scaling to take the kinematic and dynamic capabilities

of the target system into account,

• and refinement with policy search.

The first two methods will only guarantee that the actions are executable on

the target system. That does not mean that the result of the actions actually

produces the same effects that have been observed in the demonstration by the

human and the task is solved. Not all of these methods are required for all

categories of tasks. We will now explain and discuss when to use these methods.
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Figure 2: Synchronization frames on the demonstrator and on the target system.
Written and informed consent for publication of the photo has been obtained
from the depicted individual.

The reference frame of our target system is a so-called synchronization frame,

that is, we use it as the base frame in which the demonstration is performed

(see Bongardt (2015) for a detailed introduction of this term). It is denoted as[
P T (b)

]S ∈ SE(3), where T (b) denotes the base frame of the target system. For

simplicity, we assume that the synchronization frame is constant over time. In

some situations it is obvious how the corresponding reference frame in the target

system should be selected to transfer demonstrated motion plans in Cartesian

space. For example, if we define the teachers reference frame to be the target of a

grasping movement, we will not change this in the target system. In other cases

it is not so obvious. Consider a ball-throwing movement where the reference

system of the recorded movement is the human teacher’s back (see Figure 2).

When we want to transfer the observed motion plan to a robotic arm, it is

not obvious where we would put the synchronization frame. We can choose it

arbitrarily.

We can use this freedom to account already for some of the problems that

occur in the embodiment mapping. Without having any information about the

structure of the task, we can optimize the synchronization frame so that we can

find a joint configuration for each end-effector pose from the demonstration so

that velocity, acceleration, and/or jerk of the trajectory is minimized. The first

objective ensures that the trajectory is mapped into the robot’s workspace and

9



the other objectives account for kinematic and dynamic problems that might

occur. Otherwise it happens quite often that inverse kinematic solvers run into

local optima during the execution of the motion so that big changes in the joint

configuration occur during the execution. Even if that is not the case, it might

happen that a small displacement in Cartesian space that requires almost no

effort by the teacher might result in a large displacement in the joint space of

the target system.

The only information that we have to give at this point is a kinematic

description of the target system. To find a locally optimal solution to our

problem, we can use any black-box optimization algorithm like CMA-ES (Hansen

and Ostermeier, 2001) or L-BFGS (Nocedal, 1980).

For a specific task on the target system we have to scale the demonstrated

trajectory spatially by setting the start and goal state of the trajectory. From

the inverse kinematics we can then compute the required velocities in joint space.

To keep the velocities within the limits of what is achievable by the target system,

we can do a temporal scaling of the movement, e.g. by interpolation. Temporal

scaling is simple when we represent the demonstrated trajectory as a DMP

because the execution time is a meta-parameter of the DMP.

Until now we only integrated knowledge about our target system into the

embodiment mapping. To ensure that the imitated skill has the same effects as

the demonstration, we must integrate knowledge about the task. This will be

done in the policy refinement step. We have to define a reward function that

can be used by reinforcement learning methods to complete the embodiment

mapping. Here we account for kinematic and dynamic differences that cannot

be resolved easily, e.g., a human teacher might have a hand structure that is

different from the target system. An example is displayed in Figure 2: the target

system does not even have an active hand. It has a scoop mounted on the tip of

the arm. In other cases, the robot might have a gripper that does not have all

of the capabilities of a human hand, e.g., a parallel gripper. Another problem

in the ball-throwing domain is the dynamic and kinematic difference between

the human demonstrator and the target system. It might be possible for the

robot to execute the throwing movement after temporal scaling but this step

can reduce the velocity in Cartesian space so drastically that the ball does not

even leave the scoop any more. The methods that can be used to solve these

problems are discussed in Sections 3.4.1 and 3.5.
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2.4 Reinforcement Learning

The learning platform provides tools to adjust motion plans to specific target

systems and to generalize motion plans over specified task parameters based on

reinforcement learning (RL; Sutton and Barto (1998)).

Depending on the application, we have to decide whether learning will take

place in simulation or in reality. Learning in reality would give the best results,

however, this might not be feasible because it takes a lot more time and usually

requires human assistance. Furthermore, the robot could potentially damage

itself. The more complex a robot is the more parts can break and, hence, the

more fragile it becomes. It is often a good idea to model the relevant aspects of

the task in simulation and start with the refinement in simulation. When a good

motion plan is obtained, this can be used to start learning in reality directly or

approaches can be applied to handle the simulation-reality gap (see Section 3.5).

We decided to focus on policy search and its extensions. A good overview

is provided by Deisenroth et al. (2013). Policy search is very sample-efficient

in domains where a good initial policy can be provided, the state space is high-

dimensional and continuous, and the optimal policy can be represented easily

with a pre-structured policy such as a DMP.

It depends on the target system and the application which policy searchs

methods should be used. Standard policy search (see Section 3.4.1) is always

included in our learning platform to ensure that the embodiment mapping is

completed. We can generalize the obtained motion plan to a behavior template

that takes the current context as a parameter to modify its motion plan using

contextual policy search (see Section 3.4.2). In an active learning setting the

generalization can be more effective (see Section 3.4.3).

2.4.1 Policy Search

In policy search we modify a parameter vector θ, which can include the pa-

rameters and/or meta-parameters of the motion plan π, so that the reward

Rθ is maximized. Depending on wether we want to optimize only a few meta-

parameters or the whole set of parameters, we can select the policy search

method. We use several algorithms in the learning platform. Covariance matrix

adaption evolution strategy (CMA-ES; Hansen and Ostermeier (2001)) is a black-

box optimization algorithm which can be used to optimize any parameterized

policy (Heidrich-Meisner and Igel, 2008). Unlike CMA-ES, Relative Entropy

Policy Search (REPS; Peters et al. (2010)) limits the information loss during
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exploration. Path Integral Policy Improvement (PI2; Theodorou et al. (2010))

is based on stochastic optimal control. It requires to specify an initial policy

and a covariance matrix which governs exploration in weight space. All of these

methods are local search approaches which means they need a good initialization

provided through imitation learning. Bayesian Optimization (Brochu et al.,

2010) is a global optimization method. It has been shown to be applicable to

policy search (Calandra et al., 2015). Bayesian optimization is usually limited to

a few parameters because of the computational complexity, however, it is very

sample-efficient.

2.4.2 Contextual Policy Search

A disadvantage of using prestructured motion plans like DMPs is that they are

designed for a specific situation and can only generalize over predefined meta-

parameters. They are not able to generalize over arbitrary task parameters that

often have non-trivial relations to the optimal motion plan. This is addressed

by contextual policy search (Deisenroth et al., 2013) which is an extension of

policy search. Contextual policy search learns a so-called upper-level policy

θ = π(s), which is a mapping from a context vector s that describes the task to

the optimum parameter vector θ of an underlying motion plan.

We implemented Contextual Relative Entropy Policy Search (C-REPS; Kupc-

sik et al. (2013)), developed an extension called active training set selection

C-REPS (aC-REPS; Fabisch et al. (2015)), and we developed Bayesian Opti-

mization for Contextual Policy Search (BO-CPS; Metzen (2015)). Our method

BO-CPS (Metzen et al., 2015) is based on Bayesian optimization and is much

more sample-efficient than the local search approach C-REPS but it does not

scale well to a large number of parameters.

2.4.3 Active Learning

Active contextual policy search extends contextual policy search for cases in

which the learning agent is able to determine the context it wants to explore.

This is the case for example in the ball-throwing domain. In this setting it

is desirable to select the context s that maximizes the learning progress in

each episode. We have shown that selecting the context gives an advantage in

combination with C-REPS (Fabisch and Metzen, 2014) although we only used

a discrete set of contexts and modeled context selection as a non-stationary

multi-armed bandit problem. We developed an active context-selection approach
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for BO-CPS based on entropy search (Hennig and Schuler, 2012), which is called

Active Contextual Entropy Search (ACES; Metzen (2015)). ACES allow to

select from a continuous set of contexts. We also developed minimum regret

search (MRS; Metzen (2016)), which a novel exploration strategy for Bayesian

optimization (more specifically: an acquisition function). In contrast to entropy

search, which aims at maximizing the information gain about the optimum,

MRS aims at minimizing the expected regret of its final recommendation. MRS

explores more globally and is less likely to focus prematurely on a local optimum.

2.5 Simulation-Reality-Transfer

Motion plans learned only in simulation often perform worse when they are

executed in reality. In certain situations, this performance drop is small, for

example, in open-loop control with a robot having accurate and precise actuators.

In such a case, it can be sufficient to apply policy search methods in simulation

and transfer the result directly to the real system. Using closed-loop control

while having sensor and actuator noise, deformation, fatigue and other factors

contributing to the disparity between simulation and reality, the Reality Gap

becomes a problem.

A wide range of approaches to this issue have been proposed, many of which

aim to improve the physical correctness of the simulation (Jakobi et al., 1995;

Jakobi, 1997; Bongard and Lipson, 2005) or adaptation capabilities (Urzelai and

Floreano, 2001; Hartland and Bredeche, 2006). More recently (Koos et al., 2013)

and (Cully et al., 2015) have applied behavioral descriptions of the controller to

be optimized to build and update an internal model guiding the search towards

controllers that work well in reality without adapting the original simulation

model.

To choose an appropriate algorithm, one has to consider several factors,

including: the task complexity, the consistency of the robot and the environment,

the complexity of the environmental interactions and required precision of the

model as well as the availability of the robot. The cost and robustness of the

robot determines how often and what type of tests (potentially risky movements)

can be performed in reality.

For example, the ball-throwing task in the current work requires to release

the ball at a certain position and velocity. Both depend on the end-effector

trajectory and the time of release. The time of release, speed and direction are

not easy to predict (Otto, 2015). The development of an accurate model of the
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physical interactions of the ball and the ball mount would require a detailed

analysis of the ball as well as the ball mount. We want to reduce the amount of

expert knowledge or additional testing and solve the task with minimum user

input. Hence, we choose to apply the Transferability Approach by (Koos et al.,

2013), which minimizes the number of tests on the real system by focusing on

the task to be solved rather than optimizing simulation accuracy.

The Transferability Approach is based on the hypotheses that the performance

of a specific behavior on the target system mainly depends on (1) its performance

in simulation and (2) the correctness of the simulation for this behavior. Thus,

the optimization problem can be reformulated to find actions maximizing the

reward in simulation and the transferability. While the simulation model remains

unaltered, the motion plans are adjusted to approximate the Pareto front (optimal

trade-off solutions) for both criteria.

Motion plans generated by imitation learning constitute the initial population

for the optimization. Motion plans are evaluated in the simulation while features

are extracted to compute the objective functions. By iterative variation and

selection through evolutionary operators, the motion plans are optimized. In

regular intervals, an update heuristic is used to select motion plans to be

transferred based on their behavioral diversity. The behavioral diversity is a

quantity that describes how much an observable activity differs from a set of

other activities. The data recorded in these transfer experiments is compared

with the corresponding data in simulation and their disparity is stored for each

transferred motion plan as the simulation-to-reality disparity. Most motion plans

are not transferred. Instead, a surrogate model is used to estimate the disparity

by interpolating between the observations.

3 Evaluation of the Learning Platform

Most of the individual modules of the learning platform have already been

evaluated in previous works (Senger et al., 2014; Fabisch et al., 2015; Fabisch and

Metzen, 2014; Metzen, 2015; Metzen et al., 2015). In this section, we evaluate

the learning platform as a whole in a ball-throwing scenario. We transfer the

human movements to a robotic arm. Furthermore, we evaluate the learning

platform with respect to time requirements and level of automation. We show

that the learning platform can be run with minimal user interference by different

non-expert subjects which demonstrated the ball-throw.
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3.1 Methods

In the following we describe the applied methods for learning a ball-throwing

behavior from humans and for transferring it to a robotic arm.

3.1.1 Robotic System

We transfer the movements to the robotic arm COMPI (Bargsten and de Gea Fernández,

2015) displayed in Figure 2. A scoop that can hold a ball is mounted as COMPI’s

end-effector. The position where the ball hits the ground can not always be

identical because of varying positions of the ball in the scoop, varying shape of

the deformable and not perfectly round ball, inaccuracies in the execution of the

desired trajectory, and measurement errors. How reproducible this position is

depends on the throwing movement. For some throwing movements the standard

deviation of the position can be more than a meter because the ball sometimes

falls down before the throwing movement is finished and sometimes not. To

estimate the maximum reachable accuracy, we designed 4 throws manually for

which we measured the standard deviation of the touchdown position in 20 ex-

periments per throw. The mean positions were 1.3 to 2.3 m away from COMPI.

The standard deviations were about 4.5 to 7 cm. To measure the position where

the ball hits the ground we use the motion capture system and a ball that is

recognized as a marker.

3.1.2 Data Acquisition

The setup used to record the demonstration of a throw can be seen in Figure

3. Seven cameras tracked eight visual markers attached on the human and

the target area. Only five cameras were focused directly on the subject. The

recorded marker positions were labeled according to their position on the human

body (e.g. ’shoulder’). The subjects had to throw a ball to a goal position on

the ground, approximately 2 m away. To limit the range of possible throws,

they were instructed to throw the ball from above, i.e., the hand is above the

shoulder while throwing (see Figure 3). The subjects had to move their arm

to a resting position in which it loosely hangs down between the throws. The

movement was demonstrated by 10 subjects. All subjects were right-handed and

had different throwing skills ranging from non-experts to subjects performing ball

sports in their free time, like basketball, volleyball, or handball. Each subject

demonstrated 8 throws in 3 experiments which results in total numbers of 24
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Figure 3: Data acquisition setup. Motion capture cameras, markers, and goal po-
sitions for the throws in the setting are displayed. Written and informed consent
for publication of the photo has been obtained from the depicted individual.

throws per subject, 30 experiments, and 240 throws for all subjects.

3.1.3 Segmentation and Movement Classification

Based on the position and velocity of the hand, the recorded demonstrations

were segmented using vMCI. The determined segments can be assigned into

4 different movement classes: strike out, throw, swing out and idle. To

classify the resulting segments into predefined movement categories, we use a

1NN classifier as described in section 3.2.

3.1.4 Imitation Learning

IL is based on end-effector poses. End-effector trajectories cannot be transferred

directly to the robot’s coordinate system so that we have to do a synchronization

frame optimization to translate and rotate the original trajectory so that it fits

into the workspace of COMPI. The end-effector trajectories are transformed

into joint trajectories via inverse kinematics. In addition, we scale the joint

trajectories so that the joint velocity limits of the target system are respected.

In a last step, the throwing movement is represented as a joint space DMP via

IL. Moreover, a minimum execution time of 0.95 s is set to reduce the velocity

and accelerations, which are penalized during the following optimization.
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3.1.5 Motion Plan Refinement

While the DMPs resulting from IL can be executed on the robot, they do not

necessarily have the same effect on the ball as the movements of the human.

The lack of actuated fingers as well as kinematic and dynamic differences to

the human lead to the need for adaptation, which we do via policy search. The

adapted policy parameters include: initial position, goal, weights and execution

time, consisting of 6, 6, 36 and 1 value(s), respectively. Following the concept

of the Transferability Approach, we aim to minimize two objectives: (a) the

target distance of the touchdown position in simulation and (b) the distance

between the touchdown position in simulation and in reality. The target distance

in reality is not directly optimized, but evaluated during and at the end of the

experiment.

The optimization consists of several steps. (1) Refinement in Simulation:

Results from IL are optimized to throw at least 0.1 m (see gray line in Figure

4 a)) close to the target (objective (a)). Per subject we perform 6 optimization

runs using all available motion plans in each run. After a maximum of 10000

episodes (500 generations with a population size of 20), the optimization is

stopped. (2) Refinement in Simulation and Reality: The Transferability

Approach is performed until 25 transfer experiments are executed on the robot.

The initial population consists of successful throwing movements from the

optimization in simulation (previous step). They are optimized to minimize both

target distance, position and velocity limit violation as well as an acceleration

penalty. After 50 episodes (corresponds to population size) in simulation, we

do one transfer. (3) Simulation refinement: The simulation is optimized to

replicate the actual results of the 25 transfer experiments (objective (b)). Two

parameters, the ball-release angle that influences the time of the ball release

from the robot end-effector and the height of the table are adjusted via a simple

grid search. (4) Refinement in Simulation and Reality: The Transferability

Approach is performed with the same initial conditions as in step 2 until 50

(additional) transfer experiments are executed on the robot (objectives a and

b) (5) Evaluation of Candidates: Several candidate solutions are executed

in reality with 3 repetitions to determine a final performance with regard to the

target distance and repeatability

To infer the transferability of a motion plan that is not tested in reality, the

surrogate model requires a low dimensional description of the type of activity that

is created by the motion plan in simulation. We use a subset of the simulation
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results to describe the activity by 17 features including (among others) the time

of release, maximum joint accelerations and the posture at half-time. After

each transfer, the observed touchdown-disparity and the activity description

computed in simulation are appended to the observations stored in the surrogate

model.

3.1.6 Required Time and Level of Automation

For each main module of the learning platform that is needed to learn a new

behavior, the required time was measured. The time required to learn a new

behavior is strongly influenced by the degree of automation, which is furthermore

relevant to the easiness of application. Therefore we evaluated the degree of

automation for each module of the learning platform.

3.2 Results and Discussion

We evaluate two parts of the learning platform separately. The first part is

independent of the target system and includes data acquisition, preprocessing,

and segmentation (see Section 4.2.1). The second part depends on the target

system and includes imitation and refinement (see Section 4.2.2). The whole

learning platform will be evaluated with respect to required time (see Section

4.2.3) and level of automation (see Section 4.2.4).

3.2.1 Segmentation and Movement Classification

The automatic marker labeling could not always been used for the recordings.

The reason for that are gaps in the recordings. Because we had to cover a large

area (target area and subject’s workspace) it was nearly impossible to record

every marker all the time for every subject with only seven cameras. With a

smaller volume that has to be covered, more cameras, or active markers this

problem could be solved.

The vMCI algorithm successfully detected movement segments with a bell-

shaped velocity profile in the demonstrations. Exemplary segmentation results

of this data can be found in (Gutzeit and Kirchner, 2016). No manual interven-

tion was needed for this segmentation step because the vMCI determines the

movement segment borders unsupervised and its parameters can be computed

directly from the data (Senger et al., 2014).
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To classify the determined segments with 1NN, a training set of 40 throwing

demonstration from subjects 1-5 (one experiment from each subject) is manually

labeled. The throwing movements of these 5 subjects that have not been used

for training (two experiments per subject) and all the throwing movements of

subjects 6-10 (three experiments per subject) are used to evaluate the classifier.

On the test set consisting of the remaining demonstrations of subjects 1-5, an

accuracy of 93.2 % could be achieved. The important movement class throw,

which should be transferred to the robotic system, was detected with an accuracy

of 98.6 % on this test set. The second test set consisted of demonstrations of

subjects 6-10, i.e., no throwing movements of these subjects were used to train

the classifier. On this data, the accuracy was 89.1 % and the class throw was

detected with 93.9 % accuracy. As a conclusion, different movement classes

can be successfully recognized based on a simple euclidean based 1NN using

only marker positions on arm and hand as features. Even movements with

considerable differences in execution, like in the ball-throwing scenario, the 1NN

based classification is successful.

3.2.2 Imitation Learning and Motion Plan Refinement

In this section, we evaluate the target distance measured at several steps of the

learning platform.

(0) Initial performance: At first, we evaluate the results of the IL in

simulation. The IL does not consider suitability for holding and throwing the

ball. Hence, several motion plans result in a simple ball drop near the initial

position. This is reflected by target distances around 2.15 m in Figure 4 a).

None of the simulated ball throws is closer than 1 m to the target. One may

also note the variation in the number of throw segments that are detected in

the data containing 24 actual demonstrations per subject. (1) Refinement in

Simulation: For one subject, the goal (distance is below the 0.1 m threshold

indicated by the gray line in Figure 4 a)) was not reached. For all remaining

subjects, the goal was reached in less than 2200 episodes in at least one of the 6

runs. (2) Refinement in Simulation and Reality: For 2 out of 9 subjects,

the transfer experiments reached target distances below 0.1 m in reality. The

deviations of the touchdown positions in reality and in simulation seem to be

systematic, i.e., for throwing behaviors resulting from the same subject, similar

deviations are found. Having a constant offset between simulated and real results

contradicts the premise of the Transferability Approach, aiming to find a region
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Figure 4: a) Results of IL evaluated in simulation are shown by Tukey boxplots.
N is the number of throw segments detected in the data of a specific subject.
The solid gray line indicates the 0.1 m threshold. Please note the different scaling
of the ordinate, compared to b) and c). b) Closest distance to target achieved in
transfer trials during robot-in-the-loop optimization. The median over 8 subjects
of the best results so far is shown. For each subject, 50 transfer trials are executed
on the robot during the optimization. c) At the end of the optimization process,
for each subject, six motion plans are automatically selected for evaluation. The
result from the deterministic simulation is shown by squares. Each motion plan
is evaluted three times in reality (circles). If the ball landed closer than 0.1 m to
the target in all three repetitions, the circles are filled, otherwise not.
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Required time (per experiment, 8 throws) for each stage of the learn-
ing platform. 1.

Step Time Automated Required knowledge

Attaching markers for motion capture 0:55 min 7
Motion capture 1:08 min 7
Automatic marker labeling 4:58 min 3 Neighboring markers, initial pose
Manual marker labeling 9:19 min 7
Behavior segmentation 0:44 min 3
Labeling for movement classification3 50 min 7
Movement classification 2 sec 3
Imitation learning 4:20 min 3 Robot description
Policy search 10 min 3 Reward function, simulation
Transferability approach 75 min (3) Reward function, simulation

in the parameter space that features transferable motion plans. Hence, we decide

to adapt the simulation specifically to predict the touchdown positions for some

of the movements more accurately. (3) Simulation refinement: To reduce the

offset of real and simulated results, we minimize the median of the touchdown-

disparities obtained for the 25 transfer experiments so far. This is done via a

simple grid search on the value for the table height and the ball-release angle.

The medians could be reduced to a range of 0.11 m to 0.23 m (depending on

subject; compared to 0.23 m to 0.73 m before). (4) Refinement in Simulation

and Reality: For one subject, this optimization step was aborted after 10

critical transfer experiments, during which joint limits were exceeded and the

robot was deactivated consequently. For all of the remaining subjects, target

distances below 0.1 m as well as touchdown-disparities below 0.1 m occurred

in the 50 transfer experiments. The best target distances so far are shown in

Figure 4 b). The curve indicates that 25 transfers are sufficient to minimize

the target distance. (5) Evaluation of Candidates: Figure 4 c) shows the

performance evaluation of 6 automatically selected final candidate solutions (2

with the lowest target distance in reality and 4 from the Pareto front. Up to 4 of

these hit the ground reliably, i.e., the target distance is below 0.1 m in all three

repetitions (marked by filled dots). For seven out of eight (remaining) subjects,

at least one selected candidate solution hits the target reliably.

3.2.3 Required Time

An overview of the required time for each step can be found in Table 1. Note

that labeling the dataset for movement classification usually has to be done only
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once. The required time for successful automatic marker labeling is much faster

than manual labeling even though the automatic labeling is slow because of

the bad quality of the data (see 4.2.1). If the markers were always visible the

automatic labeling would have taken only about some seconds. The longest part

in the whole process is the refinement for the target platform (imitation, policy

search, transfer), which is a difficult problem that involves interaction with the

real world.

3.2.4 Level of Automation

Although we have automated the process of acquiring new behaviors, still some

human intervention is required either through knowledge that has to be given to

the system or by interacting physically with the system. An overview can be

found in Table 1.

Of course it is necessary that a human demonstrates the movement. The

labeling of the markers can be completely automated with more cameras. How-

ever, we could not achieve the maximum possible level of automation in our

experiments. Movement classification requires a dataset that is labeled manually

but we minimized the effort by using a classifier which classifies at a high accu-

racy with small training data sets. When we set up the learning platform for a

new target system and type of manipulation behavior we have to decide which

components we combine for embodiment mapping, e.g. in the ball-throwing

scenario the synchronization frame optimization was useful which is not always

the case. However, the IL is completely automated. The motion plan refinement

with the transferability approach requires human assistance because the robot

has to try throwing movements in the real world and is not able to get the ball

back on its own. The process itself is automated so that no knowledge about the

system or the task is required from the human at this step. In addition, we have

to define a reward function that describes how a solution of a task should look

like and because we want to minimize the interaction with the real world we use

a simulation which has to be designed. This is a manual process at the moment.

4 Evaluation of Behavior Template Learning

In separate experiments, we evaluated the component “Behavior Template

Learning” in the ball-throwing scenario. It is irrelevant how the initial throw

has been generated and, hence, it is not required to evaluate the component for
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each subject. The behavior template is learned directly in reality without any

simulation. Similar but not directly comparable work has been published by

da Silva et al. (2014) and Ude et al. (2010).

4.1 Methods

4.1.1 Experimental Setup

From an initial motion plan, we generalize to a behavior template that can hit

any target s (context) in the area [1m, 2.5m] × [−1m, 1m], where COMPI is

located at (0m, 0m). The performance is evaluated on a grid of 16 test contexts

{−0.7,−0.2, 0.2, 0.7} × {1.3, 1.6, 1.9, 2.2} that will not be explored during the

training.

4.1.2 Behavior Template Learning

In order to apply the most sample-efficient algorithm (BO-CPS) we had to

reduce the number of parameters of the motion plan drastically. Otherwise the

computational complexity of the problem would be too high. It is not possible to

learn all weights of a typical joint space DMP, e.g., ten weights per joint would

result in 60 parameters. For that reason we selected only two meta-parameters

that were optimized: the execution time and the goal position of the first joint.

The execution time will let us vary how far the ball is thrown and the goal

position of the first joint will determine the angle of the throw. Note that there

is not a direct linear relation between the goal position of the first joint and the

throwing angle because of a complex interaction between the deformable ball

and the scoop. It depends on the execution time as well. The goal is to learn

an upper level policy that predicts a close to optimal pair of execution time

and goal position of the first link for a given target so that a specific motion

plan can be generated to hit this target. We conduct a thorough evaluation that

compares the acquisition functions upper confidence bound and entropy search

for BO-CPS.

4.2 Results and Discussion

A learning curve is given in Figure 5. The average of the reward (negative

squared distance to the target) and distance to the target over the test contexts

are displayed. We noticed that after about 80 episodes the performance will not

3dataset from 5 experiments including 40 throws
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Figure 5: Learning curve of contextual policy search (BO-CPS and ES) in the
ball-throwing domain. The left-sided logarithmic y scale represents the mean
reward and the right-sided linear y scale represents the mean distance between
the touchdown position and the given context. The learning curves indicate the
mean and the corresponding standard error over 16 test contexts. The reading
point indicates where all final results are measured.

increase much more. We measured the final performance after 80 episodes in

five experiments per acquisition function. The average measured distance to the

test targets are 13.46 cm, 15.24 cm, 22.62 cm, 17.40 cm, and 29.99 cm (mean

19.74 cm, median 17.4 cm) for upper confidence bound and 6.54 cm, 14.74 cm,

6.68 cm, 8.96 cm, and 8.15 cm (mean 9.01 cm, median 8.15 cm) for entropy

search. This evaluation clearly shows that it is possible to generalize throwing

movements to a large area in only 80 episodes so that the average deviation

from the target is almost at the maximum achievable precision. In addition, the

computationally more complex entropy search shows consistently better results

than upper confidence bound.

5 Conclusion and Outlook

Our results show that it is possible to learn new skills for robots without specifying

the solution directly. The learning platform leverages intuitive knowledge from

humans that do not know anything about the target system to automatically

transfer skills to robots. The main impediments that can be overcome by the
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learning platform in this setting are the kinematic and dynamic differences of

the demonstrator and the target system.

In this work, we usually learn reference trajectories that can be used for

example in a whole-body control framework (de Gea Fernndez et al., 2015). The

integration of more sensor data like camera images or force sensor measurements

would be a next step.

For automated behavior recording, marker free approaches could be tested

and compared with respect to accuracy and achievable automation level.

On the basis of the learning platform, our future goal is to build a library of

movements that are represented independent of the target system. We could

use methods for embodiment mapping to transfer those skills to several target

systems.

For complex problems with complex reward functions, learning the reward

function would be better than defining it manually. Promising research fields are

active reward learning (Daniel et al., 2015) and inverse reinforcement learning

(Ng and Russell, 2000).
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