Lecture Notes in

Artificial Intelligence 1650

Subseries of Lecture Notes in Computer Science

Klaus-Dieter Althoff Ralph Bergmann
L. Karl Branting (Eds.)

Case-Based Reasoning
Research and Development

Third International Conference

on Case-Based Reasoning, ICCBR-99
Seeon Monastery, Germany, July 1999
Proceedings

Z\
UL Springer

@/\



Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1650



Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Faris
Singapore
Tokyo



Klaus-Dieter Althoff Ralph Bergmann
L. Karl Branting (Eds.)

Case-Based Reasoning
Research and Development

Third International Conference

on Case-Based Reasoning, ICCBR-99

Seeon Monastery, Germany, July 27-30, 1999
Proceedings

Springer




Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Klaus-Dieter Althoff

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

E-mail: althoff @iese.thg.de

Ralph Bergmann

University of Kaiserslautern, Department of Computer Science
P.O. Box 3049, D-67653 Kaiserslautern, Germany

E-mail: bergmann @informatik.uni-kl.de

L. Karl Branting

University of Wyoming, Department of Computer Science
P.O. Box 3682, Laramie, WY 82072, USA

E-mail: karl@uwyo.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Case-based reasoning research and development : proceedings /
Third International Conference on Case Based Reasoning, ICCBR-99,
Seeon Monastery, Germany, July 27 - 30, 1999. Klaus-Dieter Althoff
...(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1650 : Lecture notes in

artificial intelligence)

ISBN 3-540-66237-5

CR Subject Classification (1998):1.2,J.4,J.1, F4.1

ISBN 3-540-66237-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

(© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10703943 06/3142-543210 Printed on acid-free paper



Preface

The biennial International Conference on Case-Based Reasoning (ICCBR) se-
ries, which began in Sesimbra, Portugal, in 1995, was intended to provide an
international forum for the best fundamental and applied research in case-based
reasoning (CBR). It was hoped that such a forum would encourage the gro-
wth and rigor of the field and overcome the previous tendency toward isolated
national CBR communities.

The foresight of the original ICCBR organizers has been rewarded by the
growth of a vigorous and cosmopolitan CBR community. CBR is now widely
recognized as a powerful and important computational technique for a wide
range of practical applications. By promoting an exchange of ideas among CBR
researchers from across the globe, the ICCBR series has facilitated the broader
acceptance and use of CBR.

ICCBR-99 has continued this tradition by attracting high-quality research
and applications papers from around the world. Researchers from 21 countries
submitted 80 papers to ICCBR-99. From these submissions, 17 papers were
selected for long oral presentation, 7 were accepted for short oral presentation,
and 19 papers were accepted as posters. This volume sets forth these 43 papers,
which contain both mature work and innovative new ideas.

In addition to a technical session of invited talks, presentations, and posters,
ICCBR-99 included an Industry Day, where the focus was on mature techno-
logy and applications in industry. Papers describing these “industrial-strength”
applications are contained in a separate volume. Information on this volume is
available at the ICCBR~99 home page, www.iccbr.org/iccbr99. The ICCBR-99
program also included four half-day workshops, also described in the ICCBR-99
home page.

The program chairs of ICCBR-99 were Klaus-Dieter Althoff, of the Fraun-
hofer Institute for Experimental Software Engineering, and L. Karl Branting, of
the University of Wyoming. The conference chair was Ralph Bergmann, of the
University of Kaiserslautern. The chairs would like to thank the program com-
mittee and the additional reviewers for their thoughtful and rigorous reviewing
during the paper selection process.

The chairs gratefully acknowledge the generous support of ICCBR-99’s spon-
sors, the American Association for Artificial Intelligence (AAAI), AcknoSoft,
BSR Consulting, DaimlerChrysler, the Fraunhofer Institute for Experimental
Software Engineering, the German Society for Computer Science (Gesellschaft
fir Informatik, GI), Inference, Interactive Multimedia Systems, tec:inno, the
University of Kaiserslautern, and the University of Wyoming. We would also
like to thank Christine Harms for her assistance in making the local arrange-
ments for the conference.

May 1999 Klaus-Dieter Althoff
Ralph Bergmann
L. Karl Branting



Vi

Program Chairs
Klaus-Dieter Althoff, Fraunhofer IESE, Germany
L. Karl Branting, University of Wyoming, USA

Conference Chair
Ralph Bergmann, University of Kaiserslautern, Germany

Industrial Chairs
Brigitte Bartsch-Sporl, BSR Consulting, Germany
Wolfgang Wilke, tec:inno GmbH, Germany

Workshop Chairs
Sascha Schmitt, University of Kaiserslautern, Germany
Ivo Vollrath,University of Kaiserslautern, Germany

Program Committee
Agnar Aamodt
Robert Aarts

David Aha
Klaus-Dieter Althoff
Kevin Ashley

Paolo Avesani

Ralph Barletta
Brigitte Bartsch-Sporl
Ralph Bergmann
Carlos Bento

L. Karl Branting
Michael Brown
Hans-Dieter Burkhard
Michael Cox

Padraig Cunningham
Boi Faltings

Ashok Goel

Andrew Golding

Kris Hammond

Mark Keane

Janet Kolodner

David Leake

Brian Lees

Ramon Lépez de Mantaras
Robert Macura

Mary Lou Maher
Michel Manago

Norwegian University of Science and Tech.
Nokia Telecommunications, Finland
Office of Naval Research, USA
Fraunhofer IESE, Germany
University of Pittsburgh, USA

IRST Povo, Italy

Inference Corporation, USA

BSR Consulting, Germany

University of Kaiserslautern, Germany
University of Coimbra, Portugal
University of Wyoming, USA
Siemens, Germany

Humboldt University Berlin, Germany
Wright State University, Dayton, USA
Trinity College Dublin, Ireland

EPFL Lausanne, Switzerland

Georgia Institute of Technology, USA
MERL Cambridge, USA
Northwestern University, USA
University College Dublin, Ireland
Georgia Institute of Technology, USA
Indiana University, USA

University of Paisley, UK

HIA-CSIC, Spain

Medical College of Georgia, USA
University of Sydney, Australia
AcknoSoft, France



Vil

Héctor Muiioz-Avila
Bart Netten

Enric Plaza

Pearl Pu

Francesco Ricci
Michael M. Richter
Edwina Rissland
Hideo Shimazu
Barry Smyth
Gerhard Strube
Brigitte Trousse
Manuela Veloso
Tan Watson

Stefan Wess

Qiang Yang

Additional Reviewers
Vincent Aleven

Kati Borner

Derek Bridge

Roger Carasso

Stefanie Briininghaus
Werner Dubitzky

Dieter Ehrenberg

Michael Fagan

Paulo Gomes

Christiane Gresse von Wangenheim
Conor Hayes

André Hiibner

Jacek Jarmulak

Conference Support

University of Maryland, USA

Delft University of Technology, NL
IITA-CSIC, Spain

EPFL Lausanne, Switzerland

IRST Povo, Italy

University of Kaiserslautern, Germany
University of Massachusetts, USA
NEC, Japan

University College Dublin, Ireland
University of Freiburg, Germany
INRIA Sophia Antipolis, France
Carnegie Mellon University, USA
Salford University, UK

tec:inno GmbH, Germany

Simon Fraser University, Canada

Mario Lenz
Cindy Marling
Mirjam Minor
Petri Myllyméki
Petra Perner
Erank Puppe
Rainer Schmidt
Sascha Schmitt
Alexander Seitz
Armin Stahl
Adelinde Uhrmacher
Ivo Vollrath
David C. Wilson

ICCBR-99 was organized by the German Society for Computer Science (Gesellschaft fiir Informatik, GI) and supported by
the American Association for Artificial Intelligence (AAAI), AcknoSoft, BSR Consulting, DaimlerChrysler, the Fraunhofer
Institute for Experimental Software Engineering, Inference, Interactive Multimedia Systems, tec:inno, the University of

Kaiserslautern, and the University of Wyoming.



Table of Contents

Research Papers

Affect-Driven CBR to Generate EXpressive MUSIC ....c.ooccevevieiiniereeieeeceec e 1
J. L. Arcos, D. Caiiamero, and R. Lopez de Mdntaras

Probability Based Metrics for Nearest Neighbor Classification and
Case-Based REASOMING .....ccueeiiiuiriieiieiieieeieeerie ettt 14
E. Blanzieri and F. Ricci

Active Exploration in Instance-Based Preference Modeling.........c..cccoeceevvincenucncenne. 29
L. K. Branting

A Multiple-Domain Evaluation of Stratified Case-Based Reasoning............c.c........ 44
L. K. Branting and Y. Tao

Bootstrapping Case Base Development with Annotated Case Summaries ................ 59
S. Briininghaus and K. D. Ashley

Activating CBR Systems through Autonomous Information Gathering .................... 74
C. Carrick, Q. Yang, 1. Abi-Zeid, and L. Lamontagne

Integrating CBR and Heuristic Search for Learning and Reusing Solutions
in Real-Time Task SCheduling .........cccccooiererieriinieieneeeetee e 89
J. M. A. Coello and R. Camilo dos Santos

Towards a Unified Theory of Adaptation in Case-Based Reasoning...........cc.c.ce.ee.. 104
B. Fuchs, J. Lieber, A. Mille, and A. Napoli

A Knowledge-Level Task Model of Adaptation in Case-Based Reasoning ............. 118
B. Fuchs and A. Mille

Development and Utilization of a Case-Based Help-Desk Support System in
a Corporate ENVIFONMENT .....cc.eviiriirieriinieiienieniteieeitente ettt ettt saees 132
M. Goker and T. Roth-Berghofer

Modelling the CBR Life Cycle Using Description LOgicCS .........ccccoceeveniencnceiennen. 147
M. Gomez-Albarrdn, P. A. Gonzdlez-Calero, B. Diaz-Agudo, and
C. Ferndndez-Conde



X Table of Contents

An Evolutionary Approach to Case Adaptation .......c..ccocceeerervienenienienceneneenennens 162
A. Gomez de Silva Garza and M. L. Maher

REMEX - A Case-Based Approach for Reusing Software Measurement
EXPEIICICEWALE ..c..eenieiieiiiiieiiiieeitente sttt ettt ettt s set et st et bt enaeeaeen 173
C. Gresse von Wangenheim

A Unified Long-Term Memory SYStem ........ccccoevueriereeerinienenienieieeeeeenenieseenene 188
J. H. Lawton, R. M. Turner, and E. H. Turner

Combining CBR with Interactive Knowledge Acquisition, Manipulation,
ANA REUSE ...ttt e e st e e st e s e nte e e snbeeesnbeeenreeeneeas 203
D. B. Leake and D. C. Wilson

When Experience Is Wrong: Examining CBR for Changing Tasks and
ENVITONIMENTS ...outiiiiiiieiieieet ettt sttt st sb et e st et enbesaeeaesaeas 218
D. B. Leake and D. C. Wilson

Case Library Reduction Applied to Pile Foundations ...........ccecceevveniencieenieniennnnen. 233
C. Lei, O. Babka, and L. A. G. Garanito

Case Representation, Acquisition, and Retrieval in SIROCCO ..........cccccoveevineenene 248
B. McLaren and K. D. Ashley

Flexibly Interleaving PrOCESSES .......cccvrviierieriiriiienieiieeniteete ettt s 263
E. Melis and C. Ullrich

A Case Retention Policy Based on Detrimental Retrieval ...........cccccocceviiieninnennen. 276
H. Muiioz-Avila

Using Guidelines to Constrain Interactive Case-Based HTN Planning ................... 288
H. Muiioz-Avila, D. C. McFarlane, D. W. Aha, L. Breslow, J. A. Ballas, and
D. S. Nau

Speed-Up, Quality, and Competence in Multi-modal Case-Based Reasoning ......... 303
L. Portinale, P. Torasso, and P. Tavano

A Case-Based Methodology for Planning Individualized Case Oriented

TULOTINE ..ttt ettt et st st st ennes 318
A. Seitz
Building Compact Competent Case-Bases ........cccccocerviererienenienienienienceneseenienaees 329

B. Smyth and E. McKenna



Table of Contents XI

Footprint-Based Retrieval ...........ccccoouereriiiiiniiiiniiieeetecteeseeteseete e 343
B. Smyth and E. McKenna

Application Papers

Is CBR Applicable to the Coordination of Search and Rescue Operations?
A Feasibility STUAY .....cc.ooiiiiiiiiee e e 358
1. Abi-Zeid, Q. Yang, and L. Lamontagne

Integrating Case-Based Reasoning and Hypermedia Documentation: An
Application for the Diagnosis of a Welding Robot at Odense Steel Shipyard ......... 372
E. Auriol, R. M. Crowder, R. MacKendrick, R. Rowe, and T. Knudsen

Integrating Rule-Based and Case-Based Decision Making in Diabetic
Patient Management ..........cccceeeruiiuierienieeieieetcete ettt see et see et saeeseeneesaeeaesaeas 386
R. Bellazzi, S. Montani, L. Portinale, and A. Riva

Managing Complex Knowledge in Natural SCIENCeSs ........cccceevverriienieriieenieenieennnenn 401
N. Conruyt and D. Grosser

ELSI: A Medical Equipment Diagnostic SYStem .........ccceeoveverieneneenenieneneeienaens 415
P. Cuddihy and W. Cheetham

Case-Based Reasoning for Candidate List Extraction in a Marketing
DOMAIN <.ttt ettt b ettt ettt b et eae e 426
M. Fagan and K. Bloor

CBR for the Reuse of Image Processing Knowledge: A Recursive
Retrieval/Adaptation STrAtEZY .......cccceeeerierrierienieienteetente ettt eee e 438
V. Ficet-Cauchard, C. Porquet, and M. Revenu

Virtual Function Generators: Representing and Reusing Underlying Design
Concepts in Conceptual Synthesis of Mechanisms for Function Generation............ 453
Y. Han and K. Lee

Shaping a CBR View with XIML ......cccociiiiiiiiiiiiieniceieeteeteeeeeeee e 468
C. Hayes and P. Cunningham

Integrating Information Resources: A Case Study of Engineering Design
SUPPOTT ittt ettt st st et esat e s bt e bt e sbeesate e beebeesabeeabeenbeesaee 482
D. B. Leake, L. Birnbaum, K. Hammond, C. Marlow, and H. Yang



X1II Table of Contents

A Hybrid Case-Based Reasoner for Footwear Design .......c.cccceeceeviniencniencneennen. 497
J. Main and T. S. Dillon

Fault Management in Computer Networks Using Case-Based Reasoning:
DUMBO SYSTEIM ..ttt sttt ettt ebe et st sbesete st sbeeneesaeenaenuens 510
C. Melchiors and L. M. R. Tarouco

An Architecture for a CBR Image Segmentation System .........ccccceceeveeenverervennene 525
P. Perner

Supporting Reusability in a System Design Environment by Case-Based
Reasoning TeChNIQUES ........cccuieuieriirieieieeet ettt s 535
H. Praehofer and J. Kerschbaummayr

Case-Based Reasoning for Antibiotics Therapy Advice .......ccccceevieviiivviienienviennnnene 550
R. Schmidt, B. Pollwein, and L. Gierl

Surfing the Digital Wave: Generating Personalised TV Listings Using
Collaborative, Case-Based Recommendation..............ooevvveveureeiiiieiieeeeeeeeeeeeeeeieeennnns 561
B. Smyth and P. Cotter

Case-Based Quality Management System Using Expectation Values ..................... 572
H. Taki, S. Hori, and N. Abe

ICARUS: Design and Deployment of a Case-Based Reasoning System for

Locomotive DIagnOStICS ......coeeriiriiiieriiniienieeiiete ettt sttt sttt st eaeas 581
A. Varma

AUENOT INACX ...t een 597



Affect-Driven CBR to generate expressive music

Josep Lluis Arcos, Dolores Canamero, and Ramon Lépez de Mantaras

ITTA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia, Spain.
Vox: +34-93-5809570, Fax: +34-93-5809661
{arcos, lola, mantaras}@iiia.csic.es
http://www.iiia.csic.es

Abstract. We present an extension of an existing system, called SaxFEx,
capable of generating expressive musical performances based on Case-
Based Reasoning (CBR) techniques. The previous version of SaxEx did
not take into account the possibility of using affective labels to guide
the CBR task. This paper discusses the introduction of such affective
knowledge to improve the retrieval capabilities of the system. Three
affective dimensions are considered—tender-aggressive, sad-joyful, and
calm-restless—that allow the user to declaratively instruct the system
to perform according to any combination of five qualitative values along
these three dimensions.

1 Introduction

In recent years, many researchers in human emotions have rejected the idea of
emotion as something irrational. Emotion is now seen as fundamental to rea-
soning and this new view has raised a number of theories. One theory that fits
musical experience particularly well is the so called “discrepancy theory” [13]
which regards emotion as a reaction to unexpected experience. Music indeed
sets up anticipations and then satisfies them. For example, in a chord cadence
(the resolution of a harmonic progression back toward a tonal center), listeners
anticipate the pleasing resolving chord (tonal center) that brings the listener
from tension to repose. It is possible (and good music always does so) to sat-
i1sfy very pleasingly the anticipation by withholding the resolution and therefore
hightening the anticipation. When music goes out of its way to violate the ex-
pectations we call it expressive. Musicians breathe feeling into a performance
by means of suitable deviations not only in timing (rubato) and loudness (dy-
namics) but also in vibrato, articulation and the attack of notes. With too much
deviation, music becomes too incoherent and with too little deviation becomes
cold, mechanical and boring. This phenomenon has also a neurological basis [15].
Like most neurons, auditory neurons fire constantly but are the changes in firing
rates that are significant. Some neurons answer to raw frequency information but
most are concerned with changes in sound. Firing rates change when frequency
or intensity varies. Furthermore, some 85 percent of primary auditory neurons

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 1-13, 1999
© Springer-Verlag Berlin Heidelberg 1999



2 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

exhibit the phenomenon of habituation: the longer they are stimulated, the less
they respond. It can be said that the brain is mainly interested in change. This
is why typical computer-generated music in which tempo and loudness are al-
ways constant, pitch is perfect (no vibrato at all) and in which the attack of
the notes is always the same is rejected by the musically sensitive. The work
described in this paper addresses the automatic generation of expressive music
endowing the resulting piece with the expressivity that characterizes human per-
formances. Following musical rules, whatever sophisticated and complete they
are, 1s not enough to achieve this expressivity, and indeed music generated in
this way usually sounds monotonous and mechanical. The main problem here is
to grasp the performer’s “personal touch”, the knowledge brough about when
performing a score and that is absent from it. This knowledge concerns not only
“technical” features (use of musical resources) but also the affective aspects im-
plicit in music. A large part of this knowledge is tacit and therefore very difficult
to generalize and verbalize, although it is not inaccessible. Humans acquire it
through a long process of observation, imitation, and experimentation [11]. For
this reason, Al approaches based on declarative knowledge representations have
serious limitations. An alternative approach, much closer to the observation-
imitation-experimentation process observed in humans, is that of directly using
the knowledge implicit in examples from recordings of human performances.

In order to achieve this we have extended SaxEx [2], a case-based reasoning
(CBR) system for generating expressive performances of melodies based on ex-
amples of human performances (for the moment SaxEx is limited to jazz ballads).
CBR is appropriate for problems where (a) many examples of solved problems
can be obtained—Iike in our case where multiple examples can be easily obtained
from recordings of human performances; and (b) a large part of the knowledge
involved in the solution of problems is tacit, difficult to verbalize and generalize.

We have improved SaxEx allowing the user to control the degree and type of
expressivity desired in the output by means of qualitative affective labels along
three orthogonal affective dimensions (tender-aggressive, sad-joyful, and calm-
restless). This enables the user to ask the system to perform a phrase according
to a specific affective label or a combination of them.

2 SaxEx elements

In this section, we briefly present some of the elements underlying SaxFEx which
are necessary to understand the system (see Figure 1).

2.1 SMS

Sound analysis and synthesis techniques based on spectrum models like Spec-
tral Modeling and Synthesis (SMS) are useful for the extraction of high level
parameters from real sound files, their transformation, and the synthesis of a
modified version of these sound files. SaxEx uses SMS in order to extract basic
information related to several expressive parameters such as dynamics, rubato,



Affect-Driven CBR to Generate Expressive Music 3

Input Output

Inexpressive
Score phrase

s L I
oo

\/'/7“\
/analysis synthesis
(

Expressive phrase

CBR method Masical

Fig. 1. General view of SaxEx blocks.

vibrato, and articulation. The SMS synthesis procedure allows the generation of
expressive reinterpretations by appropriately transforming an inexpressive sound
file.

The SMS approach to spectral analysis is based on decomposing a sound
into sinusoids plus a spectral residual. From the sinusoidal plus the residual
representation we can extract high level attributes such as attack and release
times, formant structure, vibrato, and average pitch and amplitude, when the
sound is a note or a monophonic phrase of an instrument. These attributes can
be modified and added back to the spectral representation without loss of sound
quality.

This sound analysis and synthesis system is ideal as a preprocessor, giving
to SaxFEx high level musical parameters; and as a post-processor, adding the
transformations specified by the case-based reasoning system to the inexpressive
original sound.

2.2 Noos

SaxEx is implemented in Noos [4,3], a reflective object-centered representation
language designed to support knowledge modeling of problem solving and learn-
ing. Modeling a problem in Noos requires the specification of three different



4 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

types of knowledge: domain knowledge, problem solving knowledge, and met-
alevel knowledge.

Domain knowledge specifies a set of concepts, a set of relations among con-
cepts, and problem data that are relevant for an application. Concepts and
relations define the domain ontology of an application. For instance, the do-
main ontology of SaxEx is composed by concepts such as notes, chords, analysis
structures, and expressive parameters. Problem data, described using the domain
ontology, define specific situations (specific problems) that have to be solved. For
instance, specific inexpressive musical phrases to be transformed into expressive
ones.

Problem solving knowledge specifies the set of tasks to be solved in an appli-
cation. For instance, the main task of SaxFEx is to infer a sequence of expressive
transformations for a given musical phrase. Methods model different ways of
solving tasks. Methods can be elementary or can be decomposed into subtasks.
These new (sub)tasks may be achieved by other methods. A method defines an
execution order over subtasks and an specific combination of the results of the
subtasks in order to solve the task it performs. For a given task, there can be
multiple alternative methods that may solve the task in different situations. This
recursive decomposition of a task into subtasks by means of a method is called
task/method decomposition.

The metalevel of Noos incorporates, among other types of (meta-)knowledge,
Preferences, used by SaxEx to rank cases, and Perspectives, used in the re-
trieval task. Preferences model decision making criteria about sets of alterna-
tives present in domain knowledge and problem solving knowledge. For instance,
preference knowledge can be used to model criteria for ranking some precedent
cases over other precedent cases for a task in a specific situation.

Perspectives [1], constitute a mechanism to describe declarative biases for
case retrieval that provides a clear and flexible way to express retrieval mecha-
nisms in complex-real applications that use structured representations of cases.
Our research on perspectives, presented in [1], is based on the observation that,
in complex tasks, the identification of the relevant aspects for retrieval in a
given situation may involve the use of knowledge intensive methods and requires
dynamical decisions about the relevant aspects of a problem. Then, a system
capable of solving complex tasks can be forced to work with non predefined
retrieval indexes in the memory of cases.

Perspectives are used by SaxFEx to guide its decisions about the relevant as-
pects of an input musical phrase. SaxEx incorporates two types of declarative
biases in the perspectives. On the one hand, metalevel knowledge to assess simi-
larities among scores using the analysis structures built upon the IR and GTTM
musical models. On the other hand, (metalevel) knowledge to detect affective
intention in performances and to assess similarities among them.

Once a problem is solved, Noos automatically memorizes (stores and indexes)
that problem. The collection of problems that a system has solved is called
the episodic memory of Noos. The problems solved by Noos are accessible and



Affect-Driven CBR to Generate Expressive Music 5

retrievable. This introspection capability of Noos is the basic building block for
integrating learning, and specifically CBR, into Noos.

2.3 Backgound musical knowledge

SaxEx incorporates two theories of musical perception and musical understand-
ing that constitute the background musical knowledge of the system: Narmour’s
implication/realization (IR) model [17] and Lerdahl and Jackendoff’s generative
theory of tonal music (GTTM) [16].

Narmour’s implication/realization model proposes a theory of cognition of
melodies based on eight basic structures. These structures characterize patterns
of melodic implications that constitute the basic units of the listener perception.
Other parameters such as metric, duration, and rhythmic patterns emphasize or
inhibit the perception of these melodic implications. The use of the IR model
provides a musical analysis based on the structure of the melodic surface.

Examples of TR basic structures are the P process (a melodic pattern describ-
ing a sequence of at least three notes with similar intervals and same ascending
or descending registral direction) and the ID process (a sequence of at least three
notes with same intervals and different registral directions).

On the other hand, Lerdahl and Jackendoff’s generative theory of tonal mu-
sic (GTTM) offers a complementary approach to understanding melodies based
on a hierarchical structure of musical cognition. GTTM proposes four types of
hierarchical structures associated with a piece.

Examples of GTTM analysis structures are prolongational-reduction—a
hierarchical structure describing tension-relaxation relationships among groups
of notes—and time-span-reduction—a hierarchical structure describing the
relative structural importance of notes within the heard rhythmic units of a
phrase. Both are tree structures that are directly represented in Noos because
of the tree-data representation capabilities of the language.

The goal of using both, IR and GTTM models, is to take advantage of com-
bining the IR analysis of melodic surface with the GTTM structural analysis of
the melody. These are two complementary views of melodies that influence the
execution of a performance.

2.4 Affective descriptions

The use of affective adjectives to characterize different aspects of musical per-
formance has a long tradition. In baroque music, each piece or movement had
an “affect” associated with it that was intended to have “the soul exert con-
trol over the body and fill it with passions that were strongly expressed” [8].
Many lists of affective adjectives have been proposed by different theorists, e.g.,
Castiglioni, Galilei, Rousseau, Quantz, Mattheson, or more recently Cooke [7].
The main problems with the use of affective adjectives for musical purposes are
that their meaning might vary over time, they are highly subjective and usually
redundant or overlapping, and it 1s very difficult to assess what are the rela-
tionships between different labels. In order to avoid these problems, we decided



6 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

not to use isolated adjectives, but rather to rank affective intentions along three
orthogonal dimensions: tender-aggressive, sad-joyful, and calm-restless. To come
out with these dimensions, we drew inspiration from the experiments conducted
by [5], where sonological analysis of jazz recordings and the listeners’ perception
of them showed that a broad set of affective adjectives (16 in the experiments
reported there) could be clustered into a few main dimensions. In addition, these
dimensions relate to semantic notions, such as activity, tension versus relaxation,
brightness, etc., although a one-to-one correlation cannot be neatly established.

3 SaxEx system

An input for SaxEx is a musical phrase described by means of its musical score
(a MIDI file), a sound, and specific qualitative labels along affective dimensions.
Affective labels can be partially specified, 1.e. the user does not have to provide
labels for every dimension.

The score contains the melodic and the harmonic information of the musical
phrase. The sound contains the recording of an inexpressive interpretation of the
musical phrase played by a musician. Values for affective dimensions will guide
the search in the memory of cases. The output of the system is a new sound file,
obtained by transformations of the original sound, and containing an expressive
performance of the same phrase.

Solving a problem in SaxFEx involves three phases: the analysis phase, the
reasoning phase (performed by the CBR-method), and the synthesis phase (see
Figure 1). Analysis and synthesis phases are implemented using SMS sound
analysis and synthesis techniques. The reasoning phase is performed using CBR
techniques and implemented in Noos and is the main focus of this paper.

The development of SaxEx involved the elaboration of two main models:
the domain model and the problem-solving model. The domain model contains
the concepts and structures relevant for representing musical knowledge. The
problem-solving model consists mainly of a CBR, method for inferring a sequence
of expressive transformations for a given musical phrase.

3.1 Modeling musical knowledge

Problems solved by SaxEx, and stored in its memory, are represented in Noos
as complex structured cases (see Figure2) embodying three different kinds of
musical knowledge: (1) concepts related to the score of the phrase such as notes
and chords, (2) concepts related to background musical theories such as impli-
cation/realization structures and GTTM’s time-span reduction nodes, and (3)
concepts related to the performance of musical phrases. Affective labels belong
to this third type.

A score is represented by a melody, embodying a sequence of notes, and
a harmony, embodying a sequence of chords. Each note holds in turn a set of
features such as its pitch (C5, G4, etc), its position with respect to the beginning
of the phrase, its duration, a reference to its underlying harmony, and a reference



Affect-Driven CBR to Generate Expressive Music 7

g,prolong—structurc b [TP

ity s,/

W—{:w]—r{mclody ]—(Qg —(G4—(E4 ’—‘g
P B
armon; 'maj

fhamony)Cmag7/-

L{performance}———(eT}—{e2}—{e3}—{e4}—{e5}{ e6}

Fig. 2. Overall structure of the beginning of an ‘All of me’ case.

to the next note of the phrase. Chords hold also a set of features such as name
(Cmaj7, ET, etc), position, duration, and a reference to the next chord.

The musical analysis representation embodies structures of the phrase in-
ferred using Narmour’s and GTTM background musical knowledge. The anal-
ysis structure of a melody is represented by a process-structure (embodying a
sequence of IR basic structures), a time-span-reduction structure (embodying
a tree describing metrical relations), and a prolongational-reduction structure
(embodying a tree describing tensing and relaxing relations). Moreover, a note
holds the metrical-strength feature, inferred using GTTM theory, expressing the
note’s relative metrical importance into the phrase.

The information about the expressive performances contained in the exam-
ples of the case memory, is represented by a sequence of affective regions and a
sequence of events, one for each note, (extracted using the SMS sound analysis
capabilities), as explained below.

Affective regions group (sub)-sequences of notes with common affective ex-
pressivity. Specifically, an affective region holds knowledge describing the follow-
ing affective dimensions: tender-aggressive, sad-joyful, and calm-restless. These
affective dimensions are described using five qualitative labels as follows. The
middle label represents no predominance (e.g. neither tender nor aggressive),
lower and upper labels represent, respectively predominance in one direction
(e.g. absolutely calm is described with the lowest label). For instance, a jazz bal-
lad can start very tender and calm and continue very tender but more restless.
Such different nuances are represented in SaxFEx by means of different affective
regions.

There is an event for each note within the phrase embodying information
about expressive parameters applied to that note. Specifically, an event holds
information about dynamics, rubato, vibrato, articulation, and attack. These
expressive parameters are described using qualitative labels as follows:



8 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

e Changes in dynamics are described relative to the average loudness of the
phrase by means of a set of five ordered labels. The middle label represents
average loudness and lower and upper labels represent respectively increasing or
decreasing degrees of loudness.

e Changes in rubato are described relative to the average tempo also by
means of a set of five ordered labels. Analogously to dynamics, qualitative labels
about rubato cover the range from a strong accelerando to a strong ritardando.

e The vibrato level is described using two parameters: frequency and ampli-
tude. Both parameters are described using five qualitative labels from no-vibrato
to highest-vibrato.

e The articulation between notes is described using again a set of five ordered
labels covering the range from legato to staccato.

e Finally, SaxEx considers two possibilities regarding note attack: (1) reach-
ing the pitch of a note starting from a lower pitch, and (2) increasing the noise
component of the sound. These two possibilities were chosen because they are
characteristic of saxophone playing but additional possibilities can be introduced
without altering the system.

3.2 The SaxEx CBR task

The task of SaxEx is to infer a set of expressive transformations to be applied
to every note of an inexpressive phrase given as input problem. To achieve this,
SaxEx uses a CBR problem solver, a case memory of expressive performances,
and background musical knowledge. Transformations concern the dynamics, ru-
bato, vibrato, articulation, and attack of each note in the inexpressive phrase.

The cases stored in the episodic memory of SaxEx contain knowledge about
the expressive transformations performed by a human player given specific labels
for affective dimensions. Affective knowledge is the basis for guiding the CBR
problem solver.

For each note in the phrase, the following subtask decomposition (Figure 3)
is performed by the case-based problem solving method implemented in Noos:

— Retrieve: The goal of the retrieve task is to choose, from the memory of cases
(pieces played expressively), the set of notes—the cases—most similar to the
current one—the problem. This task is decomposed in three subtasks:

e Identify: its goal is to build retrieval perspectives using the affective

values specified by the user and the musical background knowledge in-
tegrated in the system. Affective labels are used to determine a first
declarative retrieval bias: we are interested in notes with affective labels
close to affective labels required in the current problem.
Musical knowledge gives two possible declarative retrieval biases: a first
bias based on Narmour’s implication/realization model, and a second
bias based on Lerdahl and Jackendoff’s generative theory. These per-
spectives guide the retrieval process by focusing it on the most relevant
aspects of the current problem.



Affect-Driven CBR to Generate Expressive Music 9

| Retrieve |

ldentify&Se]ect

——

| Identlfy | | Search || Select |/Prop® @morlE\

\ expressive ‘\ | new solved |

Pdrdmetej \casy

| Retain |

o, (D T\

\perspectlves\ \ using \ [ cases
\ / \perspectives/ ‘\\ /

Fig. 3. Task decomposition of the SaxEx CBR method.

For instance, using the Narmour’s IR criterion that determines as rel-
evant the role that a given note plays in a IR structure, the user can
instruct 1dentification task to build perspectives such as ‘look for notes
that are the first note of a P structure’.

e Search: its goal is to search cases in the case memory using Noos re-
trieval methods and some previously constructed Perspective(s). As an
example, let us assume that, by means of a Perspective, we declare that
we are interested in notes belonging to calm and very tender affective
regions. Then, the Search subtask will search for notes in the expressive
performances that, following this criterion, belong to either “calm and
very tender” affective regions (most preferred), or “calm and tender”
affective regions, or “very calm and very tender” affective regions (both
less preferred).

— Select: its goal is to rank the retrieved cases using Noos preference meth-
ods. Preference methods use criteria such as similarity in duration of notes,
harmonic stability, or melodic directions. For instance, given a problem note
belonging to a descending melody group and given several retrieved cases
belonging to either ascending or descending melody groups, the melodic di-
rection preference criterion will select those cases belonging to descending
melody groups.

— Reuse: its goal is to choose, from the set of more similar notes previously
selected, a set of expressive transformations to be applied to the current note.
The first criterion used is to adapt the transformations of the most similar
note. When several notes are considered equally similar, the transformations
are selected according to the majority rule. Finally, in case of a tie, one of
them is selected randomly.



10 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

— Retain: the incorporation of the new solved problem to the memory of cases
1s performed automatically in Noos. All solved problems will be available for
the reasoning process in future problems.

4 Results

We are studying the issue of musical expression in the context of tenor saxo-
phone interpretations. We have done several recordings of a tenor sax performer
playing several Jazz standard ballads (CAll of me’, ’Autumn leaves’, "Misty’, and
"My one and only love’) with different degrees of expressiveness, including an
inexpressive interpretation of each piece. These recordings were analyzed, using
the SMS spectral modeling techniques, to extract basic information related to
the expressive parameters. Moreover, the different affective regions in recordings
were manually identified and codified with their affective labels for the three
affective dimensions.

The set of experiments conducted with the new version of SaxEx were influ-
enced by previously conducted experiments. These previous experiments were
intended to use examples of expressive performances of some pieces in order to
generate expressive reinterpretations of different inexpressive pieces. More con-
cretely, using three different expressive performances of a piece having about fifty
notes as cases in order to generate expressive reinterpretations of about thirty-
note inexpressive phrases of a different piece. These experiments revealed that
the use of perspectives in the retrieval step allows to identify situations such as
long notes, ascending or descending melodic lines, etc—such situations are also
usually identified by a human performer. Nevertheless, because of such experi-
ments did not take into account the expression of affects, SaxEx was no able to
discriminate situations where the same note was played by human performers
with different affective intention. This implied that the solutions provided by
SaxEx were conservative.

Current experiments wanted to demonstrate two main goals: i) given the
same problem input phase and different affective labels as input, SaxFEx is able
to generate different expressive performances as ouput, and ii) these different
outputs are perceived by listeners in terms of the affective labels. To carry out
the current experiments we have used the same examples used in previous exper-
iments including the information of their affective labels for the three affective
dimensions.

Let us now illustrate some of the expressive transformations applied by SaxFEx
to the first phrase of the ‘All of Me’ theme (see the score in Figure 4b) imitating
precedent cases of the ‘Autumn Leaves’ theme (see the score in Figure 4a) with
two different combinations of affective labels: joyful and restless (J-R), or tender
and calm (T-C). When listening the different human expressive performances of
‘Autumn Leaves’ one can notice that, first of all, in (J-R) performances the dy-
namics range is broader than in (T-C) performances and the average is higher in
(J-R); moreover, (J-R) performances tend to emphasize notes that are important
according to the musical structures of the phrase while in (T-C) this expressive



Affect-Driven CBR to Generate Expressive Music 11

E- AT D7 Gmaj7 Cmaj? F§-7 B7 E-
n " 1 1 1 I II I 1 |
o et —————— 1
o -li T T I—li 1T T T T 1] T 1 T T T 1l |
0 —= 1 I = ==
a) 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 16 17
Cmaj7 E7 A7 D-
|
A —* [ — | 0
BTt raea s
@4: e e e e e e e e
T T T T | R T
b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 l?lﬁ

Fig.4. a) First phrase from the ‘Autumn Leaves’ theme. b) First phrase from the ‘All
of Me’ theme.

resource is not used. Concerning rubato, the main perception between (J-R)
and (T-C) performances is that in (J-R) the beat is increased and in (T-C) is
decreased. Vibrato is mainly applied to (J-R) and (T-C) over notes with long
duration combined with a dynamics decay (for instance, over the fourth note in
Figure 4a). The main difference between (J-R) and (T-C) is that vibrato fre-
quency is higher in (J-R). Articulation is perceived in (J-R) close to staccato
and in (T-C) close to legato. Finally, the attack in (J-R) consisted in reaching
the first notes of subphrases—like fourth note (C in Figure 4a) or eight and ninth
notes (B in Figure 4a)—starting from a lower pitch. In (T-C) the attacks for
these same notes are treated in an explosive way, that is, high dynamics, high
noise and playing directly the right pitch.

The experiments performed with SaxEx have demonstrated that the system
is able to identify the relevant parts of the ‘Autumn Leaves’ cases in the case
memory and imitate the expressive transformations stored in those cases to
generate the performances of ‘All of me’. Specifically, concerning the changes of
dynamics, while in (J-R) descending melodic progressions are transformed using
diminuendo and emphasizing the first note, in (T-C) the dynamics is equally
lowered in all notes. For instance, the first note (C) of ‘All of me’ starts forte and
the dynamics is successively decreased yielding to piano. Concerning rubato, the
beat in (J-R) is increased and in (T-C) is decreased. Nevertheless, these changes
are not equally applied in all notes. For instance, in (J-R) the duration of the
fourth note (C in Figure 4b) is expanded and the the two following notes (D and
C) are reduced. Vibrato is applied in both, (J-R) and (T-C) performances, over
notes with long duration and dynamics decay (note examples are third and ninth
of Figure 4b). Finally, regarding the imitation of the attack transformations, in
(J-R) notes such as then first (C) or then seventh note (B)—are attacked starting
from a lower pitch—while in (T-C) the attacks for these same notes are explosive.

All these expressive transformations applied to the initially inexpressive ver-
sion of ‘All of me’ are clearly consistent with the examples of the ‘Autumn
Leaves’ performances previously described. Moreover, the use of affective knowl-
edge in the retrieval phase of the SaxEx CBR-method was revealed as a crucial
factor that has improved the quality of the solutions generated by the system.



12 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

The reader can visit the SaxEx website at ‘www.iiia.csic.es/Projects/
music/Saxex.html’ for sound examples.

5 Related work

Previous work on the analysis and synthesis of musical expression has addressed
the study of at most two parameters such as rubato and vibrato [6] [10] [12], or
rubato and articulation by means of an expert system [14]. Other work such as
in [9] is focalized on the study of how musician’s expressive intentions influence
the performances.

To the best of our knowledge, the only previous work addressing the issue
of learning to generate expressive performances based on examples is that of
Widmer [18], who uses explanation-based techniques to learn rules for dynamics
and rubato in the context of a MIDI electronic piano. In our approach we deal
with additional expressive parameters in the context of an expressively richer
instrument. Furthermore, this is the first attempt to deal with this problem
using case-based techniques as well as the first attempt to cover the full cycle
from an input sound file to an output sound file going in the middle through a
symbolic reasoning and learning phase.

6 Conclusion and future work

The integration of affective labels allows to improve the performance of SaxEx
in several ways. From the perspective of users, a more friendly interaction with
the system is possible. On the one hand, users can work in a more intuitive way,
without needing formal musical knowledge. On the other hand, it is possible to
generate a wider range of expressive intentions by combining affective labels in
multiple ways.

Affective knowledge also enhances the reasoning of the system. In particu-
lar, affective labels constitute an additional criterion to discriminate among the
several candidate performances of a same phrase.

The experiments we are currently carrying on were designed using already
existing recordings that had been made without the purpose of communicat-
ing affects. As a next step, we plan to incorporate into the system additional
recordings in which the performer will be required to play according to affective
labels. This will allows us to obtain a richer case memory and to better assess
how the affect that the musician intends to communicate is perceived by the
listeners. This will also ease the task of relating affective labels with expres-
sive parameters—done by hand in the current experiments. This analysis could
be used in the future to have SaxEx learn automatically associations of labels
and the use of expressive parameters for situations appearing recurrently in the
cases. Finally, it would be interesting to discriminate situations where expres-
sive variations are used because of the logical structure of the score, as opposed
to situations where these variations come from the affective intentions of the
musician.



Affect-Driven CBR to Generate Expressive Music 13

Acknowledgements

The research reported in this paper is partly supported by the ESPRIT LTR
25500-COMRIS Co-Habited Mixed-Reality Information Spaces project. We also
acknowledge the support of ROLAND Electronics de Espana S.A. to our Al and
Music project.

References

1.

&

10.

11.

12.

13.

14.

15.

16.

17.

18.

Josep Lluis Arcos and Ramon Lépez de Mantaras. Perspectives: a declarative bias
mechanism for case retrieval. In David Leake and Enric Plaza, editors, Case-Based
Reasoning. Research and Development, number 1266 in Lecture Notes in Artificial
Intelligence, pages 279-290. Springer-Verlag, 1997.

. Josep Lluis Arcos, Ramon Lépez de Méantaras, and Xavier Serra. Saxex : a case-

based reasoning system for generating expressive musical performances. Journal
of New Music Research, 27 (3):194-210, 1998.

Josep Lluis Arcos and Enric Plaza. Inference and reflection in the object-centered
representation language Noos. Journal of Future Generation Computer Systems,
12:173-188, 1996.

Josep Lluis Arcos and Enric Plaza. Noos: an integrated framework for problem
solving and learning. In Knowledge Engineering: Methods and Languages, 1997.
Sergio Canazza and Nicola Orio. How are the players perceived by listeners: anal-
ysis of “how high the moon” theme. In International workshop Kanset Technology
of Emotion (AIMI’97), 1997.

Manfred Clynes. Microstructural musical linguistics: composers’ pulses are liked
most by the best musicians. Cognition, 55:269-310, 1995.

D. Cooke. The Language of Music. New York: Oxford University Press, 1959.
Mary Cyr. Performing Baroque Music. Portland, Oregon: Amadeus Press, 1992.
Giovani De Poli, Antonio Roda, and Alvise Vidolin. Note-by-note analysis of
the influence of expressive intentions and musical structure in violin performance.
Journal of New Music Research, 27 (3):293-321, 1998.

P. Desain and H. Honing. Computational models of beat induction: the rule-based
approach. In Proceedings of IJCAI’95 Workshop on Al and Music, pages 1-10,
1995.

W. Jay Dowling and Dane L. Harwood. Music Cognition. Academic Press, 19986.
H. Honing. The vibrato problem, comparing two solutions. Computer Music Jour-
nal, 19 (3):32-49, 1995.

Carroll E. Izard, Jerome Kagan, and Robert B. Zajonc. Emotions, Cognition, and
Behavior. Cambridge University Press, 1984.

M.L. Johnson. An expert system for the articulation of Bach fugue melodies. In
D.L. Baggi, editor, Readings in Computer-Generated Music, pages 41-51. IEEE
Computes Society Press, 1992.

Robert Jourdain. Music, the Brain, and Fcstasy. Avon Books, 1997.

Fred Lerdahl and Ray Jackendoff. An overview of hierarchical structure in music.
In Stephan M. Schwanaver and David A. Levitt, editors, Machine Models of Music,
pages 289-312. The MIT Press, 1993. Reproduced from Music Perception.
Fugene Narmour. The Analysis and cognition of basic melodic structures : the
implication-realization model. University of Chicago Press, 1990.

Gerhard Widmer. Learning expressive performance: The structure-level approach.
Journal of New Music Research, 25 (2):179-205, 1996.



Probability Based Metrics for Nearest Neighbor
Classification and Case-Based Reasoning

Enrico Blanzieri and Francesco Ricci*

Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST)
38050 Povo (TN)
Italy
blanzier@irst.itc.it - ricci@sodalia.it

Abstract. This paper is focused on a class of metrics for the Nearest
Neighbor classifier, whose definition is based on statistics computed on
the case base. We show that these metrics basically rely on a probabil-
ity estimation phase. In particular, we reconsider a metric proposed in
the 80’s by Short and Fukunaga, we extend its definition to an input
space that includes categorical features and we evaluate empirically its
performance. Moreover, we present an original probability based metric,
called Minimum Risk Metric (MRM), i.e. a metric for classification tasks
that exploits estimates of the posterior probabilities. MRM is optimal,
in the sense that it optimizes the finite misclassification risk, whereas
the Short and Fukunaga Metric minimize the difference between finite
risk and asymptotic risk. An experimental comparison of MRM with the
Short and Fukunaga Metric, the Value Difference Metric, and Euclidean—
Hamming metrics on benchmark datasets shows that MRM outperforms
the other metrics. MRM performs comparably to the Bayes Classifier
based on the same probability estimates. The results suggest that MRM
can be useful in case-based applications where the retrieval of a nearest
neighbor is required.

1 Introduction

Nearest Neighbor (NN) algorithms are a well-known and intensively studied
class of techniques for the solution of Classification and Pattern Recognition
problems. Nowadays NNs are widely exploited for the retrieval phase in the
majority of the Case Based Reasoning (CBR) systems. In CBR, even if cases are
not explicitly classified in a set of finite groups (classes), often the solution space
can be clustered in a collection of sets each of them containing similar solutions.
When such a set of similar solution is labelled with a class tag, it is natural
to match the retrieval step in a CBR system with the nearest neighbor search
in a NN classifier [3]. In this framework, for example, Bellazzi et al. [4] have
shown that the performance of a CBR system can be improved by driving the
retrieval with the information of same relevant classification in the case space,
i.e. reducing the retrieval problem to a classification task. In this perspective,

* Current Address: Sodalia S.p.A., 38100 Trento, Italy

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 14-28, 1999
© Springer-Verlag Berlin Heidelberg 1999



Probability Based Metrics for Nearest Neighbor Classification 15

improving the classification accuracy for NN algorithms becomes important for
CBR.

The NN classification procedure is straightforward: given a set of classified
examples, which are described as points in an input space, a new unclassified
example is assigned to the known class of the nearest example. The “nearest”
relation is computed using a (similarity) metric defined on the input space.
Many researchers [21-23,11,1,2,14,13,18,19,7,25] focused their attention on
the use of local metrics, i.e. metrics that vary depending on the position of the
points in the input space. Conversely, more traditional global metrics assume
that similarity evaluation should be independent from the area of the input
space the cases to be compared are taken from. There are pros and cons in
using local metrics. On one hand local metrics generate classifiers that are more
sensitive to the local changes of the data and hence more accurate. On the other
hand global metrics have fewer parameters and consequentially the classifiers
are computationally lighter and less prone to the effect of noisy data. In other
words classifiers based on global metrics have a dominant bias component of
the error whereas those based on local metric tend to have a greater variance
component [6]. The critical point seems to be the grade of locality of the metric:
choosing the ’right’ locality in different areas of the input space should lead to
better description of the separating surfaces.

Some of the proposed local metrics rely their effectiveness on the optimiza-
tion of a given criterion and ultimately on the estimation of some probabilities.
In this direction Short and Fukunaga [22] presented a seminal work constrained
to a multidimensional numerical input space. They proposed to minimize the ex-
pected value of the difference between the misclassification error of a two-classes
NN classifier with a finite number of samples and the misclassification error hy-
pothetically achievable with an infinite sample. They expressed the optimal local
metric in terms of a linear estimation of posterior probabilities. More recently in
the instance based learning context, many proposals of nominal feature metrics
also involve probability estimation [23,11,9,24]. In these cases the probability
estimation is performed computing frequencies of value occurrences. Finally, in
the work by Wilson and Martinez [26] the estimation of probabilities provides an
unifying framework for treating both linear (continuous or discrete) and nominal
features. Their heterogeneous distances, wich extend the VDM metric [23], deal
uniformly with both categorical and numerical features.

In spite of the centrality of the probability estimation issue in the metrics
briefly described above, there is no unifying description in the literature of the
impact of different approaches to the solution of this issue. Furthermore, little
or no attempt has been made to exploit the advanced nonparametric density
estimation techniques developed by the applied statistics community [20] and
their possible extensions to nominal features.

In this paper we describe a couple of techniques for probability estimation
and their use inside two metrics based on this estimation (Short and Fukunaga
and Minimum Risk Metric). From our point of view the approach of construct-



16 E. Blanzieri and F. Ricci

ing metrics via combination of well-known probability estimators and optimal
metrics presents several advantages.

— The metrics have a clear analytical expression and motivation. For exam-
ple the metric proposed by Short and Fukunaga minimizes the difference
between asymptotic and finite risk. That makes these metrics amenable to
analytical study.

— The metrics can be computed using standard density estimation techniques.
Advances in that area can be reused here. For example, the choice of the
right degree of locality can rely on the solutions proposed for the choice of
the bandwidth in the nonparametric density estimation models.

— The metrics can be defined uniformly on data sets with both numeric and
nominal attributes. This point is extremely important for CBR, applications.
Combining different metrics on the categorical and numerical features usu-
ally lead to poor performances [26].

Regarding the last item described above, in real world case bases both con-
tinuous and nominal features can be useful to describe cases. That poses a new
problem: how to sum contributions to the distance evaluation that come from
the comparison of pairs of categorical values together with pairs of real numbers?
This problem can be tackled in different ways:

— Ordering. Ordering and numbering the values of the nominal features and
applying a numerical metric like the Euclidean one. In general this approach
introduces artificial neighborhood.

— Discretization. Discretizing the numeric features and applying a nominal
metric to them, e.g. Hamming or Value Difference Metric [23]. With dis-
cretization some information is inevitably lost and parameters of the dis-
cretization can be critical.

— Combination. This is the most common approach in CBR, it consists of
combining two metrics, a nominal and a numeric, each one used on the
corresponding part of a case. A very common example of metric in this class is
that obtained by combining the Euclidean and Hamming metric. Combined
metrics are hard to adapt in a consistent way and performs poorly, as Wilson
and Martinez have shown [26].

Conversely, metrics based on probability estimation provides a natural uni-
fying framework for dealing with both kind of features. The same probability
estimation techniques is used for both type of features. Furthermore, the opti-
mality evaluation that can be done with this type of metric is impossible when
the metric is obtained by combination.

Among the metrics based on probability estimation the one proposed by
Short and Fukunaga has the strongest theoretical foundation. The original def-
inition was applicable only to cases described uniquely by numeric features. In
this paper we extend its definition to the most general situation, i.e., with both
type of features, by considering different and more general probability estimators
than those exploited by the authors. We call this metric SF2.



Probability Based Metrics for Nearest Neighbor Classification 17

Experimental results presented in this paper shows that SF2 outperforms
more standard metrics but only when we explicit restrict the scope of application
of the metric (locality) or cross—validating the estimator. The analysis of SF2
lead us to a deeper evaluation of the optimality condition underlying the Short
and Fukunaga metric and eventually to the definition of an alternative metric.

We propose here another metric, called Minimum Risk Metric (MRM), that
relies ist effectiveness on a different and simpler optimality condition than that
suggested by Short and Fukunaga. In fact MRM minimizes directly the finite
misclassification risk. In order to test the effectiveness of the approach we run
experiments on 29 benchmark datasets and compare the classification accuracies
of Short and Fukunaga Metric and MRM with the performances of other metrics
available in the literature.

The work is organized as follows: Section 2 describes the metrics studied
in this paper, in particular Subsection 2.4 briefly presents the Minimum Risk
Metric and its optimality criterium. Section 3 describes the adopted probability
estimators. Section 4 presents the experimental results and finally Section 5
draws conclusions and future directions.

2 Metrics

In this Section we will briefly present four families of metrics studied in this
work. The first was introduced by Short and Fukunaga in the 80’s [22] and is
not well know in CBR mostly because in the original definiton seemed confined
to cases with only numerical features. The second family originates from the
well known VDM of Stanfill and Waltz [23] and has stemmed a number of other
metrics, most notably those introduced by Wilson and Martinez [26]. Third, we
recall the very common metric that combines the Euclidean and the Hamming
distances. Fourth, we introduce our novel metric called Minimum Risk Metric
(MRM).

2.1 Short and Fukunaga Metric (SF2)

Short and Fukunaga [22] were the first to derive a NN optimal metric rely-
ing on probabilistic considerations. In their work they consider a two-class pat-
tern recognition task. Let © = (z1,...,%n),y = (y1,---,yn) be two examples in
[0,1]™. Let, p(c1]|z) be the probability that the example z be in class ¢;. Then
r(z,y) = pler|z)p(ealy) + plea|z)p(erly) is the finite 1-nearest neighbor error
rate at z ( i.e., the probability of misclassifying = by the 1l-nearest neighbor
rule given that the nearest neighbor of x using a particular metric is y) and
r*(x) = 2p(c1|z)p(ce|x) is the asymptotic 1-nearest neighbor error rate (i.e.,
the probability of misclassifying x by the 1-nearest neighbor rule, given a hypo-
thetically infinite design set [10]). Short and Fukunaga show that minimizing the
expectation E[(r(z,y)—r*(z))?] is equivalent to minimize E[(p(ci|z)—p(c1ly))?],
so the best local metric is:



18 E. Blanzieri and F. Ricci

sf2(z,y) = |p(ci]x) — pleily)] (1)

We shall call this metric SF2. Short and Fukunaga approximate at the first order
Ip(ci|z) —plely)| = |Vp(1]z)T (z — y)| and therefore their metric in the original
formulation can be applied only to numeric features and in a local restriction.

Myles and Hand in [17] generalize that metric to a multiclass problem and
introduce the following two:

sf2(z,y) = Z|pcz|w pleily)| (2)

sfm(z,y) ZP cile)|p(eile) — pleily)] (3)

where the classes ¢; are numbered from 1 to m. We shall still call the first
metric SF2, and SFM the second. It is easy to prove that on a two classes
classification problem SF2 and SFM coincide. Myles and Hand use the same
technique introduced by Short and Fukunaga to approximate |p(c;|z) — p(cily)|-

2.2 Value Difference Metric (VDM)

Another very common metric based on probabilistic consideration is VDM in-
troduced by Stanfill and Waltz [23] and used exclusively on input spaces with
nominal attributes. Let z = (z1,...,z,) and y = (y1,...,yn) be two examples
in H?:l F};, and |F}| is finite. The VDM metric is defined as follow:

oanten =33 5 (3) S (N - W) @

j=1 \ i=1

where N(z;,¢;) is the number of examples that have value z; for the j-th at-
tribute and are in class ¢;, and N(z;) is the number of examples that have value
z; for the j-th attribute. If probabilities are estimated with frequency counts
then VDM can also be written in the following form:

VDM has no clear justification and seems to assume attributes independence.
It is easy to conceive an ill-formed dataset where all the p(c;|x;) are equal (for
example the parity bit class) and therefore VDM is not able to distinguish among
the classes. Nevertheless VDM, and a set of modified versions [11,9, 26], works
quite well on real data sets.

Wilson and Martinez extended VDM to instances with numeric attributes
[26]. They essentially discretize the numeric attributes (DVDM) and then smooth



Probability Based Metrics for Nearest Neighbor Classification 19

the histogram estimation of p(c;|z;) by averaging. The metric obtained with that
procedure is called IVDM. They also suggest a heterogeneous VDM that com-
bines an Euclidean metric for numeric features with a VDM, called HVDM. The
version of VDM, and the correspondig metrics IVDM and HVDM, we adopted in
our experiments is the version without weighting factors and with the absolute
values:

vdm(z,y) = ZZ Ip(cilz;) — pleily;)] (6)

j=1i=1

An empirical study [8] has shown that this version of VDM (IVDM and DVDM)
behaves better than the others.

2.3 Combined Euclidean—Overlap Metric (HEOM)

The metric HEOM was introduced by Wilson and Martinez [26], is the combina-
tion of the Euclidean and Hamming metric. Basically HEOM is an heterogeneous
distance function that uses different attributes distance functions on different
kinds of attributes. If x = (z1,...,2,) and y = (y1,...,yn) are two examples

then heom(z,y) = \/E?ﬂ d;(zj,y;)? where d;j(x;,y;) is the Hamming distance
if the j-th feature is nominal and the Euclidean distance if numeric. The numeric
features are normalized using the range.

2.4 Minimum Risk Metric

Minimum Risk Metric (MRM) is a very simple metric that directly minimizes
the risk of misclassification.

Given an example z in class ¢; and a nearest neighbor y the finite risk
of misclassifying z is given by p(c;|z)(1 — p(cily)). The total finite risk is the
sum of the risks extended to all the different classes and is given by r(z,y) =
> pleilz)(1 — p(eily)). The approach of Short and Fukunaga and followers
is to subtract the asymptotic risk 7*(x, y) and minimizing E(r(x,y) — r*(z,v)).
Instead we propose to minimize directly the risk r(z,y) and that leads to the
metric:

mrm(z,y) = r(z,y) = Zp(cilw)(l — pleily)). (7)

We observed in some experiments not shown here, that the application of MRM
inside a Nearest Neighbor classifier leads to a classifier equivalent to the Bayes
rule, i.e., “assign z to the class that maximizes p(c;|z)”. That points out that
the key element in MRM is the estimation of p(c;|z). This point is dealt in the
next Section.



20 E. Blanzieri and F. Ricci
3 Probability Distribution Estimation

The presence of the conditional probabilities p(c;|z) in both SF2 metric and
MRM requires consistent estimates p(c;|x) and this section illustrates the prob-
ability estimation techniques used in the experiments.

We must note that, a classification problem would be solved if the proba-
bilities p(c;|z) were known. In fact the Bayes optimal classification rule says to
choose the class ¢; that maximizes p(c;|x). All the classification methods explic-
itly or implicitly follow this rule and the estimation of p(c;|z) is not simpler
than computing an optimal metric for NN. For that reason the estimation of the
quantities p(c;|x) is a key issue. Notwithstanding that, we will show that even
if many of the metrics here presented are based on the same estimation of the
quantities p(c;|x) the exact definition of the metric is determinant and different
performances can be obtained.

The estimates of p(¢;|x) can be done directly or applying the Bayes theorem

p(z|ei)p(c;) _ p(x|ci)p(c;)
p(z) S p(ler)p(er)

therefore reducing to the problem of estimating p(z|cy,).

In the present work we carried on experiments with two different estimators.
The first is the Naive Bayes Estimator that is the estimator that is implicit in
the Naive Bayes Classifier. It is a natural estimator for nominal feature and it
can be extended to the numeric ones by discretization. The second is the Gaus-
sian Kernel Estimator, a non—parametric density estimator that in its original
formulation uses the Euclidean metric. In order to extend the density estima-
tion technique to nominal features the Euclidean metric is simply substituted
by HEOM and the densities are supposed to replace the probabilities in the
expressions of the metrics.

plcilz) =

(8)

3.1 Naive Bayes Estimator

The simplest probability estimates are based on frequency counts. In this way is
possible to estimate p(¢;) with p(¢;) = % where N (¢;) is the number of cases
that are in the ¢; class and N is the sample size. Unfortunately, probability esti-
mates based on frequencies performs poorly if the sample size is small (basically
the probabilities result understimated) and so they can be improved adopting
the Laplace—corrected estimate or equivalently incrementing artificially the sam-
ple size [16]. Following the first possibility leads to the estimate p(c;) = %j_i}:f
where n; is the number of values of the j-th attribute and f = 1/N is a multi-
plicative factor [12].
Assuming features’ independence leads to the estimates:

n

R N(zj,ci) + f
plale;) = H (wjlei) = H N c] j—fn
i) J

j=1



Probability Based Metrics for Nearest Neighbor Classification 21

which, substituted in the equation (8) are the estimates that are used in the
Naive Bayes Classifier approach.

Hn N((acj),Ci)+f N(c)+f

Lo o Jj=1 N(ci)+fn; N+fn;

pleil®) = SeT mn Nepan s Netl )
k=1 j=1 N(Ck)+fnj N+fnj

3.2 Gaussian Kernel Estimator

The second type of estimates used in this paper belongs to a broad class of
nonparametric density estimators represented by the multivariate fixed kernel
[20]:

. _i n 1 T — T
f@) =5 ; h(m,xl)”K (h(l”,ml)> "

where n is the dimension of the input space, h is the bandwidth and K (t) is the
kernel function.

The bandwidth h(z,z;) can be constant on the input space or it can vary. In
relation to the bandwidth h dependency on the probe point x or on the sample
point z;, the estimator is called balloon or sample point respectively.

The Gaussian Kernel Estimator is an example of sample point estimator with
fixed bandwidth.

I B v/ ey (e A
f(w)—N(%)n/gl; € (11)

where W is a positive definite diagonal matrix, and

o=l = o)W —a)" = | S wye; — )’
j=1

n
VIW] =TT wy
j=1

| . I}y is an Euclidean weighted metric and w;; = -~ where o; is an estimate
7
of the variance on the j—th dimension of the input space. In this case the optimal

1
bandwidth is i = (n%) N

4 Experimental Results

The metrics presented in Section 2 were tested on 27 databases taken from
from the Machine Learning Databases Repository at UCI [15] and on two new
databases (Derma and Opera). Derma collects data of images for the diagnosis
of melanoma collected in Santa Chiara Hospital in Trento, Italy and Opera



22 E. Blanzieri and F. Ricci

contains the results of a cognitive pragmatics experiment [5]. The 29 databases
contains continuous, nominal and mixed features. The main characteristics of the
databases are presented in Table 1. We extended to mixed feature databases the
estimate of the Naive Bayes Estimator by discretizing the numeric features and
the estimate of the Gaussian Kernel Estimator by substituting the Euclidean
Metric with HEOM. We normalized the numeric features with their range and
use ten intervals for all the discretizations. The unknown values were simply
ignored during the computation. The experimental technique is a 10-fold cross—
validation and as a significance test we adopted the paired t¢-test (p < 0.05).

Table 1. The databases used in the experimentation.

[Data Set [[Instances[Classes| Features [Unknown)]
Annealing 798 6 38| 9C 29S yes
Audiology(standardized) 200 24 |69 69S yes
Breast-cancer 286 2 9| 4C 58 yes
Bridges 108 6 11| 9C 2S yes
Bridges(discretized) 108 6 [11] 11S yes
Credit Screening 690 2 15| 6C 9S yes
Derma 152 2 44| 44C no
Flag 194 8 28[10C 18S no
Glass 214 7 9 9C no
Hepatitis 155 2 19| 6C 13S yes
Horse-Colic 300 2 27 7C 208 yes
House-Votes-84 435 2 16| 16S yes
Tonosphere 351 2 34 34C no
Iris 150 3 4 4C no
Led+17noise 200 10 |24 24S no
Led 200 10 7 7S no
Liver Disorders 345 2 6 6C no
Monks-1 432 2 6 6S no
Monks-2 432 2 6 6S no
Monks-3 432 2 6 6S no
Opera 1216 5 9 9S no
Pima 768 2 8 8C no
Post-operative 90 3 8| 1C 7S yes
Promoters 106 2 57| 57S no
Sonar 208 2 60| 60C no
Soybean(large) 307 19 [35] 35S yes
Soybean(small) 47 4 [35] 35S no
WDBC 569 2 32| 32C no
Z00 101 7 16| 16S no

The experiments here presented measure the classification accuracies of of the
1-NN algorithm with SF2 metric (Equation 2) and MRM (Equation 7) obtained
using Naive Bayes Estimator (Equation 9) and the Gaussian Kernel Estimator
(Equation 11). The accuracies are compared to those of DVDM (Equation 6) and
HEOM (Section 2.3). Noteworthy, the application of SF2 can be restricted to h
neighbors with respect to the metric HEOM. This means that when searching for
the SF2 nearest neighbor of an example z only the set of h HEOM neighbors of =
are considered. When the metrics are computed on the whole training set h = NV
holds. Some of the experiments are led adopting as h the cross-validated value



Probability Based Metrics for Nearest Neighbor Classification 23

hov. In some cases, we also cross—validate the choice of the estimator. When
this is the case the estimator is indicated as E'stcy. Both the cross—validations
are carried on with a 10-fold cross—validation on each training partition.

4.1 HEOM and Value Difference Metrics results

Table 2. Classification accuracies for different metrics. Significative differences (p <
0.05) are shown: for instance, IVDM performs significatively better than DVDM on
sonar dataset.

Data Set IVDM (I) HVDM (H) DVDM (D) HEOM (E)
annealing 97.4+1.33 > F|99.1 £1.03 > [, E|98.4+£0.98 > I,FE|95.4 + 2.59
audiology 80.5+7.24 > F|80.5+5.98 > F |80.5+5.98>F |72.5+11.3
breast-cancer 66.4 + 6.92 68.2 & 8.21 64.3 & 10.0 65.4 + 8.54
bridgesl 61.1 £7.97 59.3 +11.1 62.3 +16.9 65.9+13.9 > H
bridges2 62.1 £ 20.0 59.3 +£19.0 59.3 +£19.0 55.5 £ 17.2
crx 79.7 £+ 2.36 80.5 & 5.21 79.5 & 4.06 81.7 + 3.36
derma 80.0 +12.6 73.0+12.6 74.8 +13.4 78.1 £ 10.6
flag 57.4 £12.3 66.6 +8.75 > I,E|64.0+8.34 > [, E|(55.8 +12.9
glass 72.5+12.5 > D|69.7+£9.32 > D [62.1+11.1 71.1+11.8 > D
hepatitis 82.6 +£10.1 80.0 +9.94 82.0 +10.8 80.7 £ 11.8
horse-colic 85.6 + 5.67 85.6 & 7.70 86.6 &= 7.53 84.6 +4.76
house-votes-84 93.7 £ 3.10 93.0 & 2.45 93.0+2.45 > H (92.3+3.82>H
ionosphere 87.4 £3.38 > H(35.9+4.75 88.8 +4.75 87.1 +£2.81
iris 94.6 +£5.25 96.6 +4.71 92.6 +4.91 95.3 +£5.48
led 66.5 +13.5 66.5 +13.5 66.5 +13.5 68.0 £12.9
led17 57.5+12.5 > F|59.5+11.8 > F |59.5+11.8 > FE |39.0+9.06
liver 63.9 + 8.07 59.4+11.5 64.3 + 8.22 63.7 + 7.82
monks-1 78.0 £13.4 78.0+13.4 78.0+13.4 71.5 £ 7.54
monks-2 92.6 £8.39 > F(92.6 +8.39 > F (92.6 +8.39 > F |57.1 +£7.21
monks-3 100. & 0.00 > E|100. £0.00 > FE 100. £0.00 > E |79.3 £ 8.43
opera 49.0 £4.78 49.0 £4.78 49.0 £4.78 49.0 £ 4.84
pima-indians-diabetes|70.5 4 4.47 68.4 + 4.28 70.8 £ 3.31 71.7+£3.15 > H
post-operative 63.3 +14.8 63.3 +13.9 62.2 +14.9 57.7 £ 22.7
promoters 89.7+10.1 > E|89.7+£8.17 > F |89.7+£8.17 > E |80.1 +9.42
sonar 85.0 £8.84 > D|81.6 £+ 6.42 76.9 £ 6.15 87.0+7.19 > D
soybean-large 92.1 +4.08 90.2 + 5.80 90.2 + 5.80 91.1 £5.13
soybean-small 100. + 0.00 100. + 0.00 100. + 0.00 100. + 0.00
wdbc 95.2 +£2.19 95.7 + 2.50 94.9 + 3.02 95.2 +£2.34
z00 95.0 £ 7.00 95.0 + 7.00 95.0 + 7.00 96.0 +£5.16

In the first series of experiments we evaluate the metrics HEOM, DVDM,
IVDM and HVDM. These metrics would represent a baseline for SF2 and MRM.
Accuracy results are reported in Table 2. In this Table, when on a given dataset,
a metric m performs significantly better than another one m/', the symbol >
m' appears in the column of m. All the metrics of the VDM family appears
to outperform the HEOM but there in not a clear winner among them. This
results seems to partially contradict what observed by Wilson and Martinez [26],
i.e., that a better aproximation of the probabilities p(c;|z;) used in Equation 6
for numerical features, would lead to a better metric. Moreover, HVDM, the
combined Euclidean and VDM metric, performs well even if it simply sums the
etherogeneous contributions of the two metrics.



24 E. Blanzieri and F. Ricci

IVDM is more sophisticated than DVDM. In IVDM the estimate of p(c;|x;)
obtained by discretizing the j-th numerical featue is smoothed by interpolation.
But this approach seems not to improve DVDM to a great extent. For this reason,
in the following experiments we compare SF2 and MRM only with DVDM.

4.2 Short and Fukunaga Metric

Table 3. Classification accuracies of the metrics SF2 with Naive , Kernel and cross-
validated estimator with different localities. Significative differences (p < 0.05) are
shown: for instance, Naive h = hcv performs significatively better than Kernel h =
hcv on led17 dataset.

Data Set Naive h = hgv (N) Kernel h = hcv (K)Estcv h = hcv (EGy)
annealing 97.9 £1.88 97.9 £1.47 97.9 £1.88
audiology 77.5 £8.57 76.0 £10.2 75.5 £10.1
breast-cancer 63.5 £ 9.48 64.3 £+ 8.65 62.8 +£9.85
bridgesl 64.9 £ 9.95 60.9 £ 12.7 64.0 £ 8.55
bridges2 71.4 £19.2 66.7 £ 19.1 70.5 £ 20.8
crx 80.4 £ 2.57 82.4 £4.75 80.8 £+ 2.88
derma 78.1 £13.1 73.5 £11.8 77.5 £ 14.2
flag 59.8 £10.1 58.9 +£ 8.16 59.8 £10.1
glass 69.2 £11.9 73.0 £10.9 > E&y, 68.7 £ 11.4
hepatitis 88.5 £ 8.72 83.9 £ 7.93 88.5 £ 8.72
horse-colic 83.6 £ 6.74 84.3 £ 6.85 83.3 £7.20
house-votes-84 93.0 + 3.78 93.9 + 3.67 93.7 £ 3.44
ionosphere 86.5 + 3.35 92.5+£4.50 > N,E{ (89.4 +4.28
iris 95.3 £5.48 94.6 £ 6.88 95.3 £5.48
led 68.5 £ 15.4 71.5£17.9 69.0 £ 14.4
led17 58.0 £8.23 > K 43.5 £ 7.83 58.0 £8.23 > K
liver 66.6 + 10.7 59.4 £ 12.7 62.3 £12.5
monks-1 76.1 £ 10.5 100. & 0.00 > N 98.1 £3.40 > N
monks-2 91.1£7.33 > K 56.4 £ 7.68 91.1+£7.33 > K
monks-3 100. &+ 0.00 99.7 £0.73 100. &+ 0.00
opera 48.4 +4.41 48.5 +4.78 48.6 +4.74
pima-indians-diabetes|70.3 + 3.55 70.3 £ 3.17 70.3 £ 3.55
post-operative 56.6 £ 18.4 53.3£17.9 55.5 £ 16.5
promoters 88.5 £ 7.81 83.8 £12.4 88.5 £ 7.81
sonar 87.0 £ 7.19 89.3 £ 5.57 86.0 £ 7.74
soybean-large 92.4 +4.94 90.5 + 5.64 92.4 +4.94
soybean-small 100. 4+ 0.00 100. 4+ 0.00 100. 4+ 0.00
wdbc 95.4 £ 2.36 96.3 +2.53 > Efy, 94.7 £ 2.01
Z00 96.0 £ 5.16 96.0 £ 5.16 96.0 £ 5.16

Preliminary results showed a substantial equivalence between SF2 and SFM
and therefore we choose the simpler one. The Table 3 presents the classification
accuracies of SF2 metric with different estimators (Naive , Gaussian Kernel, and
the cross—validated one). Moreover the grade of locality is also cross—validated.
This means that in the computation of the SF2 nearest neighbor of an example
x, the SF2 distance from this example is only taken with examples in a subset of
the case base. This subset contains the i nearest neighbors of z with respect to
the HEOM metric. In fact, the locality of the SF2 metrics appears to be critical.
In a set of results not showed here we noted that an unrestricted application of
the metric leads to poor results when compared with DVDM and HEOM.



Probability Based Metrics for Nearest Neighbor Classification 25

In Table 4 we show how the SF2 metric based on cross—validation outperforms
significatively DVDM and HEOM. In particular the metric with both estimator
and locality cross-validated is never worse of them and outperforms DVDM in 4
datasets and HEOM in 8 datasets. However, in a set of experiments not reported
here we noted that SF2 often performs worse than the Bayes Classifier based on
the same estimation.

Table 4. Classification accuracies of SF2 with a cross-validated estimator, DVDM and
HEOM. Significative differences (p < 0.05) are shown.

SF2 Estcy DVDM (D) HEOM (B)

Data Set h=hcv (F&y)
annealing 97.9+1.88 > F 98.4 +0.98[95.4 + 2.59
audiology 75.5 £10.1 80.5 +5.98|72.5 +11.3
breast-cancer 62.8 £ 9.85 64.3 & 10.0|65.4 £ 8.54
bridgesl 64.0 + 8.55 62.3 +16.9/65.9 + 13.9
bridges2 70.5 +£20.8 > D,E|59.3+19.0|55.5 +17.2
crx 80.8 + 2.88 79.5 +4.06|81.7 + 3.36
derma 77.5 £ 14.2 74.8 +13.4|78.1 +10.6
flag 59.8 +£10.1 64.0 +8.34(55.8 £ 12.9
glass 68.7 £ 11.4 > D 62.1 =11.1{71.1 £11.8
hepatitis 88.5 £8.72 > F 82.0 +10.8|80.7 + 11.8
horse-colic 83.3 £7.20 86.6 + 7.53|84.6 + 4.76
house-votes-84 93.7 £ 3.44 93.0 & 2.45|92.3 £ 3.82
ionosphere 89.4 + 4.28 88.8 4.75(87.1 £+ 2.81
iris 95.3 +£5.48 92.6 +4.91(95.3 £ 5.48
led 69.0 £ 14.4 66.5 +13.5|68.0 + 12.9
led17 58.0 £8.23 > F 59.5 +11.8|39.0 + 9.06
liver 62.3 +£12.5 64.3 & 8.22|63.7 £ 7.82
monks-1 98.1 +£3.40 > D, E| 78.0 +13.4|71.5 £ 7.54
monks-2 91.1+£7.33 > F 92.6 +8.39(57.1 £ 7.21
monks-3 100. +£0.00 > E 100. + 0.00|79.3 4+ 8.43
opera 48.6 £4.74 49.0 4.78(49.0 + 4.84
pima-indians-diabetes|70.3 + 3.55 70.8 £3.31|71.7 £ 3.15
post-operative 55.5 £ 16.5 62.2 & 14.9|57.7 £ 22.7
promoters 88.5+7.81 > F 89.7 +8.17(80.1 £ 9.42
sonar 86.0+£7.74 > D 76.9 +£6.15|87.0 + 7.19
soybean-large 92.4 +4.94 90.2 +5.80{91.1 +5.13
soybean-small 100. £ 0.00 100. £ 0.00| 100. £ 0.00
wdbc 94.7 £+ 2.01 94.9 +3.02(95.2 + 2.34
Z00 96.0 +£5.16 95.0 + 7.00|96.0 + 5.16

4.3 Minimum Risk Metric

In this Section we evaluate the Minimum Risck Metric introduced in Section 2.4.
In this case we used the Naive Bayes estimator, that in a set of experiments not
showed here seems to work best for this metric. In Table 5 MRM is compared
with the DVDM metric and HEOM metric. MRM compares very favourable with
the exception of the monks datasets. These datasets appear to be a hard task
probably as a consequence of the assumption of the independence among features
that underlies the Naive Estimator. MRM outperforms DVDM and HEOM more
convincingly than SF2 and without any local restriction. This is obviosly an
important feature as it greatly simplify the computation of the metric.



26 E. Blanzieri and F. Ricci

Table 5. Classification accuracy of the Minimum Risk Metric with the Naive Estima-
tor, DVDM and HEOM. Significative differences (p < 0.05) are shown.

MRM h =N DVDM HEOM
Data Set Naive (My)
annealing 97.6 £1.61 > F 98.4 +0.98 95.4 + 2.59
audiology 76.5 £ 7.47 80.5 + 5.98 72.5 +£11.3
breast-cancer 73.4+7.16 > D, E|64.3 +10.0 65.4 + 8.54
bridgesl 63.0 £ 11.0 62.3 +£16.9 65.9 +13.9
bridges2 69.6 £19.0 > D, E|59.3 £ 19.0 55.5 +17.2
crx 83.9+1.73 > D 79.5 +4.06 81.7 + 3.36
derma 77.4+£17.9 74.8 +£13.4 78.1 = 10.6
flag 61.8 +7.83 64.0 + 8.34 55.8 +12.9
glass 66.8 + 13.6 62.1 £ 11.1 71.14+11.8
hepatitis 87.1 £ 7.88 82.0 +£10.8 80.7 £11.8
horse-colic 83.6 £ 7.44 86.6 £ 7.53 84.6 £ 4.76
house-votes-84 90.5 + 4.30 93.0 + 2.45 92.3 & 3.82
ionosphere 91.1+3.42 > F 88.8 +4.75 87.1 +2.81
iris 95.3 +£5.48 92.6 £4.91 95.3 +5.48
led 72.5 +14.5 66.5 + 13.5 68.0 = 12.9
led17 67.0+9.18 > D, E|59.5 +£11.8 39.0 +9.06
liver 71.3 +£9.85 > D, E|64.3 + 8.22 63.7 & 7.82
monks-1 66.2 £ 15.0 78.0 £13.4 > Mn|71.5 £ 7.54
monks-2 67.1+£7.49 > F 92.6 £8.39 > Mn|57.1 £7.21
monks-3 97.2+2.40 > FE 100. & 0.00 > M |79.3 £ 8.43
opera 58.0 £ 3.70 > D, E|49.0 & 4.78 49.0 & 4.84
pima-indians-diabetes|75.1 & 4.76 > D, E|70.8 4+ 3.31 71.7 £3.15
post-operative 644+ 179 > FE 62.2 +14.9 57.7 +22.7
promoters 90.4 +6.38 > F 89.7 £ 8.17 80.1 +9.42
sonar 78.3 £ 8.15 76.9 £ 6.15 87.0£7.19 > My
soybean-large 92.5 +4.62 90.2 + 5.80 91.1 +5.13
soybean-small 100. 4+ 0.00 100. 4+ 0.00 100. £ 0.00
wdbc 93.8 +£2.22 94.9 + 3.02 95.2 +2.34
Z00 96.0 +£5.16 95.0 £+ 7.00 96.0 +5.16

5 Conclusions

In this paper we have introduced two new metrics for nearest neighbor classifi-
cation that are based on probability estimation. The first, SF2, was originally
introduced by Short and Fukunaga [22]. We extended its definiton to input
spaces with nominal features and introduced a different estimate for the density
probability used in this metric. The second, the Minimum Risk Metric (MRM)
is very similar to SF2 but optimize a different criterion, the risk of misclassifi-
cation. Among the main advantages of these types of metrics is the possibility
to manage both nominal and numerical features in an uniform way and the fact
that these metrics can be analytically studied.

The experiments show that the metric SF2 works only if locally restricted,
i.e., examples used for the SF2 nearest neighbor computation are taken in a set of
Euclidean nearest neighbors. That is surprising given the theoretical optimality
of the metric and further investigations are required to clarify this point. In fact,
in the original formulation of Short of Fukunaga the locality is not necessary for
the optimality argument but only because they adopt a linear approximation
of the probability. Nevertheless the combination of cross—validated locality and
cross-validated estimator leads to a metric that outperforms VDM and HEOM.



Probability Based Metrics for Nearest Neighbor Classification 27

The Minimum Risk Metric does not require any local restriction, its per-
formances are comparable to the Bayes Classifier, its analytical form is simple
and well founded, and finally, equipped with a simple Naive Estimator, outper-
forms the other metrics. The choice of MRM appears to be relevant whenever
the retrieval of a neighbor is required. For this reasons MRM seems particularly
suitable for Case Based Reasoning application when a relevant classification of
the cases is available.

6 Acknowledgements

We would like to thank M. Cazzani for her contribution to the implementation
of CBET, the C++ library used in the experimental evaluation of the metrics
presented in this paper.

References

1. D. W. Aha and R. L. Goldstone. Learning attribute relevance in context in
instance-based learning algorithms. In Proceedings of the Twelfth Annual Con-
ference of the Cognitive Science Society, pages 141-148, Cambridge, MA, 1990.
Lawrence Earlbaum.

2. D. W. Aha and R. L. Goldstone. Concept learning and flexible weighting. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
pages 534-539, Bloomington, IN, 1992. Lawrence Earlbaum.

3. P. Avesani, A. Perini, and F. Ricci. Interactive case-based planning for forest fire
management. Applied Artificial Intelligence, 1999. To appear.

4. R. Bellazzi, S. Montani, and L. Portinale. Retrieval in a prototype-based case
library: A case study in diabetes therapy revision. In European Workshop on Case
Based Reasoning, 1998.

5. E. Blanzieri, M. Bucciarelli, and P. Peretti. Modeling human communication. In
First European Workshop on Cognitive Modeling, Berlin, 1996.

6. L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, University
of California, Berkeley, April 1996.

7. C. Cardie and N. Howe. Improving minority class prediction using case-specific fea-
ture weight. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 57-65. Morgan Kaufmann Publishers, 1997.

8. M. Cazzani. Metriche di similaritd eterogenee per il problema di recupero nei
sistemi di ragionamento basato su casi: studio sperimentale. Master’s thesis, Univ.
of Milano, 1998.

9. S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10:57-78, 1993.

10. T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Trans-
action on Information Theory, 13:21-27, 1967.

11. R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz. Trading MIPS and
memory for knowledge engineering. Communication of ACM, 35:48-64, 1992.

12. P. Domingos and M. J. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning, 29:103-130, 1997.



28

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

E. Blanzieri and F. Ricci

J. H. Friedman. Flexible metric nearest neighbour classification. Technical
report, Stanford University, 1994. Available by anonymous FTP from play-
fair.stanford.edu.

T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbour classifica-
tion. In U.M.Fayad and R.Uthurusamy, editors, KDD-95: Proceedings First Inter-
national Conference on Knowledge Discovery and Data Mining, 1995.

C. J. Merz and P. M. Murphy. UCI Repository of Machine Learning Databases.
University of California, Department of Information and Computer Science, Irvine,
CA, 1996.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

J. P. Myles and D. J. Hand. The multi-class metric problem in nearest neighbour
discrimination rules. Pattern Recognition, 23(11):1291-1297, 1990.

F. Ricci and P. Avesani. Learning a local similarity metric for case-based reason-
ing. In International Conference on Case-Based Reasoning (ICCBR-95), Sesimbra,
Portugal, Oct. 23-26, 1995.

F. Ricci and P. Avesani. Data compression and local metrics for nearest neighbor
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1999. To appear.

D. W. Scott. Multivariate Density Estimation: Theory , Practice, and Visualiza-
tion. John Wiley, New York, 1992.

R. D. Short and K. Fukunaga. A new nearest neighbour distance measure. In
Proceedings of the 5th IEEE International Conference on Patter Recognition, pages
81-86, Miami beach, FL, 1980.

R. D. Short and K. Fukunaga. The optimal distance measure for nearest neighbour
classification. IEEE Transactions on Information Theory, 27:622-627, 1981.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communication of
ACM, 29:1213-1229, 1986.

D. Wettschereck and T. G. Dietterich. An experimental comparison of the nearest
neighbor and nearest hyperrectangle algorithms. Machine Learning, 19:5-28, 1995.
D. Wettschereck, T. Mohri, and D. W. Aha. A review and empirical comparison
of feature weighting methods for a class of lazy learning algorithms. AI Review
Journal, 11:273-314, 1997.

D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 11:1-34, 1997.



Active Exploration in Instance-Based Preference
Modeling

L. Karl Branting

Department of Computer Science
University of Wyoming
P.O. Box 3682
Laramie, WY 82972, USA

karlQuwyo.edu

Abstract. Knowledge of the preferences of individual users is essen-
tial for intelligent systems whose performance is tailored for individ-
ual users, such as agents that interact with human users, instructional
environments, and learning apprentice systems. Various memory-based,
instance-based, and case-based systems have been developed for prefer-
ence modeling, but these system have generally not addressed the task
of selecting examples to use as queries to the user. This paper describes
UGAMA, an approach to learning preference criteria through active ex-
ploration. Under this approach, Unit Gradient Approximations (UGAs)
of the underlying quality function are obtained at a set of reference points
through a series of queries to the user. Equivalence sets of UGAs are then
merged and aligned (MA) with the apparent boundaries between linear
regions. In an empirical evaluation with artificial data, use of UGAs as
training data for an instance-based ranking algorithm (1ARC) led to
more accurate ranking than training with random instances, and use of
UGAMA led to greater ranking accuracy than UGAs alone.

1 Introduction

Knowledge of the preferences of individual users is essential for intelligent sys-
tems whose performance is tailored for individual users, such as advisory agents
and self-customizing systems. While some simple preferences are easily elicited
(e.g., the preference for one soft-drink over another), more complex preference
criteria may be difficult or extremely inconvenient for users to articulate (e.g.,
preferences among designs, schedules, plans, or other configurations).

A variety of approaches to automated preference acquisition are possible,
varying in the attentional cost, or cognitive load, that they impose on the user. At
one extreme is a priori knowledge, such as group membership, stereotypes, and
default models, which can be determined at no attentional cost to the user. For
example, collaborative filtering systems typically base their preference models on
easily-obtained group membership information [GNOT92]. A second approach
that has no attentional cost is passive observation, simply recording the user’s
choices.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 29-43, 1999
© Springer-Verlag Berlin Heidelberg 1999



30 L.K. Branting

A more active approach is the “candidate/revision” or “learn-on-failure” ap-
proach, under which the system makes suggestions based on its current model
and revises the model whenever a suggestion is rejected. This approach has been
applied to text retrieval [HGBSO98], telescope observing schedules [BB94], ac-
quisition of “interface agents” [MK93], calendar management [DBM*92], and
information filtering [Mae94].

At the opposite end of the spectrum of demands on the user from passive
learners are approaches involving queries posed to the user. One approach to
querying the user is criteria elicitation, in which the user’s preference criteria
are explicitly elicited through an extended interview process [KR93]. The atten-
tional and time costs of explicit criteria elicitation make it infeasible for most
automated systems. However, exploration, querying the user with pairs to be
ranked (or larger collections from which the best instance should be selected)
can potentially lead to faster acquisition of preference models than passive ob-
servation with less burden on the user than explicit criteria elicitation.

The choice among the methods for acquisition of user-specific information
depends on the relative importance of the accuracy of the preference model and
the cognitive load on the user. If the burden on the user is unimportant and
accuracy of the preference model is of paramount importance, then a lengthy
elicitation process should be followed. If, by contrast, no queries of any sort are
permitted, then only a priori information and passive observations are available.

If, as is more typically the case, a small number of elicitations, such as can-
didates or queries, are permitted, the timing and contents of the elicitations
are critical for maximizing the trade-off between ranking accuracy and cognitive
load.

This paper describes UGAMA, an approach to acquiring instances for learn-
ing preference criteria through active exploration. The next section defines the
preference learning task and describes previous approaches to preference learn-
ing by passive observation. Section 3 describes UGAMA, and Section 4 sets forth
an empirical evaluation showing that for many target quality functions UGAMA
leads to much faster acquisition of preference criteria than learning with an equal
number of random observations. The scope of the results and its implications
for representation design are described in the last section.

2 The Preference Learning Task

The preference learning task arises in many domains—typified by design and
configuration problems—in which the relevant characteristics of problem-solving
states can be identified by users or by experts, but users differ as to or are
unable to articulate evaluation criteria for problem solving states in terms of
these attributes.

For example, in the task of modeling individual preferences for two-dimensional
designs, experts in design can identify the characteristics of designs that deter-
mine their quality, such as symmetry, contrast, and balance. Moreover, each of
these characteristics can be expressed as a numerical or symbolic feature. But



Active Exploration in Instance-Based Preference Modeling 31

the precise manner in which these characteristics combine to determine the over-
all effectiveness of a design varies with each individual and is quite difficult for
a given individual to articulate. Similarly, in the personal scheduling task, the
relevant characteristics of schedules may be easy to identify, but their relative
importance and interaction may both vary among individuals and be difficult
for each individual to articulate.

A preference of user u is a binary relation, P, such that P,(S1,S2) is satis-
fied whenever user u prefers S; to Ss. Various approaches have been taken to
representing such relations. One approach rests on the assumption that a value
function, v,(S), expressing the quality of state S, underlies P, [KR93]. Thus,
P, (S, Ss) is satisfied whenever v, (S1) > v,(S2). A second approach subsumes
preference model acquisition under supervised concept acquisition by viewing the
problem of determining whether state S; is preferred to state S» as equivalent
to determining whether the concatenation of S; with Ss, concat(Si, S2), is an
instance of the category “is-preferred-to.” Under this approach each ranked pair
< 81,82 > for which P,(S,S2) is converted into a pair of training instances:
concat(Sy, S2) € “is-preferred-to” and concat(Sy,S2) ¢ “is-preferred-to”. For
example, perceptron learning and decision-tree induction were applied to pref-
erence acquisition in [US87], [UC91], and [CFR91].

A third, intrinsically instance-based, approach represents preference pairs
as arcs in feature space and ranks new pairs through nearest-neighbor algo-
rithms, such as 1ARC or CIBL [BB94,BB97]. For example, the set of ranked
pairs {P,(A, B), P,(C, D) (E F)} can be represented as shown in Figure 1

by the preference arcs AB CD and EF (where AB P,(A, B)).

featurel

feature2

Flg 1. X is ranked hlgher than Y by 1ARC because of the match between hypothesis

XY and preference arc EF The dissimilarity between XY and EF is the sum of the
Euclidean distances represented by dotted lines.

In the IARC algorlthm a new pair of objects, X and Yis ranked by determin-
ing whether X Y or YX has the better match to a ranked pair in the training set.

The dissimilarity between a hypothesis, e.g., X Y, and a ranked pair is measured



32 L.K. Branting

by the sum of the Euclidean distances between (1) Y and the tail of the ranked
pair and (2) X and the head of the preference pair. In Figure 1, for example, the

— —
ranked pair EF best matches XY with a dissimilarity of dist(Y, F)+dist(X, E),
represented by the sum of the lengths of the dotted lines. The best match for

the alternative hypothes1s YX is determined in the same way. In this case, X Y

matches ranked pair EF more strongly than YX matches any ranked pair, so
P,(X,Y) is predicted.

Common to all these previous approaches to preference predicate acquisition
is the assumption that the learning algorithm has no control over the choice of
instances.

3 UGAMA

This section explores the implications of relaxing the assumption that a pref-
erence learning is not permitted to choose instances to learn from, proposing
an approach based on two ideas: acquisition of Unit Gradient Approximations
(UGAs); and merging and alignment of UGAs with respect to inflections (i.e.,
changes in derivative sign in the underlying quality function (UGAMA).

3.1 Unit Gradient Approximations

An estimation of the gradient of a quality function at a single point in feature
space can be obtained as follows. Let R be a point (termed a reference point) in
feature space. For each dimension d, create a pair < R_4, Ry4 > by subtracting
(respectively, adding) a small increment § from (to) the value of R in the d
dimension. If the user ranks < R_g4, R4 > as equal, the d dimension is irrelevant
at R. If R_4 is ranked better than R4, ) has negative slope with respect to d
at R; if Ry 4 is preferred, the slope is positive at R. For example, Figure 2 shows
how points P1 and P2 are § larger and smaller, respectively, than reference point
R in dimension 1, and points P3 and P4, are § larger and smaller, respectively,
than R in dimension 2. If user ranks P, (P2, P1) and P, (P4, P3), the UGA has
a slope of < 1,—1 >.

If there are n dimensions, then n queries are sufficient to determine the
relevance and Bolarity of each dimension. This information can be expressed in

a single pair, HT, called a unit gradient approzimation (UGA), in which H and
T are identical to R in irrelevant dimensions, H is § greater than and T' ¢ less
than R in dimensions with positive slope, and H is  less than and T' ¢ greater
than R in dimension with negative slope.

If the quality function happens to be a linear function whose coefficients are
all either k, —k, or 0, for some constant k, then the UGA will be parallel to the
gradient of the function.! Under these circumstances, a single UGA is a sufficient

! For example, suppose that the quality function Q(x1,x2, 3, T4) = 221 —2x3+224, the
reference point is < .5,.5,.5,.5 >, and 6 = .1. Under these circumstances, the UGA



Active Exploration in Instance-Based Preference Modeling 33

dimension 1 dimension 1
A A
P1
5
p3 0 8 py R
5
P2
dimension 2 dimension 2

Fig. 2. Determining the relevance and polarity of each dimension, and forming a UGA.
If user ranks P, (P2, P1) and P,(P4, P3), the UGA has a slope of < 1,—-1 >

training set for 1ARC to achieve perfect accuracy, that is, correctly rank all pairs
(see Theorem 1, Appendix). As shown in Table 1, ranking accuracy given a 4-
dimensional linear function defined on [0, 1]* with 50% irrelevant features is 100%
for both perceptron and 1ARC with a single UGA as training data, as compared
to only 69.9% for IARC and 71.1% for perceptron with a training set consisting
of 4 random instances (in 10 trials of 128 random test cases each).

Table 1. Ranking accuracy with linear quality function in 4 dimensions, two of which
are irrelevant and two of which have identical weights.

1ARC|Perceptron
Random| 69.9 71.1
UGA 100 100

Of course, if the coefficients of the underlying quality function differ by factors
other than 1, —1, or 0, the UGA will no longer be parallel to the gradient and
will therefore no longer guaranteed to rank new pairs correctly. For example,
given quality function Q(z1,...,z,) = > i, 2'z;, the ranking accuracy with a
single UGA is considerably lower than with unit weights. However, as shown
in Table 2, the ranking accuracy is still higher than with an equal number of
random instances (4 dimensions, 10 trials of 128 test cases each). In practice,
such extreme variations in the weight of relevant attributes coefficients (i.e., in
the coefficients of the quality function) seem unlikely.

will be (< .6, .5, .4,.6 >< .4,.5,.6,.4 >). The slope of this instance is< .2,0, —.2,.2 >,
which is parallel to the gradient of Q, < 2,0, —2,2 >.



34 L.K. Branting

Table 2. Ranking accuracy with linear quality function in 4 dimensions with coefficient
2¢ for dimension d.

1ARC|Perceptron
Random| 67.6 72.2
UGA 79.9 80.0

3.2 Inflected Quality Functions

The nature of the quality function underlying a person’s preferences depends
both on the preferences themselves and on the representation of the attributes
used to characterize the instances. A quality function may be linear when de-
fined on an optimal set of attributes, but nonlinear when defined on suboptimal
attributes. Ideally, a preference learning task should be defined in such a way
that user’s quality functions defined on those attributes should be linear. But
in practice it seems unlikely that a representation guaranteed to lead to linear
quality functions for all users can be found for all domains.

For example, the width-to-height ratio of two-dimensional designs is a factor
that affects many peoples’ preferences for designs. Some people may prefer a
width-to-height ratio near the “golden mean,” (1+4+/5)/2, while others may pre-
fer a unit width-to-height ratio. If the width-to-height ratio attribute of designs
were replaced with a distance-from-golden-mean attribute, the function would
become linear in the attribute for people in the first group, but the unit width-
to-height ratio would be indistinguishable from /5 (since both are an equal
distance from (1 ++/5)/2). Similarly, if a distance-from-unit-ratio attribute were
used, the golden mean could no longer be distinguished from 2 — (1 + v/5)/2.
Thus, width-to-height ratio itself must be used as a feature if both preferences
are to be precisely expressible. However, if the width-to-height ratio is used, then
there will be an inflection in the quality function at the golden-mean for people
in the first group and at 1 for people in the second group. This example shows
that it may not always be feasible to devise a representation that is linear in
all attributes because users may differ as to the values of an attribute that they
consider optimal.

Clearly, a single UGA is not sufficient to represent a preference predicate
based on a nonlinear quality function. If the quality function has inflections,
then multiple UGAs must be obtained. Ounly if at least one UGA has been
obtained for each linear region is an accurate preference model possible. Since
each UGA requires n queries, where n is the number of dimension, the user’s
patience is likely to be exhausted if the number of dimensions and linear regions
is high. Therefore, it appears that the key condition under which an algorithm
for preference acquisition through exploration must work is when the number of
inflections in the users’ quality function is greater than zero but not too large.

A single perceptron is not capable of expressing nonlinear concepts. However,
the TARC algorithm is capable of modeling nonlinear quality functions provided
that there is at least one ranked pair per linear region. This suggests the strategy



Active Exploration in Instance-Based Preference Modeling 35

of eliciting a set of UGAs at random points and using them as the training set
for 1ARC.2

feature 1
‘ inflection
C
A
B/(E F D

> feature 2

.
Flg 3. The pair < E, F > for which Q( ) > Q(F), is misranked because F'E matches
AB more closely than EF matches C’D

The limitation of this approach is that because 1ARC is a nearest-neighbor
algorithm, the position of the UGAs within each linear region affects ranking
accuracy. An example is illustrated in Figure 3, in which the dotted line repre-

sents the 1nﬂect10n between two linear reglons Since AB is much nearer to the

inflection than CD the FE matches AB more closely than EF matches CD
As a result, the pair < E, F' > is misranked.

3.3 Merging and Aligning UGAs

Merging and alignment is a procedure to reduce this effect. As set forth in Fig-
ure 4 and illustrated in Figure 5, UGAs with identical slopes that are closer to
each other than to UGAs with different slopes are merged. Merging a set S of

arcs consists of forming the arc H,:: Ty, where H,, is the mean of the heads
of the arcs in S and T, is the mean of the tails of the arcs in .S. The merged
UGAs from adjacent regions are then displaced, without changing their slope,
until their heads (or tails, if the tails are closer to each other than the heads)
coincide at the midpoint between their original positions. The purpose of this
displacement is to align the endpoints of the UGAs so as to coincide as closely
as possible with the inflection in the quality function. Choosing the midpoint
of the heads (or tails) is simply a heuristic for estimating the position of the
inflection. As shown in Theorem 2, Appendix, if two arcs each parallel to the

2 Of course, if domain knowledge exists from which one point per linear region can be
selected, this knowledge should be used to create the minimal set of UGAs. However,
in the general case it is not known how many linear regions there are.



36 L.K. Branting

Procedure MERGE-AND-ALIGN (UGASET)
Input: UGASET is a list of UGAs
Output: UGAMASET is list of merged and aligned UGAs
1. Let MERGERS and UGAMASET be {}
2. Let ECLASSES be a partition of UGASET into sets with equal slope
3. For each class C in ECLASSES do
a. Let SC be a partition of C into the largest sets such that every
member of SC is closer to some other member of SC than to any member
of UGASET with a different slope.
b. For every partition P in SC do
Add the arc M consisting of mean of every arc in P to MERGERS
4. For each pair of arcs (A1, A2), where Al, A2 are in MERGERS
LET M be the mean of Al and A2.
IF A1 and A2 have different slopes AND M is closer
to Al [equivalently, A2] than to any other arc in MERGERS
THEN {IF the heads of Al and A2 are closer to each other than the tails
THEN {Let A1’ and A2’ be the result of displacing Al and A2 so that
their heads coincide at the mean of the heads’ original positions}
ELSE {Let A1’ and A2’ be the result of displacing Al and A2 so that
their tails coincide at the mean of the tail’s original positions}
Add A1’ and A2’ to UGAMASET.}
5. Return UGAMASET

Fig. 4. The merge-and-adjust algorithm.

gradient are symmetric around a single inflection and share a common endpoint,
1ARC will correctly rank all pairs, given the two arcs as a training set. The
entire procedure of forming UGAs through successive queries, then merging and
aligning the UGAs is termed UGAMA.

4 Experimental Evaluation

Theorem 2’s guarantee of ranking correctness does not extend to functions with
multiple inflections. How well does UGAMA perform with functions with mul-
tiple inflections, which are likely to be more typical of actual user quality func-
tions? To answer this question, an evaluation was performed with a set of arti-
ficial quality functions.

The experiments were performed on a 4-dimensional feature space, [0, 1]*
with 6 artificial quality functions intended to resemble human quality func-
tions. The first quality function, independent, shown in Figure 6, is linear in
even-numbered dimensions and inflected at 0.5 in odd-numbered dimensions.
This corresponds to a domain, like 2-dimensional design, where some dimen-
sions (e.g., width-to-height ratio) are inflected and others (e.g., balance) are
not. In dependent the quality function is inflected in the sum of successive
pairs of dimensions, e.g., for 2 dimensions if d1 + d2 < 1, Q(d1,d2) = d1 + d2,
otherwise Q(d1,d2) = 2 — (d1 + d2). This corresponds to a quality function



Active Exploration in Instance-Based Preference Modeling 37

feature 1 feature 1 X . feature 1 . X
inflection inflection

inflection

Merge Align
/ \ B —

/:’E E

feature 2 feature 2 feature 2

Fig.5. An example of merging and aligning UGAs. The pair < E,F >, incorrectly
ranked by the original UGAs, is correctly ranked by the merged and adjusted UGAs

Independent

Fig. 6. The 2-dimensional analog of quality function independent. The vertical axis
represents quality as a function of two features.

with pairwise interactions between dimensions. In sinusoid .5, @) is the sine
of the sum of the dimensions normalized to range from [0..7]. Exponential is

Q(dl1,d2,d3,d4) = 1 — eV (d12+d224+d37+d4%) /4 Ty gouble fold, shown in Fig-
ure 7,  consists of 4 linear regions with inflections perpendicular to the line
dl = d2 = d3 = d4, and pyramid consists of 4 linear regions intersecting at
(0.5,0.5,0.5,0.5).

In each test, 8 random reference points were selected to create 8 UGAs
(through 32 queries to the test function). The accuracy in ranking randomly
selected pairs using the UGAs both before and after merging and alignment was
compared to accuracy using 32 random instances. Each function was tested with
10 repetitions of 128 random testing instances each.

Figure 8 sets forth the results using 1ARC as the learning mechanism. For
each function, UGAs resulted in higher ranking accuracy than did the random
training instances, and merging and alignment produced an additional improve-
ment in every function except exponential. Merging and alignment produces
no improvement in exponential because merging results in a single arc.

Non-instance-based learning methods are benefited relatively little by the
UGAMA approach. Briefly, perceptron performs at the chance level on inflected
quality functions. UGAMA does not improve the performance of decision-tree in-




38 L.K. Branting

double fold

Wi
e

Fig. 7. The 2-dimensional analog of quality function double-fold. The vertical axis
represents quality as a function of two features.

duction (ID3) or backpropagation, which perform with random instances, UGAs,
and UGAMA at approximately the same level as 1ARC given random instances.
This result is consistent with previous research, which has shown that instance-
based learning methods tend to work better than greedy generalizers when there
is a very small number of training instances [BB97,Aha92], such as result from
the elicitation of UGAs. Identification of exploration techniques that are appro-
priate for these alternative preference-learning methods is an open question.

5 Conclusion

This paper has presented an approach for acquiring instance-based preference
models through active exploration. The empirical evaluation showed that UGAMA
lead to more rapid acquisition of preference predicates than training sets of ran-
dom instances. The results with independent showed that a ranking accuracy of
over 80% can be obtained on a quality function with inflections in 2 different
dimensions after 32 queries.

The next step in research in acquisition of preference predicates through
exploration should be testing with human subjects. The actual complexity of
human preference criteria in representative domains is unknown. The perfor-
mance requirements for preference acquisition algorithms will be better under-
stood when there are well-analyzed sets of human preference data. A second
issue in human preference testing is the number of queries that users will tol-
erate. This probably depends on the complexity of the instances being ranked
and on the level of useful assistance that can be expected from the investment of
users’ effort. A third issue is the amount of noise or inconsistency in human pref-
erence rankings. This factor determines the extent to which preference learning
algorithms must be noise tolerant.

In view of the dramatic effect that quality function complexity has on the
number of instances needed to learn a preference model, design of representations



Active Exploration in Instance-Based Preference Modeling 39

EHrandom
UGA
OUGAMA

k. Vramiy

|
©
2
8
3
ES
%)

dependen{
doub/e fOIQ'

[S)

Xponentla/

N
(Z:)
T
<
g
()
o
£

Fig. 8. A comparison of the ranking accuracy of 1ARC using random instances, UGAs,

and UGAMA on 6 quality functions.

for which users’ quality functions are as nearly linear as possible is clearly essen-
tial. However, in many domains some nonlinearity appears to be unavoidable.

The UGAMA approach may therefore be a valuable tool for active preference

predicate acquisition for such domains.

Acknowledgments

This research was supported in part by a German-American Fulbright Commis-
sion Senior Scholars grant, a University of Wyoming Flittie sabbatical award,
and the University of Kaiserslautern Center for Learning Systems and Applica-

tions. .
Appendix

Theorem 1.
With a training set consisting of a single preference instance parallel to the

gradient of a linear quality function, IARC correctly ranks all pairs with respect

to the quality function.

Proof.
., Tp) = Y& a;x; be a linear quality function of n features. The

Let Q(.’I}l, ..
gradient of Q is the vector G=< a1,...,a, >. A ranked pair parallel to G in

feature space must be of the form

Po(A,B) = (< ur +car, ..., up + cap >< U,..., Uy >) (1)



40 L.K. Branting

where c is a positive constant.
Let (W,Z) = (< wy,. .. > Wn >< 21, >) be a testing pair. 1ARC ranks
W and Z by ﬁndlng whether AB more closely matches WZ or Z W . The distance

between AB and WZ is
dist(A,W) + dist(B, Z) = Y [(u; + ca; —w;)? + (u; — 2)°] (2)

i=1

— —
Similarly, the distance between AB and ZW is
dist(A,W) + dist(B, Z) = Z[(ul +ca; — ;) + (u; — w;)?] (3)

i=1
Thus, 1ARC will rank W as preferable to Z only if

n

> [(ui + cai — wi)? + (u; — 2)°] <D _[(wi + cai — 2;)* + (u; —w;)?]  (4)

i=1 i=1

However, this inequality can be simplified to

n n
Zwiai > Zziai (5)
i=1 i=1

which is equivalent to Q(W) > Q(Z).
Similarly, IARC will rank Z as preferable to W only if

n

> [(ui + cai —wi)? + (u; — 2)°] > > _[(wi + ca; — 2;)* + (u; —w;)*]  (6)

i=1 i=1

which can be simplified to

n n
Zwiai < Zziai (7)
i=1 i=1

which is equivalent to Q(W) < Q(Z). Thus, the single training pair Pg(A,B)
correctly ranks all testing pairs with respect to Q.

Theorem 2.

Let Q be a piecewise linear function symmetrical around a single linear inflec-
tion, that is, let the components of the slope on both sides of the inflection have
the same magnitude, but let at least one component differ in sign. Then with a
training set consisting of two ranked pairs that (1) share a common endpoint, (2)
are reflections of one another across the inflection, and (3) are each parallel to
the gradient of the quality function, 1ARC correctly ranks all pairs with respect

to Q.



Active Exploration in Instance-Based Preference Modeling 41

Proof.
Assume without loss of generality that the shared endpomt is the preferred point,

as pictured in Figure 9 for training pairs E1 E5 and E1E3 (an analogous argu-
ment can be made if the shared endpoint is the less-preferred point). Any two

E2

Fig. 9. The inflection between two linear regions is indicated by the dotted line.

pairs to be ranked must either both be on the same side of the inflection or they
must be on different sides of the inflection.

(a) Same side
Let A and B be points to be ranked, and suppose that their actual ranking is

-
AB, ie., Q(A) > Q(B) (if not, rename the points). Under Theorem 1,

dist(A, Ey) + dist(B, Es) < dist(A, E>) + dist(B, Ey) (8)
— — —
That is, AB is correctly ranked by Ey Es. Thus, AB could be misranked only
if

However, since F» and E3 are symmetrical across the inflection, the inflection
represents the set of points equidistance from E» and E3. Any point on the same
side of the inflection as E, is closer to Eo than to Es. Therefore, dist(A, E3) >
dist(A, Es), so

Inequalities 8 and 10 together imply that:

dist(A, Ey) + dist(B, Es) < dist(A, E3) + dist(B, E) (11)



42 L.K. Branting

— —
which contradicts inequality 9. Therefore, AB will be correctly ranked by E; Es.

(b) Different sides
Let A and B’ be points to be ranked, and again suppose without loss of generality
—

that their actual ranking is AB'.

&
AB' could not be incorrectly ranked unless either
dist(A, Es) + dist(B', Ey) < dist(A, Ey) + dist(B', E3) (12)
or

dZSt(A, E3) + dZSt(B’, El) < dZSt(A, El) + dZSt(BI, E3) (13)

Let B be the reflection of B’ across the inflection and let A’ be the reflection
of A across the inflection. Then

dist(B, Es) = dist(B', E3). (14)
and
dist(A,Ey) = dist(A', Ey) (15)
Theorem 1 implies that
and
dist(A', Ey) + dist(B', E3) < dist(A', E3) + dist(B', E) (17)

Substituting dist(B’, Es) for dist(B, E2) in 16 we obtain:

which contradicts 12. Moreover, substituting dist(A, E;) for dist(A’, E;), and
dist(A', E3) for dist(A, E2) in 17 we obtain:

dist(A, Ey) + dist(B', E3) < dist(A, E3) + dist(B', Ey) (19)
which contradicts 13.
Since, dist(A, Ey) + dist(B’, E3) is less than either dist(A, E2) + dist(B', Ey)
or dist(A, E3) + dist(B', Ey), AB’ will be correctly ranked by E1E3

References

[Aha92] D. Aha. Generalizing from case studies: A case study. In Proceedings of
the Ninth International Workshop on Machine Learning, pages 1-10, 1992.

[BB94] P. Broos and K. Branting. Compositional instance-based learning. In
Proceedings of the Twelfth National Conference Conference on Artificial
Intelligence (AAAI-94), Seattle, Washington, July 31-August 4, 1994.



[BBY7]

[Bra99]

[CFRO1]

[DBM 192

[GNOT92]

Active Exploration in Instance-Based Preference Modeling 43

K. Branting and P. Broos. Automated acquisition of user preferences.
International Journal of Human-Computer Studies, 46:55—77, 1997.

K. Branting. Learning user preferences by exploration. In The Sizteenth
International Conference on Machine Learning, 27-30 June 1999 1999.
Under review.

J. Callan, T. Fawcett, and E. Rissland. Adaptive case-based reasoning. In
Proceedings of the Third DARPA Case-Based Reasoning Workshop, pages
179-190. Morgan Kaufmann, May 1991.

L. Dent, J. Boticario, J. McDermott, T. Mitchell, and D. Zabowski. A
personal learning apprentice. In Proceedings of Tenth National Conference
on Artificial Intelligence, pages 96-103, San Jose, CA, July 12-16 1992.
AAAT Press/MIT Press.

D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative fil-
tering to weave an information tapestry. Communications of the ACM,
35(12):61-70, 1992.

[HGBSO098] Ralf Herbirch, Thore Graepel, Peter Bollmann-Sdorra, and Klaus Ober-

[KR93]
[Mae94]

[MK93]

[UC91]

[US87]

mayer. Learning preference relations for information retrieval. In Pro-
ceedings of the AAAI-98 Workshop on Learning for Text Categorization.
AAAT Press, July 26-27 1998.

R. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences
and Value Tradeoffs. Cambridge University Press, second edition, 1993.
P. Maes. Agents that reduce work and information overload. Communi-
cations of the ACM, 37(7):31-40, 1994.

P. Maes and R. Kozierok. Learning interface agents. In Proceedings of
Eleventh National Conference on Artificial Intelligence, pages 459466,
Washington, D.C., July 11-15 1993. AAAT Press/MIT Press.

P. Utgoff and J. Clouse. Two kinds of training information for evalua-
tion function learning. In Proceedings of Ninth National Conference on
Artificial Intelligence, pages 596-600, Anaheim, July 14-19 1991. AAAI
Press/MIT Press, Menlo Park, California.

P. Utgoff and S. Saxena. Learning a preference predicate. In Proceedings of
the Fourth International Workshop on Machine Learning, pages 115-121,
1987.



A Multiple-Domain Evaluation of
Stratified Case-Based Reasoning

L. Karl Branting and Yi Tao
Department of Computer Science
University of Wyoming
Laramie, WY, USA

karl@uwyo.edu

Abstract. Stratified case-based reasoning (SCBR) is a technique in which case
abstractions are used to assist case retrieval, matching, and adaptation. Previous
work has shown that SCBR can significantly decrease the computational
expense required for retrieval, matching, and adaptation under a variety of
different problem conditions. This paper extends this work to two new domains:
a problem in combinatorial optimization, sorting by prefix reversal; and
logistics planning. An empirical evaluation in the prefix-reversal problem
showed that SCBR reduced search cost, but severely degraded solution quality.
By contrast, in logistics planning, use of SCBR as an indexing mechanism led
to faster solution times and permitted more problems to be solved than either
hierarchical problem solving (by ALPINE) or ground level CBR (by SPA)
alone. The primary factor responsible for the difference in SCBR’s performance
in these two domains appeared to be that the optimal-case utility was low in the
prefix-reversal task but high in logistics planning.

1 Introduction

Human problem solvers exhibit great flexibility in reasoning both with specific cases
and with abstractions derived from one or more cases [13]. A number of case-based
reasoning systems have modeled an important aspect of this flexibility: use of case ab-
stractions to guide case indexing, matching, and adaptation. Termed stratified case-based
reasoning (SCBR) in [4], this approach has been used for planning [3], [12], design of
control software [16], and route planning [4], [S]. A comparative analysis of various
approaches to using abstraction in CBR is set forth in [2].

Systematic empirical analyses set forth in [4] and [5] compared the performance of heu-
ristic search (A*), Refinement [11] (i.e., hierarchical problem solving), ground-level
CBR, and SCBR as a function of (1) number of levels of abstraction, (2) the size of the
case library, (3) resemblance among cases, and (4) whether the abstraction hierarchy
satisfies the downward-refinement property [1]. However, this evaluation was limited to
a route-finding domain in which there was a high liklihood, for typical problems and
case libraries, that the case library would contain a case that could be adapted to a solu-
tion to the problem as good as would be obtained through ab initio problem solving.
This liklihood, which depends on both the adaptation method and the case library cover-
age, is termed the optimal-case utility of the library and adaption method.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 44-58, 1999
© Springer-Verlag Berlin Heidelberg 1999



A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 45

This paper describes two sets of experiments in which SCBR was applied to alternative
domains. Section 2 describes the application of SCBR to a problem in combinatorial
optimization, sorting by prefix reversal. Section 3 describes a prototype application of
SCBR to logistics planning. These experiments suggest that optimal-case utility is a key
factor in the applicability of SCBR.

2 SCBR for Combinatorial Optimization
2.1 The Prefix-Reversal Problem

Sorting by reversals is the task of determining the minimum number of subsequence
reversals necessary to transform one sequence into another. This task, which arises in
molecular biology [15], has been shown to be NP-hard in the general case [6]. Sorting by
prefix reversals is a special case of this problem in which all reversals must be of se-
quence prefixes. Bounds for sorting by prefix reversals were derived in [8].

A prefix-reversal problem is given by specifying start and goal states, each represented
as a list of elements. An n-prefix-reversal problem is a prefix-reversal problem involving
permutations of an n-element sequence. For example, a 7-prefix-reversal problem is as
follows:

Start: (DGCEAFB)

Goal: (ABCDEFQG)

A solution is a sequence of operations, where each operator represents the length of the
prefix being reversed. For example, the solution to the problem above is (36457 45):

(DGCEAFB) (DEAFGCB) (EDCBAFQG)
.’ g Y
(CGDEAFB) (GFAEDCB) (ABCDEFG)
6¢ 7i
(FAEDGCB) (BCDEWAFG)

4 4

2.2 Abstraction for Prefix Reversal

A simple abstraction mechanism for the prefix-reversal problem is to simply drop from
the representation the object that occurs last in the goal state, thereby aggregating all
states that differ only in the position of this object into a single state. A solution to the
original problem can’t be any shorter than the solution to an abstraction of that problem,
so the solution length of the abstraction is an admissible distance heuristic, h*, for A*.
Moreover, if a solution is obtained for the abstract problem, then at most 4 additional



46 L.K. Branting and Y. Tao

operations are required to solve the original problem. This is because if there are n
objects, the operations (p, n, n-1, p-1) will move the pth object to last place without
altering the position of any other objects.

Refinement search [11] can be performed using this abstraction hierarchy by solving an
abstraction of the original problem, then using this solution as a heuristic for search at
the next lower level of abstraction. This process is repeated until the ground level is
reached. A very strong alternative heuristic for this problem counts the number for pairs
adjacent in the goal state that are not adjacent in the current state. This adjacent-pairs
heuristic is also admissible, because a prefix reversal can reduce the number of such
pairs by at most one.

2.3 Algorithms

To evaluate the effectiveness of SCBR at reducing search in this domain, four different
approaches were compared: A*, using the adjacent-pairs heuristic; refinement; ground-
level CBR (GRCL), which adapts every case in the library and returns the one with the
shortest adapted solution; and Reuse-Closest (RCL), an SCBR algorithm that starts with
the most specific matching cases (or the most abstract cases, if no cases match), finds
the refinements of each case, adapts each refinement (using A* to find the shortest adap-
tation paths from the start and goal positions to the solution path at that level of abstrac-
tion), and selects the refinements having the shortest adapted solution paths. All four
algorithms are described in detail in [4].

As in the route-finding problem described in [4], adaptation in RCL consisted of using
A* to find the shortest paths from the start and goal positions to the solution path at the
current level of abstraction to form a solution consisting of these paths concatenated
with a reused segment of the old solution. Thus, an adapted solution must include a
portion of the original solution.

2.4 Experimental Evaluation

The dependent variables of interest were search cost, as measured by the number of
nodes expanded by A*, and the solution quality, as measured by solution length. The
independent variables were:

e The number of abstraction levels (1,2,3,4)
e The size of case library (1,5,10,50,100,500,1000)

Experiments were performed with 8-prefix-reversal, and results were based on 1000
random test cases.

Varying the number of abstraction levels In the first experiment, the number of cases
in case library was fixed at 100 and the number of abstraction levels was varied from 1 to
4. As shown in Figure 1, the number of nodes expanded by A* and GRCL remained



A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 47

constant since these algorithms do not make use of the abstraction hierarchy. Refinement
performed slightly better than A*, indicating that abstract solution length is a good heu-
ristic in this domain. RCL expands the smallest number of nodes, given 3 or more ab-
straction levels.

2199
§ 9@ GRCL
=)
8.
2 800
m
3 700
9
o)
Z
G
o
S
)
e}
£ 250
: |
Z
9 200 A
: \
g 150] Refine-
< ment
100
RCL
50,
\ \ \
0 1 2 3 4

Number of abstraction levels

Fig. 1. Mean nodes expanded in 8-prefix-refersal as a function of the number of abstraction
levels.

Varying the Case Library Size Figure 2 shows the effect of varying the size of the case
library. The number of nodes expanded by A* and Refinement remained constant, be-
cause these algorithms do not use cases. The number of nodes expanded climbed steadily
for GRCL, but was relatively constant for RCL. Unfortunately, the smallest number of
nodes was expanded by GRCL with a case library consisting of a single case. Evidently,
a case library consisting of a single case reduces search by converting the original prob-
lem of searching for a path to a single state into two easier problems, each consisting of
a search for a solution path consisting of, on average, about 7.7 states.



48 L.K. Branting and Y. Tao

2229 _ GRCL
o)
Q
ho)
(=)
S,

200
8 A%
wn
Q
o)
2 Refine-
S 150 ment
o il
S
Q
Na)
£
2 100] RCL
(]
on
<
S
(]
>
< 50

1 \ \ \
0 5 10 50 100 500 1000

Number of Cases

Fig. 2. Mean nodes expanded in 8-prefix-refersal as a function of the number of cases.

Solution Length Tables 1 and 2 show mean solution lengths as a function of abstraction
levels (100-case library) and case library size (3 levels of abstraction), respectively.

Table 1. Mean Solution Lengths for 8-prefix-reversal as a function of the number of abstract

levels
A* HSOLVE GRCL RCL
1 abstract level 7.7 7.7 9.3 9.5
2 abstract levels 7.7 7.7 9.3 10.1
3 abstract levels 7.7 7.7 9.3 9.9
4 abstract levels 7.7 7.7 9.3 10.0

Since the adjacent-pairs heuristic is admissible, A* always finds a shortest solution path.
Moreover, Refinement also always finds the shortest path because it uses A* at every
level, and the length of the next more abstract solution is itself an admissible heuristic.
GRCL is guaranteed to return the case requiring the least adaptation. However, the con-
sistent value of 9.3 for the mean solution length obtained by GRCL indicates that the



A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 49

adaptation available to GRCL and RCL (splicing paths onto a reused portion of the old
solution) leads to decreased solution quality, even when applied to the most adaptable
case in the case library. This is because both problems and solutions are uniformly dis-
tributed through state-space in the prefix-reversal problem, so the likelihood that an
optimal solution to a new problem will involve reuse of a segment of an old solution is
quite low, even if the number of cases is high.

Table 2. Mean Solution lengths for 8-prefix-reversal as a function of the number of cases

A* HSOLVE GRCL RCL
1 case 7.7 7.7 10.5 10.5
5 cases 7.7 7.7 10.0 10.0
10  cases 7.7 7.7 10.1 10.1
50 cases 7.7 7.7 9.5 10.0
100 cases 7.7 7.7 9.3 9.9
500 cases 7.7 7.7 8.9 10.0
1000 cases 7.7 7.7 8.7 9.6

Since RCL can produce solutions no better than those produced by GRCL, the weakness
of the adaptation method guarantees that RCL cases are suboptimal as well. Moreover,
while RCL’s use of abstract cases to guide retrieval was much less expensive than GRCL’s
exhaustive matching, the higher mean solution length for RCL means that it did not
always find the case leading to the shortest solution.

2.5 Summary

The prefix-reversal experiment illustrated that SCBR can reduce search in a combinato-
rial optimization problem. However, the experiment also illustrated that SCBR cannot
compensate for a weak adaptation method that is incapable of producing solutions as
good as those found through ab initio problem solving.

3 Logistics Planning

The utility of using case abstractions for indexing and adaptation has been demonstrated
in planning domains characterized by task-decomposition abstraction hierarchies [3],
[12]. However, development of task-decomposition hierarchies is, in general, a difficult
and time-consuming task. The second experiment was designed to explore the feasibility
of using SCBR as an indexing technique using inexpensive ‘off-the-shelf” abstraction
hierarchies. In the early 1990s, several Ph.D. projects developed techniques for auto-
mated creation of abstraction hierarchies in the STRIPS formalism, e.g., [8], [14]. One
such system, ALPINE, is available to researchers as part of the PRODIGY [7] release
version 4 (www.cs.cmu.edu/afs/cs/project/ai-repository/). Alpine is guaranteed to pro-
duce abstraction hierarchies with the ordered monotonicity property [14], a weaker con-



50 L.K. Branting and Y. Tao

dition than the downward refinement property shown in [5] to contribute to (although
not to be essential to) the effectiveness of SCBR.

An evaluation of the relative contribution of hierarchical problem solving and CBR to
SCBR would have the most information value if it involved an ablation of each compo-
nent, that is, if the hierarchical problem solving, ground-level CBR, and ground-level ab
initio problem solving components were tested both in isolation and in combination.
However, writing a planning system that embodied every combination of these factors
was a task beyond the scope of this exploratory project. We therefore selected SPA
([10], aleast-commitment generative planner with very simple and general case-retrieval
and adaptation mechanisms, as our main planning engine. SPA has no mechanism for
hierarchical problem solving, however, so we used ALPINE as our hierarchical problem
solver.

The logistics problem domain, taken from the PRODIGY version 4.0 release, includes
14 predicates and 6 operators in STRIPS notation. Problems in this domain involve
transportation of objects between various locations through a combination of truck and
airplane operations. A logistics transportation problem is given by initial state and a goal
state specification. The description of an initial (or any other) state is composed of a list
of objects and their corresponding types together with a set of instantiated predicates
(i.e. literals) that describes the configuration of those objects. For example, Problem 5 in
our test set can be depicted graphically as follows:

Initial State:
e
cityl city2

s oo E

pol airpl airp2 po2
Goal State :

1
pol airpl airp2 po2

Fig. 3. A Logistics Transportation problem



A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 51

In STRIPS notation, the problem is as follows:

(init
‘' ((object ol)
(pos-office pol)
(pos-office po2)
(airplane pl)
(truck t1)
(truck t2)
(airport airpl)
(airport airp2)
(city cl)
(city c2)
(loc-at airpl cl)
(loc-at pol c1)
(part-of tl c1)
(loc-at airp2 c2)
(loc-at po2 c2)
(part-of t2 c2)
(same-city airpl pol
(same-city pol airpl
(same-city airp2 po2
(same-city po2 airp2
(at-obj ol pol)
(at-truck tl airpl)
(at-truck t2 airp2)
(at-airplane pl airpl)))
(goal ' ( (at-obj ol airp2)))

)
)
)
)

One plan for this problem is :

(DRIVE-TRUCK T1 AIRP1 PO1)
(LOAD-TRUCK O1 T1 PO1)
(DRIVE-TRUCK T1 POl AIRP1)
(UNLOAD-TRUCK O1 T1 AIRP1)
(LOAD-AIRPLANE Ol P1 AIRP1)
(FLY-AIRPLANE P1 AIRP1 AIRP2)
(UNLOAD-AIRPLANE Ol1 P1 AIRP2)

3.2 Abstraction Hierarchy Creation

ALPINE’s problem-independent abstraction hierarchy creating algorithm, described in
[14], was applied to various sets of logistics problems. Unfortunately, most resulted in
hierarchies with only a single abstraction level. This illustrates a general pitfall of tech-
niques, like SCBR, that used abstraction hierarchies: techniques for automated creation



52 L.K. Branting and Y. Tao

of abstraction hierarchies are still in their infancy. Eventually, however, a set of 9 train-
ing cases and 14 testing cases were selected for which ALPINE created a 4-level ab-
straction hierarchy:

(Abstraction
(Static = loc-at same-city)
(Level-2 = at-obj
inside-truck
inside-airplane)

(Level-1 = at-airplane)
(Level-0 = at-truck)
:order

(Level-2 > Level-1 Level-0))
3.3 Case-Library Creation

Ground level cases for the case library were created using the SPA function plan-from-
scratch.. Abstract cases were then created bottom-up by the following algorithm:

Function AbstractCases (initial, goal, levels, hierarchies)
cases := nil;
plan := plan-from-scratch (initial, goal) ;
case := make-case(initial, goal, plan);
push (case, cases);
for i:=1 to levels-1 do

initial := drop-literals(initial, first (hierarchies)) ;
goal := drop-literals(goal, first (hierarchies)) ;
plan := fit-plan (initial, goal plan);

case := make-case(initial, goal, plan);

push (case, cases) ;
pop (hierarchies) ;
Return cases;

As in the route-finding domain, logistics cases with initial and goals that are distinct at
one level of abstraction may have identical initial and goal states at higher levels of
abstraction. The case library may therefore be organized as a forest as described in [4]
and illustrated in Figure 4. Note that abstraction is over states, and that abstract plans are

formed by adapting lower-level plans to solve the abstract problem.
3.4 Case Retrieval
In SCBR, the retrieval process starts at the most abstraction level of the case library.

After the best-matching of the most abstract cases is determined, the matching process is
repeated with the children of the best case until the ground level is reached. In this



Level 2

Level 1

Level 0

case51

A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

case52

Initial:

(at-obj ol pol)
Goal:

(at-obj ol airp2)
Plan:
(drive-truck ?truck? airp1 pol)
(load-truck ol ?truck5 pol)
(drive-truck ?truck6 pol airpl)
(unload-truck ol ?truck4 airpl)
(fly-airplane ?airplane3 airpl
airp2)
(load-airplane ol ?airplane2 airpl)
(unload-airplane ol ?airplanel
airp2)

case71

Initial:

(at-obj ol pol)

(at-airplane p1 airpl)
Goal:

(at-obj ol airp2)

Plan:
(drive-truck ?truck? airp1 pol)
(load-truck ol ?truck5 pol)
(drive-truck ?truck6 pol airpl)
(unload-truck ol ?truck4 airpl)
(load-airplane ol p1 airpl)
(fly-airplane p1 airpl airp2)

Initial:

(at-obj ol pol)

(at-airplane p1 airp2)
Goal:

(at-obj ol airp2)

Plan:
(drive-truck ?truck9 pol airpl)
(load-truck ol ?truck8 pol)
(fly-airplane p1 airp2 airpl)
(unload-truck ol ?truck? airpl)
(load-airplane ol p1 airpl)
(fly-airplane p1 airpl airp2)
(unload-airplane ol pl airp2)
(load-airplane ol p1 airp2)
(unload-airplane ol pl airp2)

(at-obj ol pol)

(at-truck t1 airpl)

(at-truck t2 airp2)

(at-airplane p1 airp1)
Goal:

(at-obj ol airp2)
Plan:
(drive-truck tl airpl pol)
(load-truck o1 t1 pol)
(drive-truck tl pol airpl)
(unload-truck o1 t1 airpl)
(load-airplane o1 p1 airpl)
(fly-airplane p1 airpl airp2)
(unload-airplane ol pl airp2)

case50 | case70 |
Prob5s Prob7
Initail: Initial:

(at-obj ol pol)

(at-truck t1 pol)

(at-truck t2 airp2)

(at-airplane p1 airp2)
Goal:

(at-obj ol airp2)

Plan:
(load-truck ol t1 pol)
(drive-truck tl pol airpl)
(fly-airplane p1 airp2 airpl)
(unload-truck ol t1 airpl)
(load-airplane ol p1 airpl)
(fly-airplane p1 airpl airp2)
(unload-airplane ol pl airp2)
(load-airplane ol p1 airp2)
(unload-airplane ol pl airp2)

Fig. 4. Case Library Structure

53



54 L.K. Branting and Y. Tao

application of SCBR to planning, the retrieval procedure at a given abstraction level
consists of two steps. First, the goals of new problem are matched against the goals of
each of the set of cases, and the case or cases with the greatest number of matches are
identified. If there are several cases whose goals match equally well, the SPA procedure
fit-plan is applied to each, and the candidate with the fewest open conditions is chosen as
the best. The process is repeated for the children of the current best match until the
ground level is reached. See [18] for details.

3.5 Experimental Procedure

In this experiment, 6 different planning algorithms were compared.

ALPINE. ALPINE performs hierarchical problem solving.

SPA. Ground-level, ab initio planning using the SPA procedure plan-from-scratch.

SPA-cbr. Ground-level cbr using plan-from-library, SPA’s case-based planner.

SPA-cbr-cascading. SPA-cbr with learning, i.e., each new case is added to the case
library.

SCBR. Uses the procedure described above for indexing and fiz-plan for adaptation

¢ SCBR-cascading. SCBR with learning.

Solvability It quickly became apparent that many of logistics problems were not solv-
able by all the algorithms within a reasonable time (less than 2 hours) even on a large lisp
server (indeed, the greatest barrier to an empirical evaluation of SCBR in this domain
was simply accumulating a sufficiently large corpus of problems that could be solved by
an ab initio, ground-level planner). The first experiment tested the ability of each algo-
rithm to solve the 14 test problems.

The 9 training cases, selected because they could all be solved by SPA plan-from-scratch
procedure, were given as training data to the CBR planners, SPA-cbr, SPA-cbr-cascad-
ing, SCBR, and SCBR-cascading. Fourteen test cases (set forth in [18]) were then pre-
sented, in order, to each algorithm. Problems that were not be completed in 2 hours were
considered unsolved.

Table 3 sets forth the results of this experiment. Cells containing an ‘X’ represent un-
solved problems. As shown in Table 3, the largest number of problems was solved by
SCBR-cascading, and the fewest were solved by ALPINE. Unexpectedly, SPA-cbr-cas-
cading performed no better than SPA-cbr. No method was able to solve problem 8.



A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 55

Table 3. Problems solvable by each algorithm.

Alpine | SPA SPA-cbr | SPA-cbr- SCBR SCBR-
cascading cascading

Probl
Prob2
Prob3
Prob4
Prob5
Prob6
Prob7
Prob8
Prob9
Prob10
Probl1
Prob12
Prob13
Probl14

XX | X | 2| <| 2| X | X [X [ |<2|<2|<2|<]

XX X | 2| <| 2| X | X [X [<|<2|<2|X |<]
XX | X | 2|2 2| X |2 | X [ |2 |2 |<2|<]
XX | X | 2| 2| 2| X | 2| X [ |2 |2 |<2|<]
XX | X | 2| 2| 2| X ||| |2 |2 |<2|<]
< |2 |2 |2 |2 |2 X [ |2 |2 |2 |< |2 <2

Solution Length The mean solution lengths of the six algorithms for the seven problems
that all could solve is set forth in Figure 5. The variation among solution lengths was
slight, with the shortest solutions produced by Alpine, SCBR, and SCBR-cascading.

e A
174]
s 3
2
=
o 7
=
%
= _—
£ o
- R—
=)
75
&
5 )
L
4
= /

\

Alpine SPA SCBR SCBR
-cbr -cbr -cascading
-cascading

Fig. 5. Average Solution Length for the logistics problems



56 L.K. Branting and Y. Tao

Execution Time The mean execution times of the six algorithms for the seven problems
that all could solve is set forth in Figure 6. Alpine outperforms SPA, SPA-cbr, and SPA-
cascading, but the lowest execution times were for SCBR and SCBR-cascading.

Time (ms)
14000
13000
6000
300
20
Alpine SCBR SCBR
-cbr -cbr -cascading
-cascading

Fig. 6. Mean Execution Time for 7 Planning Problems
3.5 Summary

In the logistics domain, SCBR-cascading solved the largest number of cases—13 of the
14 cases—followed by SCBR, which solved 12 cases. SCBR and SCBR-cascading had
the lowest execution times, and Alpine, SCBR, and SCBR-cascading tied for shortest
solution lengths.

4 Discussion

The results of the evaluation in the logistic planning domain are preliminary because of
the relatively small number of problems involved. However, the evaluation demonstrates
that use of abstract cases for indexing can produce improvements the performance of
planning systems given even a completely generic abstraction hierarchy and a general-
purpose planner. The faster execution time of SCBR and SCBR-cascading than SPA-cbr
and SPA-cbr-cascading given identical case libraries and an identical adaptation proce-



A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 57

dure indicates that SCBR led to retrieval of cases that were less expensive to adapt than
the cases retrieved by SPA’s ground-level retrieval mechanism.The shorter solution length
for SCBR and SCBR-cascading, identical to the solution length for Alpine, also indi-
cates that SCBR retrieved cases that more appropriate for each given problem.

The key distinction between the prefix-reversal task, a domain in which SCBR per-
formed poorly, and the domains in which SCBR performed well, including the route-
finding domain [4]and the logistics planning domain, appears to be that the optimal-case
utility was high in the latter two problems but low in the prefix-reversal problem. The
optimal-case utility was high in the logistics planning domain because the fit-case proce-
dure was capable of adapting a case to a high-quality solution even to a very dissimilar
problem. This is illustrated by the fact that SCBR-cascading did in fact solve every
problem but one using fit-case as the adaptation mechanism. SCBR’s ability to index the
most adaptable case therefore led to greatly improved performance. Similarly, in the
route-planning domain [4], the topography of the grids led to a high probability that any
two cases would overlap and therefore to a high optimal-case utility. By contrast, cases
were very unlikely to overlap in the prefix-reversal problem, and the adaptation mecha-
nism was incapable of adapting arbitrary cases to solutions as good as could be obtained
ab initio. As a result, the optimal-case utility, and therefore the performance of SCBR as
measured by solution quality, was low.

It has been widely recognized that adaptability is a more important criterion for case
retrieval than surface similarity to the current problem [17]. Unfortunately, the adapta-
tion costs of a given case cannot, in general, be determined without actually performing
the adaptation. However, the cost of adapting an abstraction of a case to an abstraction of
the current problem can be a very accurate heuristic for ground-level adaptation costs.
The logistics planning experiment demonstrates that SCBR is a general, domain-inde-
pendent approach to retrieval by adaptation cost. The prefix-reveral experiment indi-
cates, however, that SCBR nevertheless only reduces search cost when the adaptation
mechanism and case-library size assures that optimal-case utility is high.

Acknowledgements

This research was supported by NSF Faculty Early Career Development Grant IRI-
9502152, a German-American Fulbright Kommission Senior Scholar grant, a Flittie sab-
batical grant, and by the University of Kaiserslautern Center for Learning Systems and
Applications.

References

1. F. Bacchus and Q. Yang , Downward Refinement and the Efficiency of Hierarchical
Problem Solving, Artificial Intelligence, 71:43-100, 1996.

2. R. Bergmann and W. Wilke, On the Role of Abstraction in Case-Based Reasoning,
Advances in Case-Based Reasoning, Third European Workshop, Springer Verlag,
1996.



58 L.K. Branting and Y. Tao

3. R. Bergmann and W. Wilke, Building and Refining Abstract Planning Cases by
Change of Representation Language, Journal of Artificial Intelligence Research,
3:53-118, 1996.

4. L.K. Branting & D. W. Aha, Stratified Case-Based Reasoning: Reusing Hierarchi-
cal Problem Solving Episodes, Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, August, pp. 20
— 25, 1995.

5. L. K. Branting, Stratified Case-Based Reasoning in Non-Refinable Abstraction Hi-
erarchies, Proceedings of the Second International Conference on Case-Based Rea-
soning, Springer, pp. 519-530, July 1997.

6. A. Caprara, Sorting by Reversals is difficult, Proceedings of the First Annual Inter-
national Conference on Computational Molecular Biology, pp. 75-83, January 1997.

7. J. G. Carbonell, C. A. Knoblock, and S. Minton. Prodigy: An integrated architec-
ture for planning and learning, In K. Vanlehn, editor, Architectures for Intelligence,
Erlbaum, Hillsdale, NJ, 1990.

8. J. Christensen. A hierarchical planner that generates its own hierarchies. Proceed-
ings of the Eighth National Conference on Artificial Intelligence, pp.1004-1009,
AAAI Press:Boston, MA (1990).

9. W. H. Gates, Bounds for Sorting by Prefix Reversal, Discrete Mathematics, 27:47-
57 (1979).

10. S. Hanks and D. S. Weld, A Domain-Independent Algorithm for Plan Adaptation,
Journal of Artificial Intelligence Research 2:319-360, 1995.

11.R. Holte, C. Drummond, M. Perez, R. Zimmer, and A. MacDonald, Search With
Abstractions: A Unifying Framework and New High-Performance Algorithm, Pro-
ceedings of the Tenth Canadian Conference on Artificial Intelligence, Morgan
Kaufmann, pp. 263-270 (1994).

12. S. Kambhampti and J. Hendler, A Validation-Structure-Based Theory of Plan Modi-
fication, Attificial Intelligence 55:193-258, 1992.

13. G.Klein and R. Calderwood, How do People Use Analogues to Make Decisions?,
Proceedings of the DARPA Workshop on Case-Based Reasoning, Morgan Kaufman
Publishers, Inc., 1988.

14.C. A. Knoblock, Automatically Generating Abstractions for Planning, Artificial
Intelligence 68(2):243-302, 1994.

15.J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, PWS
Publishing Co., 1997.

16. B. Smyth and P. Cunningham, Deja Vu: A Hierarchical Case-Based Reasoning Sys-
tem for Software Design, Proceedings of the European Conference on Al, John Wiley,
pp- 587-589 (1992)

17.B. Smyth and M. Keane, Adaptation-Guided Retrieval: Questioning the Similarity
Assumption in Reasoning, Artificial Intelligence (in press) 1999.

18.Y. Tao, A Multiple-Domain Evaluation of Stratified Case-Based Reasoning, M.S.
Thesis, Department of Computer Science, University of Wyoming, August, 1998.



Bootstrapping Case Base Development with Annotated
Case Summaries*

Stefanie Briininghaus and Kevin D. Ashley

University of Pittsburgh
Learning Research and Development Center, Intelligent Systems Program, and School of Law
3939 O’Hara Street, Pittsburgh, PA 15260
steffi+@pitt.edu, ashley+@pitt.edu

Abstract. Since assigning indicies to textual cases is very time-consuming and
can impede the development of CBR systems, methods to automate the task are
desirable. In this paper, we present a machine learning approach that helps to boot-
strap the development of a larger case base from a small collection of marked-up
case summaries. It uses the marked-up sentences as training examples to induce a
classifier that labels incoming cases whether an indexing concept applies. We il-
lustrate how domain knowledge and linguistic information can be integrated with
amachine learning algorithm to improve performance. The paper presents experi-
mental results which indicate the usefulness of learning from sentences and adding
athesaurus. We also consider the chances and limitations of leveraging the learned
classifiers for full-text documents.

1 CBR in Domains where Cases are Texts

Over the last years, a number of CBR systems have been developed for domains where
the cases are available as unstructured or semi-structured text documents. Examples of
such domains are the law (Ashley & Aleven 1997; Branting 1991; Rissland, Skalak, &
Friedman 1993), business problems (Baudin & Waterman 1998) and in particular the fast
growing area of helpdesk systems (Lenz 1998; Aha, Maney, & Breslow 1998; Racine &
Yang 1997).

Where the task is merely to find the most similar textual cases related to a user’s
situation, CBR techniques in combination with Information Retrieval (IR) can be used
directly to retrieve textual cases. These case-based retrieval models have been applied
successfully in systems like FAQ-Finder (Burke et al. 1997) or FaLLQ (Lenz 1998). In
many other applications, however, where more advanced CBR is carried out, it is neces-
sary to map the unstructured textual case to a structured, symbolic representation, with
which the CBR system can perform its reasoning (Ashley & Briininghaus 1998).

When the CBR system involves a symbolic comparison of cases or requires the adap-
tation of cases, the extra effort of indexing the raw cases has to be made. As yet, this has
been an almost exclusively manual chore. Having experts manually index texts and rep-
resent cases, however, can be prohibitively expensive and time-consuming (Racine &

* This research has been supported by the National Science Foundation, under Grant IR196-
19713. We thank West Group and in particular Peter Jackson for making the WestLaw The-
saurus accessible to us.

K.-D. Althoft, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 59-73, 1999
© Springer-Verlag Berlin Heidelberg 1999



60 St. Bruninghaus and K.D. Ashley

Yang 1997; Daniels & Rissland 1997). Such costs may even prevent the development
or maintenance of CBR systems. Methods to facilitate indexing or representing cases
automatically are desirable.

A promising approach is to start with a small collection of manually indexed cases,
and employ these examples to automatically assign indices to new, unseen cases. Pre-
viously, we introduced a classification-oriented approach to building a case base from a
small set of examples (Briininghaus & Ashley 1997). Our success, however, was ham-
pered by the fact that most learning algorithms designed for classifying texts are of lim-
ited use for small collections.

In this paper, we discuss recent progress toward bootstrapping the development of
a larger case base by using a small collection of manually-indexed case summaries. We
found that case summaries can be annotated with little extra cost while the initial case
base is being constructed. In this way, a collection of short sentences or paragraphs re-
lated to the indices in a CBR system can be more easily acquired. These sentences are
significantly less complicated than the full documents and can be used as examples for
a symbolic tree-learning algorithm. This also allows us to add domain knowledge and
linguistic information, and to employ a more powerful representation.

In the remainder of this paper, we first introduce our application, case-based legal
argumentation. We show an example of an indexing concept and illustrate why it is dif-
ficult to assign it to documents automatically. We then consider problems with widely
used text classification methods, and how these problems are addressed by our system
SMILE?. We discuss its design and demonstrate the learning techniques we use. After
reporting a recent experiment, we consider the chances and limitations of further lever-
aging the learned classifiers. The paper concludes after discussing related work.

2 A Typical CBR Application Involving Cases As Texts: CATO

The law is a domain where CBR has been applied successfully (Ashley & Aleven 1997;
Branting 1991; Rissland, Skalak, & Friedman 1993), and where the cases are texts. Our
CATO system is an instructional environment for teaching argumentation skills to law
students (Aleven 1997), based on a model of case-based argumentation. When trying
to convince a court to rule in favor of or against a party’s claim, legal advocates com-
pare the problem scenario to previously decided cases. They analogize the problem to
favorable cases and distinguish it from unfavorable ones. In doing so, they often com-
pare and contrast cases in terms of prototypical fact patterns, which tend to strengthen
or weaken a party’s claim. A model of this reasoning has been implemented in CATO.
The system deals with claims for trade secret misappropriation, in which a plaintiff com-
plains that the defendant has used its confidential product information to gain an unfair
competitive advantage. CATO employs a set of 26 such abstract fact patterns, or fac-
tors, to compare and contrast cases by means of eight basic argument moves with which
it composes arguments how to decide the problem scenario. A hierarchy of legal issues
and their interrelations enables CATO to reason with partially matched cases and make
arguments about the significance of distinctions (Ashley & Aleven 1997). CATO has a
Case Database of 147 cases. For each of these cases, we have (1) a symbolic factor rep-
resentation, (2) a squib, or short summary of the facts, and (3) the full-text opinion, in

2 SMart Index LEarner



Bootstrapping Case Base Development with Annotated Case Summaries 61

which the court announces its decision and reasoning.

Each of CATOQO'’s factors is an indexing concept and may guide comparisons among
cases to which it applies. In trade secret law, for instance, the allegedly misappropriated
product information must meet certain criteria to be protectable as a trade secret. If a
similar product is available from other manufacturers, the information may be generally
available and not be protected against use by competitors. In CATO this fact pattern is
represented by a factor favoring plaintiff, F15, Unique-Product, defined as follows:

Plaintiff was the only manufacturer making the product. This factor shows that the
information apparently was not known or available outside plaintiff’s business. Also, it
shows that plaintiff’s information was valuable for plaintiff’s business.

As an empirical matter, we have found that the evidence for a factor is typically en-
countered in a few clumps in the case texts, in the form of sentences or short passages.
Some examples of sentences from cases in CATO’s Case Database which indicate that
factor F15 applies are:

- Innovative introduced evidence that Panl Brick was a unique product in the industry.
(from Innovative v. Bowen)

- It has a unique design in that it has a single pole that a hunter can climb instead of
having to climb the tree. (from Phillips v. Frey)

- Several features of the process were entirely unique in transistor manufacturing.
(from Sperry Rand v. Rothlein)

- The information in the diagram was not generally known to the public nor to any of
Tri-Tron’s competitors. (from Tri-Tron v. Velto)

- It appears that one could not order a Lynchburg Lemonade in any establishment
other than that of the plaintiff. (from Mason v. Jack Daniel Distillery)

As the example sentences suggest, inferring from the text of a case that factor F15
applies is relatively straightforward for a human. As already noted, like other factors,
the evidence for factor F15, Unique-Product, is concentrated in a few such sentences.
Also, there tend to be only a fairly small number of ways in which courts describe the
factual situations related to this factor. In other words, the sentences relevant to F15 fol-
low a small number of patterns, focus on a limited set of issues and use similar wording.
(There can be exceptions, however.) Generally, when indexing new cases, experts can
identify without much difficulty the passages and sentences that pertain to the factor. In
fact, when they read the case, they may simply underline the sentences in the text rele-
vant for the factor.

It can be more difficult to infer from a text that other factors apply, such as F6, Securi-
ty-Measures. In general, a plaintiff’s claim is strengthened to the extent that it takes mea-
sures to maintain the security of its secrets. There are, however, many things a plaintiff
can do (e.g., lock up the secret, obtain nondisclosure agreements from its employees,
prohibit visitors from seeing a process, encode the secret.) The case texts display a much
wider variety of different patterns of descriptions from which it may be inferred that F6,
Security-Measures, applies.



62 St. Bruninghaus and K.D. Ashley

Even for factors that are easier to infer such as F15, Unique-Product, one still needs
some linguistic information. In legal texts, as in texts generally, the negation or restric-
tion of statements is very important. In the sample sentence drawn from the Mason case,
for example, the negation of “order” is crucial: “It appears that one could not order a
Lynchburg Lemonade in any establishment other than that of the plaintiff.” If one could
order the product somewhere else, it would not be unique, after all! An ability to recog-
nize phrases, like “agreed not to disclose”, would also be useful. While the words taken
separately are not very predictive for a factor, the combination corresponds to an impor-
tant concept in trade secret law.

3 Previous Experiments

As noted, at the last ICCBR, we presented a classification-based approach to assign-
ing factors to new cases (Briininghaus & Ashley 1997). We considered each of CATO’s
factors as a concept, where the cases in CATO’s Case Database were the positive and
negative training examples, depending on whether the factor applied or not. In an ex-
periment, we used statistical learning algorithms to induce a classifier for each factor.
For most factors, however, the classifiers could not discriminate between positive and
negative examples of a factor.

While the statistical text learning methods work very well for simpler concepts, and
where the collections are large, assigning indices for CBR is a more difficult problem.
As discussed in the previous section, like CBR indices in other applications, CATO’s
factors are rather complex and abstract concepts. In addition, CATO’s database yields a
relatively small number of manually-indexed cases for the training set, about 150 docu-
ments. Despite the small number of training instances, the vocabulary in the cases is very
large. This makes it difficult to apply advanced statistical learning methods which tend
to require large numbers of examples to learn text classifiers, usually in the magnitude
of thousands of documents.

The complexity of the documents also makes our problem harder than indexing cases
in many other domains. Legal opinions are notoriously long and difficult texts. They are
usually between two and twenty pages long. The prose style is often dense, and many
terms have a specific meaning in a legal context. Frequently, only part of the text deals
with the substantive trade secret claim. The court may also discuss jurisdictional and
procedural issues or even other claims.

The representations employed in statistical methods for text learning are not pow-
erful enough for indexing such documents. Typically, the statistical methods rely on a
bag-of-words model, where a document is represented as a vector of weights over the
content words. Stopwords are removed, and all information like word order is discarded.
To decide whether a factor is present in a case, however, negation and other linguisticin-
formation can be very important. (See Section 2.) Likewise, the bag-of-words represen-
tation does not facilitate inclusion of any domain knowledge, for example, to overcome
the problems of synonymity.

After analyzing the results in more detail, we decided to take a different approach,
which we implemented in SMILE. It takes a set of marked-up sentences from case sum-
maries instead of entire documents as examples, uses a decision tree algorithm to learn
rules, and adds domain knowledge in the form of a thesaurus to the induction process.



Bootstrapping Case Base Development with Annotated Case Summaries 63

Since the evidence for a factor can be found within a few sentences in an opinion, it can
be better captured by a small set of short rules induced from the relevant portions of the
training texts.

3.1 Focus on Smaller Units of Information

Compared to running learning algorithms with full-text documents, employing sentences
as examples has three major advantages:

1. It allows focussing on smaller and more relevant examples, namely the marked-up
sentences or passages pertaining to a factor. This requires one to tag the sentences
referring to a factor manually. The marked-up sentences will, in effect, become the
training examples for the learning algorithm. Although it is a manual process, this
step adds little work for an expert indexing the cases.

2. The use of marked-up sentences instead of the complete opinions as training exam-
ples offers computational advantages. We decided to use a decision tree induction
algorithm, which gets hopelessly bogged down by large numbers of attributes. Re-
ducing the complexity of the examples also allows us to add knowledge from per-
forming natural language processing (e.g., parsing which becomes impractical for
the full-text opinions.)

3. Learning from marked-up sentences facilitates including domain knowledge, in the
form of a domain-specific thesaurus. If the examples are sentences, the knowledge
contained in a thesaurus can be better applied at the relevant points.

3.2 Using a Decision Tree Induction Algorithm

As argued above, the evidence for assigning an indexing concept to a case can often
be found in a few sentences. Within these sentences, judges tend to use a limited set
of phrases and expressions to indicate the presence of a factor. These patterns are best
captured by individual rules, like those implicit in the trees learned by a decision tree al-
gorithm. Figure 1 shows how this is reflected in an excerpt from a decision tree learned
in the experiments reported in Section 5. The factor F16, Info-Reverse-Engineerable,
applies if plaintiff’s information could be ascertained by reverse engineering, that is, by
inspecting or analyzing the product. The expressions “reverse engineerable”, “easily du-
plicate the information” and “revealed upon inspection” are characteristic for this factor
and can be easily found as alternative paths in the tree.

This intuition is supported further if one considers the relation between the instance
space in which the examples are represented and nature of the the factors (Aha, Kibler,
& Goldstone 1991; Quinlan 1993). The factors comprise a (small number of) different
real-world situations. They are not simple, linearly seperable concepts in the instance
space. Linear classifiers, which employ a hyperplane to discriminate between positive
and negative instances, are ill-suited for the task, as our previous experiments indicate.
Itis more appropriate to use a learning method (like a decision-tree algorithm) that splits
the instance space into multiple class regions, which correspond to the different situa-
tions and are defined by the presence/absence of words and phrases in the examples.

3.3 Integrating an Application-Specific Thesaurus

A charateristic of legal texts is the use of different terms that refer to the same concept.
A learning algorithm by itself can not cope with this synonymity. For instance, it can-



64 St. Bruninghaus and K.D. Ashley

F16 applies if the information is:

reverse engineerable

+
‘?r easily duplicated
+

F16 applies revealed upon inspection
* RN

F16 applies etc.

F16 applies

Fig. 1. Rules implicit in a decision tree and the corrspondingtext patterns

not infer that “covenant” is another word for “contract.” This is likely to decrease the
performance, in particular when the number of training instances is not very large.

Attorneys often use legal thesauri (Statski 1985), which list synonyms and some-
times definitions for terms used in legal documents. (In other domains, similar thesauri
and glossaries exist.) Usually, legal thesauri are not available online. For our experi-
ments, we were fortunate to have access to the thesaurus used internally by West Group,
one of the largest legal publishers. It comprises about 20,000 sets of synonyms. Each
word belongs to between one and six synonym sets. Examples relevant to trade secret
law are:

- clandestine concealed disguised hidden secret undisclosed unrevealed
- commodity goods inventory material merchandise product stock supplies
- admission disclosure discovery revelation

4 How SMILE Works

In this section, we show (simplified) examples of how our program works with training
instances that are sentences, and illustrate how domain knowledge and linguistic infor-
mation can be integrated.

4.1 Example Sentences in Case Texts

For the experiments reported here, we marked up the summaries of CATO’s cases. An
example is the Forest Laboratories case®, which has the factors F1, Disclosure-In-Nego-
tiations, F6, Security-Measures, F15, Unique-Product,and F21, Knew-Info-Confidential.
This shows a short section of its squib:

[f15 Plaintiff’s packaging process involved various “tempering steps” that were not
used by competitors or described in the literature. f15][f6 Only a handful of plaintift’s
employees knew of the packaging operations, and they were all bound by secrecy agree-
ments. f6][f6 There was also testimony that packaging information was closely guarded
in the trade. {6]

... [f1 Plaintiff’s president sent a letter to defendant which conveyed plaintiff’s man-
ufacturing formula. f1][f21 The letter also stated that the disclosure was made in confi-
dence and that “we agree with you that details on packaging, etc. should be taken up
later”. £21] ...

? Forest Laboratories, Inc. v. Formulations, Inc., 299 F.Supp. 202 (E.D.Wis.1969)



Bootstrapping Case Base Development with Annotated Case Summaries 65

For our classification approach, the bracketed sentences are positiveinstances for the
respective factor; all other sentences are negative instances. A factor can be considered
to apply to a case if at least one of the sentences is a positive example for the factor.

For the first experiments, the cases were treated as binary attribute vectors, although
we are currently working on improving this representation. We removed all stopwords,
and removed the most common endings, like plural-s. The sentence indicating F1 would
be internally represented as: (plaintiff president send letter convey manufacture formula).

4.2 Decision Tree Induction

We implemented the basic ID3 algorithm (Mitchell 1997), currently without methods for
pruning the trees. We selected this methods because it seems to correspond best to out
ideas. However, there is no reason why other learning algorithms could not be used. In
particular inductive logic programming may prove useful for the integration of linguistic
information.

First, let us consider a simple example. Ideally, judges would describe the facts of
a case in simple and straightforward phrases. They would always use the same words
or expressions, never use negation, etc. Then the positive (+) and negative (—) instances
given to a classifier might look like this*:

+

The product was unique.

— His product was identical to plaintiff’s.

The recipe was always locked in a unique safe.
Plaintiff employed unique security measures.

In inducing the tree, the algorithm recursively selects the attribute that best discrim-
inates between positive and negative examples and splits up the training set, according
to whether this attribute applies. The process is repeated until it has a set of only pos-
itive or negative examples. Here, ID3 would first split up the examples into those that
have the word “product”, and those that do not. It would then try to find a way to dis-
tinguish between the first and the second example, and select the word “unique”. The
corresponding decision tree is shown in Figure 2.

+

+ -

Fig. 2. Decision tree for F15, Unique-Product

Of course, judges do not restrict their factual descriptions in this way. In the next
section we discuss how adding knowledge from a legal thesaurus and adding linguistic

* To make the examples easier to understand, we show the full text.



66 St. Bruninghaus and K.D. Ashley

knowledge may help, when dealing with the far more complex language found in legal
case opinions.

4.3 Adding a Thesaurus

A well-known problem with ID3 is its tendency to overfit the data. In particular with
many attributes available, the algorithm learns overly specific trees, which often mis-
classify new examples. The knowledge in a thesaurus can help to overcome that prob-
lem. All words in a synonym group can function like a single attribute, which applies
to more cases. This can lead to simpler, less overfitted trees. To illustrate our intuitions
about adding a thesaurus, assume that we have the following examples of some concept:

+ He signed the contract. — He signed the postcard.
+ He signed the covenant. — He signed the book.

Half of the examples is positive, half negative. No (single) term can discriminate
between positive and negative examples. A decision tree algorithm would create a tree
as in Figure 3, branching out too much. The knowledge to recognize that covenant and
contract are synonyms is missing, and there is no reliable way to make that inference.
With the help of a thesaurus, however, it is possible to induce a better tree.

There are two ways to include the information of a thesaurus.

+

+ -

Fig. 3. Decision tree learned without adding a thesaurus

A thesaurus can be used to discover synonyms while inducing a decision tree. Instead
of learning a tree where the nodes are words, we can learn a tree where the nodes are
categories from the thesaurus. The relevant category in the WestLaw Thesaurus for this
example is: - agreement contract covenant promise testament

If we modify the learning algorithm accordingly, ID3 will choose this category to
perfectly discriminate between positive and negative examples, shown in Figure 4. This
tree will also correctly classify unseen examples which use the term agreement instead
of contract or covenant.

Alternatively, one can use a thesaurus to expand examples in advance, by adding
all possible synonyms before the learning algorithm is applied. Our positive examples
would then appear like:

+ He signed the contract. + agreement covenant promise testament
+ He signed the covenant. + agreement contract promise testament



Bootstrapping Case Base Development with Annotated Case Summaries 67

Concept 2004: agreement
contract covenant
promise testament

+ -

Fig. 4. Decision tree learned with synonym information

A tree can then be learned easily for the example sentences by choosing either the
term “covenant” or “contract” to distinguish between positive and negative examples.
This also results in a simpler tree, and thereby can help to avoid overfitting.

4.4 Proposed Use of Linguistic Information

The most promising way to include linguistic information about the relation of words in
sentences, or about the role of expressions, may be to integrate a parser into the learn-
ing system. The version of SMILE evaluated in this paper did not include this linguistic
information. Nevertheless, this is a convenient place to dicuss our design for integrating
a parser. Assume we have the examples:

+ No other manufacturer made filled chocolate.
— The manufacturer made hunter stands.

The only reliable way to discriminate between the two examples is to include as an
attribute the fact that in the positive instance “manufacturer” is modified by “no other”.
(The terms “filled chocolate” and “hunter stand” are very rare, they would be pruned
away from the examples’ representation.)

The attribute can be found by parsing the sentence (e.g., using CMU’s Link Parser,
available from http://www.link.cs.cmu.edu) The output for the positive instance in the
example above would be:

P
Wd- Os:
DC! Ds: Ss- A

/Il no other manufacturer.n made.v filled.v chocolate.n .

From this parser output, various information can be derived. The subject, object and
verb of the sentence are identified, the words’ part-of-speech is tagged, and, most inter-
esting for the task at hand, the combination no-other is labeled as determiner of a noun
(Ds), and as an idiomatic string stored in the dictionary (IDC).

Similarly, information about phrases, or the role of attributes in the sentence can be
derived and used in learning a decision tree. For instance, the phrase “filled chocolate”
is indicated by an adjective link (A) between “filled” and “chocolate”. As noted above,
we have not currently integrated this information in SMILE, but we are in the process
of doing so.



68 St. Bruninghaus and K.D. Ashley

5 Experiment

In a simplified environment, we tested how well our approach works with the ID3 al-
gorithm. Our goal was to find out whether using sentences instead of full-text opinions
would be useful, and whether there would be any benefit from adding a thesaurus. For the
time being, we did not investigate in what ways the representation could be improved,
for example, by including linguistic knowledge. That will be the next phase of our ex-
perimentation.

The experiments were run as a stratified 5-fold cross validation. We used a separate
random partitioning of the positive and negative examples, because the distribution is
very skewed. At the same time, we have a rather small number of examples. By keeping
the ratio constant, we tried to prevent outliers in the test sets, which can decrease the
experiments’ validity.

5.1 Experimental Setup and Assumptions

For this experiment, we used a subset of CATO’s factors:

- F1, Disclosure-In-Negotiations - F16, Info-Reverse-Engineerable
- F6, Security-Measures - F18, Identical-Products, and
- F15, Unique-Product - F21, Knew-Info-Confidential.

We have selected these factors because we anticipated that they would provide a
range of difficulty for the learning algorithm. We expected F15, Unique-Product, to be
found much more easily than F6, Security-Measures. Courts employ a small set of pat-
terns and some standard phrasing in discussing a product’s uniqueness. By contrast, the
squibs identify a very wide variety of different fact situations from which it may be in-
ferred that F6 applies. There are many things a plaintiff can do to maintain the secrecy
of its information (e.g., lock up the secret, obtain nondisclosure agreements from its em-
ployees, prohibit visitors from seeing a process.)

Itis important to note that we have omitted some of CATO’s factors which we believe
would be even harder to learn from examples than F6. F5, Agreement-Not-Specific, for
instance, is often difficult for a human to discover, and asserting its presence requires
more abstract inferences. Probably only very advanced natural language understanding
would be appropriate. Also, CATO’s Case Database contains only five cases in which
this factor applies, so itis not a good candidate to show the applicability of a new method.

To simplify the problem further, we used CATO’s squibs, rather than the full-text
opinions as training and test examples. The squibs are short summaries, about one page
of text, whose primary function is to restate the case facts. The drafters of the squibs
had CATO’s factors squarely in mind in preparing the summaries of the case facts. Thus,
finding factors in the squibs is a much easier problem than finding factors in the full-text
opinions. We adopted this simplification, however, to get a set of consistently marked-up
examples, to avoid having the learning algorithm get bogged down computationally, and
to satisfy our curiosity as to whether the method would work with the shorter documents
before we undertook to scale up to the more complex opinions. In Section 6, we discuss
how this can be leveraged to full-text opinions.

On a practical note, using manually prepared case summaries may appear like a con-
tradiction of the goal of reducing indexing cost. The major problem, however, is that in-



Bootstrapping Case Base Development with Annotated Case Summaries 69

dexing requires an extremely well-trained expert who knows the area of the law as well
as the indexing concepts, or factors. On the other hand, it appears to be fairly easy for
untrained law students to summarize cases. Even with little knowledge of the specific le-
gal application, they can identify the pertinent facts and at low cost write a squib that’s
helps an expert to mark up a case.

5.2 Results

We were interested in assessing the effect of two techniques, namely using marked up
sentences instead of the full documents to discover the factors, and adding a domain
specific thesaurus. The results of the experiments suggest that both are beneficial.

As shown in Table 1, the decision tree algorithm achieved precision and recall of up
to 80 % for finding which factor applies to a case.

f15 f21 f1 6 f16 f18
Precision 48.78% 32.14% 30.00% 80.55% 44.44% 58.97%
Recall 71.42% 50.00% 60.00% 81.69% 54.54% 63.88%

Table 1. Precision and recall for finding factors in cases

Although these results are positive, there is still room to improve precision and re-
call. As we pointed out before, the experiments did not include any linguistic knolwedge.
In particular, negation was not represented. In Section 2, however, we showed examples
why this is necessary for some of the factors.

In order to get a baseline for comparison, we used CATO’s factor names, which are
intended to capture the meaning of the respective factor. These names were derived from
the relevant legal authorities and contain the terms most widely used by judges, attor-
neys and lawmakers. A human expert will most likely use the factor name as a query,
when searching for cases with that factor in an information retrieval system. The results
in Table 2 indicate that the factor names are too restrictive, they capture too few real
situations, which can be overcome by a machine learning approach.

F15 F21 F1 F6 F16 F18
D3 - for Recall 43.75%| 30.30%| 5.88%| 45.30%| 31.03%| 34.04%
sentences | b ocision 50.00%| 50.00%| 10.34%| 55.03%| 45.00%| 51.61%
Words from | Recall 417%| 6.06%| 2.00%| 2.79%| 20.69%| 4.26%
name Precision 100%| 40.00%| 33.33%| 71.43%| 60.00%| 66.67%

Table 2. Precision and recall for finding whether a sentence indicates a factor

Even more interesting, adding a thesaurus helps when classifying sentences under
factors, but the usefulness depends on the factor. In Figure 5, we show the relative im-
provement of using the thesaurus both during (solid color) and before learning (striped)
when compared to the unaided decision tree algorithm. We calculated the difference in
precision between the learner that used the thesaurus and the one that did not, and di-
vided by the precision for the plain learning algorithm. The result is the relative change



70 St. Bruninghaus and K.D. Ashley

in precision, and allows us to compare the effects across factors. We did the same for
accuracy, and for both ways of integrating the thesaurus.

Improvements with Thesaurus by Sentences

06
04 F -l
@29 - B | " Relative improvement over
plain decision tree learner:
o - e - - - I recall - thesaurus used while learning

[ precision - thesaurus used while learning
- recall - thesaurus used before learning

precision - thesaurus used before leaming

Fig. 5. Relative improvements of precision and recall by adding the thesaurus

The graph indicates, that for factors F15, Unique-Product, and F21, Knew-Info- Con-
fidential, adding the thesaurus clearly improves performance. This confirms our intu-
itions, see Section 4.3. For F1, Disclosure-In-Negotiations, adding the thesaurus during
learning is useful, and adding it before learning is without effect. For F16, Info-Reverse-
Engineerable, and F18, Identical-Products, adding the thesaurus increases precision, and
decreases recall. It seems that the thesaurus makes the algorithm more “conservative”
in discovering positive instances. We will have to study the learned decision trees and
misclassifed examples in more detail, before we can really understand the reasons. The
thesaurus is also not useful for factor F6, Security-Measures, which could have been ex-
pected. In a commercial context, there is a wide variety of measures to keep information
secret. They are often very practical matters not related to legal concepts. For those ex-
amples, a thesaurus of legal terms is unlikely to show much effect.

In sum, we have found that using a decision tree induction algorithm for marked-up
sentences as examples is clearly the right approach to take. It reduces complexity, and
yet the individual sentences contain enough information to be useful as examples of the
factors. By contrast, in our previous experiments where we attempted to learn factors
from full-text opinions, the statistical learning methods could only learn the goal con-
cepts to a much more limited degree. Most of the time the classifiers could not discover
the positive instances, which led to low precision and recall.

6 How can this be leveraged?

One of the simplifications in our experiments was the use of CATO’s squibs, rather than
the full-text opinions. This allowed us to mark up the collection of squibs for the re-
ported experiment, and also greatly reduced the computational complexity of the learn-
ing process. The experiments would have been prohibitively time-consuming otherwise
- in terms of both human labor and required CPU time. For the cases included in this
experiment, we have 2200 sentences in the squibs, with an average length of 7.5 words
(after removing stopwords, very infrequent terms and duplicates). The corresponding
full-text opinions comprise 28,000 sentences, with an average length of 11.5 words.



Bootstrapping Case Base Development with Annotated Case Summaries 71

However, our ultimate goal is to assign factors to the full-text opinions. We wanted
to find out whether the classifiers learned over the squibs would be applicable for this
task. Since we do not have the full-text opinions marked up like the squibs, we will focus
on an informal discussion of the results for the factors with the best and worst results.

Generally, we found that the usefulness of the decision trees learned from summaries
depends very much on the nature of the factor. For factors like F15, Unique-Product,
which represent rather well-defined and uniform situations, the classifiers learned from
the example sentences in the squibs worked well for opinions. As we expected, the clas-
sification rules did not work as well for factors that are more abstract and comprise a
wide variety of real-world situations, like factor F6, Security-Measures.

Even though we did not include any linguistic information, the algorithm assigned
F15 to the full text-opinions with recall of 75 % and accuracy of 45 %. When we an-
alyzed the cases flagged as false positives, we found many instances like “Defendant’s
expert stated that the use of this process was indeed known in the industry, although
[it] was not specifically discussed in any industry literature,” which is an explicit state-
ment that F15 does not apply. Even though this is an incorrectly classified sentence, we
think the classifier has worked here as well as we would like. As discussed above, we
anticipate that such false positive instances can be filtered out by integrating linguistic
knowledge.

The classification rules did not perform as well for factor F6. This factor captures a
wide variety of measures, from requiring employees to sign non-disclosure agreements,
to locking away recipes. The learned decision trees tend to include the predictive words
to cover each of these situations, and hence falsely label many sentences as positive in-
stances of F6.

To our surprise, we also found that the system had spotted instances of F6 in virtually
every case opinion. We looked more closely at the sentences classified under F6 and the
decision tree’s rules. From a few positive examples for F6 that read “... were not allowed
to see ...”, ID3 had induced a rule to classify sentences with the word “see” as positive
instances of F6. In legal opinion texts, however, “see case-name” is used very frequently
and signals a citation. Conceivably, domain-specific problems like this can be overcome
by adding background knowledge to the representation to filter out citations. Another
source for false positive classifications were citations of statutes (e.g., * the extent of
measures taken by him to guard the secrecy of the information™). This could also be
avoided by filtering out these statutory citations.

7 Related work

Overcoming the “knowledge-engineering bottleneck” of indexing textual cases for CBR
is an important issue for many applications. There have been a number of approaches for
applying CBR in domains where the cases are available as text.

The approach most similar to our work is SPIRE (Daniels & Rissland 1997). Its goal
is to facilitate the indexing of legal documents for HYPO-style CBR. For each slot in
SPIRE’s frame-based case representation, the system has a small library of passages.
‘When a new case text is to be indexed, an IR relevance-feedback module uses these “ex-
amples” to retrieve the most promising sections within the new document. Obviously,
SPIRE is very similar to our approach. The application is the same, and like SMILE,



72 St. Bruninghaus and K.D. Ashley

SPIRE uses a collection of previously indexed cases (or passages) to facilitate future
case indexing. In fact, the results reported in (Daniels & Rissland 1997) encouraged
us to pursue our idea to focus on sentences. However, SPIRE harnesses existing tools,
and does not harness any additional domain knowledge. While SPIRE’s intuitive appeal
and simplicity are clearly strengths, it cannot deal, for example, with negation or syn-
onymity. Probably, SPIRE’s approach would not work for indexing concepts that are
more abstract than the frame-slots it fills, like our factors (especially F6) or where an
indexing concept is associated with a number of different fact patterns, like F16 (see
Figure 1). SMILE attempts to overcome these problems by integrating domain and lin-
guistic knowledge.

The Indexing Assistant (Baudin & Waterman 1998) helps humans index business
reengineering cases. Previous cases are classified under a business taxonomy, so that
experience can be reused in similar situations. While the system also takes a text-classi-
fication approach, it does not attempt to include any further knowledge, and treats the
entire documents as one piece.

The research on conversational CBR further supports our underlying intuition to fo-
cus on sentences as instances. In NaCoDAE (Aha, Maney, & Breslow 1998), cases are
represented by sets of question/answer pairs and short case summaries, which resemble
our marked-up cases. This case structure may be used to assign indices automatically.

FAQ-Finder (Burke et al. 1997) (and its successors) uses an integrated CBR/IR ap-
proach to retrieve FAQ-sections related to a user’s questions. The system employs addi-
tional knowledge in the form of a domain-independent conceptual dictionary, but does
not have a deep representation of the user’s questions or the documents. Similarly, the
FalLLQ system (Lenz 1998) takes a case-based approach to retrieve previous problem
solving descriptions. Starting with basic IR techniques, the system integrates different
knowledge-levels and uses a case-based approach to define similarity between docu-
ments. Unlike our work, neither approach derives a symbolic case representation, and
both focus on case-based retrieval of text. Case Advisor (Racine & Yang 1997) uses
statistical and IR measures and identifies keywords to index technical problem solv-
ing episodes for future retrieval, but it also does not rely on deeper indexing terms, like
CATO’s factors.

8 Conclusion

We have presented SMILE, an approach to bootstrapping the development and mainte-
nance of case bases in domains where the cases are texts. SMILE uses sentences from
a small marked-up collection of case summaries as examples for a machine learning al-
gorithm. Based on our experiments, we think that using case summaries to facilitate the
development of case bases in textual domains is a promising approach. The results also
indicate that it can be beneficial to apply domain knowledge in the form of a thesaurus.
The usefulness of these techniques depends on the nature of indexing concepts. For some
of these concepts, the classifiers learned from sentences in case summaries can be lever-
aged for the full-length documents.

We have also discussed ways to improve the representation from a simple bag-of-
words model by adding linguistic information. Together with including further domain
knowledge, this will be the focus of our ongoing research.



Bootstrapping Case Base Development with Annotated Case Summaries 73

References

Aha, D., Kibler, D., and Goldstone, R. 1991. Instance-based Learning Algorithms.
Machine Learning 6:37-66.

Aha, D., Maney, T., and Breslow, L. 1998. Supporting Conversational Case-Based
Reasoning in an Integrated Reasoning Framework. In Proceedings of the AAAI-98
Workshop on Case-Based Reasoning Integrations.

Aleven, V. 1997. Teaching Case-Based Argumentation through a Model and Examples.
Ph.D. Dissertation, University of Pittsburgh.

Ashley, K., and Aleven, V. 1997. Reasoning Symbolically about Partially Matched
Cases. In Proceedings of the 15th International Joint Conference on Artificial Intelli-
gence.

Ashley, K., and Briininghaus, S. 1998. Developing Mapping and Evaluation Tech-
niques for Textual CBR. In Proceedings of the AAAI-98 Workshop on Textual Case-
Based Reasoning.

Baudin, C., and Waterman, S. 1998. From Text to Cases: Machine Aided Text Catego-
rization for Capturing Business Reengineering Cases. In Proceedings of the AAAI-98
Workshop on Textual Case-Based Reasoning.

Branting, K. 1991. Building Explanations from Rules and Structured Cases. Interna-
tional Journal on Man-Machine Studies 34(6).

Briininghaus, S., and Ashley, K. 1997. Using Machine Learning for Assigning Indices
to Textual Cases. In Proceedings of the 2nd International Conference on Case-Based
Reasoning.

Burke, R., Hammond, K., Kulykin, V., Lytinen, S., Tomuro, N. and Schoenberg, S.
1997. Question-Answering from Frequently-Asked Question Files: Experiences with
the FAQ-Finder System. Al Magazine 18(1).

Daniels, J., and Rissland, E. 1997. What you saw is what you want: Using cases to seed
information retrieval. In Proceedings of the 2nd International Conference on Case-
Based Reasoning.

Lenz, M. 1998. Defining Knowledge Layers for Textual Case-Based Reasoning. In
Proceedings of the 4th European Workshop on Case-Based Reasoning.

Mitchell, T. 1997. Machine Learning. Mc Graw Hill.

Quinlan, R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufman.
Racine, K., and Yang, Q. 1997. Maintaining Unstructured Case Bases. In Proceedings
of the 2nd International Conference on Case-Based Reasoning.

Rissland, E., Skalak, D., and Friedman, T. 1993. Case Retrieval Through Multiple In-
dexing and Heuristic Search. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence.

Statski, W. 1985. West’s Legal Thesaurus and Dictionary. West Publishing.

This article was processed using the I5TgX macro package with LLNCS style



Activating CBR Systems through Autonomous
Information Gathering

Christina Carrick and Qiang Yang
Simon Fraser University
Burnaby, BC, Canada, VHA 156
(ccarrick)(qyang)@cs.sfu.ca

Irene Abi-Zeid and Luc Lamontagne
Defense Research Establishment Valcartier
Decision Support Technology
2459, boul. Pie XI, nord
Val Belair, Quebec, Canada, G3J 1X5

(irene.abi-zeid )(luc.lamontagne)@drev.dnd.ca

Abstract. Most traditional CBR systems are passive in nature, adopt-
ing an advisor role in which a user manually consults the system. In this
paper, we propose a system architecture and algorithm for transforming
a passive interactive CBR system into an active, autonomous CBR sys-
tem. Our approach is based on the idea that cases in a CBR system can
be used to model hypotheses in a situation assessment application, where
case attributes can be considered as questions or information tasks to be
performed on multiple information sources. Under this model, we can use
the CBR system to continually generate tasks that are planned for and
executed based on information sources such as databases, the Internet
or the user herself. The advantage of the system is that the majority
of trivial or repeated questions to information sources can be done au-
tonomously through information gathering techniques, and human users
are only asked a small number of necessary questions by the system.
We demonstrate the application of our approach to an equipment diag-
nosis domain. We show that the system integrates CBR retrieval with
hierarchical query planning, optimization and execution.

1 Introduction

Case-based reasoning (CBR) has enjoyed tremendous success as a technique for
solving problems related to knowledge reuse. Many examples can be found in the
CBR literature [17,18,12,11,21]. One of the key factors in ensuring this success
is CBR’s ability to allow users to easily define their experiences incrementally
and to utilize their defined case knowledge when a relatively small core of cases
is available in a case base.

Despite the tremendous success, traditional uses of CBR have limited its
potential. In previous research, most interactive CBR, retrieval systems often in-
volve few users [1] who provide most of the answers to queries in order to retrieve

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 74-88, 1999
© Springer-Verlag Berlin Heidelberg 1999



Activating CBR Systems through Autonomous Information Gathering 75

cases. In its most common mode, a CBR, system involves just one user, who pro-
vides most, if not all, of the necessary information for feature values in order to
perform similarity-based retrieval. For example, in a typical help desk operation,
a call-center customer service representative (CSR) often enters a conversational
mode, in which questions are answered by the customer, and entered by the CSR
by hand. This style of interactive problem solving is important, but nevertheless
is not the only mode in which to utilize a CBR system.

Our aim 1s to develop a more autonomous framework in which answers to
CBR questions can be gathered automatically from multiple information sources.
The motivation for our work derives from the evolution of an industrial-strength
CBR. system CASEADVISOR, developed by the CBR group at Simon Fraser Uni-
versity [24]. Tt allows a help desk organization to capture and reuse the experience
and knowledge of its most experienced help desk and customer support personnel
in a knowledge database that is easy to build, maintain and use. CASEADVISOR
represents a typical interactive CBR (or conversational CBR [1]) application.
After a user enters a natural language description of a problem, a set of cases
that closely match the description is retrieved. These cases are interactively eval-
uated by a user based on a set of questions associated with them. When a user
provides an answer to a question, a nearest neighbor algorithm is used to re-rank
all retrieved cases and their associated questions in order to obtain the currently
most relevant cases. The process is repeated until the user finds the target case.

Our observation 1s that much of the interactive question-answering process
can in fact be automated. This 1s because many answers are available at different
information sources, such as databases and web sites. In this model, a user is
just one of the information sources to be queried. Following this direction, we
advocate a novel approach to making such a CBR system “active” in the lifetime
of an application.

In this work, the CASEADVISOR system takes up the role of a continual
hypothesis evaluator. Each hypothesis is implemented as a case in the CBR sys-
tem. The answers to the questions of the cases can still be obtained from the
user; however, this is just one channel from which to obtain the information.
We assume that there is a collection of information sources available to provide
answers to the questions, or values to the attributes, in an autonomous way.
We also assume that relevant information is distributed, so that no one source
contains all of the information necessary to answer a question and information
must be autonomously gathered and integrated. Moreover, an attribute provides
only a high-level question which may need to be broken down into sub-questions
and tasks by a hierarchical planning process. This task planning is adone au-
tonomously by an information gathering sub-system. In this manner, a passive
and purely interactive advisory system 1s turned into an active, information
gathering system by using the questions in the case base as the queries to the
information gathering component. We are thus inserting the information gath-
ering component into the Retrieve stage of the CBR cycle, where the user may
decide to Reuse the case at any point where the retrieval is deemed adequate.



76 C. Carrick et al.

This extension to CASEADVISOR has been implemented in JAVA to facilitate
access to heterogeneous data sources, and can be applied to many situation
assessment domains. Medical diagnosis and scientific theory formation are good
examples of the situation assessment process: given some initial information a
working hypothesis (a possible diagnosis or theory) is formed. Experimentation
and testing then takes place to find further evidence to confirm or refute the
working hypothesis, possibly generating alternative working hypotheses in the
process. We have so far applied this situation assessment model to a military
search and rescue domain and a Cable-TV equipment diagnosis domain. In the
former, an initial indication about a missing aircraft will activate a case retrieval
and evaluation process, in which various information sources are consulted in a
continual manner [23]. In the equipment diagnosis area, again initial indications
of an equipment failure will prompt the retrieval of most relevant hypothesis
through a CBR retrieval process. A subsequent information gathering process
will allow different hypothesis about the equipment fault to be more accurately
assessed, and in the assessment process, part of the problem may be fixed. We
will highlight the equipment diagnosis area later in our paper.

Our work makes contributions to case based reasoning research in several as-
pects. First, the model represents a method in which one can turn a passive CBR
system into an active CBR, system, thus increasing “interactive efficiency”[1]. A
second novelty of the system is that a CBR system is used as an information
task generator to generate information gathering tasks in an autonomous man-
ner. Many well-known CBR systems [4,5, 13] assume that the values are known
for the attributes of retrieved cases. However, in situation assessment tasks, many
values are not known. Therefore there is a need for verifying and retrieving these
values through sophisticated query planning. Third, since we assume an open
system architecture in which many information sources are expected to coexist,
the system integrates a CBR component with an information gathering com-
ponent. The information-gathering component performs global task expansion,
planning and optimization.

Well-known CBR systems can be enhanced by our model. Systems such as
HYPO [4,5] and CASEY [13], rely on problem descriptions that are collections of
attributes and values to retrieve similar cases. Cases in their case bases are also
assumed to have their attribute-values ready for comparison with the incoming
problem description. However, these systems do not emphasize on how these
attributes and values are obtained. Our approach nicely complements these and
other CBR systems in that an autonomous model is provided for gathering
information in order to execute case based reasoning. In addition, our system
complements case based planning (CBP) systems [20] in that, while CBP systems
adapt a plan case after a similar plan is identified, in our approach “information
plans” are adapted during the retrieval process in order to find the most similar
case.

The organization of the paper is as follows. We first present a system overview
in Section 2. Then we discuss in Section 2.1 the case base representation and
the case retrieval process. In Section 2.2 we describe how to use the system to



Activating CBR Systems through Autonomous Information Gathering 77

generate questions and how we select one of those questions for execution. We
then discuss in Section 2.3 how to use a task planning and execution module to
gather the information. Finally, in Section 3, we present a practical example of
how our system can reduce the number of questions posed to the customer in a
cable TV call centre domain. We conclude the paper with discussions of related
works, our future research plans and conclusions.

2 System Overview

£ Retain gathered @@

information
Global @
Knowledge
€ Extract the Space
problem state \

Tasgk Planner

Protlem L [Task Executor

State @‘f’?é
Yo & Plan and
Learned execute
Case

information
Retrieved] task
=) —1 Cases \
' Stored [Cask Selector
'Qqé’ Cases
& £ Choose an

Tested! & infomation task

Repated &

Case

% Salved
REx:yCIe i ase

Fig. 1. The situation assessment cycle intersects the CBR cycle in the Retrieve stage.

As shown in Figure 1, our situation assessment system is made up of several com-
plex modules which interact internally in a cyclical fashion as well as externally
with a number of data sources, and intersecting the CBR cycle in the Retrieve
phase. At the initiation of the cycle, the Global Knowledge Space (GKS) con-
tains all relevant information which is known by the user and has been entered
into the GKS. From the GKS is created a problem state, which is used to query
the CASEADVISOR case base. This constitutes the situation assessment portion
of the system, in which two or more competing hypotheses are produced which
best explain the information contained in the GKS. These retrieved hypotheses
then form the context for the information gathering task. The Task Selector
uses the working hypothesis (that which best explains the data) as well as the
competing hypotheses to formulate a set of all questions which may further



78 C. Carrick et al.

distinguish the hypotheses. The Task Selector then chooses from that set one
question which is to be executed as an information task, and the Task Executor
plans and executes that task using the available data sources. (Decomposition
of an information task results in sub-tasks and possibly tasks which may need
to be performed in the process of answering the information task.) Should the
question be unanswerable, control returns to the Task Selector module which
chooses a new question as an information task for the Task Executor. When
the Task Executor has obtained an answer to the question, the information is
placed in the GKS, an updated problem state is created and used to query the
case base, and the set of competing hypotheses is thus re-evaluated.

2.1 Situation Assessment

The situation assessment in our system is provided by a case-based retrieval
system. The case base stores previous situations and their associated attributes
as cases. A case In our system is defined as a tuple < H,S,T >, where H
i1s a textual description of the diagnosis or hypothesis of the situation, S is a
set of one or more <question,answer,weight> tuples representing a typical state
leading to H, and T"1s a conjunction of zero or more tasks which may be executed
should H be the working hypothesis. These tasks in 7" are different than those
information tasks generated by the unanswered questions from .S in that they are
not intended to aid in the accuracy of the situation assessment and are merely
things which should be done if I is the working hypothesis (such as “Notify
supervisor.”).

Hypothesis: parental control switch on

Question Answer Weight
problem description poor reception of the cable signal 1.00
channels affected specific channels 0.70
uses parental control yes 0.80
has cable box yes 0.40
outlets concerned 1 0.30

Fig. 2. A sample case from the cable TV call centre domain.

In our cable TV call centre domain, a case consists of a problem cause (the
situation) and its associated conditions and effects (the state) as shown in Figure
2. The cable TV case base consists of a number of these cases, and a problem
cause can be identified by the given exemplar state. The information contained
in the GKS 1is used to formulate a problem state - the current state represented
as a set of existing conditions and/or effects. This is currently accomplished by
extracting from the GKS all statements relating to any of the questions in the
case base. This problem state is used by the retrieval system to find the cases
in the case base which most closely match the problem state using a k-nearest-



Activating CBR Systems through Autonomous Information Gathering 79

neighbour algorithm. The problem cause in each case retrieved then becomes a
possible hypothesis.

2.2 The Task Selector

Once we have retrieved the most likely hypotheses for a problem state, one ques-
tion must be chosen to become an information task for execution. This selection
involves estimating the costs of performing the information tasks, combining
this estimation with the estimated information quality of the questions, and
optimizing (possibly trading off) the two.

Information Quality When deciding which high-level information task should
be executed to refine the situation assessment, it is useful to take into account
how much information can be gained by its execution. It is desirable to maximize
information gain so that a working hypothesis can be confirmed or refuted as
quickly as possible, with as few questions as possible. As noted in [1], using
the information gain formula typically found in decision tree induction (as in
[19]) is not feasible when the case space is sparse. For this reason we have used
an estimation of information gain which we will denote information quality for
clarity.

To begin, we consider the information quality for only those questions which
are unanswered in the set of retrieved cases. This allows us to eliminate questions
which may be unanswered but are irrelevant to the current context (where the
context is defined by the set of competing hypotheses). We currently measure
information quality by considering three factors which would seem to have some
influence on the importance of a question:

— the number of times the question appears in the retrieved cases,
— the weights of the question in the different cases, and
— the ranks of the cases containing the question.

The last two heuristics have previously been used in our CASEADVISOR system.
In the current study all of these factors were given equal weighting in calculating
the information quality, though we are also studying the effects each of these
factors typically has on the information quality of a question. Questions are
then ranked according to their estimated information quality, and this ranking
can be further utilized in the task selection process.

Estimating Cost of Query Execution The cost of executing an information
task far outweighs the cost of planning such a task [10]. Tt is therefore a worth-
while endeavor to take the time to find a good plan for gathering information.
Different data sources may have different monetary costs for accessing them, are
able to respond in differing amounts of time, etc. For example, the plan frag-
ment shown in Figure 3 gives four possible locations for finding the answer to
the high-level task: the customer profile, the customer accounts database, the



80 C. Carrick et al.

Does the customer use
aparentd contral switch?

check online

ask customer

get customer

auery data source
account nurnber

‘ i ‘

customer profile worklog

query.
accounts

Fig. 3. A partial expansion tree for the query “Does the customer use a parental control
switch?”

log of installation and maintenance work, and the customer herself. Checking
the work log may incur a high time cost if the data is remotely stored, while
local customer profiles may be old or incomplete. Each source has various cost
constraints, some of which may be more important than others. The problem is
then to find the best execution plan, which minimizes the cost of answering that
question.

In order to estimate the cost of answering a question, it is necessary to for-
mulate an execution plan. We accomplish this task by creating a hierarchical
task network (HTN) [22,7] from a library of task schemata'. This HTN presents
an explicit parent-child relationship on information tasks, where a sub-task can
either be directly executed, or can be decomposed into its constituent parts. It
also contains any temporal constraints, user-imposed preferences and cost esti-
mates which are important in the estimation of the cost of answering a question.
It is also possible to be able to perform a task (or some part of it) in a number of
different ways. An execution plan for an information task can then be seen as a
constrained AND/OR graph of decompositions (conjunctions) and alternatives
(disjunctions). The HTN query plan represented by the AND/OR graph can be
different for different situations and information state in the data sources.

Figure 3 shows a partial AND/OR tree for the execution of an information
task to find out whether a customer uses a parental control switch. Any path
through this tree which covers all children of each encountered AND node and
at least one child of each encountered OR node is a possible plan to execute
the information task. These schemata contain not only information pertaining
to the AND/OR structure of a plan, but

Our system currently estimates execution cost using a mini-max network
flow algorithm on its query expansion network. All leaf nodes in AND/OR trees
(directly executable queries) have associated with them a cost value which is a
function of time cost, dollar cost and reliability cost. For each candidate query,
the Task Selector examines all leaf nodes in its AND/OR tree. The cost values

! For brevity we do not show the schemata here.



Activating CBR Systems through Autonomous Information Gathering 81

are propagated upward to the root node, taking the sum at AND nodes and the
minimum at OR nodes. It then remains to traverse the tree from the root node,
taking the minimum at each OR node. The resultant traverse of the tree is a
minimum cost solution and the leaf nodes in this traverse form a low-cost query
execution plan. The topic of planning and tree traversal will be visited again in
Section 2.3.

Combining Information Gain and Execution Cost In choosing an infor-
mation task (or question) for execution, it is important to pay attention to both
the information quality of the question and also the estimated cost of that ques-
tion. If a question has a very high information content but it i1s unlikely that
we will obtain an answer before final decisions must be made, then perhaps a
faster question with slightly less information quality is in order. Thus there can
be a trade-off between information quality and execution cost. Currently, our
system uses hard-coded parameters in a function of gain and cost, though we
are considering the benefits of having user- or domain-specified priorities on the
different constraints involved.

2.3 The Task Planner and Executor

The Task Planner and Executor module performs the usual information gather-
ing tasks of planning, optimizing and executing an information task. It receives
the information task which has been chosen by the Task Selector module and
searches that task’s AND/OR tree for the least-cost plan. Since each leaf node
specifies how it is to be executed, the leaf nodes in this solution plan are executed
by invoking the functions, modules or agents whose calls are contained therein.
This AND/OR tree search algorithm returns a low-cost solution plan for an-
swering the question when the AND/OR graph is a tree (i.e. an executable task
does not show up twice in the graph). When information sources are shared by
different tasks, the optimization problem of finding a lowest-cost solution plan
is NP-hard; we are currently experimenting with different heuristic algorithms
for solving it.

If all possible solutions to the task fail (i.e. all children of the top-most OR
node have been exhausted and no solution has been found), then control returns
to the Task Selector module to choose an alternate question for answering. This
process continues until a question has successfully been answered or until there
are no more question options. In the latter case, processing halts and the working
hypothesis is presented as an assessment of the situation. When a question has
been successfully executed, the answer to the question is placed in the GKS. This
triggers the creation of a new problem state to be formed from the contents of the
updated GKS. The problem state is presented to the case-based retrieval system,
and hypotheses are retrieved with new matching scores based on the updated
input state. This cycle continues until there are no more questions which can
aid in the accuracy of the case retrieval, or until halted by the user.



82 C. Carrick et al.

3 Sample Scenario

To demonstrate the utility of our system we show here a sample problem from the
cable TV troubleshooting domain. Figure 4 shows three cases retrieved by the
customer’s problem description of “poor reception”, and the six questions which
are relevant to those retrieved cases in the order produced by our information
quality heuristics.

Case I: signal problems
problem description poor reception of the cable signal 1.00
channels affected specific channels 0.80
local signal clear 0.95

Case II: customer not subscribed to package
problem description poor reception of the cable signal 1.00

channels affected 29 — 58 0.75
channels affected 29 — 43 0.75
channels affected 44 — 58 0.75
subscribed no 0.50

Case III: parental control switch on
problem description poor reception of the cable signal 1.00

channels affected specific channels 0.70
uses parental control yes 0.80
has cable box yes 0.40
outlets concerned 1 0.30

Q1 Which channels are having the problem?

Q2 Is the picture clear on the local set?

Q3 Does the customer use a parental control switch
Q4 Is the customer subscribed to these channels?
Q5 Does the customer have a cable box?

Q6 How many outlets have the problem?

Fig. 4. Cases relevant to the problem description “poor reception”; and the questions
relevant to those cases.

Figure 5 shows the results of a diagnostic session in which a customer has
poor reception on certain cable channels. There were five data sources avail-
able in our cable TV domain: a customer profile database, a customer accounts
database, a work /installation log, a database of current signal problems; and the
customer herself. Figure 5(a) gives the results obtained from the initial problem
description, and shows that question Q1 has been chosen for execution. This
question is posed to the customer, as we currently have no on-line means of
obtaining the information. The response to this question is then added to the
problem state and the new retrieval from the case base gives us the results in
Figure 5(b). At this point Q2 is chosen for execution. A partial expansion for



Activating CBR Systems through Autonomous Information Gathering 83

this information task is shown in Figure 6, and the execution plan chosen is the
highlighted path. Note that at node C the first path chosen was to a database
of current signal problems, which resulted in failure due to the absence of the
requested information at that site. It was then necessary to re-plan and chose
an alternate, next-best solution. Once all of the information was obtained and
integrated to answer the question, this answer was added to the problem state
and again the case base performed a re-assessment.

This process continued through all of the cycles depicted in Figure 5. The
four on-line data sources provided answers to all questions but QI in a real-
istic fashion. This shows a tremendous potential for reducing the duration of
the question-answer session with the customer. By using information gathering
techniques, we also reduce the burden of information search on the call centre
employee and speed up retrieval of information, thus diagnosing problems more
quickly and servicing more customers in a shorter amount of time.

The sample session just presented shows how our system can be useful with
a passive CBR diagnosis mechanism: when a customer recognizes that she has
a problem, she can invoke the system with an input problem state and the
information gathering component obtains evidence to aid in the diagnosis. But
these same mechanisms can also be used in an active manner. Consider the use of
active databases and monitoring agents in the information gathering component:
instead of waiting for a new question to be posed, these monitors and triggers
become activated whenever a relevant change occurs in a data source. We can
then use this information to foresee a problem. The case base can continually re-
rank retrieved cases, based on these changes in the data sources. We then have a
system which already has much of the information needed for a diagnosis when a
customer calls in with their problem description. This integrated technique can
be seen as performing active case-based reasoning in a backward fashion, where
the reasoning (AND/OR tree expansion) occurs from the objectives back to the
information sources. In [15], we study how to combine active databases and CBR
in a forward manner. Indeed, an active system such as this could even predict
that customers will phone the call centre with a particular problem given changes
in the local signal, listed outages, last-minute changes in the TV schedule, etc.

4 Related Work

In the case-based reasoning community, Conversational CBR (CCBR) has at-
tracted substantial research [1]. CCBR, essentially interactive CBR, involves the
refinement of diagnoses through interaction or conversation with the user, asking
questions which are considered to have high information gain. These questions
are based upon the unanswered attributes in the problem case which are rele-
vant to the retrieved cases, and are ranked according to some heuristic such as
the number of cases in which the attribute occurs. Popular in help-desk applica-
tions, commercial tools such as Inference Corporation’s CBR Express exemplify

2 We had turned off the solution threshold, allowing re-assessment to take place until
there were no further questions to be answered.



84 C. Carrick et al.

initial input: poor cable reception

retrieved: signal problems 45
customer not subscribed to package 27
parental control switch on 27

chosen question: Which channels are having the problem?
sources queried: customer
(a)

retrieved: signal problems 64
parental control switch on 36
chosen question: Is the picture clear on the local set?
sources queried: GKS, signal problems database, local monitor
(b)
retrieved: parental control switch on 56
signal problems 44
chosen question: Does the customer use a parental control switch?
sources queried: GKS, customer profile database
(c)
retrieved: parental control switch on 65
signal problems 35
chosen question: Does the customer have a cable box?
sources queried: GKS, customer profile database
(d)
retrieved: parental control switch on 69
signal problems 31
chosen question: How many outlets are having the problem?
sources queried: GKS, customer accounts database
(c)
retrieved: parental control switch on 71
signal problems 29

(f)

Fig.5. Results of a diagnostic session in which a customer has poor reception on
certain cable channels. Selected questions are planned and executed among the various
data sources, and the increasing amount of known information leads to an increased
accuracy in the diagnosis.

CCBR [1]. These systems attempt to find the quickest way to increase the ac-
curacy of diagnosis through estimating information gain. Further research has
used model-based inferencing to reduce the number of questions asked of the
user by eliminating redundant questions [3]. These systems still remain user-
guided however, and therefore need not consider certain problems introduced by
IG such as cost estimation and planning information tasks. [2] discusses ongoing
research in which state information can be collected from users and also from
sensors, leading into research in optimizing cost and gain estimations.

CBR and HTN planning have also been integrated in the NaCoDAE/HTN
system [16]. There, however, the CBR is used to interactively generate plans,
where these plans are constrained by the HTN. This puts the NaCoDAE/HTN
system at the Rewvise stage of the CBR cycle, which is complementary to our



Activating CBR Systems through Autonomous Information Gathering 85

A
Check the local signal

B V/OY c

what channels verify local signal
affected? for each
problem channel
"
D E ¥ '
F G
check GKS ask customer

checlk datahase of checl local
signal problems monitor

Fig. 6. The task expansion for the information task “Check the local signal.”

work. A similar system to NaCoDAE/HTN is our CASEADVISOR system as
described in [24], which attaches a case with a decision tree. When a candidate
case is 1dentified, the decision tree is evaluated, prompting the user with a series
of questions and actions to follow. The decision tree search essentially performs
the case adaptation work.

In the area of automated information gathering, many researchers have been
investigating methods of reducing the cost of executing a query through query
reformulation and optimization [14,9,8,6,10]. This is a query in the database
sense, and corresponds to a single question which must be answered through
the information gathering component in our work. These generally involve as-
signing various costs (dollar cost, time cost, accuracy cost, etc.) to data sources
and reasoning to minimize those costs. For example, the SIMS system models
subsumptive relations which are useful in query formulation, and also facilitates
descriptive models of resources for query optimization. The InfoSleuth system is
the result of intensive research in ontologies, and also uses a frame-based, three
level representation to provide a detailed model of the domain and resources
[9]. In more flexible systems such as BIG [14], users are able to specify which
costs are more important to them and the cost-minimizing function takes this
into account. Thus, the BIG system optimizes IG plans according to user prefer-
ences. Given the quality, cost and time features of accessing the various available
data sources, BIG attempts to optimize these features with respect to a set of
user-specified constraints on the features. This allows for different definitions of
“optimal”, depending on the user of the system.

5 Future Work

With the support of the preliminary results obtained, we are eager to investigate
aspects of our system further. Several variants of the task selection and query
planning algorithms are worth investigation, taking into account different con-
straints and optimizing those constraints. Global optimization of the planning
process should take into account various cost, content overlap and information



86 C. Carrick et al.

gain information of the information sources. However, this discussion is beyond
the scope of this paper. We have several proposals for improving the cost esti-
mation/optimization algorithm and are performing such studies:

— rearranging sub-queries within planning constraints to minimize data source
accesses,

— studying the effects of global optimization as opposed to local optimization,
and

— learning and/or estimating the cost of a new data source.

Also under investigation are the impacts information quality and execution-
time have on the time to converge to an assessment. Perhaps a question with
high information content would be worthwhile executing even if the execution
time was estimated to be very high, if it would allow convergence to a single
situation assessment hypothesis soon afterwards. Discovering a relationship be-
tween information quality, execution time and time to convergence would allow
us to create a cut-off where we could say that the information quality is not
worth the execution time.

Uncertainty in gathered information is another aspect which we consider
important in future versions of our assessment system. At present, all information
inserted into the GKS is given a weight of 1.0, though there is the option available
to weight the information from the GKS with degrees of certainty. Using this
option will impact not only the maintenance of the GKS, but also our task
selection algorithm as 1t may be desirable to verify already “known” information
which has a low certainty.

We also see as important the problem of displaying to the user all of the use-
ful information about the assessment process, without being obtrusive. Since our
program 1s meant to act as a support to the user, working quietly in the back-
ground, we do not wish to overload the user with process information. Indeed,
it is information overload which our system attempts to overcome. However, the
user should feel in control and this involves giving the user access to the various
processes which are taking place within the system. Even if it is not an option for
the user to override a system decision, it can make new users more comfortable
with the system to simply know the data upon which plans are being made.

6 Conclusions

Using automated information gathering to aid in situation assessment is a novel
research topic. We have combined a case-based retrieval system with information
gathering techniques which results in a fewer number of questions posed to the
user. The advantage of the system is that the majority of trivial or repeated
queries to information sources can be done autonomously through an agent-like
system, and human users are only asked a small number of necessary questions
by the system. Under this model, we can also use the CBR system to continu-
ally generate questions that are planned for and executed based on information
sources such as databases and the Internet, resulting in an active diagnostic



Activating CBR Systems through Autonomous Information Gathering 87

system. In the cable TV call centre domain, this concept shows a tremendous
potential for reducing the duration of the question-answer session with the cus-
tomer. By using information gathering techniques, we also reduce the burden of
information search on the call centre employee and speed up retrieval of infor-
mation, thus diagnosing problems more quickly and servicing more customers
in a shorter amount of time. Our system also goes a long way to facilitating
self-diagnosis via the internet or an automated phone system, further reducing
call centre costs.

Acknowledgments

We thank Canadian Natural Science and Engineering Research Council, Rogers
Cablesystems Ltd. and Canadian Cable Labs Fund, Canadian Institute for Robotics
and Intelligent Systems (IRIS), Defense Research Establishment Valcartier and
Simon Fraser University for their support. We thank Michael Zhang, Geof Glass
and Nathan Paziuk for their comments on this work.

References

1. D. Aha and L. Breslow. Refining conversational case libraries. In Proceedings of
the Second International Conference on Case-based Reasoning (ICCBR-97), Prov-
idence, RI, July 1997.

2. D. W. Aha, L. A. Breslow, and T. Maney. Supporting conversational case-based
reasoning in an integrated reasoning framework. Technical Report AIC-98-006,
Naval Research Laboratory, Navy Center for Applied Research in Artificial Intel-
ligence, Washington, DC, 1998.

3. D. W. Aha, T. Maney, and L. A. Breslow. Supporting dialogue inferencing in con-
versational case-based reasoning. Technical Report AIC-98-008, Naval Research
Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washing-
ton, DC, 1998.

4. K. Ashley. Modelling legal argument: Reasoning with cases and hypotheticals. MIT
Press, Bradford Books, Cambridge, MA, 1990.

5. K. Ashley and E. Rissland. A case-based approach to modeling legal expertise.
IEEE Ezpert, 3(3):70-77, 1988.

6. O. M. Duschka and A. Y. Levy. Recursive plans for information gathering. In
Proceedings of IJCAI-97, Nagoya, Japan, August 1997.

7. K. Erol, J. Hendler, and D. S. Nau. Htn planning: Complexity and expressivity. In
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),
pages 1123-1128, Seattle, WA, 1994. AAAT Press/The MIT Press.

8. M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster: An information
integration system. In Proceedings of the ACM SIGMOD Conference, May 1997.

9. R. J. B. Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Un-
nikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration
of information in open and dynamic environments. In Proceedings of SIGMOD’97,
1997.



88

10

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Carrick et al.

C. A. Knoblock, Y. Arens, and C.-N. Hsu. Cooperating agents for information
retrieval. In Proceedings of the 2nd International Conference on Cooperative In-
formation Systems, Toronto, Canada, 1994. University of Toronto Press.

J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publisher, Inc., 1993.

J. Kolodner and D. Leake. a tutorial introduction ot case-based reasoning. In
D. Leake, editor, Case-Based Reasoning: Experiences, lessons & Future Directions.
American Association for Artificial Intelligence, 1996.

P. Koton. Reasoning about evidence in causal explanation. In Proceedings of
the Seventh National Conference on Artificial Intelligence (AAAI-88), Cambridge,
MA, 1988. AAAT Press/MIT Press.

V. Lesser, B. Horling, F. Klassner, A. Raja, and T. Wagner. Information gathering
as a resource bounded interpretation task. Technical Report 97-34, University of
Massachusetts Computer Science, March 1997.

S. Li and Q. Yang. ActiveCBR: Integrating case-based reasoning and
active databases. Technical Report TR 1999-03, School of Comput-
ing Science, Simon Fraser University, Burnaby BC Canada, January 1999.
http://www.cs.sfu.ca/ qyang/Papers/activecbr.ps.gz.

H. Munoz-Avila, D. C. McFarlane, D. W. Aha, L. Breslow, J. A. Ballas, and
D. Nau. Using guidelines to constrain interactive case-based htn planning. Tech-
nical Report AIC-99-004, Naval Research Laboratory, Navy Center for Applied
Research in Artificial Intelligence, Washington, DC, 1999.

T. Nguyen, M. Czerwinski, and D. Lee. Compaq quicksource—providing the con-
sumer with the power of ai. Al Magazine, 1993.

A. Perini and F. Ricci. An interactive planning architecture: The forest fire fight-
ing case. In M. Ghallab, editor, Proceedings of the 3rd European Workshop on
Planning, pages 292-302, Assissi, [taly, September 1995. [SO Publishers.

J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

M. Veloso, H. Munoz-Avila, and R. Bergmann. General-purpose case-based plan-
ning: Methods and systems. AI Communications, 9(3):128-137, 1996.

I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems.
Morgan Kaufmann Publishers, Inc., 1997.

Q. Yang. Formalizing planning knowledge for hierarchical planning. Computational
Intelligence, 6, 1990.

Q. Yang, [. Abi-Zeid, and L. Lamontagne. An agent system for intelligent situa-
tion assessment. In F. Giunchiglia, editor, Proceedings of the 1998 International
Conference on Al Methodologies, Systems and Applications (AIMSA98), volume
1480 of Lecture Notes in Al pages 466—474, Sozopol, Bulgaria, September 1998.
Springer Verlag.

Q. Yang, E. Kim, and K. Racine. Caseadvisor: Supporting interactive problem
solving and case base maintenance for help desk applications. In Proceedings of
the IJCAT 97 Workshop on Practical Applications of CBR, Nagoya, Japan, August
1997. International Joint Conference on Artificial Intelligence, IJCAL



Integrating CBR and Heuristic Search for
Learning and Reusing Solutions in Real-time Task
Scheduling

Juan Manuel Adéan Coello!, Ronaldo Camilo dos Santos?

! Instituto de Informatica, PUC-Campinas, Cx.P. 317, CEP 13.020-904,
Campinas, SP, BRAZIL
juan@zeus.puccamp.br
2 FEEC/UNICAMP, Campinas, SP, BRAZIL
ronaldo@dca.fee.unicamp.br

Abstract. This paper presents the Case-Based Reasoning Real-Time Schedul-
ing System (CBR-RTS) that integrates into a case-based reasoning framework a
heuristic search component. The problem addressed involves scheduling sets of
tasks with precedence, ready time and deadline constraints. CBR-RTS reuses
the solution of known cases to simplify and solve new problems. When the
system does not have applicable cases, it tries to find a solution using heuristic
search. A particularly interesting feature of CBR-RTS is its learning ability.
New problems solved by the heuristic scheduler can be added to the case base
for future reuse. Performed tests have shown that small bases of cases carefully
chosen allow to substantially reduce the time needed to solve new complex
problems

1 Introduction

According to a widely accepted definition in the real-time systems community, real-
time systems are those systems whose correctness depends not only on the logical
results of the computations, but also on the time at which the results are produced [1].
To meet that requirement, a real-time software development environment should
integrate flexible programming languages that support the specification of real-time
constraints with scheduling algorithms that determine when, and where, in the case of
a multiprocessor or distributed hardware, the components of a program should exe-
cute.

The problem of guaranteeing that the timing constraints of a program are going to
be met at run-time is fairly simple when the corresponding task model is also simple.
For example, when a program is composed of independent periodic tasks, the rate
monotonic or the earliest deadline first scheduling algorithms [2] can be successfully
used. As the programming model becomes more complex, as is needed by most real
applications, scheduling turns into a computationally intractable problem [3], that is
usually solved using heuristic algorithms.

The application of heuristic algorithms requires to map programming model repre-
sentations to scheduling algorithm representations, usually some kind of directed

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 8§9-103, 1999
© Springer-Verlag Berlin Heidelberg 1999



90 J.M.A. Coello and R. Camilo dos Santos

labeled graph [4].

An inherent characteristic of traditional schedulers based on heuristic search is its
lack of ability to learn from experience. New problems identical, or very similar, to
other problems already solved in the past have to be solved again, form first-
principles, every time they are found. This procedure wastes time and resources usu-
ally scarce to deal with problems previously faced, for which it was already found a
solution or discovered that the problem can not be solved applying available methods.

According to cognitive scientists, the reuse of known solutions to solve new prob-
lems is routinely done by human beings when facing new complex problems. In the
artificial intelligence field, this problem solution paradigm is known as Case-Based
Reasoning (CBR) [5].

In this work, we study a new scheduling architecture that integrates into a case-
based reasoning framework a heuristic search component.

The paper is structured as follows. In section 2 we present the real-time problem
being considered. In section 3, we describe the architecture of the Case-Based Rea-
soning Real-Time Scheduling System (CBR-RTS). In section 4 we discuss some
experiments that were conducted to evaluate the system. In section 5 we review some
related work. Finally, in section 6, we present some concluding remarks and point out
suggestion for future work.

2  The Real-Time Scheduling Problem Addressed

Real-time systems can be classified in two main classes: Soft Real-Time Systems
(SRT) and Hard Real-Time Systems (HRT). In SRT systems, the performed tasks
should be executed as fast as possible, but it is not vital that they finish before a dead-
line, however, in HRT systems, if rigid deadlines are not met, severe consequences
can take place.

A real-time system consist typically of a control system, the computer and its inter-
faces, and a controlled system, for example an automated factory, that can be seen as
the environment with which the computer interacts. Due to the characteristics of con-
trolled systems, control systems usually are composed of different processes, or tasks,
that can be seen as abstractions of sequences of code (computer instructions).

Real-time tasks can be characterized by several constraints, including, timing con-
straints, periodicity, precedence relations, mutual exclusion relations, resources, pre-
emption and allocation.

Tasks timing constraints can be specified by the parameters arrival time, ready
time, computation time and deadline. The arrival time of a tasks, a, is the time when
the task is invoked by the system. The ready time, r, is the time when the task be-
comes ready for execution, and is greater or equal to a. When there are no additional
resource restrictions, » = a. The computation time, ¢, is the worst case CPU time
needed to execute the task, including associated overhead, for example context
switching time. The deadline, d, is the time before which the task must finished its
execution, and is relative to the task arrival time. The “absolute” deadline of a task is
thus given by a + d.

Depending on the arrival pattern of a task it can be classified as periodic or aperi-



Learning and Reusing Solutions in Real-Time Task Scheduling 91

odic. Periodic tasks are executed once each time interval p and all their timing con-
straints can be determined off-line. In particular, for a given periodic task P, the arri-
val time of its i-th execution instance, a[P; ], is equal to a[P;, ] + p. Aperiodic tasks do
not have deterministic arrival times, they can arrive at any time and are related to
events whose occurrence is unpredictable, as alarm conditions.

A precedence relation between tasks exists when one task depends on the results
produced by the other task execution. If, for example, task A precedes task B, task B
can start its execution only after task A finishes.

Mutual exclusion occurs when certain shared resources can not be accessed simul-
taneously by several tasks, otherwise the resource can go to an inconsistent state. This
happens, for example, when several tasks need to read and write concurrently a shared
memory position or a record in a file.

Besides the CPU, some task may need additional resources to execute, as I/O units,
dedicated processors, etc. In this case, the ready time of the task is usually greater
than its arrival time, since it is generally necessary some additional time to allocate
the needed resources.

A task can be preemptable or nonpreenptable. A task is preemptable if its execu-
tion can be interrupted by higher priority tasks and later resumed at the point where it
was interrupted. Nonpreemptable tasks once started execute until they finish or ex-
plicitly release the processor.

When there are multiple processor or processing nodes in a system, tasks have to
be allocated considering several factors, including, processor load balancing, commu-
nication load balance, fault tolerance and resources available in each node.

In hard-real-time systems the scheduling decisions can and must be made off-line.
They can be made off-line because the bulk of the computation in those systems is
done by periodic tasks, where constraints, particularly timing constraints, are known
in advance of their execution. Decisions must be made off-line because in hard-real-
time systems it is mandatory that timing constraints are met at run-time. As most
scheduling problems are NP-complete, it is not practical to try to find a schedule for a
set of tasks dynamically, when they are invoked. If the system includes periodic and
aperiodic tasks, there are general techniques that can be used to transform sets of
aperiodic tasks into equivalent sets of periodic tasks [6,7].

We will address here the problem of off-line scheduling sets of periodic hard real-
time tasks whit timing and precedence relation constraints in monoprocessor comput-
ers. This type of scheduling problem is usually represented using acyclic directed
labeled graphs, that here we will call scheduling graphs. In a scheduling graph, nodes
represent the tasks to be scheduled and arcs their precedence relations. Nodes and arcs
labels can be used to specify their timing constrains.

In our system, a node may have attached a computation time, c, a ready time, r ,
and a deadline, d. The label of an arc can be used to specify the time needed to trans-
fer a message between communicating tasks in a distributed system. But, as we are
considering the problem of scheduling in a monoprocessed computer, we will not
attach costs to arcs.

Scheduling graph represents all the periodic tasks to be executed, and it is assumed
that all the tasks have the same period. If a feasible schedule for this set of tasks is
found, the schedule can be indefinitely repeated. When the tasks to be scheduled have
different periods, we can construct a graph that represents all the occurrences of each



92 J.M.A. Coello and R. Camilo dos Santos

(@) ]

i node id.
c; computation time
ri ready time

d; deadline

\ precedence

Fig. 1. Representation of a scheduling problem

task in the cyclic window, defined as the least common multiple (LCM) of the tasks’
periods. If that is done, the period of each task instance in the scheduling graph can be
defined as being equal to the cyclic window. For example, lets consider that we have
two tasks, T, and T,, with periods 50 and 100, respectively, ready times equal to their
arrival times and deadlines equal to their periods. In the corresponding scheduling
graph, we will have one execution instance of T, and two execution instances of task
T, both will have a period 100 (the LCM of the two tasks periods). The first instance
of T,, T, will have its ready time at time O and its deadline at time 50 and the second
instance, T\, , will have its ready time at 50 and its deadline at 100. Details about the
production of scheduling graphs from programs can be found in [4].

Searching for a feasible schedule to a given scheduling graph, constructed as de-
scribed above, consist in finding the start times of each node in the graph. If we were
dealing with a distributed system, we will have also to find an allocation for each
node, but this problem will not be considered here.

Figure 1 shows an example of a simple scheduling problem with four tasks, T,, T,,
T; and T.. Each task is represented by a node, for example, task T,, represented by
node 1, has a computation time, c, of 3 time units, ready time, r, at 3 time units after
its arrival time and deadline at 30 time units after its arrival time. Task T, precedes
tasks T, and T, and tasks T, and T; precede task T.. The diagram in figure 2 shows a
feasible schedule for this problem. If this schedule is repeated at each cyclic window,

T T, Ts T4

3 6 13 15 20 24 30

Fig. 2. A schedule to the problem in figure 1



Learning and Reusing Solutions in Real-Time Task Scheduling 93

NEW
PROBLEM Problem
l‘ Simplified

Problem +
Similar Cases

RETRIEVE q REUSE
L. Probl
Similar T Sirrr?bli?ﬁrz d Contracted
Cases P Solution

HEURISTIC
SEARCH

CASE BASE |*

New Case
(Problem + Solution)

SOLUTION

Fig. 3. CBR-RTS System Architecture

in this case with duration of 30 time units, all tasks will meet their timing constraints.

3 CBR-RTS Architecture

We will begin this section with a brief introduction to the architecture of the sys-
tem and its functionality and then, on the following subsections, provide additional
information together with the presentation of a simple example that illustrates the
topics being discussed.

The structure of the CBR-RTS system is presented in figure 3. It consists of a case
base (CB), a case retrieval module, a case reuse module, a heuristic search module
and a solution expanding module.

The case base stores the description of scheduling problems solved in the past and
their respective solutions.

The retrieval module is responsible for finding in the case base old problems simi-
lar to the new problem or to parts of it.

The reusing module adapts the retrieved cases to solve the problem. It may happen
that with the retrieved cases it is possible to solve the whole problem or only some of
its parts. In the latter situation, the parts solved (subgraphs of the original problem
graph) are abstracted into a single node in the problem scheduling graph, and we say
that the problem was simplified, or contracted. The simplified problem is resubmitted
to the retrieval and reusing modules as many times as necessary to find a complete
solution to the problem or until there are no more similar cases in the case base. If a
solution is found, it is passed to the expander module. If the simplified problem, and



94 J.M.A. Coello and R. Camilo dos Santos

Fig. 4. Graph describing a new problem

consequently, the original problem, could not be solved reusing the stored cases, it is
submitted to the heuristic search module.

The heuristic search module implements a dedicated scheduling algorithm that will
searches for a feasible solution to the problem. If it finds a solution, it is included, as a
new case, in the case base and is submitted to the expander module. If a solution is
not found, the original problem, without any simplification, is submitted to the dedi-
cated scheduler that will try to find a solution to the original problem. If one is found,
it is outputted and included in the case base.

It is possible to implement a backtracking mechanism that could progressively
undo previous simplifications and try new ones, or try to apply the search algorithm to
the problem in early stages of simplification, but currently this is not done.

The expander module does the proper unfolding of nodes that abstract parts of the
original problem before outputting the problem solution.

In the following subsections we discuss in more detail the architecture and func-
tionality of the system and illustrate it using a simple example, that consists in finding
a solution to the problem represented in figure 4.

3.1 Case Representation

A case is stored as a pair (problem,solution). A problem is represented by a labeled
acyclic directed graph, as shown in figure 1, where the labels are used to specify its
tasks timing constraints. The solution corresponds to a schedule that satisfies the
problem timing constraints, as illustrated by the Gantt diagram in figure 2. For a given
problem, the corresponding schedule shows the start time of each node (task) in the



Learning and Reusing Solutions in Real-Time Task Scheduling 95

problem graph.
Figure 5 illustrates a case in the case base. The graph on the left represents the
problem, and the Gantt diagram on the right the corresponding solution.

3.2 Case Retrieval

The case retrieval module searches the case base looking for stored cases (old solved
problems) similar to the current problem. Since cases are stored as graphs, similarity
assessment involves subgraph isomorphism detection. A case is similar to a problem
if:

1. The case and the problem are described by isomorphic graphs and the timing

constraints of the problem are the same or less strict than those in the case; or

2. The case is part of the problem, i.e., it is described by a graph that is isomor-

phic to some subgraph of the problem (a subproblem) and the timing con-
straints of the subproblem are the same or less strict than those in the case.

If r;, ¢;, and d; are the ready time, computation time and deadline, respectively, of
task 7 in the problem, and r’;, ¢’;, and d’; the equivalent times for the corresponding
tasks in the case, we say that the problem’s timing constraints are the same or less
strict than those of the case if the following is valid for all corresponding nodes
(tasks):

I < r’i;Ci < C’i and d,‘ > d’i

In the current version of CBR-RTS, subgraph isomorphism detection is done using
an implementation made by Messmer [8] of Ullman’s algorithm [9].

Figure 4 shows an example of a new problem to be solved and figure 5 a case re-
trieved from the case base. We can see that that the case is similar to subproblem x in
the new problem. Both, the case and the subproblem, are represented by isomorphic
graphs and the subproblem's timing constraints are less strict than the case's timing
constraints.

3 6 13 15 20 24 30

Fig. 5. Old problem in the case base, similar to subproblem x of the new problem



96 J.M.A. Coello and R. Camilo dos Santos

Fig. 6. New problem simplified

3.3 Case Adaptation and Reusing

The retrieval module can find an exact match for a problem in the case base or, more
often, one or more partial matches. If an exact match is found, the solution in the case
can be used without any adaptation.

When partial matches are found, they can be similar to the complete problem or to
some of its subproblems. If there is a case that is similar to the complete problem, the
solution to the case can also be applied without any modification, because the tasks in
the subproblem have computation times equal or lower than those in the case and,
consequently, a schedule that satisfies the case will also satisfy the subproblem.

When a solution is reused as above, it is very likely that the subproblem schedule
has some "gaps", because some of its tasks can have lower computation times than
that on the case. This is not necessarily a problem since these gaps can be used to
schedule aperiodic tasks [10].

When there are retrieved cases similar to subproblems in the new problem, the
cases are used to solve the subproblems and the corresponding subgraphs are ab-
stracted to a single node. When this is done we say that the problem was simplified or
contracted, because it has now less tasks (nodes) to be scheduled, what usually means
that it becomes a simpler scheduling problem, since the complexity of scheduling
problems increases with the problem size.

The retrieved cases are not mutually exclusive, because they can share some nodes
an arcs. This implies that when the system reuses a certain case, it may be excluding
the application of others. The reusing module adopts the strategy of reusing the larg-
est subgraph retrieved first.

In the current implementation, only subproblems that form a group are abstracted.
We define a group as a graph composed of an entry node, an exit node and internal
nodes. Internal nodes and the exit node can have as predecessors only the entry node
or other internal nodes, in the same way, the entry node and the internal nodes can
have as successors only other internal nodes or the exit node. This restriction is done
to make easier the expansion of the final problem schedule, and in the future can be
relaxed.

The node that abstracts a subproblem will receive the ready time, and deadline of



Learning and Reusing Solutions in Real-Time Task Scheduling 97

T T Tx ™

Fig. 7. Schedule produced by PSPS to the new problem simplified

its entry and exit nodes, respectively, and its computation time will correspond to the
finish time of the last scheduled task minus the start time of the first schedule task in
the case.

The retrieval and reusing cycle continues until the problem is transformed into a
single node, in which case the problem is completely solved and the schedule found
so for can be expanded, as will be described in section 3.5. If the cycle stops without
finding a solution, that is, the problem could not be reduced to a single node and there
are no more similar cases in the case base, the simplified problem is submitted to the
heuristic search module.

Figure 6 shows the problem in figure 4 simplified using the case shown in figure 5.
We can see that subproblem x was replaced by an equivalent node, x. As we can see,
node x has the start time of node 2 (the entry node in the subproblem), the deadline of
node 5 (the exit node in the subproblem) and the computation time equal to the finish
time of last schedule node (node 4) minus the start time of the first scheduled node
(node 1) in the case. This simplified problem has no similar cases in the case base, so
it will be submitted to the heuristic search module that will try to solve it using a
dedicated scheduler.

3.4 Heuristic search

The heuristic search module is used when it is not possible to solve a new problem
using solely past experiences stored in the case base. The heuristic search module
may find a solution to the problem or discover that the problem is not schedulable. In
both situations a new case can be stored in the case base. The problem description (a
labeled graph) and the solution (a schedule), or an indication that the problem is not
schedulable, are stored in the case base. That is, the system can learn solutions to a
new type of problem or learn that this type of problem can not be solved. Both lessons
are worth remembering.

In the current version of CBR-RTS, the heuristic search module uses a dedicated
scheduler, named PSPS (Periodic and Sporadic Processes Scheduler), based on a
branch and bound search algorithm proposed by Xu and Parnas [11].



98 J.M.A. Coello and R. Camilo dos Santos

In our example, the simplified version of the new problem, shown in figure 6, has
no similar cases in the case based and is submitted to the heuristic search module,
that produces the schedule shown in figure 7.

3.5 Solution Expansion and Output

When a problem is solved, the schedule found for the simplified problem is expanded
to restore the subproblems that were abstracted to single nodes during problem sim-
plification.

In our example, figure 8 shows the expansion of the solution produced by the heu-
ristic search module to the problem presented in figure 4. As we can see, in the time
interval reserved to node x the expander introduced the solution to subproblem x. This
solution is generated adapting the solution in the case that is similar to subproblem x,
as shown in figures 5 and 6.

4 CBR-RTS Evaluation

This section discusses the performance of CBR-RTS when applied to solve nine
problems of different sizes and complexity. The performance of CBR-RTS in solving
these problems is compared to the performance of the PSPS system alone (the dedi-
cated scheduler).

The hypothesis that is being tested is that the reuse of solved old cases can contrib-
ute to reduce the time needed to find feasible schedules for new problems. As our
retrieval module involves isomorphism graph detection, a NP-hard problems as is our
original scheduling problem, several parameters, for example, the size of each case
and of the whole case base, will have a major impact on the performance of the sys-
tem. In the described experiments we decided to evaluate the behavior of CBR-RTS
when working with a case base composed of small cases. This case base will rarely
allow to solve new problems in one single step, but should permit to simplify large
problems that can be solved in multiple retrieve-simplify steps.

A

T [T Ts| Ts|Te| T7

Fig. 8. Final Schedule for the new problem



Learning and Reusing Solutions in Real-Time Task Scheduling 99

4.1 The Case Base (CB)

As Miyashita and Sycara [12], we assume that although scheduling is an ill-structured
domain, it exhibits some regularities that could be captured in a case. In our context,
we assume that scheduling problems tend to present typical structural regularities and
attribute values that characterize the main classes of problems handled. Several prob-
lems that have identical precedence relations are represented by graphs that share a
common structure. These structures can be automatically learned by the system as it
faces new problems.

In order to simulate a situation in which CBR-RTS had already passed for a learn-
ing period, fourteen small problems, described by graphs from 2 to 6 nodes, were
presented to the system. Since the CB is initially empty, and because the presented
problems are not similar to each other, they are completely solved by the heuristic
search module and stored in the CB. The structure, ready times and execution times of
these problems were chosen in a way that they could be highly reusable in the solu-
tion of the testing problems described below.

4.2 Testing Problems

After an initial training phase, as described before, nine testing problems, Py, Py, ... Py,
were submitted to the system. These problems have different sizes and several combi-
nations of precedence relations and timing constraints. The system was able to find a
complete solution to all but the 9th problem reusing the cases stored in the CB. For
Py, after two retrieve-simplify cycles, the system had to use the heuristic search mod-
ule because there were no similar cases on the CB.

The conducted experiments can give a preliminary idea of the performance of the
CBR-RTS system when working with a stable CB, that is, a case base that permits to
solve most new problems without having to employ the heuristic search module.

4.3 CBR-RTS Performance

Table 1 shows the total processing times required by CBR-RTS and PSPS for solving
problems P; to Py in a 167 MHz Sun Ultrasparc 1 workstation with 64 MB of RAM.
We can see that as problem size and complexity increase there is also a appreciable
increase in the relative performance of CBR-RTS compared with PSPS. This means
that the cost of reusing stored cases can be sensible lower than that of generating a
solution from scratch.

Table 1 also shows CBR-RTS processing times by phase. As expected, we can see
that the retrieval phase accounts for most of the processing time of CBR-RTS, indi-
cating that this is an important point to focus in future work.

The solution of problem Py is an example of a situation where the system is learn-
ing a new case. In this example, CBR-RTS can not find a solution to the problem
using only stored cases, but it is able to simplify the problem. The simplified problem
is submitted to PSPS (the heuristic search module of the system) that finds a solution
in approximately 30% of the time it will require to solve the complete problem.



100 J.M.A. Coello and R. Camilo dos Santos

Table 1. CBR-RTS and PSPS processing times (seconds)

PSPS CBR-RTS
Problem| Problem |Total Time|Total Time|Retrieval |Reusing |Learning
# Size
( nodes)

1 5 0.10 0.25 0.24 0.01 0
2 9 0.07 0.51 0.42 0.09 0
3 9 0.15 0.28 0.26 0.02 0
4 10 0.16 0.40 0.36 0.03 0
5 15 0.29 0.93 0.76 0.17 0
6 16 0.62 0.58 0.51 0.06 0
7 21 1.77 1.03 0.91 0.11 0
8 38 6.99 4.60 3.90 0.69 0
9 25 4.66 2.49 0.94 0.11 1.43

It is clear that the above evaluation is based on a very limited number of examples.
The objective was to test the system and have a preliminary idea of its performance.
We are working in testing the system to see how it scales up to large problems and
case bases.

5 Related Work

In this section we will briefly review some systems that adopt solution strategies
similar to ours in the domain of scheduling, and some systems, as Casey [13], that
although working in a different domain have in some degree inspired the design of
CBR-RTS.

Cunningham and Smyth [14] explore solution reuse in job scheduling. In their
work, cases represent highly optimized structures in the problem space, produced
using simulated annealing. They address single machine problems where job setup
time is sequence dependent (an example of a non Euclidean Traveling Salesman
Problem). Their objective is to produce good quality schedules in very quick time.
Although we share the same conceptual framework, our work differs in a number of
ways. We address distinct types of scheduling problems and we employ different case
representations and retrieval and reusing strategies that seem to make our approach
amenable for a wider category of scheduling scenarios.

Other systems also combine CBR with some other strategy to solve scheduling
problems. CABINS [12], for example, integrates CBR and fine granularity constraint-
directed scheduling. CABINS constructs cheap but suboptimal schedules that are
incrementally repaired to meet optimization objectives based on the user preferences
captured in cases. As in CABINS, we also assume that although scheduling is an ill-
structured domain, it exhibits some regularities that can be captured in a case.

Some of the basic ideas of the CBR-RTS system can be found in Casey [13], a well
know example of system that integrates CBR and search. Casey is built on top of a



Learning and Reusing Solutions in Real-Time Task Scheduling 101

model based program implemented using rules that diagnoses heart defects. The case
library is constructed using this rule based program. Casey searches the case library to
see if it has old cases that can be used to diagnose a new patient, if no similar cases
are found, the problem is submitted to the rule based program. When know solutions
are reused, Casey can be 2 to 3 orders of magnitude more efficient that the rule based
program.

PRODIGY/ANALOGY [15] is also a well know system that combines CBR with
search in the solution of planning problems. The case library is seeded by cases
solved by a general problem solver, based in a combination of means-ends analysis,
backward chaining and state space search. Cases permit to acquire operational knowl-
edge that can be used to guide the generation of solutions for new problems, avoiding
a completely new search effort.

Although most CBR systems use flat representations in the form of attribute-value
pairs, several authors have addressed the issues raised by structured representations,
as the graphs used in CBR-RTS. The interested reader can find more details in [16]
and [17].

6 Conclusions

The experiments described in this paper suggest that the CBR-RTS system, based on
the integration of CBR with heuristic search, can contribute to reduce the processing
time required to schedule complex problems. However, in order to better evaluate the
potential and behavior of the system, and the subjacent architecture, it must be sub-
mitted to a testing procedure with a wider coverage than that provided by the experi-
ments described in this paper.

CBR-RTS has a modular architecture that easily supports evolution. Each compo-
nent of the systems constitutes itself an interesting research subject.

The current structure of the case base and the corresponding retrieval algorithm
seem adequate for case bases storing a moderate number of small cases, as the ones
considered in the experiments described in this paper. New organizations and retrieval
strategies might have to be considered when dealing with case bases storing a high
number of complex cases.

A particularly important problem in real-time systems is to develop deterministic
schedulers that can compute schedules in bounded time. Although in the general case
this can not be achieved by the NP-hard nature of scheduling problems, it would be
valuable if this could be done in a reasonable amount of situations. Polynomial time
subgraph isomorphism algorithms, as the one proposed by Messmer [8], can be used
to address this issue.

An interesting extension to the reusing module is to try to employ old cases to
solve subproblems even when they do not form a group.

The heuristic search module can also evolve in a number of ways, for example
with the creation of a library of methods for solving different types of scheduling
problems, besides the one currently considered.

The management of the case base is also an interesting theme. The definition of
criteria to be used to decide which new cases to incorporate into the case base is one



102 J.M.A. Coello and R. Camilo dos Santos

of the relevant questions to be considered. There are several possibilities here. For
example, the case base can be formed only of carefully chosen small cases that permit
to simplify a extensive number of large problems, as done in the experiments de-
scribed in section 4. It could be also interesting to prioritize the memorization of un-
schedulable problems that require the searching algorithms to spend a lot of time and
resources to reach that conclusion.

Currently, the heuristic search module is used only after a problem can not be fur-
ther simplified. Other integrations between the retrieval and the heuristic search mod-
ules are possible and could be interesting to study. For example, instead of trying to
find occurrences of stored cases in the problem graph, as done in the current version,
the graph could be initially divided into groups and the system could try to see if these
groups are present in the case base. After reusing the best retrieved cases to simplify
the problem, the groups for which there were no applicable cases could be scheduled
by the heuristic search algorithm, before proceeding in the retrieval-simplification
process.

Acknowledgments.

We thank Fundagdo de Amparo a Pesquisa no Estado de Sdo Paulo (FAPESP) for
partially supporting this research under grant #1996/11200-3. We would also like to
thank ICCBR'99 anonymous reviewers for their very useful comments and sugges-
tions. We tried to incorporate their feedback in preparing this version of the paper,
naturally, remaining mistakes and omissions are our own.

References

1. Stankovic, J. A. Misconceptions About Real-Time Computing. [EEE Computer, October,
1988.

2. Liu, CL., J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. JACM, vol. 20. no.1, 1973.

3. Blazewicz, J., J.K. Lenstra and A.H.G.R. Kan. Scheduling Subject to Resource Con-
straints: Classification and Complexity. Discrete Applied Mathematics 5: 11-24, 1983.

4. Adin Coello, J. M., M. F. Magalhaes, K. Ramamritham. Developing predictable and
flexible real-time systems. Control Engineering Practice. 6(1):67-81. 1998.

5. Kolodner, J. Case-Based Reasoning. Morgan Kaufmann, 1993.

6. Mok, A. K. Fundamental Desing Problems of Distributed Systems for the Distributed
Hard-Real-Time Environment. PhD Thesis, Dept. of Electrical Engineering and Computer
Science. Massachusetts Institute of Technology. 1983.

7.  Sprunt, B., L. Sha and J. Lehoczky. Aperiodic Task Scheuling for Hard-Real-Time Sys-
tems. The Journal of Real-Time Systems 1, 27-60. 1989.

8.  Messmer, B. T. Efficient Graph Matching algorithms for Preprocessed Model Graphs.
PhD Thesis. Institute of Computer Science and Applied Mathematics, University of Bern,
Switzerland, 1996.

9. Ullman, J. R. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31-42,
1976.

10. Ramamritham, K., G. Fohler, J.M. Adan. Issues in the static allocation and scheduling of



11.

15.

16.

Learning and Reusing Solutions in Real-Time Task Scheduling 103

complex periodic tasks. In: Proc. 10" IEEE Workshop on Real-Time Operating Systems
and Software. 1993.

Xu, J. and D. L. Parnas. Scheduling processes with release times, deadlines, precedence,
and exclusion relations. IEEE Transactions on Software Engineering, 16(3):360-369.
1990.

Miyashita, K. and K. Sycara. CABINS: A framework of Knowledge Acquisition and
Iterative Revision for Schedule Improvement and Reactive Repair. CMU Technical Report
CMU-RI-TR-94-34. The Robotics Institute, Carnegie Mellon University, USA, 1995.
Koton, P. Reasoning about evidence in causal explanation. In Proceedings of AAAI-8S.
AAAI Press/MIT Press. Cambridge, MA, 1988.

Cunningham, P. and B. Smyth. Case-Based Reasoning in Scheduling: Reusing Solution
Components. Technical Report TCD-CS-96-12, Department of Computer Science, Trinity
College Dublin, Ireland. 1996.

Veloso, M. PRODIGY/ANALOGY: Analogical Reasoning in General Problem Solving.
In Topics in Case-Based Reasoning, S. Wess, K. Althoff and M. Richter (Eds.) Lecture
Notes in Artificial Intelligence, Springer-Verlag, 1994.

Bunke, H. and B. T. Messmer. Similarity Measures for Structured Representations. In
Topics in Case-Based Reasoning, S. Wess, K. Althoff and M. Richter (Eds.) Lecture
Notes in Artificial Intelligence, Springer-Verlag. 1994.

Gebhardt, F. Methods and systems for case retrieval exploiting the case structure. FABEL
report no. 39. GMD, Germany. 1995.



Towards a Unified Theory of Adaptation
in Case-Based Reasoning

Béatrice Fuchs!, Jean Lieber?, Alain Mille? and Amedeo Napoli?

! Université Lyon III, IAE, équipe Modeme
15 Quai Claude Bernard, 69239 LYON cedex 02
2 LORIA — UMR 7503, BP 239 — 54506 Vandceuvre-les-Nancy Cedex
3 LISA-CPE, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne Cedex
Email: fuchs@univ-1lyon3.fr, lieber@loria.fr
am@cpe.fr, napoli@loria.fr

Abstract. Case-based reasoning exploits memorized problem solving episodes,
called cases, in order to solve a new problem. Adaptation is a complex and crucial
step of case-based reasoning which is generally studied in the restricted frame-
work of an application domain. This article proposes a first analysis of case adap-
tation independently from a specific application domain. It proposes to combine
the retrieval and adaptation steps in a unique planning process that builds an or-
dered sequence of operations starting from an initial state (the stated problem)
and leading to a final state (the problem once solved). Thus, the issue of case
adaptation can be addressed by studying the issue of plan adaptation. Finally, it is
shown how case retrieval and case adaptation can be related thanks to reformula-
tions and similarity paths.

1 Introduction

Case-based reasoning (CBR) associates to a given problem P a solution, which is built
by reusing the memorized solution of a problem P’ similar to P. The CBR cycle is com-
posed of three main steps: the retrieval in which the similar problem P’ is searched in
the case base; the adaptation in which the solution of the similar problem P’ is adapted;
and the possible memorization of the problem P and its solution, in the perspective of
a future reuse. The implementation of this reasoning cycle has given birth to the notion
of CBR system which takes advantage of a case base, and possibly of other knowledge
bases, in order to solve problems of design, interpretation, diagnostic, planning, etc.
Adapting the solution of a known problem in order to solve a new problem is one
of the key ideas on which CBR relies. Many researchers of the CBR domain think that
adaptation is very difficult to model and depends heavily on the application domain and
thus has to be implemented in an ad hoc manner. In this article, a general model of
adaptation is proposed, in the same way that plan adaptation is modeled (this approach
is also studied in [Hanks and Weld, 1995]). Moreover, the adaptation itself can be con-
sidered as a planning process whose initial state is the starting solution (the solution
of the known problem P’) and final state is the adapted solution (the solution of the
problem P). In the following, a plan is considered as a triple (I, G, O) where I is an

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 104-117, 1999
© Springer-Verlag Berlin Heidelberg 1999



Towards a Unified Theory of Adaptation in Case-Based Reasoning 105

initial state, G is a goal statement and O is a set of operations allowing to satisfy the
goal statement given the data associated with O.

Modeling adaptation in this way enables to theoretically and practically consider
the combination of adaptation and retrieval, in order to be sure to retrieve an adaptable
case and to guide the adaptation of such a case.

The issue of adaptation in CBR is detailed in section 2 and some of the major contri-
butions about adaptation and its model in CBR are summarized in section 3. Then, our
approach is presented in two steps: it is shown that a case can be considered as a kind
of plan description (section 4), and it is explained how retrieval and adaptation can be
considered in an unified framework (section 5). A complete example of our approach is
presented in section 6. A discussion and a conclusion end this paper (sections 7 and 8).

The approach presented in this paper can be the basis of a formalization of CBR and
can be reused to design CBR systems possibly in any domain.

2 The issue of adaptation in CBR

The aim of case-based reasoning is to solve a problem called farget problem (or new
problem) and denoted by target, by using a case base which is a finite set of cases.
A case is given by a problem P and the solution Sol(P) of this problem; it is de-
noted by the ordered pair (P,Sol(P)). A case of the case base is called a source case
and is denoted by (source, Sol(source)); source is called the source problem. Re-
trieval consists in choosing in the case base a case (source, Sol(source)) similar to
target.! Adaptation consists in taking inspiration from the solution Sol(source) in
order to solve target. It can be symbolized by the figure 1 which can be read this way:
“Given source, Sol(source), target and the relations between these objects, what
is Sol(target)?” This adaptation scheme is inspired from [Carbonell, 1986].

source target
[

|
| |
| |
Sol(source) ———— Sol(target)?

Fig. 1. The adaptation scheme. The vertical dash lines represent the relation between a problem
and one of its solutions; the horizontal lines represent the relation between the sources and the
targets.

Case-based reasoning relies on the reuse of past experience in order to solve a new
problem. By definition, reuse involves that past experience, considered in a new context,
has to be adapted to this new context. Thus, the retrieval of a similar case aims at finding

"In fact, similarity is generally evaluated between source and target but Sol(source) can
play a role in this evaluation. Indeed, the part of source which is relevant with respect to its
solution Sol(source) can be used to assess the similarity (see e.g. [Veloso, 1994]).



106 B. Fuchs et al.

an adaptable case. Therefore, it is important that the knowledge used for retrieval is
directly linked with the knowledge used for adaptation. In other words, the designer of
a CBR system should not dissociate these two knowledge sources in practice. Even if
the adaptation task is performed by the user or another problem solving system (then
it will be a subproblem of the main problem solving cycle) the retrieval step should be
controlled by knowledge directly linked with adaptation. Ideally, the retrieved case is
adaptable in order to be reused for solving a new problem.

Let us consider again the adaptation scheme of figure 1. It can be considered along
vertical and horizontal dimensions. The vertical dimension corresponds to the relation
between the problems and the solutions. This relation is precised in section 4. The hor-
izontal dimension corresponds to the relation between the “targets” (the target problem
and its solution that has to be found) and the “sources” (the source problem and its
know solution). The two horizontal lines of the adaptation scheme correspond to the
retrieval and adaptation processes: the line between problems read from right to left
—from target to source— represents the retrieval process, the line between solutions
read from left to right —from Sol(source) to Sol(target)- represents the adapta-
tion process. Thus retrieval and adaptation can be viewed as two “parallel” processes.
This issue is detailed in section 5. Before presenting these two “orthogonal” views of
adaptation, some other approaches of adaptation are presented in next section.

3 Some Approaches of Adaptation

Derivational and transformational analogies have been introduced in [Carbonell, 1986]
as two different adaptation processes. The former consists in adapting the memorized
solution construction process in order to produce a solution to the new problem, whereas
the latter consists in copying the memorized solution and substituting some elements by
other elements in order to produce the solution of the new problem. In particular, it can
be noticed that, when the plan of solution construction is known, then the solution can be
immediately computed and thus is also known, and so the plan of solution construction
can be considered to be the real solution (at least, the solution that should be returned
by the retrieval process). By combining retrieval and adaptation and by considering the
retrieval/adaptation process as a problem solving in planning, there is no fundamental
difference between substituting some elements of solution and substituting some steps,
which puts in question the duality between derivational and transformational analogies.

Among the recent works about adaptation, the following ones are the ones which
have more inspired our works and which have marked the researches on adaptation (see
also [VoB, 1996al):

— The adaptation-guided retrieval described in [Smyth and Keane, 1996] is an ap-
proach of retrieval taking into account some adaptation knowledge. This knowledge
is represented by the adaptation specialists and the adaptation strategies. When a
source case is compared to a target problem, the specialists needed to the adaptation
of this case are pointed out. The case needing the minimum of adaptation effort is
chosen and afterwards adapted by the application of specialists, which is guided
by the strategies. The strategies control in particular the order of the application of
specialists.



Towards a Unified Theory of Adaptation in Case-Based Reasoning 107

— In [Leake erf al., 1997a] is presented an approach to adaptation which relies on a
search in memory of the best cases in which some elements of solution will be
substituted. This search is based on a contextual similarity (see also [Hammond,
19891, [Leake, 1993], [Leake, 1995], [Leake et al., 1995], [Leake et al., 1996],
[Leake et al., 1997b], [Leake et al., 1997c]).

— The adaptation problem can be seen as a constraint satisfaction problem, which in-
volves that a constraint-based model is well-suited for the studied problem (such
a model is often well-suited for problems of simulation, design, architecture, etc.).
The solution of a new problem is built by satisfying the new constraints and by
transforming a memorized solution [Hua et al., 1996] (see also [Hua et al., 1994],
[Smith et al., 1995], [Purvis and Pu, 1995], [Smith ef al., 1996], [Kumar and
Raphael, 1997]).

— In the framework of hierarchical adaptation [Bergmann and Wilke, 1995], abstract
cases (i.e., cases that help to consider a problem at different level of abstraction:
the more abstract is the context, the “easier” to solve is the problem) are exploited
instead of concrete cases and a refining of the solutions down the different levels of
abstraction enable to build a solution of the new problem (see also [VoB, 1996b],
[VoB, 1996¢], [Bergmann and Wilke, 1996], [Branting and Aha, 1995], [Smyth,
1996)).

— In [Koehler, 19961, case-based planning is presented in the framework of descrip-
tion logics and is analyzed from a formal viewpoint: cases are plans represented by
formulas in a temporal logic and the indexes of these cases are represented by con-
cepts in a description logic. Indexes are organized in a hierarchy which is exploited
by a classification process, which is the basic mechanism of retrieval. A problem
source can be chosen in order to be reused to solve a problem target if the
indexes associated to the initial and final states of these problems verify the follow-
ing constraints: idx(initearget) T 1dx(initgource) and/or idx(goalsource) T
idx(goaltarget). The connective and corresponds to the strong retrieval and the
connective or to the weak retrieval. If the retrieval is strong, then each source case
verifying the above conditions can be reused in order to solve target. If the re-
trieval is weak, the best candidate case is the one sharing the more subgoals or
preconditions (or both) with the problem target. In this circumstances, it is possi-
ble to fix a minimum threshold for the adaptation effort and if no candidate satisfy
this threshold, the construction of a solution of target must be done thanks to a
from scratch planner.

Each of these works deals with a specific aspect of adaptation, at a given level of
abstraction. However, the adaptation process is always considered to be deconnected
to the other operations of the CBR, in particular, of the retrieval process. In order to go
further, it is necessary to try to address two challenges: (1) being able to define generally
what is a case and to model adaptation independently of any application domain, (2)
combining the retrieval and adaptation operations in a single operation. The previous
works and some works done with applications have been helpful to Mille, Fuchs and
Herbeaux, on the one hand, and to Melis, Lieber and Napoli, on the other hand, to model
their viewpoints about adaptation which, together, enable to address the challenges (1)
and (2):



108 B. Fuchs et al.

— Works like DESIGNER [Chiron and Mille, 1997] in the design domain of supervi-
sion systems, like PAD’IM [Fuchs et al., 1995; Mille er al., 1999] in the domain of
decision helping, like ACCELERE [Herbeaux and Mille, 1998] or SYSEXPERT (pre-
sented at [Mille et al., 1995]) have given a first field of study for an initial attempt
to a unified theory of adaptation presented in [Mille ef al., 1996]. The adaptation
of a case is considered as a plan adaptation which steps are considered at different
levels of granularity, which enables to model it with the use of simple operations of
adding or removing elements at the same level of granularity.

— The work presented in [Melis, 1995] on the one hand, and the one presented
in [Lieber and Napoli, 1996; Lieber and Napoli, 1998], on the other hand, share
a common view of adaptation which has involved the notions of reformulation and
similarity path [Melis er al., 1998]. A reformulation is an ordered pair (rp,rg)
where rp is a relation between two problems pby and pb; —pby rp pbi— and rg
is a functional relation associating to a known solution So1(pbg) of pby a solution
Sol(pby) of pby —Sol(pby) —= Sol(pby). rg is called a specific adaptation func-
tion. Two reformulations (rp,r%) et (r%, %) can be composed: if pbg 75 pb; and
pby 7% pby then it is possible to adapt a solution Sol(pby) of pbg in a solution

1 2

Sol(pby) of pb. by applying r§ and r% in sequence: Sol(pby) =55 Sol(pby) —
Sol(pb,). More generally, a sequence pby 7 pbi ...pbg—1 7% pb, is called a
similarity path between pby and pb,. Retrieval consists in finding a similarity path
between a source problem (to be chosen in the case base) and the target problem.
Adaptation consists in applying in sequence the specific adaptation functions ri.
Thus, retrieval points out not only an adaptable case but also builds a similarity path
which will be reused by the adaptation process.

What is presented below is the result of a research work which aims at “unifying”
the work described in [Mille et al., 1996] that considers a case as a plan and the work
described in [Melis et al., 1998] that combines retrieval and adaptation in a unique
process.

4 A case is a kind of plan

A problem to be solved is represented by the description target for which a descrip-
tion of a solution Sol(target) is required. The problem description contains the goal
statement (the descriptors which have to be satisfied by the solution) and the initial
context, i.e., the descriptors which are satisfied at the beginning of the problem solv-
ing process. For short, a descriptor can be a pair (attribute, value) or a constraint that
must be verified. To satisfy a descriptor means either that the value of the correspond-
ing attribute has to be found or that the corresponding constraint must be satisfied. The
description of the solution is composed of the descriptors which must be verified in
order to satisfy the goal given the initial context of the case (remember that the solution
is a byproduct of the construction plan of the solution, cf. §3). Recall that a plan is a
triple (I, G, O) and according to this view, every case is represented by an initial state I
—the initial context—, a final state G —the goal statement— and a sequence of operations
O leading from the state I to the state G (for the sake of simplicity, such a sequence



Towards a Unified Theory of Adaptation in Case-Based Reasoning 109

is supposed to be a totally ordered list of state-operation pairs). This hypothesis is not
too restrictive since the elaboration of the solution can be seen as a plan of problem
solving (see [Polya, 19571, [Newell, 1980] and [Laird et al., 1987] for discussions on
this viewpoint). This means that an initial state, a goal and a set of operators —enabling
to generate a state space— are necessary (such a problem is called a search problem
in [Charniak and McDermott, 19851). The problem solving process for problems such
as finding an apartment price or identifying an unknown object relies on a combina-
tion of adding, removing and substituting attribute values, and these three operations
can be considered as elementary operations associated with a plan. Then, case adapta-
tion can be reduced to plan adaptation, giving a way to take advantage of general and
context-less works done on adaptation [Hanks and Weld, 1995].

A case as a list of
descriptors A case as a plan

di,d2,d3] = Initial State
di,d2,d3,di] = Intermediate State

dj [di,d2,d3,di, ...,dj] = Intermediate State
. -
| [dl,dz,dB,di, . ,dj PR ‘dkb;:\ Intermediate State
‘dk+1‘ L,J >~
~
(e | ~o
~N
\
\
f———
L dn | [di1,d2,d3,di,...,di,...,dk, ..., d&+1] |= Final state

B

— —

Goal Statement

Fig. 2. The descriptors [d1, d2, ds] represent what is true at the beginning of the problem solving
process (the initial state), while [di, di+1] represent what has to be true when the problem will be
solved (the goal statement). Other descriptors represent different parts of the solution. From the
initial state, the problem solving process can be represented by its different intermediate states
integrating new solution elements until the goal statement is satisfied.

Plan adaptation has been presented in the literature with two approaches [Hanks and
Weld, 1995]: a generative approach in which all the knowledge necessary for generat-
ing a solution plan from scratch is available, and a transformational approach in which
the previous hypothesis is not necessary and that is based on reuse (to find a solution in
the latter case is not warranted). Actually, in both approaches, the knowledge needed to
identify the steps to be transformed expresses, in a way or another, the role played by
one step (element of the solution) in order to satisfy the goal description and to be con-



110 B. Fuchs et al.

form to the description of the initial state. The differences between the description of
the target problem and the description of the retrieved source problem allow to evaluate
the variation to be reduced in the description of the source solution in order to elaborate
the description of the target problem. For instance, if source is the problem “How can
I go from Paris to Munich?” and target is “How can I go from Lyon to Munich?”, the
observed difference —the difference between the initial states Paris and Lyon— enables to
modify the journey Paris-Munich so that it becomes Lyon-Munich, for example by con-
catenating the short journey Lyon-Paris and the journey Paris-Munich. In the generative
approach, this allows to start from a general plan which is not in contradiction with the
problem, and to generate the missing steps, whereas, in the situation of transformational
approach, this enables to locate the steps to be substituted or to be modified (either a
single modification or a sequence of modifications). In both situations, the adaptation
can be decomposed into a generalization of the source case compatible with the target
problem, then to a specialization satisfying the descriptors of the target problem. The
next section details the generic steps of such an adaptation.

S Adapting a case like a plan

Solving a problem consists in building the list (ordered or not) of the solution descrip-
tors leading to the satisfaction of the goal statement. In planning from first principles
(i.e., without the concrete experience represented by a case base) it is a plan generation
problem which has been the subject of numerous works. Using a concrete experience,
typically in the framework of CBR, involves a different approach, such as the following
(illustrated by the figure 3 which is an instantiation of the adaptation scheme presented
at the figure 1):

(a) Elaborating an index of the problem target, denoted by idx(target). This in-
dex is constituted by the relevant descriptors (initial state, goal statement) of the
problem to be solved.

(b) Finding an index idx(source) of the source case similar to idx(target). Each
case from the base must have an associated index to make this comparison possible.

(c) From the index idx(source), the problem source can be found easily.

(d) The solution Sol(source) of source is taken as a starting point for solving the
target problem. This item references the correspondence between retrieval in the
problem description space and adaptation in the solution description space.

(e) The solution Sol(source) is generalized in order to stay consistent with the index
idx(source): a solution Sol(idx(source)) of the index of the source problem is
searched.

(f) The solution Sol(idx(source)) is specialized in order to become a solution
Sol(idx(target)) for the generalization idx(target) of the target problem.

(g) Then the solution Sol(idx(target)) is specialized in order to take into account
simplifications made during the generalization of target into idx(target) (cor-
responding to elaboration, step (a)).

Note that this approach is a specialization of the more general approach of refor-
mulation (see section 2). Indeed, the steps (a), (b) and (c) can be considered as the



Towards a Unified Theory of Adaptation in Case-Based Reasoning 111

(@)

(© . b) .
source < idx(source) <———— idx(target) < target

| | |
(d)l | | |
| | [
Sol(source)—>(e) Sol(idx(source)) —>(f) Sol(idx(target)) —>(g) Sol(target)

Fig. 3. General scheme of target problem resolution from a source plan.

construction of a similarity path (during retrieval), and the steps (e), (f) and (g) corre-
spond to the application of specific adaptation functions (during adaptation). Note also
that step (b) and the corresponding step (f) can be decomposed into several simple steps.
In [Lieber and Napoli, 1996], in the framework of strong classification step (b) simply
consists in searching an index idx(source) more general than idx(target); in the
framework of smooth classification, a whole sequence of relations rp between an index
idx(source) to be chosen and the index idx(target) is searched.

6 An Example in Route Planning

This example consists in building a route in order to reach an ending town from a start-
ing town by using a network of roads. A case is a route that we denote by
(init,goal,date,vehicle, segments,duration) where init is the initial town,
goal is the final town, date is the date of the journey, vehicle is the vehicle used,
segments is a sequence of intermediary segments and duration is the duration of the
journey. A segment is denoted by (start, end) where start is the starting town and
end is the ending town. A target problem is given by an initial town initcarge: and a
goal town (to be reached) goaltarget-

The domain theory is given by a set of towns {A, B, ..., I}, and, for every town T, a
set containing some of its direct neighbors T' € neighbors(T): T' can be reached from
T using an elementary route. The known neighbors are represented by the following
table:

T [neighbors(T)|
{B,E,G}
{4,C,E}
{B,D,E}
{C,F, I}

{A,C,F,G}
{D,E,H}
{A,E,H}

{F,G}
{D}

SmQEuEo Qe




112 B. Fuchs et al.

The distance between two towns T and T’ is defined as follows:

0 ifT=T
d(T,T) =< 1 ifT € neighbors(T')
+o00if T & neighbors(T')

The elaboration step builds an index of the target problem by retaining only the
descriptors initiarget and goaliarget that are juged more relevant. The index of the
source case is reduced to the pair composed of the initial town and the goal town, other
descriptors such as date and vehicle are juged less relevant:

idx(target) = (inityarget; g0altarget)

idx(source) = (initsource; £02lsource)
A distance between a source index and a target index is defined as follows:

dist(idx(source), idx(target)) = d(initsource, iNittarget)

+ d(goalsource ) goaltarget)

The content of the case base is

|case number|idx(source)| Sol(source) |
1 (4,0) {((4,B),(B,()),2:00}
2 (C’ G) {((C,E),(E,G)),1:30}
3 (A,D) |{((A,B),(B,C),(C,D)),3:00}
4 (D, C) {((D,C)),1:00}
5 (H,E) {((H,F),(F,E)),2:00}
6 (E,B) {((E,C),(C,B)),2:15}
7 (G,D) H{(G,E),(EC),(C,D)),2:45}
8 (B,I) {((B,C),(C,D),(D,I)),3:15}

A target problem target = (B, D,February,2CV Citroén) is created. The
elaboration of the index of the target gives idx(target) = (B, D). This index is
matched with the source case indexes giving the following distance table:

[case number|idx(source)|dist(idx(source), idx(target))]

1 (4,0) 2
2 (C,G) +00
3 (A,D) 1
4 (D,C) +00
5 (H,E) +00
6 (E,B) +00
7 (G,D) +00
8 (B,I) 1

The general solving scheme of a target problem presented in figure 3 is the following
(illustrated by figure 4):



Towards a Unified Theory of Adaptation in Case-Based Reasoning 113

(A,D,10/6/99,Fiat Uno) (A,D) (B,D) (B,D,15/02/99,2CV Citroén)
source e—F idx (source) e—(r idx (target) «—()— target
\ \ & \
(d) | | |

\
(e) (£) (9)
Sol (source) ——}Sol (idx (source)) %Sol (idx (target)) —% Sol (target)

{((A,B),(B,C),(C,D),3H00)} ((A,B),(B,C),(C,D)) ((B,C),(C,D)) {(B,C),(C,D),1H45)}

Fig. 4. Solving the target problem by reusing the case 3.

(a) The index of the target problem is built: idx(target) = (B, D).

(b) An index of a source case is searched in the case base. Possible values are (A, D)
and (B, I): both minimize dist(idx(source), idx(target)). idx(source) =
(A, D) is chosen arbitrarily.

(c) From (A, D), the source case (A, D, June,Fiat Uno) is reached.

(d) The solution Sol(source) = {((4, B), (B, (), (C,D)),3:00} of the source case
is reused for the target problem.

(e) The generalization of Sol(source) in Sol(idx(source)) suppresses the descrip-
tor duration: Sol(idx(source)) = ((4, B), (B,C), (C, D)).

(f) The solution is specialized in Sol(idx(target)) = ((B,C), (C, D)) by removing
the segment (A, B). Such an adaptation operation is described among other ones
in [Lieber and Napoli, 1998].

(g) The solution Sol(idx(target)) is specialized in
Sol(target) = {((B,C),(C,D)),1:45} where the descriptor duration has
been evaluated and added to the solution.

7 Discussion and Future Work

In this article, a unified model of the retrieval and adaptation steps in CBR is proposed.
This model is simple and clear and puts in question the common idea saying that adap-
tation can be only contextual. Moreover, this proposition could be used for a deep dis-
cussion about the two key phases of the CBR cycle. It must be noticed, however, that we
have assumed that a problem can be considered as a planning problem, with a general
meaning of this notion, i.e., an initial state, a goal statement and a collection of operators
which enables to generate a state space are needed (such a problem is called a search
problem in [Charniak and McDermott, 1985]). Then adaptation can be considered as
a sequence of generalizations, specializations and substitutions performed at different
levels of abstraction in the process of solution construction. Note that a substitution can
be seen as a composition of a removal and an adjunction.

It is necessary to justify more precisely the assumption made on the type of prob-
lems and to show that it works correctly on every type of problems: this is one of the
first future works. Moreover, we need to make more progress in the formal description
of this work in order to formalize the retrieval-adaptation process independently of any



114 B. Fuchs et al.

context. Then, such a formalization could be used as a guideline during the design of a
CBR system.

Some issues of this study must be detailed. First, the links between the vertical and
horizontal views of adaptation (sections 4 and 5, respectively) must be studied precisely.
Then, the links with the works on plan adaptation have to be pointed out. Finally, the
steps (a), (b) and (c) of case retrieval and the corresponding steps (e), (f) and (g) of
adaptation must be studied in detail.

To complete this study, the learning step of case-based reasoning must be integrated.
In this context, learning is not limited to the storage of a new ordered pair (problem,
solution) in the case base, but means also learning new retrieval and adaptation knowl-
edge from retrievals and adaptations already performed and which have led to a stored
and analyzed success or failure. Several research directions can be considered, linked
with the explanations that can be entailed from a success or a failure of the solving pro-
cess (such an approach is also studied in [Ihrig and Kambhampati, 1997]). The learn-
ing mechanism consists then in exhibiting a sequence of justifications —of success or
failure— which will be used as rules during the future adaptations and of “use instruc-
tion” during case reuse.

This model work mainly derives from two complementary works —[Mille ef al.,
1996] and [Melis et al., 1998]- which themselves rely on real-world applications
(DESIGNER, PAD’IM, ACCELERE and SYSEXPERT for [Mille ef al., 1996] and OMEGA
and RESYN/CBR for [Melis et al., 1998]). As future work, we plan to study systemati-
cally other applications of CBR in the light of this model. A last future work, which fully
justifies this model, is its use for the design of CBR applications. Thus, the usefulness
of this formalism and its limitations could be more accurately pointed out.

8 Conclusion

In this paper, elements for a unified theory of adaptation in the case-based reasoning
framework are presented. First, the assumption that case adaptation can be considered
as a plan adaptation is justified. Under this assumption, the works on adaptation in case-
based planning can be reused. Then, case adaptation —seen as a kind of plan adaptation—
is defined in parallel with case retrieval. Indeed, the steps of the target problem elabo-
ration (or indexing), of the search for an index of the source problem, and of the search
for a source problem corresponding to this index are related to three adaptation steps.
This point of view is mainly based on the study of real-world applications and can be
made operational. More work remains to be done, especially to make more precise and
to formalize this study, so that it can be reused for CBR system constrution. Moreover,
this study has also to take into account the learning step of CBR to give a complete
account of the CBR process.

References

[Bergmann and Wilke, 1995] R. Bergmann and W. Wilke. Building and Refining Abstract Plan-
ning Cases by Change of Representation Language. Journal of Artificial Intelligence Research,
3:53-118, 1995.



Towards a Unified Theory of Adaptation in Case-Based Reasoning 115

[Bergmann and Wilke, 1996] R. Bergmann and W. Wilke. PARIS : Flexible Plan Adaptation by
Abstraction and Refinement. In A. VoB3, R. Bergmann, and B. Bartsch-Sporl, editors, Workshop
on Adaptation in Case-Based Reasoning, ECAI-96, Budapest, Hungary, August 1996.

[Branting and Aha, 1995] L. K. Branting and D. W. Aha. Stratified Case-Based Reasoning:
Reusing Hierarchical Problem Solving Episodes. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI’95), Montréal, volume 1, pages 384-390,
August 1995.

[Carbonell, 1986] J. G. Carbonell. Derivational analogy: A Theory of Reconstructive Problem
Solving and Expertise Acquisition. In Machine Learning, volume 2, chapter 14, pages 371—
392. Springer-Verlag, 1986.

[Charniak and McDermott, 1985] E. Charniak and D.V. McDermott. Introduction to Artificial
Intelligence. Addison Wesley, Reading, Massachusetts, 1985.

[Chiron and Mille, 1997] B. Chiron and A. Mille. Aide a la conception d’environnements de
supervision par réutilisation de 1’expérience. In JICAA’97, ROSCOFE, 20-22 Mai 1997, pages
181-187, 1997.

[Fuchs et al., 1995] B. Fuchs, A. Mille, and B. Chiron. Operator decision aiding by adaptation of
supervision strategies. In Lecture Notes in Artificial Intelligence vol 1010, First International
Conference on Case-Based Reasoning, ICCBR’95, pages 23-32, Sesimbra, Portugal, 1995.
Springer-Verlag, Berlin, Germany.

[Hammond, 1989] Kristian Hammond. Case-based planning: viewing planning as a memory
task. Academic Press, San Diego, 1989.

[Hanks and Weld, 1995] S. Hanks and D.S. Weld. A Domain-Independent Algorithm for Plan
Adaptation. Journal of Artificial Intelligence Research, 2:3191-360, 1995.

[Herbeaux and Mille, 1998] O. Herbeaux and A. Mille. ACCELERE : un systeme d’aide a la
conception de caoutchouc cellulaire exploitant la réutilisation de I’expérience. Journal Eu-
ropéen des Systemes Automatisés, 1998. Soumis au Journal Européen des Systemes Automa-
tisés, disponible comme rapport de recherche.

[Hua et al., 1994] K. Hua, 1. Smith, and B. Faltings. Integrated Case-Based Building Design.
In S. Wess, K.-D. Althoff, and M.M. Richter, editors, Topics in Case-Based Reasoning — First
European Workshop (EWCBR’93), Kaiserslautern, Lecture Notes in Artificial Intelligence 837,
pages 458—469. Springer Verlag, Berlin, 1994.

[Hua et al., 1996] K. Hua, B. Faltings, and I. Smith. CADRE: case-based geometric design.
Artificial Intelligence in Engineering, 10:171-183, 1996.

[Ihrig and Kambhampati, 1997] L.H. lhrig and S. Kambhampati. Storing and Indexing Plan
Derivation through Explanation-based Analysis of Retrieval Failures. Journal of Artificial In-
telligence Research, 7:161-198, 1997.

[Koehler, 1996] J. Koehler. Planning from Second Principles. Artificial Intelligence, 87:145—
186, 1996.

[Kumar and Raphael, 1997] B. Kumar and B. Raphael. Cadrem: A case based system for con-
ceptual structural design. Engineering with Computers, 13(3):153-164, 1997.

[Laird et al., 1987] J.E. Laird, A. Newell, and P.S. Rosenbloom. SOAR: An Architecture for
General Intelligence. AI Magazine, 33(1):1-64, 1987.

[Leake et al., 1995] D. B. Leake, A. Kinley, and D. Wilson. Learning to Improve Case Adapta-
tion by Introspective Reasoning and CBR. In M. Veloso and A. Aamodt, editors, Case-Based
Reasoning Research an Development. Proceedings of the First International Conference on
Case-Based Reasoning - ICCBR-95, pages 229-240, Sesimbra, Portugal, 23-26 octobre 1995.
Lecture Notes in Artificial Intelligence, volume 1010, Springer Verlag, Berlin.

[Leake et al., 1996] D. B. Leake, A. Kinley, and D. Wilson. Acquiring case adaptation knowl-
edge: A hybrid approach. In Proceedings of the 14th National Conference on Artificial Intelli-
gence, Menlo Park, CA, pages 684-689. AAAI Press, Menlo Park, CA, 1996.



116 B. Fuchs et al.

[Leake et al., 1997a] D. B. Leake, A. Kinley, and D. Wilson. A Case Study of Case-Based CBR.
In D. B. Leake and E. Plaza, editors, Case-Based Reasoning Research and Development —
Second International Conference, ICCBR’97, Providence, RI, USA, Lecture Notes in Artificial
Intelligence 1266, pages 371-382. Springer Verlag, Berlin, 1997.

[Leake et al., 1997b] D. B. Leake, A. Kinley, and D. Wilson. Case-based similarity assessment:
Estimating adaptability from experience. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence. AAAI Press, Menlo Park, CA, 1997.

[Leake et al., 1997c] D. B. Leake, A. Kinley, and D. Wilson. Learning to integrate multiple
knowledge sources for case-based reasoning. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, 1997.

[Leake, 1993] D. B. Leake. Learning adaptation strategies by introspective reasoning about
memory search. In AAAI93 Workshop on Case-Based Reasoning, pages 57-63, 1993.

[Leake, 1995] D. B. Leake. Representing self-knowledge for introspection about memory
search. In Proceedings of the AAAI Spring Symposium on Representing Mental States and
Mechanisms, 1995.

[Lieber and Napoli, 1996] J. Lieber and A. Napoli. Using Classification in Case-Based Planning.
In W. Wahlster, editor, Proceedings of the 12th European Conference on Artificial Intelligence
(ECAI’96), Budapest, Hungary, pages 132—136. John Wiley & Sons, Ltd., 1996.

[Lieber and Napoli, 1998] J. Lieber and A. Napoli. Correct and Complete Retrieval for Case-
Based Problem-Solving. In H. Prade, editor, Proceedings of the 13th European Conference on
Artificial Intelligence (ECAI-98), Brighton, United Kingdom, pages 68-72, 1998.

[Melis et al., 1998] E. Melis, J. Lieber, and A. Napoli. Reformulation in Case-Based Reasoning.
In B. Smyth and P. Cunningham, editors, Fourth European Workshop on Case-Based Reason-
ing, EWCBR-98, Lecture Notes in Artificial Intelligence 1488, pages 172—183. Springer, 1998.

[Melis, 1995] E. Melis. A model of analogy-driven proof-plan construction. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), pages 182189,
Montréal, 1995.

[Mille et al., 1995] A. Mille, J.-L. Di-Martino, and A. Michel. Adaptation : the key-point in
Case Based Reasoning. A case study : Digester Programming Helping, 1995. presented at
the Workshop on practical developments strategies for industrial strength Case Based Reason-
ing applications, 16th International Conference on Atrtificial Intelligence, IICAI’95, Montreal,
Canada.

[Mille et al., 1996] A. Mille, B. Fuchs, and O. Herbeaux. A unifying framework for Adaptation
in Case-Based Reasoning. In A. VoB, editor, Proceedings of the ECAI’96 Workshop: Adaptation
in Case-Based Reasoning, pages 22-28, 1996.

[Mille et al., 1999] A. Mille, B. Fuchs, and B. Chiron. Le raisonnement fondé sur 1’expérience :
un nouveau paradigme en supervision industrielle ? a paraitre dans la Revue d’Intelligence
Artificielle, 1999.

[Newell, 1980] A. Newell. Reasoning, Problem Solving, and Decision Processes: The Problem
Space as a Fundamental Category. In R. Nickerson, editor, Attention and Performances VIII,
pages 693-718. Lawrence Erlbaum Associates, Hillsdale, NJ, 1980.

[Polya, 1957] G. Polya. How to Solve it. Doubleday Anchor Books, New York, NY, 1957.

[Purvis and Pu, 1995] L. Purvis and P. Pu. Adaptation Using Constraint Satisfaction Techniques.
In M. Veloso and A. Aamodt, editors, Case-Based Reasoning Research And Development. Pro-
ceedings Of The First International Conference On Case-Based Reasoning - ICCBR-95, pages
289-300, Sesimbra, Portugal, 23-26 Octobre 1995. Lecture Notes In Artificial Intelligence,
Volume 1010, Springer Verlag, Berlin.

[Smith et al., 1995] 1. Smith, C. Lottaz, and B. Faltings. Spatial composition using case : Id-
iom. In Manuela Veloso and Agnar Aamodt, editors, Case-Based Reasoning Reasearch And
Development, Iccbr’95, pages 8897, Sesimbra (Portugal), Octobre 1995.



Towards a Unified Theory of Adaptation in Case-Based Reasoning 117

[Smith ez al., 1996] 1. Smith, R. Stalker, and C. Lottaz. Interactive case-based spatial composi-
tion. 1996.

[Smyth and Keane, 1996] B. Smyth and M. T. Keane. Using adaptation knowledge to retrieve
and adapt design cases. Knowledge-Based Systems, 9(2):127-135, 1996.

[Smyth, 1996] B. Smyth. Case-Based Design. PhD thesis, Trinity College, University of Dublin,
1996.

[Veloso, 1994] M. M. Veloso. Planning and Learning by Analogical Reasoning. LNAI 886.
Springer Verlag, Berlin, 1994.

[VoB, 1996a] A. VoB, editor. Proceedings of the ECAI’96 Workshop: Adaptation in Case-Based
Reasoning, 1996.

[VoB, 1996b] A. VoB. Structural Adaptation with TOPO. In A. Vof, R. Bergmann, and
B. Bartsch-Sporl, editors, Workshop on Adaptation in Case-Based Reasoning, ECAI-96, Bu-
dapest, Hungary, August 1996.

[VoB, 1996c] Angi Vol3. How to solve complex problems with cases. Engineering applications
of artificial intelligence, 9(4):377-384, 1996.



A Knowledge-level Task Model of Adaptation in
Case-Based Reasoning

Béatrice Fuchs', Alain Mille?

! Université Lyon I1I, TAE - équipe MODEME, 15 quai Claude Bernard,
69 239 Lyon cedex 02, fuchsOuniv-1lyon3.fr
2 CPE-Lyon, LISA, équipe Raisonnement & Partir de Cas,
43 bd du 11 novembre 1918, 69 616 Villeurbanne cedex, am@cpe. fr

Abstract. The adaptation step is central in case-based reasoning
(CBR), because it conditions the obtaining of a solution to a problem.
This step is difficult from the knowledge acquisition and engineering
points of view. We propose a knowledge level analysis of the adaptation
step in CBR using the reasoning task concept. Our proposal is based on
the study of several CBR systems for complex applications which im-
ply the adaptation task. Three of them are presented to illustrate our
analysis. We sketch from this study a generic model of the adaptation
process using the task concept. This model is in conformity with other

CBR formal models.

1 Introduction

CBR systems reuse the solution of a solved case to build a solution of a new
problem. The basic CBR cycle is made of five steps : a request specifying a new
problem to solve being given, the system elaborates' a new problem description
named the target problem, retrieves a case named the source case from a case
base, reuses the solution of the source case by adapting it for the target problem,
retains the new case in order to make it available for further problem solvings.

The adaptation step in CBR is central because it conditions the obtain-
ing of a solution to the problem. This step has been studied in several papers
[Hanks and Weld, 1995], [Vo8, 1997], [Bergmann and Wilke, 1995], [Vof}, 1996],
[Leake et al., 1997], [Hua et al., 1993], [Hua et al., 1996], [Koehler, 1996] but it
is still difficult to approach and it is rarely implemented in practical applica-
tions. Instead of handling adaptation, most systems retrieve a case and simply
copy its solution in order to propose it to a user or another kind of reasoning
system. So, the needed adaptation step is done outside the CBR cycle. This can
be explained by the fact that, from the knowledge engineering point of view, it is
difficult to model the reasoning process and the implemented knowledge ; more-
over, there is no simple way to warrant the correctness of the solution. Thus,
systems where adaptation is taken into account in the CBR cycle are tied to a
particular application domain.

! This step is generally integrated to the retrieve step in most CBR models.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 118-131, 1999
© Springer-Verlag Berlin Heidelberg 1999



A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 119

Very few works are devoted to the formalization of the adaptation process.
In particular, few works focus on the following questions : how to decide a mod-
ification of a solution element ? Which method is to be used 7 What kind of
knowledge is used ? How is used domain knowledge ? How can the global con-
sistency of the solution be assessed 7 What kinds of reasoning mechanisms are
implemented 7 How is controled the adaptation process 7 etc. In order to give
some answers to these questions, we propose in this paper a generic model of
adaptation that specifies its reasoning tasks at the knowledge level. The aim of
this model is to clarify the existing relations between the retrieval and adap-
tation tasks by highlighting the pieces of knowledge controling these tasks, the
communications between tasks, and implemented inference mechanisms.

In previous works, we proposed a generic model of CBR in order to syn-
thesize functionnalities of these systems [Fuchs, 1997]. This approach provides
firstly a description framework of existing systems, and secondly a generic model
that constitutes an help for the design of new systems. The adaptation part is
presented here. We present in section 2 the task formalisms used for the descrip-
tion. In section 3, we describe the first three steps of CBR, the main focus being
on the tasks retrieve and reuse and their relations. In section 4 presents the
general principle of the retrieval - adaptation steps and in section 5 we use the
task decomposition formalism to describe the adaptation process in three CBR
systems chosen for the importance they give to the adaptation part, and also
because they are well documented in the litterature. We end our proposal with
a generic model of adaptation using the two task formalisms in section 6.

2 The task formalisms

The problem solving process is classically divided into tasks. A problem can be
achieved either in a direct way by an algorithmic method, or by a decomposition
into a set of simpler tasks. This representation allows to model which pieces of
knowledge control the reasoning process ; moreover, it allows to keep trace of
the reasoning process for explanation purpose [Goel, 1996].

We use two task oriented formalisms : a task specification formalism close
to [Armengol and Plaza, 1994] and a task decomposition formalism close to
[Aamodt and Plaza, 1994]. The task specification formalism describes the tasks
individually (figure 1), by the input pieces of knowledge, a label clarifying the
functions performed by the task, the pieces of knowledge produced as output, the
knowledge models used as support, and the implemented reasoning mechanisms.
This model is similar to the one presented in [Armengol and Plaza, 1994], but
its accuracy is superior because every element acting on a task has a precise role
(input, output, control, reasoning mechanism).

The second formalism expresses the hierarchical decomposition of tasks into
subtasks and a default control associated to the subtasks (figure 2). In this tree
representation, the root node is the main task, and the edges are the decompo-
sition relations leading to subtasks.



120 B. Fuchs and A. Mille

Conceptual models
of the domain
Request »

Memory of
past cases
classification
matching

Fig. 1. A partial specification of the main task Reason with past cases. The CBR

Domain
models
modified

Reason with

past cases the

augmented
memory of
past cases

task is activated by a request expressing a problem to be solved, it uses a case base ; its
output is the case base augmented with a new solved case. It is supported by knowledge
models of the application domain and uses classification and matching mechanisms.

Elaborate Retain

Create Prepare the case
a case . Revise Learn  Store
Ret C 'Adapt
w P the case
Test Explain
Copy  Copy solution solution differences
Sedreh 7 Select solution method Correct the solution
Controls :

O Multiple occurrences of the task
@ Possible subtask alternatives

\—1 Order of the tasks

Fig. 2. The partial decomposition (limited to the two first levels) of the main
task Reason with past cases.

The controls symbols have been added for a better understanding of
the model, because links towards subtasks have not always the same mean-
ing. Although controls should be specified in problem solving methods, this
model is conform to a task oriented view of knowledge level modeling
[Aamodt and Plaza, 1994].

3 The case model

According to this approach, we propose to define the case model i.e. a definition
of the case that takes into account the problem and solution parts, and also the
transformation of a case through reasoning tasks : a case C is composed of a
problem Pb, a solution S and a reasoning trace R (figure 3) : C = (Pb, R, S).



A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 121

The problem is described using a set of descriptors? D and a request Rq point-
ing the goal to be reached by the reasoning process. D includes a set of constraints
that have to be satisfied by the solution and serves as a partial specification of
S:Pb = (D, Rq). The solution S is an object built by the reasoning process R
and satisfying the constraints specified in Pb. The reasoning trace R is the set
of reasoning steps, intermediate results and decisions that are taken in order to
satisfy Rq from the starting state D.

acase C
has part
Problem Pb . Solution S
A Reasorlung R |
has part has part has part
Inputs of the  Request Reasoning Object (information
problem tasks constituting the

—_— :
is describ D ; / solution)
% omain is described using

using Ontology

Fig. 3. The case model

A case is created at the beginning of the CBR cycle and contains only the
problem part. The reasoning part of the case is the trace of the way the solution
has been obtained through the different steps. For example, the matching rela-
tions between the source and target problems are included in the reasoning part
of the target case. A case takes place as input and output of different reasoning
tasks and is modified by an enrichment process all along the CBR cycle. The
task specification formal model defines precisely the role played by the different
knowledge models, and has the objective to underline the transformation of a
case through the different reasoning steps.

Some CBR systems use a case decomposition of a problem in subproblems
[VoB, 1997], allowing to guide the reuse of pieces of cases to solve a complete
case. Actually, if several authors claim to use multiple cases to solve a new one,
from our point of view, it is always possible to see each process of problem solving
as a specific CBR cycle using subcases corresponding to the description of the
subproblems. Consequently, for a given subproblem to solve, a unique subcase
is selected in the CBR concerned subcases base. Figure 4 illustrates this point
of view.

According to this point of view, the analysis of CBR tasks does not lack
generality when considering the reuse task as involving a single case. When
reusing multiple different cases can be expressed as more simple CBR cycles
applied to subproblems.

2 . .
“ A network of objects, attributes and values.



122 B. Fuchs and A. Mille

Design plan

Fig. 4. A point of view on the case decomposition.

4 Principle of the retrieval-adaptation steps

We have modelled the CBR process by using five tasks corresponding to the
five main reasoning steps. Let us describe the first three tasks of interest for
us (see figure 5). Elaborate produces a target problem by collecting the prob-
lem descriptors and then prepares the retrieval task : it builds an abstraction
of the target problem named index by selecting indices, i.e. a subset of relevant
descriptors. Retrieve chooses a source case whose solution will be reused for
the target problem. It gradually selects a set of cases from the case-base using
the index previously built. Generally, this task is performed by a sequence of
cycles, each one being composed of two subtasks : the search task extracts a
set of source cases, and the select task retains only a subset depending on the
specific criteria. The search task has two subtasks ; the first subtask match links
the source and target problems in order to underline similarities and differences ;
the second subtask assess computes a criteria reflecting the similarity or dis-
similarity, to be used later by the select task. Reuse copies the solution of the
selected source case and adapt modifies it in order to give it consistency with
the specific context of the target problem. The matching process is at the basis
of the adaptation step.

Elaborate Retrieve Rt > Solved
target case

external
agent

Request Target problem, Target problem,
Index of the target Source case,
problem Matching of the source

and target cases

Fig. 5. The three first tasks of the CBR cycle.




A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 123

We focus now on the adaptation step (grey rectangle on figure 5). The match-
ing task draws a set of relations between source and target cases. These relations
express either the identity of some elements, or their dissimilarities although they
may have some similarities that have to be underlined by a deeper analysis.

A matching M is a set of relations Ry between descriptors of a source and the
target. A matching relation Rj; may be expressed as a triple Ry = (ds,dy, Rgt),
where d; is a descriptor of the source case, d; a descriptor of the target, and
R an explanation linking d; to dy and made of a sequence of relations of the
knowledge network. If d; and d; are identical, R, is an identity relation. If not
R expresses for example that descriptors are instances of the same class, or that
they play the same role in the context. The matching process is an important
step because it sumimnarizes similar elements between source and target problems,
and may involve a large amount of knowledge. Every relation between the source
and target problems is examined by the adaptation task. An adaptation step is
the application of an appropriate adaptation operator depending on the kind
of relation considered, taking into account the consequences of the established
differences on the solution descriptors. An adaptation operator may remove, add
or modify a solution element. When adding or modifying an element. different
methods may be used in order to find a new element : abstraction / specialization
process, use of explanations, use of causal relations, use of heuristics, etc. Figure
6 summarizes the relationships between matching and adaptation :

souree | pbg = (Dg,Rqq), Dy ={dg}  —~ —~ —~_ —~_ —~__»Solution
case .
Dependency relations

Matching
relations Ryg

{Rg} matching = {Rys}

target \ v
case

Pb; = (Dy,Rqp), Dy = {d;} Solution ?

adaptation

Fig. 6. The matching and adaptation processes and their relationships.

In an approximate way, an adaptation process applies to a solution element
a set of relations which are reciprocal of those of the matching process®. Thus,
differences pointed out by the matching process give a significant indication
about the amount of work to be done by the adaptation process in order to
modify the solution of the source case, because they are significant of the needed
adaptation knowledge.

* With the main difference that it must take into account other kinds of relations link-
ing problem elements to solution elements, and that are not necessarily (in general
not al all) explicit.



124 B. Fuchs and A. Mille

In order to illustrate this principle, we present now three systems to study
the adaptation process.

5 A study of three CBR systems

The chosen systems are :

— Déja Vu, a plant-control software design system [Smyth, 1996]

— PAD’IM, a decision support CBR system in industrial supervision
[Mille, 1995], [Fuchs et al., 1995].

— Resyn/CBR, a case-based planner in the domain of organic chemistry syn-
thesis [Lieber, 1997], [Lieber and Napoli, 1996].

5.1 Déja Vu
Déja Vu uses an adaptability-guided retrieval method. It assesses a criteria that
predicts the adaptability of a case and returns a source case the easiest to adapt,
associated to the adaptation rules to apply. The adaptation process uses adap-
tation specialists that perform local modification depending on specification dif-
ferences of problems, and adaptation strategies co-ordinating the application of
specialists and treating global consistency problems. An adaptation specialist
has a condition part corresponding to the type of specification difference it is
able to process, and an action part specifying the adaptation steps of the solution
using transformation operators. In the retrieval step, relevant characteristics of
the target problem are used to activate the adaptation knowledge to use. The
unactivated adaptation specialists are used to discard cases that are not useful
for the target problem. The activated adaptation specialists are used to select
locally adaptable cases. Adaptation strategies are needed to detect conflict prob-
lems in locally adaptable cases. A global adaptation cost is assessed, based on
activated specialists and strategies.

Adapting a case uses adaptation knowledge that was activated in the retrieval
step, and the matching helps to point out modifications to bring out in order to
produce the target solution (figure 7).

Reuse the solution of a case

Copy
solution

Verify consistency

Select a difference Modify the solution
and the associated Vérify Verify
adaptation specialist
por stratggy Remove an Substitute an Addan - locally globally
element element
element

Fig. 7. The decomposition of the reuse task in Déja Vu.



A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 125

Adaptation specialists are applied in order to handle specification differences
and perform local modifications on solution elements without controlling the
modifications performed by other specialists. Adaptation strategies co-ordinate
the application of specialists in order to avoid conflicts that may lead to impasses
and to check the solution consistency after local modifications.

In Déja Vu, the retrieve and reuse steps are tightly coupled. Cases are linked
to adaptation knowledge activated at the retrieval step. The adaptation process
performs modifications already underlined in the retrieval step ; strategies are
applied when the counsistency checking process points out modification needs
after adaptation specialists have been applied.

5.2 PAD’IM

PAD’™M provides an appropriate supervision environment for situations that are
similar to known situations. The supervision domain is defined thanks to the
supervision object concept, specialized in subclasses : the structural object, the
function, etc. A supervision environment is composed of a set of dashboards that
are viewed by operators on control panels. A dashboard has a set of views repre-
senting the evolution of the supervised system and reflects supervision objects.
The retrieval of cases (or supervision episodes) begins with a discrimination
based on the general context of the supervision episode. A conceptual similar-
ity is assessed by a matching process of the supervision objects and measures
the degree of similarity of the objects in the source and target cases. The ob-
served dissimilarities of supervision objects are analyzed in order to produce an
explanation of their role in a supervision environment. The matching process
summarizes similarities between objects, dissimilarities and their explanation.
The search for an explanation tries to find relations between the objects and the
different elements describing the situation. Reusing a supervision environment
means finding which supervision objects have to be represented in the new super-
vision environment. The reuse task is performed by two subtasks (figure 8). The
first subtask copy copies the supervision environment of the retrieved episode
for the current one and the second subtask adapt a supervision environment
modifies it.

Reuse a supervision environment

Adapt the supervision
environment

Copy the ending
supervision environment

Select a Modify the supervision environment Verify ergonomic
supervision object constraints
Substitute the concept of the Modify the representation
newenvironment by role similarity of the supervision object

Fig. 8. The decomposition of the reuse task in the PADIM system.



126 B. Fuchs and A. Mille

The starting point for the adaptation of a supervision environment is the
matching of supervision objects. It is performed using three subtasks. The first
subtask uses the explanations of supervision objects in order to modify those
of the newly copied supervision environment in the target case. Explanations
guide the adaptation operations : objects are determined by an explanation
matching process. A substitution operation is done by the replacement of ob-
jects by explanation similarity. A substitution may be for example an abstrac-
tion/specialization process.

In the PAD’IM system, the adaptation process is guided by cases matching.
The application of an adaptation operation is conditioned by a specification
difference. Explanations express dependency relations between a problem and
its solution and constitute the adaptation operations to be performed.

5.3 Resyn/CBR

In Resyn/CBR, a case is a synthesis plan that builds a target molecule from
basic molecules. Synthesis plans are organized in a co-subsumption hierarchy
defining the structural inclusion of networks representing molecules. A synthe-
sis plan is an ordered sequence of transformations that split a target molecule
into simpler molecules. A problem is described by a target molecule m to syn-
thesize. A solution is a synthesis plan C(m) of the target molecule. Synthesis
plans are indexed by molecules of the co-subsumption hierarchy. The retrieval
of a synthesis plan relies on two kinds of classifications : a strong one and a
smooth one. Strong classification classifies the target molecule in the subsump-
tion hierarchy in order to find the most specific subsumers mj of m and the
associated synthesis plan P(my). If no subsumers refer to synthesis plans, then
smooth classification is tried. Let mj a source problem, m a target problem,
and M = I(my) the index associated to a problem my, such as my = I(my).
the strong classification sets my, such as S(my,m) = my < M = m. Smooth
classification consists in modifying the molecules M of the hierarchy and the
target molecule m in order to obtain a subsumption relation and to try strong
classification again. The problem is to find modification functions ¢ and @ such
as : S(mg,m) = myp 2 M ~ ¢(M) = (m) ~ m. The retrieval task returns
a pair (P(my), S(my, m)) where S(my, m) is a similarity path between m; and
m that ensure the adaptability of the plan P(m}) for m. A similarity path is a
sequence of relations between my, and m passing through a set of indexes of the
hierarchy : mj < mi <. = mi Mg = ... = m! <= m.

The adaptation of a retrieved synthesis plan P(my) of a molecule my, for a
target molecule m creates a new synthesis plan p(m) using the similarity path
between m and my, (figure 9).

The relations of the similarity path guide the plan rewriting process. Ev-
ery relation in the similarity path corresponds to an adaptation step with an
associated rewrite function applied sequentially to the plan P(my) in order to
obtain the plan p(m). Thus, relation < is associated to a generalization func-
tion, relation > is associated to a specialization function, and the relation <—



A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 127

Reuse a plan

Adapt the plan

Select a relation of the Modify : apply an adaptation function
similarity path

Copy the plan

Abstract : remove Transform : add steps
atoms or links specialize
Add atoms or Substitute atoms or links
links with other types

Fig. 9. The task decomposition of the Reuse task in Resyn/CBR.

is associated to a transformation function. The reuse step is easy because the
operations that have to be performed are determined during the retrieval step.

In Resyn/CBR, the retrieval and reuse steps are tightly coupled : the adap-
tation step control relies on the similarity path that underline generalization re-
lations, specialization relations and transformation relations between the source
and target cases. The retrieval step warrants the adaptability of the selected case
by developping particular relations.

6 A generic model of adaptation

Some invariants can be extracted from the study of these three systems®
summarized them in the hierarchical task model of figure 10 and the specification
model of figure 11.

The reuse task has two subtasks : the copy task copies the solution of
the retrieved case for the target problem, and the adapt task handles problem
differences and discrepancies. The copy task copies either the solution or the
method that produced the solution of the retrieved case ®, and begins to adapt.
This task has been modelled in such a way because most CBR systems represent
the reuse step as a copy of the solution followed by modifications of the copied
solution.

The adapt task focuses first on differences between problems in order to de-
termine the solution elements which have to be modified and the adaptation
methods to apply to the solution. The starting point is the matching of the

, we have

* Other systems, not presented in this paper, have been studied for the analysis.

® The distinction between transformational adaptation and derivational adaptation
refers to Carbonell’s work, but from our point of view, we think that this distinction is
not fundamental because it is possible to consider that the solution of the case itself is
the reasoning trace. This view has also been modelled in [Aamodt and Plaza, 1994].
Meanwhile, our point of view would need further studies to be fully justified, and
our task descriptions are intended to describe transformational adaptation.



128 B. Fuchs and A. Mille

Reuse
Copy Adapt : reduce
discrepancies
Copy solution Copy d-Select a Modify : apply a method V(?rify
method solution 1screpancy . consistency
Remove Substitute Add
Search an element
None
Use domain Uzzstge
knowledge Use heuristic Use a base
method retrieved
case
Use a causal Use other Use abstraction /
explanation explanations specialization

Fig. 10. The decomposition of the reuse task.

cases performed during retrieval ; it determines the differences to be handled
by adaptation knowledge. These differences are augmented with new inconsis-
tencies that are detected by the verify consistency task after modifications
have been performed on solution elements. Discrepancies include problem spec-
ification differences as well as inconsistencies (deficiencies, suboptimal results)
resulting from solution modification. The adaptation model contains solution
transformation operators. Discrepancies are studied in the adaptation task in
order to apply specific adaptation operators and to modify solution elements of
the target.

Systems performing an adaptability guided retrieval choose cases by high-
lighting these kinds of relations and the associated adaptation knowledge at
the retrieval step, in order to assess firstly the feasibility of the adaptation and
secondly an estimated adaptation cost of a source case.

The task reduce differences chooses differences, applies consequently the
appropriate adaptation knowledge, and controls the consistency of the obtained
solution.

When some solution elements are modified, inconsistencies may appear
[Maher et al., 1995]. These inconsistencies may be viewed as new differences to
handle by the adaptation process and are added to the list for further adapta-
tions. The modification operations may use different methods depending on the
kind of relations underlined while handling a difference. Domain knowledge to
which are connected cases is used in order to find an element, for example by an
abstraction/specialization process.



A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 129

Adaptation Domain model

Matching of model
the cases
(differences) C Select a Modify : Verr Target
0 i erify
Source Py discrepancy apply a consistency }case
e N
case Target case  Selected method ew
discrepancies  discrepancy Target case inconsistencies
Target case ¢ modified

deduction
Abstraction/specialization

Reuse

Fig. 11. The specification of the reuse task.

Figure 11 underlines knowledge models and knowledge pieces that are im-
plied in the adaptation process. Although we have defined separate knowledge
models in our framework (similarity model for retrieval, adaptation model for
adaptation, domain model, etc.), each of them have strong relationships with
other models. So, we can consider every piece of knowledge of the specification
model that acts on a task, and we can compar the above CBR systems according
to the knowledge which is implied in the adaptation process.

In Déja Vu, problem specification differences are matched with premises of
adaptation rules in the retrieval step. The adaptation actions to be performed in
the adaptation step are already linked to specification differences. The case se-
lected for reuse is chosen if there exists the corresponding adaptation knowledge
and if the associated cost is minimal. When adapting the solution, new adapta-
tion needs may appear when modifications are performed, and specific adapta-
tion rules may be triggered consequently. Adaptation action parts of adaptation
rules consist in a set of operators to transform graph structures. Basic operators
perform substitutions, deletions and insertions.

In the Resyn/CBR system, a similarity path indicates a sequence of relations
between the source and target problems passing through indexes of the hierar-
chy. Every kind of relation is associated to an appropriate adaptation function.
So, finding an adaptable case means finding a similarity path whose relations
correspond to an adaptation function with a minimal cost. The different kinds
of relations are the generalization relation, the specialization relation and the
transformation relation. The generalization relation implies the deletion opera-
tor, the specialization relation implies the insertion or substitution operator and
the transformation relation implies the insertion operator.

In the Pad’im system, problem specification differences are explained by
searching a sequence of relations linking a supervision object with an element
of the situation. An explanation expresses the role played by a supervision ob-
ject in a situation and uses the objects and relations of the domain knowledge.
The corresponding adaptation action is generic and consists in substituting an



130 B. Fuchs and A. Mille

object by searching an object having a same role, deleting an object or inserting
an object depending on the kind of explanation.

7 Discussion and conclusion

In this paper, we present a way to model the adaptation step of CBR, applica-
tions at the knowledge level through two kinds of formalisms: a task specification
model focusing on the pieces of knowledge involved in a particular task, and a
task decomposition model making explicit how the reasoning process can be
decomposed in a hierarchy of subtasks to achieve the problem solving. Beyond
the simple decomposition framework, the formalism of decomposition allows to
express how the different tasks can be brought into operation (iteration, dis-
junction, conjunction, etc.), while the generic role of each piece of knowledge
involved to achieve a task is made explicit in the task specification model. Ac-
tually, a relatively complete set of generic models have been developed on the
basis of our proper experience of CBR systems development, and we have verified
their relevance on several different other systems. We plan to place these generic
models at disposal for CBR developers in order to make easier the development
of new CBR systems. Researchers and developers can also use our approach to
propose domain-dependent generic models. A first corresponding symbol level
environment has been developed [Fuchs, 1997] for our proper CBR systems, and
we are trying to make it available through standard tools.

The adaptation step, although central in the problem solving process, is rarely
modelled in the same manner than other steps of CBR. An explicit connexion of
this step with the others in order to model uniformly the CBR cycle is justified
firstly in order to understand and to study the adaptation process and secondly in
order to provide a methodological basis for the engineering of CBR systems. The
development of several complex applications and the study of several systems
has led us to a generic task model of the adaptation process that caracterizes
the knowledge used and the kind of reasoning performed. The task model is
decomposed into a small number of subtasks of preparation, modification and
control of the adaptation process. The study of the adaptation process may be
continued in two complementary directions : a formalization of the adaptation
process as a plan modification process strongly coupled to the similarity search
process, and the development of adaptation operators explicitely controlled by
adaptation knowledge.

References

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-Based Reasoning :
Foundational Issues, Methodological Variations, and System Approaches. Al Com-
munications, 7(1):39-58.

[Armengol and Plaza, 1994] Armengol, E. and Plaza, E. (1994). A Knowledge Level
Model of Case-Based Reasoning. In Richter, M. M., Wess, S.; Althoff, K.-D., and



A Knowledge-level Task Model of Adaptation in Case-Based Reasoning 131

Maurer, F., editors, First European Workshop on Case-Based Reasoning - EWCBR-
93, pages 53—64, University of Kayserslautern, Germany. LNAI vol. 837, Springer
Verlag, Berlin.

[Bergmann and Wilke, 1995] Bergmann, R. and Wilke, W. (1995). Building and refin-
ing abstract planning cases by change of representation language. Journal of Artificial
Intelligence Research, 3:53 118.

[Fuchs, 1997] Fuchs, B. (1997). Représentation des connaissances pour le raisonnement
a partir de cas : le systéme ROCADE. These d’université, Université Jean Monnet,
Saint-Etienne, France.

[Fuchs et al., 1995] Fuchs, B., Mille, A., and Chiron, B. (1995). Operator Decision
aiding by Adaptation of Supervision Strategies. In Veloso, M. and Aamodt, A.,
editors, First International Conference on Case-Based Reasoning - ICCBR-95, pages
23-32, Sesimbra, Portugal. LNAI vol. 1010, Springer Verlag, Berlin.

[Goel, 1996] Goel, A. (1996). Meta cases: Explaining case-based reasoning. In Smith,
I. and Faltings, B., editors, Third Furopean Workshop on Case-Based Reasoning -
EWCBR-96, pages 150-163, Lausanne, Suisse. LNAI vol. 1168, Springer Verlag,
Berlin.

[Hanks and Weld, 1995] Hanks, S. and Weld, D. S. (1995). A domain independant
algorithm for plan adaptation. Journal of Artificial Intelligence Research, 2:319 360.

[Hua et al., 1996] Hua, K., Faltings, B., and Smith, 1. (1996). CADRE : Case Based
Geometric Design. Artificial Intelligence in Engineering, 10:171-183.

[Hua et al., 1993] Hua, K., Smith, I., and Faltings, B. (1993). Exploring case-based
design: CADRE. Artificial Intelligence for Engineering Design, Analysis and Manu-
facturing (AI EDAM), 7(2):135 144.

[Koehler, 1996] Koehler, J. (1996). Planning from Second Principles. Artificial Intel-
ligence, 87:145-186.

[Leake et al., 1997] Leake, D., Kinley, A., and Wilson, D. (1997). Learning to integrate
multiple knowledge sources for case-based reasoning. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence. Morgan Kaufmann.

[Lieber, 1997] Lieber, J. (1997). Raisonnement & partir de cas et classification
hiérarchique. Application d la planification de synthése en chimie organique. These
d’université, Université Henri Poincaré Nancy 1, Nancy, France.

[Lieber and Napoli, 1996] Lieber, J. and Napoli, A. (1996). Adaptation of Synthesis
Plans in Organic Chemistry. In Workshop on Adaptation in Case-Based Reasoning,
ECAI-96, pages 18-21, Budapest, Hungary.

[Maher et al., 1995] Maher, M. L., Balachandran, M. B., and Zhang, D. M. (1995).
Case-Based Design. Lawrence Erlbaum Associates, Mahwah, New Jersey.

[Mille, 1995] Mille, A. (1995). Raisonnement basé sur l’ezpérience pour coopérer
d la prise de décision, un mouveau paradigme en supervision industrielle. These
d’université, Université Jean Monnet, Saint-Etienne.

[Smyth, 1996] Smyth, B. (1996). Case-Based Design. Doctoral thesis of the Trinity
College, Dublin.

[VoB, 1996] VoB, A., editor (1996). Proceedings of the ECAI’96 Workshop: Adaptation
in Case-Based Reasoning.

[VoB, 1997] VoB, A. (1997). Case Reusing Systems - Survey, Framework and Guide-
lines. Knowledge Engineering Review, 12(1):59 89.



Development and Utilization of a Case-Based
Help-Desk Support System in a Corporate Environment

Mehmet Goker' & Thomas Roth-Berghofer®

! DaimlerChrysler Research and Technology 3, FT3/KL
P.O. Box 2360, D89013 Ulm, Germany
mehmet.goeker @daimlerchrysler.com
Phone: +49 731 5052856 Fax: +49 731 5054210

% tec:inno GmbH

Sauerwiesen 2, D67661 Kaiserslautern, Germany
roth@tecinno.com

Phone: +49 6031 606400 Fax: +49 6031 606409

Abstract: Current Case-Based Reasoning (CBR) process models present CBR
as a low maintenance Al-technology and do not take the processes that have to
be enacted during system development and utilization into account. Since a
CBR system can only be useful if it is integrated into an organizational
structure and used by more than one user, processes for continuous knowledge
acquisition, -utilization and -maintenance have to be put in place. In this paper
the short-comings of classical CBR process models are analyzed, and, based on
the experiences made during the development of the case-based help-desk
support system HOMER, the managerial, organizational and technical
processes related to the development and utilization of CBR systems described.

1. Motivation

Case-Based Reasoning (CBR) has long been considered as an Al technology with
comparably low maintenance effort. However, with the advent of CBR systems in
industrial environments, issues that have to do with the processes involved in putting
a knowledge repository into operation in an organization arise. Especially the
processes involved in initial and continuous knowledge acquisition, case-base and
domain-model maintenance as well as the organizational impact of and impact of the
organization on a CBR system have not been analyzed and understood completely.
These aspects are currently neither covered in academic CBR models nor supported
adequately in commercially available CBR systems.

On the following pages we describe the processes that had to be enacted during the
development and utilization of the case-based help-desk support system HOMER [2].
After the processes had been derived from one specific application, they were
verified, revised and re-used during several other CBR-projects by means of the
INRECA-II' methodology [1]. We believe that most of the results can be transferred
to other domains and applications

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 132-146, 1999
© Springer-Verlag Berlin Heidelberg 1999



Development and Utilization of a Case-Based Help-Desk Support System 133

2. Current Case-Based Reasoning Process Models

Several variations of the Case-Based Reasoning process model exist in literature [cf.
3,4,5,6]. The basic idea behind all approaches is to retrieve problem solving
experience that has been stored as a case in a case-base, adapt and reuse it to solve
new problems and, if not successful, learn from failures.

Probfem On the abstract level the CBR process can
be described to be comprised of four main
tasks (Fig.1): Retrieve, Reuse, Revise and
Retain [6].

During Retrieval the most similar case or
cases in the case-base are determined based
on the new problem description.

During Reuse the information and
knowledge in the retrieved case(s) is used to
solve the new problem. The new problem
description is combined with the information
contained in the old case to form a solved
case.

Confirmed Suggested During Revision the applicability of the

Solution Solution proposed solution (solved case) is evaluated.

Fig1: The Case-Based Reasoning Process Model If necessary and possible the proposed case

according to Aamodt and Plaza [9] . .
is repaired.

If the case solution generated during the

reuse phase is not correct and cannot be repaired, the case-base is updated with a new
learned case or by modification of some existing cases in the Retain task.

General
Knowledge

Tested/
Repaired
Case

3. Shortcomings of Current Case-Based Reasoning Process
Models

3.1. Effects of User Groups

A CBR System is a means to store, share and re-use experience. If the experience
stored in a CBR system is only used by the person who enters it, the use of the system
will be rather limited. The goal of developing a CBR system, especially in a corporate
environment, is to create a means to capture, cumulate and re-use corporate
experience with all the benefits that are associated with such a venture [cf. 8].

It has been claimed that "Knowledge Acquisition for a case-based system is
natural” [5], and that "CBR offers a significant benefit for knowledge maintenance: a
user may be able to add missing cases to the case library without expert intervention"
[7]. While this may indeed be true for static domains with a very limited number of
users of the system, we would like to be somewhat more cautious to this respect.

If a CBR System is not only used by one user but rather a group of users, the
quality (in terms of representation and content) of the new cases that each user creates
will vary. This will have a negative effect on the overall quality of the case-base (in



134 M. Goeker and T. Roth-Berghofer

terms of correctness, coverage and minimality) and reduce the effectiveness and
efficiency of the system in general. Processes that ensure that the overall quality of
the case-base does not deteriorate when new cases are entered have to be put in place.
Depending on the user group that is going to utilize the system, the content of the
case-base and the user interface of the system have to be adapted as well.

3.2. Effects of Time

Current CBR process models base their description on a static view of the domain.
While this assumption is acceptable for academic purposes, it does not hold for real
world applications.

Every real-world domain changes over time. Solutions that were applicable some
time ago will become invalid. Indices that were suitable will become obsolete and
similarities will change. Methods to ensure that the CBR system is up-to-date have to
be developed and tasks that realize these methods have to be incorporated into the
CBR process models.

3.3. Impact on/of the Organization

Both during the development and the utilization of a CBR System, changes in the way
knowledge is handled take place within an organization. Personnel has to be dedicated
to the task of acquiring and maintaining knowledge, the system has to be integrated
into the daily operations and has to become part of the organizational culture. A CBR
system can only be successful in the long run, if enough personnel to maintain, use
and develop the system are available and set aside by management [cf. 9].

4. Case-Based Help-Desk Support Systems

Help-desks support end-users of complex technical equipment by providing
information about the usage of the equipment and keep the systems operational by
performing necessary maintenance tasks. Help desk operators are expected to be able
to solve problems on very short notice, in a very short time, and to be knowledgeable
in all areas that are related to the technical system at hand.

Help-desk operators use their own experiences to solve most of the problems that
are relayed to them. However, as systems become more complex, the areas help-desk
operators are experts in tend to diverge, i.e., problem solving experience is distributed
among experts and the areas of expertise do not necessarily overlap. Nevertheless,
when an end-user has a problem, he or she wants it solved as soon as possible. If that
expert is not available, the user has to wait, which is annoying and not acceptable in a
commercial environment. The problem-solving experience must be available to every
help-desk operator at all times [2].

The goal of developing a case-based help-desk support system is to create a
knowledge repository that contains problem-solving experiences for a complex
technical domain that changes over time. This knowledge repository will be used in
an organization, by a group of people with varying levels of expertise, in a time-
critical operation. It is obvious that the development and use of such a system does
not only involve technical processes, but also raises managerial and organizational



Development and Utilization of a Case-Based Help-Desk Support System 135

issues. In the following sections, we describe the tasks that must be performed to
develop a case-based help-desk support system and the processes that have to be put
into place to make such a system operational.

5. Processes During Case-Based Help-Desk System Development
and Utilization

5.1. Process Types

Table 1 lists the processes that have to be considered and /or performed during the
development and utilization of a case-based help-desk system. We distinguish
between organizational, technical and managerial processes [1].

Organizational processes cover those parts of the business process that need to be
changed in order to make best use of a new software system. Technical processes
transform and evolve product information from the problem description to the final
(software) system. They address the development of the system and the required
documentation itself. Managerial processes provide an environment and services for
enacting the technical and the organizational processes.

I — System Development _ SystemUse

Managerial Processes - Goal Definition - Progress Verification and
- Awareness Creation Controlling
- CBR-Tool Selection
Organizational Processes | - Project Team Selection - End-User Training
- Initial Domain Selection - Continuous Knowledge
- Project Team Training Acquisition
- Knowledge Acquisition - Utilization Process

Process Development
- Utilization Process

Development
General IT- |- System Specification - Continuous System
System - System Implementation Maintenance
Related - System Integration
Technical - System Verification
Processes Knowledge |- Initial Knowledge - Continuous Knowledge
Repository Acquisition Acquisition and
Related - Core Knowledge Maintenance
Acquisition

Tab. 1. Processes during case-based help-desk support system development and use.

5.2. Managerial Processes During System Development

Goal Definition. For a case-based help-desk support system project to be successful,
precise goals must be determined at the outset. This enables management to fix the
direction in which the project should develop and to measure the success of the



136 M. Goeker and T. Roth-Berghofer

project upon completion. Hard (quantitative) and soft (qualitative) success criteria
should be identified [cf. 9]. Hard criteria are measurable quantities and cover aspects
like:
e problem solution quality (first-call resolution rate, solution correctness, and
consistency, average cost of proposed solution, and so on),
e process quality (average time needed to solve a problem, average number of
escalations needed, quality of dynamic priority assignment, and so on),
e organizational quality (speedup in help-desk operator training, flexibility of
staffing, cost per interaction, and so on).
Soft criteria, on the other hand, measure the subjective quality of the help-desk and
cover aspects like:
e end-user satisfaction (availability of the help-desk, perceived competence,
friendliness, and so on),
e help-desk operator satisfaction (workload, work atmosphere, repetitiveness of
tasks, intellectual stimulation, and so on), and
e corporate aspects (preservation of knowledge, publicity, and so on.).
The goals must be communicated to the project team, and the team has to be
motivated to achieve them.
When project goals are selected, it is important that these goals be realistic both in
terms of their time frame and whether they can be achieved with an acceptable
amount of resources.

Awareness Creation and Motivation. The case-based help-desk support system
project targets the most precious asset of the employees: their experience. The
project’s goal is to collect the problem-solving experience of each relevant employee
and make it available to whomever needs it in the organization.

Obviously the help-desk operators will have a motivational barrier to giving away
their experience. Every employee knows that “knowledge is power.” In help-desk
environments or domains where experience is being used to solve problems having
experience translates into being superior and indispensable, whereas giving away the
knowledge can be perceived as becoming obsolete.

However, as soon as help-desk operators become part of a project team and
understand that sharing knowledge means that they will get back much more than
they invest, most barriers disappear. It has to be made clear that the user and
beneficiary of the developed system is not going to be an anonymous “company,” but
they themselves. They will be able to access the experience of their colleagues and
solve problems they could not solve before, as well as end situations in which
colleagues constantly pester them for advice. The resulting help-desk system will
enable them to work with increased efficiency and effectiveness.

Apart from the help-desk operators, management has to be motivated as well. CBR
is perceived to be rather academic by most managers. While to them investing
resources into a database project seems to be no problem, investing into CBR is
investing into a venture with an uncertain outcome. It has to be clarified that CBR is
an established technology and by no means only an academic playground. The case-
based help-desk support project must be seen as part of the long-term knowledge
management strategy for the company. Since knowledge increases and evolves, the



Development and Utilization of a Case-Based Help-Desk Support System 137

experience in a CBR system must be maintained continuously. System development
is only the initial phase in any CBR project.

Without continuous management support and employees who are willing to fill and
use the system, any CBR project is bound to fail.

CBR Tool Selection. Based on the project, domain, and user-group specifications, a

suitable tool to develop the case-based help-desk support system must be selected.

Criteria to be taken into account include:

e the operating environment in which the system is going to be used (hardware and
software, network architecture, database type, and so on),

e the complexity of the technical domain (home appliances or networked
workstations),

o the level of experience of both the end-users and the help-desk operators,

e the organization of the help-desk (number of levels, physical locations, and so on),

e the project goals that have been defined.

Since the case-based help-desk support system is going to serve as a (long-term)

knowledge repository for the organization, this selection should be based not only on

technical criteria, but also should take into account economic and organizational

considerations, as well as strategic decisions of the company.

5.3. Organizational Processes During System Development

Project Team and Initial Domain Selection. The creation of a project team to serve
as the “knowledge engineers” and the selection of a group to serve as initial test users
of the system are the first organizational steps that must be taken.

Apart from the person implementing the case-based help-desk support system
(CBR consultant), the project team should contain help-desk personnel who are very
experienced in the relevant subdomain to be modeled and well respected by the help-
desk operators outside the project group. Once selected, the members of the group
should be kept constant, i.e., fluctuations should be avoided.

The group of initial users should comprise two types of help-desk personnel: One
that is on a comparable level of expertise with the project team with respect to the
selected subdomain (i.e., expert users) and help-desk personnel who are less familiar
with the specific problem area (i.e., novice users). While the expert test-users can
communicate to the project group in their language, the novice users will represent
the target group for which the system is being implemented. Feedback from both
types of users is required for a successful project. After a first “rapid prototype” has
been implemented, the expert users can give hints regarding problems with the
knowledge modeled in the system. The members of the novice user group, on the
other hand, will serve as models of the help-desk operator who will use the system.
The vocabulary in which the cases are being represented and the knowledge contained
within them has to be adjusted to the novice user group

Which domain one selects for the initial knowledge acquisition is of utmost
importance. The domain should be representative of the problems that are being
handled at the help-desk, both in terms of complexity and frequency. It should also be
a problem area that accounts for a considerable amount of the workload and about
which the help-desk operators are interested in sharing (obtaining) knowledge.



138 M. Goeker and T. Roth-Berghofer

Training the Project Team. Training the project team is an organizational process
that has a major impact on the success of the help-desk project. At the beginning of
the project, the project team is (most of the time) inexperienced with respect to CBR
and knowledge acquisition. Since the project group will be responsible for system
maintenance and continuous case acquisition after the development has finished, it is
very important that they are trained in CBR, as well as in knowledge acquisition and
modeling, during the initial knowledge acquisition.

While the project team should also get advanced training to be able to model, fill,
and maintain the knowledge in the system, the test users only need to be trained in
using the resulting case-based help-desk support system.

Development of the Knowledge Acquisition and Utilization Processes. The
introduction and use of a case-based help-desk support system usually causes a re-
evaluation and modification of the existing knowledge and information management
processes in a help-desk environment. After the development of the case-based help-
desk support system is complete, it will serve as the central source of information for
the help-desk operators. To ensure a smooth flow of information, the knowledge
sources and formats, as well as the qualification of the personnel that requires the
knowledge, have to be analyzed, and processes that allow efficient and effective
acquisition and use of knowledge have to be developed. One should keep in mind that
while the group enacting the initial knowledge acquisition process is the project team
and rather experienced, the users who use the system in the end (both in terms of
knowledge retrieval and continuous acquisition) may be less qualified.

During the development of HOMER [2], we found it very useful to define three
roles for the knowledge acquisition and utilization processes during the use of the
help-desk system:

e the help-desk operator,
e the CBR author,
e the CBR administrator.

Help-desk operators are the users from the target group. Their duty is to use the
implemented help-desk system in their daily work. If they cannot find an appropriate
solution with the system, they will have to solve the problem on their own and
generate a new case. Depending on the domain and on managerial decisions, this new
case may or may not be made immediately available as an “unconfirmed” case to the
other help-desk operators. For maintenance purposes, the operators are also
encouraged to comment on the quality and applicability of the cases in the case base.

The unconfirmed, new cases have to be verified in terms of their correctness and
suitability for the case base by the CBR author(s). The CBR author is a person with
experience both in the domain and in using the CBR system. While the CBR author
can decide on the quality and inclusion of a case in the case base, he or she is not
allowed to perform modifications on the vocabulary, the similarity, and the adaptation
knowledge. These can only be performed by the CBR administrator.

The personnel enacting the roles of the CBR author(s) and the CBR administrator
should be included in the project group from the start of the project. It should be noted
that both these roles require a considerable amount of resources and should be
performed by dedicated personnel. If the organization or the size of the help-desk



Development and Utilization of a Case-Based Help-Desk Support System 139

does not permit dedicating more than one person to these tasks, the duties of the CBR
author and CBR administrator should be performed by one person.

5.4. Technical Processes During System Development

General IT-System Development Related Processes. The development of a case-
based help-desk support system is similar to any other IT project in most aspects. As
usual, the system has to be specified, implemented, integrated, and verified in
accordance with standard software engineering techniques. However, the user-
interface and the connection to supporting programs (integration) are two features that
require additional attention.

The user interface of the case-based help-desk support system has to be developed
in accordance with the user group (i.e., second level, first level, or even end-user), the
specific domain, and company policies (who is allowed to see what kind of data). It
has to present the right data, at the right moment, and on the right level of abstraction.

A case-based help-desk support system cannot operate in isolation. While the CBR
system will store experience, it will not contain data regarding device configurations,
maintenance contracts, and users. Since this information is needed during problem
solving, the system has to have interfaces to the databases containing this information.

Most help-desks use trouble-ticket tools in their daily operations; they record,
manage, trace, escalate, and analyze the calls they receive. While these trouble-ticket
tools are very useful in handling calls, they do not provide means to capture and reuse
problem-solving experience. Depending on the environment, the case-based help-desk
support system should also either be integrated into the user interface of the trouble-
ticket tool or vice-versa. Data from the trouble-ticket system has to be transferred to
the CBR system to initialize the attributes that relate to the data that has already been
acquired. Except for very complex second-level applications, it is not feasible to have
two points of entry to the problem-solving process.

Initial Knowledge Acquisition for the Case-Based Help-Desk Support System. A
CBR system is useless without cases. When the case-based help-desk support system
is handed over to the help-desk operators, it has to contain enough cases to cover at
least part of the relevant problems at the help-desk. Initial knowledge acquisition
serves three major goals:

e training the project team in knowledge acquisition,

e initializing the knowledge in the system,

e collecting enough help-desk cases to bootstrap the system.
During initial knowledge acquisition, the knowledge in the system can be distributed
among the domain model (vocabulary), similarity measure, adaptation knowledge,
and the case base. These knowledge containers [10] have to be created and filled. In
principle, each container could be used to represent most of the knowledge. However,
this is obviously not very feasible, and the CBR consultant should carefully decide on
the distribution of knowledge into the containers. After the initial knowledge
acquisition is completed, this distribution is more or less fixed and should only be
changed with caution.

The processes for the acquisition of knowledge for each container run in parallel

and cannot be easily separated during the initial knowledge acquisition. Since the



140 M. Goeker and T. Roth-Berghofer

vocabulary lays ground for entering the cases and describing the similarity measures
and adaptation knowledge, it has to be available first. However, to be able to create a
domain model (i.e., the vocabulary), one has to understand how the domain is
structured, and this can only be done by looking at the cases, the similarities, and the
adaptation rules.

In our experience, the best way to approach this problem is to create and use
standardized forms to acquire an initial amount of cases from the project team. The
form should be developed in co-operation with the project team. A sample form that
was developed for the initial case acquisition for the HOMER application is shown in
Tab. 2.

The first thing that must be done is to ask the project team to fill out as many case
acquisition forms as they can. By looking at the elements of the forms, the vocabulary
(i.e., the phrases that have to be used and the domain structure) can be derived and a
vocabulary that is capable of describing the cases that have been on the forms can be
modeled.

By asking the project team what the range of possible values for each attribute on
the forms is and inquiring what would have happened if one of the values on a form
were different, a broad range of cases can be created and the vocabulary expanded in
a short time. Discussions among the project team members raise the level of
understanding of both the approach and the problems, and should be encouraged in
this early phase. During initial knowledge acquisition, it is also advisable to have
more cases on an “‘everyday” level rather than having a few extremely specific ones.

Homer Case Acquisition

Problem Nr : 816 Date: 26.04.99
Author: S. Ttani Verified by: J. Fleisch

Problem Description (Failure) | Printer does print pages full of gibberish

Reason (Fault) File is Postscript, Printer does not
understand PS
Solution Send File to Postscript Printer, delete file

from queue

What did you check to find out what the problem was ?

Printer Model HP LJ 6L

File Type Postscript

Other Notes: The reverse of this problem did also
happen, somebody sent a PCL file to a pure
PS printer

Tab. 2. Sample form for initial case acquisition.

While the initial vocabulary is being created and value ranges fixed, questions
regarding adaptation rules and similarities should be posed and the results entered into
the system.



Development and Utilization of a Case-Based Help-Desk Support System 141

One of the major challenges one must face when creating a system to capture and
represent the experience of domain experts, is determining the level of abstraction
with which the domain and the knowledge will be modeled. If the model used is too
simplistic, it will cause problems while the experience is being captured and will miss
important details. If, however, the domain model is too specific, the user will get lost
quickly in useless details, and knowledge acquisition will be very tedious and time
consuming. Maintenance is very difficult for both a too-simplistic and a too-complex
model.

The decision to use a structured domain model approach as opposed to a textual
query-answer-based approach depends on the system’s intended users. For
inexperienced help-desk operators, a tool with which simple problems can be solved
by answering a limited number of questions is of great value [18]. However, for
experienced help-desk operators who would not bother to use a system for
(subjectively) trivial problems, a structured domain model approach yields better
results. The system will be able to
present the not-so-obviously
similar solutions that the help-
desk operators could not find.
Since knowledge contained in the
domain model is wused in
similarity calculation, the
retrieved solutions will be similar in a semantic and structural manner. The domain
model allows the solutions in the case base to be applicable to a broader range of
problems.

The cases in the help-desk domain should be modeled in accordance with the
approach the help-desk operators use in solving problems. We found the approach
shown in Fig. 2 very suitable.

The Problem Description is the first information the help-desk operator gets from
the end-user. This description is what the end-user subjectively perceives as the
problem. It may or may not have to do with the actual cause of the failure.

The Diagnosis Path consists of the questions the help-desk operator must ask or
the information he or she must obtain from various sources to arrive at a diagnosis.
The diagnosis path contains the minimal amount of information that is necessary to
diagnose the problem.

The Solution contains the fault, i.e., what caused the problem, and the remedy, i.e.,
how to solve the problem. Depending on how the system is implemented and what
statistical information is needed for further evaluation, some additional,
administrative data may also be added to the case description.

Each complete path from problem description to solution makes up one case.

Once the cases from the initial forms have been entered into the help-desk system,
the system should be shown to the project group to verify the results it delivers.
Afterwards the initial knowledge acquisition can continue as more cases are entered
from additional forms and the knowledge containers are incrementally updated.

Initial knowledge acquisition takes place in two steps. During the first, preliminary
knowledge acquisition, the cases for the prototype of the case-based help-desk

Diagnosis
Path

Problem Solution

Fig. 2. Basic structure of a help-desk case.



142 M. Goeker and T. Roth-Berghofer

support system are collected. While the collected cases will help to initialize the
knowledge containers and train the project team, the collection of the “core” cases for
the system should be done in a second step, the core knowledge acquisition.
Nevertheless, the approach that is used in both processes is similar.

6. Using the System

6.1. Managerial Processes During System Use

Project progress with respect to the qualitative and quantitative criteria selected as
project goals must be monitored constantly during system development and use [cf.
9]. Regular project reviews should take place. Standard project planning and
controlling techniques can and should be applied to case-based help-desk support
projects.

Measuring the impact of the help-desk system on the efficiency and effectiveness
of the target group (increase in first-call problem resolution, decrease in problem
solution time, and so on) and making the results available to both the project and the
target groups will motivate the help-desk operators to use the system and help
uncover deficiencies.

6.2. Organizational Processes During System Use

Knowledge Utilization and Acquisition Process. The knowledge utilization and
acquisition processes that have been defined during system development have to be
enacted during system use. The use of the case-based help-desk support system
contains the Application Cycle in which the system is used by the help-desk operator
and the Maintenance Cycle in which the system is maintained by the CBR author and
the CBR administrator (Fig. 3, section 6.3).

During the application cycle, the cases that are stored in the case-based help-desk
support system are being used to solve problems. Even if no new cases are being
acquired during this cycle, statistical data regarding the quality and usage of the cases
(last retrieval time, last application date, success rate and so on) can be collected. This
data can be used to determine the quality of the cases and for maintenance purposes.

Whenever a help-desk operator decides that the proposed solution is not
appropriate, a new case has to be entered into the case base. However, since the
quality of these cases varies according to the user entering them, they cannot be
transferred to the case base without being verified by the CBR author. This is done in
the maintenance cycle by the CBR author and the CBR administrator.

Training the Help-Desk Operators. Just as the test-users were trained during the
project team training, the help-desk operators have to be introduced to the basics of
CBR technology and the developed case-based help-desk support system. Since the
operators are going to participate in the continuous acquisition of knowledge,
standards on how to store cases have to be introduced and taught. Feedback-channels
also should be created and introduced during this training.



Development and Utilization of a Case-Based Help-Desk Support System 143

6.3. Technical Processes During System Use

Continuous Knowledge Acquisition and Maintenance. The knowledge contained
in a case-based help-desk support system is an incomplete model of the domain in the
real world. Whenever the real world changes, the model in the system has to be
updated. The necessity for changes in the model may either arise from real changes in
the world or from the learning effect associated with using the case-based help-desk
support system. By learning, the system improves the model’s coverage of the real
world. Since the model is incomplete by definition, with growing knowledge, updates
in the knowledge containers will be necessary.

While nobody would consider purchasing
a database system with the assumption that
it would continue to work without any
maintenance at all, there seems to exist a
misconception  about  knowledge-based
systems in this respect. All concepts used for
maintaining database systems are also
applicable to knowledge-based systems.
However, because of the semantics
associated with the information in
knowledge-based systems, additional
maintenance operations are necessary.
Learning and changes in the real world can
make maintenance necessary for each
knowledge container.

The utilization of a case-based help-desk
support system comprises two linked
process cycles: the Application Cycle and
the Maintenance Cycle (see Fig. 3).

The Application Cycle takes place each
time a user solves a problem with the case-based help-desk support system. During
the application of the CBR system, the standard tasks Retrieve, Reuse, and Revise
must be performed [6]. If the case solution generated during the reuse phase is not
correct and cannot be repaired, a new solution has to be generated by the help-desk
operator. The solution that has been retrieved by the system or created by the help-
desk operator is put to use during the Recycle task. The Application Cycle is
performed by the end-user of the system (help-desk operator).

Whenever a new solution is generated during system use, this case is stored in the
case buffer, made available to all help-desk operators as an "unconfirmed case", and
sent to the Maintenance Cycle. These steps as well as the maintenance cycle itself are
not visible to the standard help-desk operator.

The Maintenance Cycle consists of the Retain and Refine tasks. While the
Application Cycle is executed every time a help-desk operator uses the CBR system,
the Maintenance Cycle can be executed less frequently, i.e., only when there is a need
for maintaining the system or at regular intervals.

Retrieve )\ Application
Cycle

Maintenance
Cycle

Fig. 3. Processed during the use of a
case-based help-desk system



144 M. Goeker and T. Roth-Berghofer

During the Retain task, the CBR author checks the quality of the new cases that
were generated by the helpdesk operators and stored in the case buffer.

The CBR author verifies and approves the representation and content of each case.
In terms of representation, the cases should

e contain the information that is necessary and sufficient to solve the problem,
e be described on an appropriate abstraction level.
The content is verified by checking whether the case is
e correct,
e (still) relevant, and
e applicable.

During the Refine phase, maintenance steps for the knowledge containers are
performed by the CBR administrator. The case base, vocabulary, similarities, and
adaptation knowledge have to be refined, and the potentially quality-decreasing
effects of external changes in the domain, as well as the inclusion of new cases in the
case base, have to be counteracted.

The goal of the Refine task with respect to the case base is to keep the case base
correct, to have maximal coverage of the problem space, and to have no redundant
cases. After each case has been validated in the retain task, their suitability for
inclusion in the case base has to be determined.

Before a new case is taken into the case base, it must be checked to see

e whether it is a viable alternative that does not yet exist in the case base,

e whether it subsumes or can be subsumed by an existing case,

e whether it can be combined with another case to form a new one,

e whether the new case would cause an inconsistency, and

e whether there is a newer case already available in the case base.
The operations that have to be performed during case base maintenance vary
depending on the application domain and the vocabulary that is used to represent the
cases [cf. 12, 13, 14, 15, 16].

Both the inclusion of new cases and changes in the domain may have an effect on
the validity and quality of the compiled knowledge containers (vocabulary, similarity,
adaptation knowledge) as well. The maintenance of these containers is also performed
in the Refine step. Since changes in the vocabulary can cause information in the cases
to be no longer available or missing (e.g., attributes can be added and deleted, classes
can be moved) maintenance of the vocabulary should be performed with utmost
caution [cf. 17].

It should be noted that the refinement of the knowledge containers does not
necessarily have to be triggered by external events but may also be performed through
introspection. By analyzing the content of the knowledge containers, more efficient
ways to structure the domain, adaptation rules, and similarities, as well as new cases,
can be discovered or derived.

While maintenance operations for the case base can be performed by the CBR
author, maintenance of the vocabulary, the similarity, and adaptation knowledge
should only be performed by the CBR administrator.

General IT-System-Related Processes. Once the case-based help-desk support
system has been put into operation, it has to be debugged, monitored, and updated



Development and Utilization of a Case-Based Help-Desk Support System 145

continuously. The necessity for updates does not necessarily have to come from the
help-desk system itself, but may also be initiated by changes in the (IT) environment.
Since these processes are not CBR-specific but apply to IT systems in general, we
refrain from going into their details here.

7. Summary

Current CBR-process models only cover the technological aspects of CBR system
development. While the tasks given in these models suffice to develop systems that
are used by a limited number of users in a static environment, problems that arise
from larger user groups with differing levels of experience as well as dynamic
domains are disregarded. Case-Based Reasoning in real world environments is not
necessarily a low maintenance Al-technology and processes related to knowledge
acquisition and maintenance play a very important role in the success of CBR projects
in corporate environments.

In order to develop case-based help-desk systems that are being used in a dynamic,
corporate environment by a large group of users, managerial, organizational and
technical processes have to be taken into account. It has to be kept in mind, that once
a CBR system is in place, continuous knowledge acquisition and maintenance is
necessary. Processes for knowledge acquisition and maintenance have to be
developed and put in place, and personnel has to be dedicated to perform these tasks.

8. References

1. Bergmann, R., Breen, S., Goker, M., Manago, M., Wess, S. "Developing Industrial Case
Based Reasoning Applications: The INRECA Methodology.", Lecture Notes in Artificial
Intelligence, 1612, Berlin, Springer Verlag, 1999

2. Goker M., Roth-Berghofer Th., Bergmann R., Pantleon T., Traphoner R., Wess S., Wilke
W., "The Development of HOMER: A Case-Based CAD/CAM Help-Desk Support Tool",
Smyth B. & Cunningham P. eds., "Advances in Case-Based Reasoning, Proceedings of the
Fourth European Workshop on Case-Based Reasoning EWCBR98 Dublin, September 23-
25,1998", LNAI 1488, pp. 346-357, Berlin, Springer Verlag, 1998

3. Riesbeck C., Schank R., "Inside Case-based Reasoning"”, Lawrence Erlbaum Associates,
Publishers, Hillsdale 1989

4.  Hammond K., "Case-Based Planning-Viewing Planning as a Memory Task", Academic
Press Inc, HBJ Publishers, San Diego, 1989

5. Kolodner J., "Case-based Reasoning", Morgan Kaufmann Publishers Inc, San Mateo, 1993

6. A. Aamodt, E. Plaza., ”Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches*, AICOM Vol.7 Nr.1, pp.39-59, March 1994

7. Leake D., “CBR in Context: The Present and the Future” in Leake D. (ed.), “Case-Based
Reasoning — Experiences, Lessons and Future Directions”, pp. 3-30, AAAI press / MIT
press, Menlo Park California, Cambridge Massachusetts, London, 1996

8. Kitano H., Shimazu H., “The Experience Sharing Architecture: A Case Study in
Corporate-Wide Case-Based Software Quality Control” in Leake D. (ed.), “Case-Based
Reasoning — Experiences, Lessons and Future Directions”, pp. 235-268, AAAI press /
MIT press, Menlo Park California, Cambridge Massachusetts, London, 1996



146

12.

14.

15.

M. Goeker and T. Roth-Berghofer

Stolpmann M. Wess S. "Optimierung der Kundenbeziehungen mit CBR systemen-
Intelligente Systeme fiir E-Commerce und Support”, Addison Wesley Longmann (Business
& Computing), Bonn, 1999

Richter M., "Introduction”, in Lenz M., Bartsch-Sporl B., Burkhardt H. D., Wess S.
(Eds.), "Case-Based Reasoning Technology, From Foundations to Applications", Lecture
Notes in Artificial Intelligence Vol. 1400, pp.1-15, Springer-Verlag, Berlin, Heidelberg
1998. Also: Richter M., "The Knowledge Contained in Similarity Measures", Invited talk
at ICCBRY5, http://wwwagr.informatik.uni-kl.de/~1sa/CBR/Richtericcbr95remarks.html

. Wilke W., Vollrath I, Bergmann R., “Using Knowledge Containers to Model a

Framework for Learning Adaptation Knowledge”, ECML (European Conference on
Machine Learning) Workshop, Prag, 1997

Leake D., Wilson D., "Categorizing Case-Base Maintenance: Dimensions and
Directions”, Smyth B. & Cunningham P. eds., "Advances in Case-Based Reasoning,
Proceedings of the Fourth European Workshop on Case-Based Reasoning EWCBR98
Dublin, September 23-25,1998", LNAI 1488, pp. 196-207, Berlin, Springer Verlag, 1998
Smyth B., McKenna E., "Modeling the Competence of Case-Bases"”, Smyth B. &
Cunningham P. eds., "Advances in Case-Based Reasoning, Proceedings of the Fourth
European Workshop on Case-Based Reasoning EWCBR98 Dublin, September 23-
25,1998", LNAI 1488, pp. 208-220, Berlin, Springer Verlag, 1998

Surma J., Tyburcy J., "A Study on Competence-Preserving Case Replacing Strategies in
Case-Based Reasoning"”, Smyth B. & Cunningham P. eds., "Advances in Case-Based
Reasoning, Proceedings of the Fourth European Workshop on Case-Based Reasoning
EWCBRY98 Dublin, September 23-25,1998", LNAI 1488, pp. 233-238, Berlin, Springer
Verlag, 1998

Racine K., Yang Q., "Maintaining Unstructured Case-Bases", Leake B. & Plaza E. eds.,
"Case-Based Reasoning Research and Development”, Proceedings of the second
International Conference on Case-Based Reasoning ICCBR-97 Rhode Island, July 1997,
LNAI 1266, pp. 553-564, Berlin, Springer Verlag, 1997

Hiittemeister A., "Wartung einer Fallbasis", Diploma Thesis, University of Kaiserslautern,
Department of Computer Science, February 1999

Heister F., Wilke W., "An Architecture for Maintaining Case-Based Reasoning Systems",
Smyth B. & Cunningham P. eds., "Advances in Case-Based Reasoning, Proceedings of the
Fourth European Workshop on Case-Based Reasoning EWCBR98 Dublin, September 23-
25,1998", LNAI 1488, pp. 221-232, Berlin, Springer Verlag, 1998

Thomas, H., Foil R., Dacus, J. : "New Technology Bliss and Pain in a Large Customer
Service Center", in: Case-Based Reasoning Research and Development, Proceedings of
the ICCBR97, Leake, Plaza (eds.), , pp. 166-177, LNAI1266, Springer Verlag, Berlin,
1997

! Funding for this work has partly been provided by the Commission of the European Union
(INRECA-II: Information and Knowledge Reengineering for Reasoning from Cases; Esprit
Contract no. 22196). The partners of INRECA-II are: Acknosoft (prime contractor, France),
DaimlerChrysler (Germany), tecinno (Germany), Irish Multimedia Systems (Ireland), and the
University of Kaiserslautern (Germany). http://www.inreca.org

Acknowledgements

The authors would like to thank Prof. M. Richter for triggering the ideas that led to this
publication during the EWCBR 98 in Dublin.

We would also like to thank the reviewers of this paper for their encouraging and very helpful
comments.



Modelling the CBR Life Cycle
Using Description Logics *

Mercedes Gémez-Albarrdn, Pedro A. Gonzalez-Calero,
Belén Diaz-Agudo and Carlos Fernandez-Conde

Dep. Sistemas Informéticos y Programacién
Universidad Complutense de Madrid
28040 Madrid, Spain
email:{albarran, pedro, belend, carlosf}@sip.ucm.es

Abstract. In this paper Description Logics are presented as a suitable
formalism to model the CBR life cycle. We propose a general model
to structure the knowledge needed in a CBR system, where adaptation
knowledge is explicitly represented. Next, the CBR processes are de-
scribed based on this model and the CBR system OoFRA is presented
as an example of our approach.

1 Introduction

In the last few years, Description Logics (DLs) have caught a great interest
within the CBR community [9, 14, 18]. Their declarative semantics helps in the
domain comprehension, the understanding of the case indexes and the formal
definition of different powerful inference mechanisms. Their ability to automat-
ically classify concepts and recognise instances is a useful property for the case
base management. Their ability to build structured case descriptions provide a
flexible and expressive way to represent the cases and their solutions.

In this paper, we propose a domain-independent model for developing CBR
systems that takes advantage of DLs, and whose main contributions are:

— the definition of a scheme that structures all the knowledge needed in the
CBR processes,

— the structured representation presented for the cases, and

— the use of the DLs inference mechanisms, supplemented with special purpose
algorithms, for the retrieval, adaptation and learning CBR tasks. We propose
a domain-independent similarity measure for the retrieval of cases that can
be complemented with domain-specific similarity knowledge. Our general
adaptation scheme is based on substitutions and the search of substitutes is
guided by a set of memory instructions. The learning process extends not
only to the cases but also to the adaptation knowledge.

* This work is supported by the Spanish Committee of Science & Technology (CICYT
TIC98-0733)

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 147-161, 1999
© Springer-Verlag Berlin Heidelberg 1999



148 M. Gomez-Albarran et al.

The paper is organized as follows. Section 2 describes the basics of DLs. The
general scheme for the representation, retrieval, and adaptation and learning
processes is defined is Sections 3, 4, and 5, respectively. In Section 6, our approach
is applied to OoFRA, a case-based planning system. Limitations of the proposed
approach appear in Section 7. Section 8 contains related work and conclusions.

2 Basic Concepts on DLs

The idea of developing knowledge representation systems based on a struc-

tured representation of knowledge was first pursued with Semantic Networks

and Frame Systems. One problem of these solutions is the need of a formal

ground to define the semantics of the knowledge representation. In this way,

DLs born trying to provide knowledge representation with this formal ground.
In DLs, there are three types of formal objects [5]:

— Concepts: Descriptions with a potentially complex structure, formed by com-
posing a limited set of description-forming operators.

— Roles: Simple formal terms for properties.

— Individuals: Simple formal constructs intended to directly represent objects
in the domain of interest as concept instances.

Concepts can be either primitive or defined. Defined concepts are represented
in terms of necessary and sufficient conditions that individuals have to satisfy
in order to be recognized as instances of those concepts. Primitive concepts
are just represented as necessary conditions, so it is impossible to infer that
individuals are instances of primitive concepts. But if it is explicitly asserted
that an individual is an instance of a primitive concept, the system will apply all
the concept restrictions to the individual. Roles also can be primitive or defined.
Primitive roles introduce new necessary conditions in the role, and defined roles
introduce both necessary and sufficient conditions.

Concepts, roles and individuals are placed into a taxonomy where more gen-
eral concepts/roles will be above more specific concepts/roles. Likewise, individ-
uals are placed below the concept(s) that they are instances of. Concepts and
individuals inherit properties from more general descriptions as well as com-
bine properties as appropriate. Thus, DL-Systems has two main components:
A general schema concerning the classes of individuals to be represented built
from primitive concepts and role restrictions, usually referred as T'Boz, and a
partial or total instantiation of this schema, containing assertions relating either
individuals to concepts or individuals to each other, usually referred as ABoz.

A key feature of DLs is that the system can reason about concept descrip-
tions, and automatically infer subsumption relations. We say that a concept C'
subsumes the concept D (C = D) if all the individuals that satisfy the de-
scription of D, also satisfy the description of C. There are several variations of
deductive inferences, depending on the particular DL. Some of the most typical
are Completion and Classification [3]. In Completion, logical consequences of as-
sertions about individuals are inferred, and in Classification, each new concept
is placed under the most specific concepts that subsume it.



Modelling the CBR Life Cycle Using Description Logics 149

The core of DL-Systems is its concept language L, which can be viewed as a
set of constructs [2, 5] for denoting concepts and relationships among concepts.
An assertion language is also defined which lets express individual features.

3 CBR Knowledge Representation Using DLs

We propose a model where the knowledge needed for the CBR processes is struc-
tured in three interrelated but conceptually different portions of a knowledge
base KB represented using DLs (a related categorization of the CBR knowledge
in containers was described by Richter [17]): KB = (B, DK, PSK), where

— B contains the general knowledge used to structure and represent the cases.

— DK contains the domain knowledge used for case representation, query for-
mulation and case adaptation.

— PSK contains the CBR, process support knowledge, i.e. the knowledge, apart
from the one in DI, that is used in case retrieval and adaptation.

B is domain independent but the knowledge included in DX and PSK de-
pends on the specific application domain where this representation model is
applied. We will describe the PSK contents in Sections 4 and 5. The DK por-
tion models the specific domain being considered: the basic domain entities are
formalized as DLs individuals described by the concepts of which they are in-
stances, and the relations they have with other individuals. In this section, we
mainly deal with the B portion, where case structure is detailed.

The B portion It contains a distinguished concept CaSE to represent the gen-
eral case structure. The stored cases are represented as individuals that are
automatically classified as instances of Case. Moreover, each case is linked by
DLs relations —desc and sol- to its descriptive components, the description of a
problem —or situation— and a solution to this problem, respectively.

The description of a Cask instance ¢; is a DK individual d; that represents
the characteristics of the problem —or situation— described by case ¢;. Instance
d; is also used as the case index in the organization and retrieval tasks.

The solution of a CASE instance c¢; is a B individual s; that represents the
solution of the problem d; described by case ¢;. The solution s; is connected
—through the r-has-item relation— with a set (possibly ordered) of instances each
representing a solution component or item. Each one of these items is in its turn
described by its relations with other individuals. The relation contents links
each solution item with a DK individual that formalizes this part of the so-
lution. Optionally, the item-number relation is used to identify an item when
the representation of some kind of order among the items is required. The de-
pendency relations —depends-on-description and depends-on-item— are used to
include adaptation knowledge in a solution item item;, relating it with the de-
scription component(s) and/or the solution item(s) that have an influence on it,
i.e. with the components where a change will cause item; adaptation. The use
of this adaptation knowledge will be broadly explained in Section 5.



150 M. Gomez-Albarran et al.
4 Retrieval

Retrieval is implemented as a two step process: first, a number of individuals are
retrieved and, second, they are ranked by applying a similarity function.

There are two different methods to implement retrieval using the reasoning
mechanisms available in DLs:

— Retrieval based on concept classification, where a concept description ¢,
is built using the restrictions specified in the query. This concept is then
classified, and finally all its instances are retrieved.

— Retrieval based on instance recognition, where an individual is built and a
number of assertions are made about it based on the features specified in the
query. Instance recognition is applied to retrieve the most specific concepts
of which this individual is an instance, and then all the instances of these
concepts are retrieved.

There are two main differences between these two methods:

— The type of restrictions that can be included, since concept description lan-
guage and assertion language are different. Concept description language is
richer because restrictions about role type and cardinality can be included.

— Instance completion. There are a number of inferences that are only applied
to individuals. DLs systems do not enrich concept descriptions with inferred
constraints, but just take the concept definition as it is, and classify it ac-
cordingly. On the other hand, when an individual is recognized as instance of
a given concept, based on the sufficient conditions for belonging to that con-
cept, then necessary conditions on the concept definition are automatically
asserted on the individual.

So, both approaches have its pros and cons, namely expressiveness vs. comple-
tion. We have decided to implement retrieval as an instance recognition process
mainly for one reason: instance completion accomplishes a kind of query com-
pletion where additional constraints can be automatically inferred from those
explicitly asserted by the user. In this way, we have a straightforward method
to let the domain knowledge assist in the crucial process of query formulation.

Although it is not likely to happen, the most specific concepts of which the
individual representing the query is recognized as an instance may have no more
instances. In that situation the most specific concepts subsuming those concepts
would be selected, and their instances retrieved. This process should be repeated
until a non empty set of instances is retrieved.

Once the system has retrieved a number of instances representing the candi-
date case descriptions, these are ranked by their similarity with respect to the in-
dividual representing the query. For this purpose we apply a domain-independent
similarity function along with a number of domain-specific heuristics, as de-
scribed in the following subsection.

This model also allows for the definition of a minimum similarity threshold
such that new individuals are retrieved until one is found whose similarity with



Modelling the CBR Life Cycle Using Description Logics 151

the query is above the given threshold. The number of retrieved individuals is
increased by accessing to the instances of more and more abstract concepts.
This way, we cope with the fact that it is not guaranteed that the most similar
individuals can be found among those that are instances of the most specific
concepts of which the query is an instance.

4.1 Similarity Measure

Similarity is computed for a given pair of individuals, where an individual can
represent a case description or, in general, the value of a given feature. As de-
scribed in Section 3 an individual is defined in terms of the concepts of which
that individual is an instance and the slots asserted for it, which are represented
as relations connecting the individual to other individuals or primitive values.
Therefore, a similarity measure should take into account both types of features.

Concept-based similarity To define a similarity measure on concepts we use
an idea taken from the vector space model used in Information Retrieval [19].
In this model, every indexable item is represented by an attribute vector,
and the similarity between two items is obtained by some kind of algebraic
manipulation of the vectors associated with them. We consider as attributes
the concepts defined in the knowledge base, C' = {c,...,cn}, and say that
individual ¢ has attribute c; if ¢ is an instance of ¢;. This way, an attribute
vector is associated with every individual, and the conceptual similarity be-
tween two individuals is computed as the cosine of the angle formed by the
vectors which represent them, a similarity function usually applied in the
vector space model.

Slot-based similarity A slot is defined by a relation (role) and a set of in-
dividuals (fillers). We consider comparable only those slots with the same
relation, and obtain the similarity between two slots as the similarity be-
tween their sets of fillers. When comparing sets of individuals we recursively
apply the function of similarity between individuals, accumulating for every
individual of one set the maximum of the results obtained by comparing
that individual with every individual of the other set. This recursion ends
when comparing individuals without slots, which similarity is given by the
concept-based similarity term.

The similarity between two individuals is computed as the sum of their
concept-based similarity and the similarity among their slots. A more detailed
description of the similarity function can be found in [6].

This domain-independent function can accurately take into account the struc-
ture of the knowledge base. Nevertheless, our framework also allows for the in-
tegration of domain-specific similarity knowledge in one of the following ways:

Concept-specific similarity knowledge This kind of restriction lets specify
that instances of a given concept should be compared by a subset of their
slots. This way, descriptive slots can be distinguished from those others that
provide additional information, but should not be considered when deter-
mining the similarity between two individuals.



152 M. Gomez-Albarran et al.

Relation-specific similarity knowledge This kind of restriction lets specify
that an alternative function should be applied when computing the similarity
between the fillers of a given role (i.e., the values of a given attribute). For
example, this mechanism could be used to specify the similarity between
values of primitive types by specifying the function to be applied on those
relations that are to be filled by primitive values.

According to the knowledge base division presented in Section 3, domain-
specific similarity knowledge is explicitly represented in PSK. A high level mech-
anism is in charge of combining the different similarity measures, trying first
to obtain domain-specific measures and if none apply, computing the domain-
independent function.

5 Adaptation

Built upon the model for structuring the knowledge needed in CBR tasks de-
scribed in Section 3, we propose a substitution-based adaptation mechanism.
Adaptation is guided by the explicit representation of dependency relations —
depends-on-description, depends-on-item, generalized as dependsOn— stored in
case solutions, as a process that propagates changes from description to solution
items, as follows:

1. The list L of items in the solution that need to be adapted are obtained.
These items are those that depend on a feature of the case description which
has been substituted by a new value in the query, or those others that depend
on a solution item that needs to be adapted.

2. Every item in L is substituted by a proper new item. First, those that only
depend on values from the case description, then, those that depend on other
items of the solution that have already been adapted. Of course, circularity
is not allowed in the dependency relation.

The search for substitutes is accomplished as a kind of specialized search
which takes advantage of the knowledge base organization. This process can
take one of two forms: a general purpose search algorithm, or the replay of
previously learnt search knowledge represented as search heuristics.

5.1 Specialized Search

Specialized search, as described in [11], is a way of finding appropriate substi-
tutes for a case solution element, where instructions are given about how to find
the needed item. In our model, memory instructions correspond to a relation
path that connects one case item with another case element. We assume that,
whenever an item of the case is said to depend on a case element, a path of
relations exists connecting both individuals. Formally:

dependsOn(i1,ia) — gey 31, ...,y : ((compose 1 ...1ry) i2 i1)



Modelling the CBR Life Cycle Using Description Logics 153

The path of relations leads to the place of the knowledge base where sub-
stitutes have to be found. For example, if dependsOn(iy,i2) stands and i» has
already been substituted for another value 45, then a substitute i} for i; has to
be found, such that: first, there is a connection between i, and i} similar to that
between i» and i;; and second, i} is similar to ;.

In other words, we are searching for a substitute in the surroundings of i
that is connected to i5. In order to implement this process we need to find the
shortest path between iy and i; and, then, use that path and i; to find the
appropriate ;. The first problem is reduced to that of searching for the shortest
path in the directed acyclic graph defined by the individuals in the knowledge
base. The second process is the goal of the search operator which is described in
the next subsection.

5.2 Search Operator

The search operator takes as arguments: the individual o which has substituted
an element that previously appeared in the case; an ordered list of relations —
relation path—[r1, . .., ] that connects the DK individual that o has substituted
with the DK individual 7 that has to be substituted due to its dependency on the
already substituted individual; and the individual 7. The operator searches for
those individuals connected to o through [ry,..., 7] which are instances of the
most specific concept of which ¢ is an instance. If none is found, or a minimum
similarity threshold has been specified such that none of the retrieved individuals
is above that threshold, then search restrictions are generalized. Two kinds of
generalizations are applied:

1. Rising the abstraction level of the concepts whose instances are being con-
sidered.

2. Rising the abstraction level of the relations that connect o to the instances
being considered.

This way, we take advantage of the two terminological abstraction hierarchies
that can be defined in DLs, namely, the concept hierarchy and the relation
hierarchy. Generalizations are applied on both, concepts and relations, level by
level, until proper substitutes are found.

As an example, let’s consider the situation depicted in Figure 1. Here, the
search operator would find substitutes in two steps:

1. First, it searches for individuals connected to o through [ry,...,r] which
are instances of C7. And none is found.

2. Second, the concept and the relation path are generalized. Supposing that
only r;_1 among [r,...,r] can be generalized, individuals connected to o
through [r1, ..., r{ |, rx] which are instances of C' are retrieved: a, b and
c. These individuals will be ranked by the similarity function, and the most
similar will be returned.



154 M. Gomez-Albarran et al.

Fig. 1. Search (o, [r1,...,7%], ¢ )

5.3 Search Knowledge Learning

The search as described in the two previous sections is implemented as an algo-
rithm that finds a relation path and retrieves individuals that satisfy the given
restrictions, generalizing them if needed. The cost of this process depends on the
size of the knowledge base and it may become quite expensive when applied to
knowledge bases of realistic size. To alleviate this problem, the system includes
a learning component that records every successful search as a search heuristic.

Search heuristics are represented as individuals in the PSK portion of the
knowledge base including the following slots:

origin < concept >
destination < concept >
path < relation — list >

concept-level < integer >

relation-level < integer >

weight < integer >
which indicates that instances of origin and destination are connected through
the relations in path, and that the recorded search was successful when the rela-
tion path was generalized to relation — level and the individuals were instances
of destination rised to concept — level. Since more than one heuristic may exists
connecting the same pair of concepts, the weight slot is included in order to
record the number of times that an heuristic has been successfully applied.

When searching for substitutes, search heuristics are first considered if appli-

cable. An heuristic is applicable when the dependency being processed, depends-
On(i1, i2), involves an instance of destination and origin, respectively. Of course,
applicable heuristics are tried in weight order. And, only when none of the ap-
plicable heuristics retrieves substitutes, the general algorithm is applied.

6 OoFRA: a CBR System for Framework Reuse

Object-oriented frameworks are collections of interdependent classes that define
reusable and extensible architectural designs for specific domains. When devel-



Modelling the CBR Life Cycle Using Description Logics 155

oping software based on framework reuse, the generic architecture defined by the
framework must be customized and/or extended. Extensible systems tend to be
very sophisticated and complex, so that users do not often know the concepts,
commitments and decisions involved in the solutions provided. In the case of
frameworks, this results in implementations which do not map the domain or-
ganization. A domain entity does not correspond to a specific framework class,
but to a group of classes that collaborate. The actions a domain entity can make
correspond to methods that are not defined in a specific class, but they are
dispersed among the group of classes corresponding to the entity.

Due to their potentially large size and complexity, the ability to quickly un-
derstand and extend frameworks is a critical issue. One way to simplify frame-
work reuse is to profit from prototypical examples about usual mechanisms
for extending and customizing them. So, we have developed OoFRA (Object-
oriented Framework Reuse Assistant), a CBR system whose case base is popu-
lated with these prototypical usage examples, and deals with the retrieval and
adaptation tasks. Our system uses LOOM, a knowledge representation system de-
scendant of the KL-ONE system [13]. We have applied the approach described
in the previous sections to support the reuse of the framework, included in the
VisualWorks environment, for developing applications with Graphical User In-
terface (GUI). A previous prototype of this system can be found in [7].

6.1 The Knowledge Base of the System

Following the representation model described in Section 3, OoFRA knowledge
base consists of three portions KB = (B, DK, PSK). Next, we describe them.

The DK portion It contains general purpose GUI concepts and concepts spe-
cific to the framework, together with the instances of these concepts representing
the GUI entities, and the framework classes, methods and collaborations.

The general purpose GUI concepts are the types of the GUI entities and of
the operations that can be made on/by these entities. Some concepts specific
to the framework are: those corresponding to the object-oriented concepts class
and method; and the concept contract that represents the collaborations among
classes relating the target of the collaboration to the classes that collaborate.

The instances of the general purpose GUI concepts represent the GUI enti-
ties and actions. They define the domain terminology which acts as a description
language that will be used in the case indexing and in the user query formula-
tion. The individuals representing the classes, methods and collaborations of the
framework are used in the solution description and in the adaptation process.

The B portion Let’s see the case structure and the information stored in each
case component by means of an example: the case that shows how to obtain
the selected text in an input field, whose representation is depicted in Figure 2
(shady boxes correspond to DK individuals).



156 M. Gomez-Albarran et al.

7
0
S
i-input- 7
field 5

Fig. 2. Example case: Obtain selected text in an input field

The case description is i-access-partial-data, a DK individual representing
the framework extension/customization problem that the case is intended to
help solve: the GUI action “access part of the text shown in an input field”.

The solutions in OoFRA cases consist of an ordered sequence of steps. So,
the cases can be seen as plans. In the sample case the solution consists of two
steps. The first step records the controller class accessed in this part of the
solution, represented by the DK individual i-InputFieldControllerClass, and the
class dependency on an element of the description, represented by i-input-field,
the DK individual corresponding to the widget that appears in the problem
description. The second step shows the method of the previous step class used
in this part of the solution, represented by the DK individual i-PE-selection-
method, and the method dependency on the class from the first step.

The PSK portion It comprises a set of search heuristics and the comparison
criteria showing the descriptive slots for the DI individuals. An example of
search heuristic is “to find the controller class that collaborates for a widget,
first, look for the contract target related to the widget, second, look for the
contract corresponding to this contract target and, third, look for the class that
acts as the controller component”. An example of comparison criterion is the
one that establishes the aspect considered when comparing two methods: two
methods are similar if their operation specifications are similar.

6.2 Case Retrieval in OoFra

Let’s illustrate the case retrieval with a simple situation. Let’s suppose the user
tries to find a usage case that explains how to obtain the selected element in



Modelling the CBR Life Cycle Using Description Logics 157

a list-box. The user builds the description of her action selecting a verb that
corresponds to a domain action, for instance access, and the appropriate values
for some/all the verb modifiers, for instance, list-boz for the widget, data for the
accessed widget part and single selection for the number of selections.

From this information, and applying the retrieval mechanism described in
Section 4, the closest case found by the system is the one that shows how to
obtain the selected text in an input field. However, this case needs to be adapted
in order to be useful: the class and the method used are related to an input field,
not to a list-box.

6.3 Adapting a Case in OoFRA

First, let’s see why does our system adapt the case retrieved in the previous
section. Both solution steps need to be adapted. In the first step, the class
accessed depends on the GUI widget appearing in the problem description solved,
and the widget in the user problem description is different from the widget in
the retrieved case problem. So, it should be substituted by another class. The
method used in the second step depends on the class accessed in the first one.
Therefore, a change in the class involves a change in the method.

Now, let’s see how does our system adapt the case. When applying the search
operator to the first step, the origin is the individual of the DK base represent-
ing the widget list-box, the heuristic selected is the one that helps to find the
controller of a widget and the comparison criterion is the one that can be ap-
plied to classes. The search operator returns i-SequenceControllerClass, the DIC
individual representing the class that acts as the controller of a list-box, as the
substitute for the original class. When applying the search operator to the sec-
ond step, the origin is the class returned by the adaptation of the first step, the
heuristic is the one that helps to find the methods of a class and the comparison
criterion is the one that can be applied to methods. The system tries unsuccess-
fully to find methods of this class similar to the one is going to be substituted.
So, the system relaxes the adaptation process generalizing the relation paths and
the level used to look for similar individuals.

Let’s see, for instance, what happens when generalizing the relation path in
the adaptation of the first step (Figure 3). The relation path resulting from the
heuristic chosen in the first adaptation attempt starts in the DI individual rep-
resenting a list-box, and, through the relations inverse-contract-target, inverse-
contract and controller-comp, ends in the DK individual i-SequenceController-
Class that represents the list-box controller. On generalizing the relation path,
only the last relation can be substituted by the more abstract relation contract-
comp. The generalized path leads, then, to the four classes that collaborate when
the widget is a list-box.

On generalizing the level used when searching similar individuals, these four
classes, together with the class i-Active WindowClass, can be considered as pos-
sible substitutes for the class i-InputBoxControllerClass. However, before com-
puting the similarity, the class i-Active WindowClass is excluded because it is
not connected with the origin given to the search operator.



158 M. Gomez-Albarran et al.

level 1 - -

level O = *

i-Sequence
ControllerClass
i-Sequence
ViewClass
i-SelectionIn
ListClass

contract-comp
wrapper-comp

i-list-contract-
target

inverse-contract

inverse-
contract-target

c-widget-class -( c-window-class

[>| i-list-contract

i-InputBox
ControllerClass

i-Active
WindowClass

contract-comp
dfifa-model-comp

i-Spec
WrapperClass

Fig. 3. Use of generalized relation paths in the OoFRA adaptation process

The similarity function is applied to the rest of the classes. According to
the comparison criterion for classes, the four classes can act as substitutes. The
application of the relaxed adaptation process to the second step is similar to this
of the first one. The result of the case adaptation consists of four pairs (class,
method), each one corresponding to one of the classes, that are shown ordered
by similarity value to the user as appropriate substitutes for the class and the
method in the retrieved case.

7 Limitations of the proposed approach

In order to point out the main limitations of the approach here described, we
separately consider the two main proposals it comprises: to use DLs as the
formalism to represent the knowledge needed by a CBR system; and to take
advantage of the DLs reasoning mechanisms to implement the CBR processes.
As a representation mechanism, DLs surpasses the average in expressiveness,
with the plus of a formal grounded semantics. On the other hand, efficiency is the
minus, since DLs can not compete with standard data base technology in terms
of retrieval speed. With regard to the implementation of the CBR processes, as
we have shown through this paper, special purpose algorithms must supplement
DLs reasoning mechanisms. Nevertheless, this combination suffers from some
limitations:

— The concept hierarchy should be balanced in depth. The similarity function
takes into account not only shared features but also the total number of fea-
tures an individual has. So, those individuals which are deep in the hierarchy
—i.e., have more features— will never be chosen if individuals, with a similar
—or even smaller— number of shared features with the query, exist higher in



Modelling the CBR Life Cycle Using Description Logics 159

the hierarchy. This situation should be avoided when it is the result of an
unbalanced knowledge representation, where a portion of the domain has
been described in more detail —with more levels of abstraction— than others,
and individuals from different parts of the KB are to be compared.

— The adaptation process has the general limitation of substitution based

methods, which can not change the structure of the solution being adapted.
More specific is the need for an explicit representation of dependencies be-
tween description and solution items, restricting the possible adaptations,
which, in a sense, has to be foreseen, since only recorded dependencies are
explored in case adaptation.
Finally, a limitation is imposed by the basic assumption of the adaptation
process: a dependency can only be stated if a relation path exists between
the dependent individuals. This restriction may be taken into account when
developing the KB, or more probably, may lead to changes in the KB as the
case base gets populated.

The application of the proposed model to the OoFRA system has offered a
satisfactory runtime performance although, there has not been an exhaustive,
formal and precise study about its scaling-up. As future work we are studying the
efficiency issues based on the empirical studies (e.g. [8]) that evaluate how cer-
tain DLs implementations behave with respect to typical and random knowledge
bases, instead of the analytical studies to determine the worst case performance.
The more expressive a DLs is, the higher the computational cost of the reasoning
tasks than can be performed in it. That makes necessary to consider the par-
ticular CBR application expressiveness and performance requirements to choose
an adequate DLs.

The real knowledge bases used in [8] range from 138 to 435 concepts and
from 10 to 52 roles. Moreover, the randomly generated knowledge bases range
from 0 to 150 concepts (small), to 2000 concepts (large) and to 5000 concepts
(very large). These previous performance results and our feedback from OoFRA
make us feel optimistic with respect to the behaviour results of our model.

8 Related Work and Conclusions

During the last few years, many researches have suggested the use of DLs to
organize, represent and retrieve cases in CBR systems like MRL [9, 10], cAaTO [1],
RESYN/CBR [14,15], ORA [6] and a diagnosis system for the French telephone
network [4, 18]. The common ground is to take advantage of the DLs reasoning
mechanisms for some tasks in the CBR life cycle.

The approach presented in this paper proposes the use of DLs as a suitable
formalism to represent all the knowledge used by the CBR processes and to
model the tasks involved in the CBR life cycle. A particularity of our approach
is the formalization of a domain independent scheme to represent cases where
solutions include explicitly represented adaptation knowledge.

As in [1,4,18], we use DLs instances to represent the cases, but instead of
considering a simplified representation approach, we take advantage of DLs as



160 M. Gomez-Albarran et al.

a formalism to represent complex and structured cases —and indexes— in the
line of [16]. In [16] cases are represented as structured concepts composed of
features classified in a subsumption hierarchy. We represent cases with two main
components —its description and its solution— that are automatically organised by
the subsumption relation. The use of the subsumption relation to automatically
organise cases or indexes is also shared by [1,4,9,15,18].

We have defined a retrieval process where a DLs instance is created with the
user requirements, and is automatically completed by the DLs instance comple-
tion mechanism. A domain independent numerical similarity measure for cases
has been described, where case structure and knowledge base organization is ac-
curately taken into account. Also, we have shown how the domain-independent
similarity measure can be integrated with domain-specific similarity knowledge.
Previous works also select the best cases by using a numerical approach [9, 21]
or a declarative approach [16, 14].

A main contribution in using classification for case adaptation is done in [14,
15]. Although the authors consider a frame-based case representation, the ideas
are also applicable to DLs. In [14] the adaptation process takes advantage of the
hierarchy to generalise certain case’s components —using the least common sub-
summer operation— according to the query case. In [15], the concept hierarchy is
used to qualitatively measure case distances. The similarity path that separates
on the hierarchy the query case description from other case’s descriptions, is
used as a sequence of generalization and specialization steps to be applied to the
case solutions. Case adaptation proposed in [14,15] allows only the generaliza-
tion and/or specialization of case components. We present a general adaptation
scheme based on substitutions that uses DLs to represent the case we want to
adapt, to identify the item that should be substituted in the solution, and to
guide the search towards the most suitable replacement.

When using DLs instances/concepts to represent cases/indexes, there is a
simple way to learn new cases or indexes: adding additional instances or con-
cepts to the hierarchy, that are automatically positioned at the correct place by
the DLs reasoning mechanisms. Apart from this simple approximation to case
learning, we have included adaptation knowledge learning that also takes advan-
tage of the DLs reasoning mechanisms: search knowledge is learnt by memorizing
and weighting the search heuristic succesfully used to find a substitute for a non
apropriate solution component. In [12] a related approach —not using DLs— for
acquiring adaptation knowledge is presented.

With regard to the application of CBR to software reuse, in [21] a CBR
approach to code reuse is presented. In [20] CBR is presented as a candidate
technology for the reuse of software knowledge due to the big number of com-
monalities existing between the CBR cycle and the reuse tasks.

As a final conclusion, we have shown the practical applicability of the pro-
posed model in the implementation of the CBR processes, by developing OoFRA,
an effective assistant in object-oriented framework reuse.



Modelling the CBR Life Cycle Using Description Logics 161

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ashley, K. & Aleven, V., 1993: “A logical representation for relevance criteria”, in
Topics in CBR (Wess S., Althoff K. & Richter M., eds.), Springer-Verlag.
Borgida, A., 1996: “On the Relative Expressiveness of Description Logics and Pred-
icate Logics”, Artificial Intelligence Journal, vol. 82, no. 1-2, pp. 353-367.
Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L. & Borgida,
A, 1991: “Living with CLASSIC: When and How to Use a KL-ONE-Like lan-
guage”, in Principles of Semantic Networks, Morgan Kaufmann.

Coupey, P., Fouquere, C. & Salotti, S., 1998: “Formalizing Partial Matching and
Similarity in CBR with a Description Logic”, Applied Artificial Intelligence, vol.
12, no. 1, pp. 71-112.

Donini, F.M., Lenzerini, M., Nardi, D., & Schaerf, A., 1996: “Reasoning in De-
scription Logics”, in Foundation of Knowledge Representation, CSLI-Publications.
Ferndndez-Chamizo, C., Gonzdlez-Calero, P., Gémez-Albarrdn, M. & Herndndez-
Yanez, L., 1996: “Supporting Object Reuse through Case-Based Reasoning”,
Procs. EWCBR ’96.

Goémez-Albarrdn, M., Gonzalez-Calero, P. & Fernidndez-Chamizo, C., 1998:
“Framework Understanding through Explicit Knowledge Representation”, Procs.
IBERAMIA ’98.

Heinsohn, J., Kudenko, D., Nebel, B., and Profitlich, H., 1994: “An empirical
analysis of terminological representation systems”. Artificial Intelligence, vol. 68,
pp. 367-398

Koehler, J., 1994: “An Application of Terminological Logics to Case-based Rea-
soning”, Procs. KR ’94.

Koehler, J., 1996: “Planning from Second Principles”, Artificial Intelligence, vol.
87, pp. 145-186.

Kolodner, J., 1993: Case-Based Reasoning, Morgan Kaufmann.

Leake, D. B., Kinley, A., & Wilson, D., 1996: “Acquiring Case Adaptation Knowl-
edge: A Hybrid Approach”, Procs. AAAI ’96.

Mac Gregor, R., 1991: “The evolving technology of classification-based knowledge
representation systems”, in Principles of Semantic Networks: Ezplorations in the
Representation of Knowledge (J. Sowa, ed.), Morgan Kaufmann.

Napoli, A., Lieber, J., & Courien, R., 1996: “Classification-Based Problem Solving
in Case-Based Reasoning”, Procs. EWCBR ’96.

Napoli, A., Lieber, J. & Simon, A., 1997: “A Classification-Based Approach to
Case-Based Reasoning”, Procs. DL ’97.

Plaza, E., 1995: “Cases as Terms: A feature term approach to the structured rep-
resentation of cases”, Procs. ICCBR ’95.

Richter, M., 1995: “The knowledge contained in Similarity Measures”. In-
vited talk given at ICCBR’95. October, 25. http://wwwagr.informatik.uni-
kl.de/ Isa/CBR/Richtericchbr95remarks.html

Salotti, S. & Ventos, V., 1998: “Study and Formalization of a Case-Based Reasoning
System using a Description Logic”, in Procs. EWCBR ’98.

Salton, G. & McGill, M. J., 1983: Introduction to Modern Information Retrieval,
McGraw-Hill.

Tautz, C., & Althoff, K., 1997: “Using Case-Based Reasoning for Reusing Software
Knowledge”, Procs. ICCBR ’97.

Yen, J., Teh, H.,& Liu X., 1994: “Using Description Logics for Software Reuse and
Case-Based Reasoning”, Procs. DL ’9j.



An Evolutionary Approach to Case Adaptation

Andrés Gémez de Silva Garza and Mary Lou Maher

Key Centre of Design Computing
Department of Architectural and Design Science
University of Sydney NSW 2006
Australia

FAX: (+61-2) 9351-3031
Phone: (+61-2) 9351-2053
E-mail: {andres,mary} @arch.usyd.edu.au

Abstract. We present a case adaptation method that employs ideas from the field of
genetic algorithms. Two types of adaptations, case combination and case mutation, are
used to evolve variations on the contents of retrieved cases until a satisfactory solution is
found for a new specified problem. A solution is satisfactory if it matches the specified
requirements and does not violate any constraints imposed by the domain of
applicability. We have implemented our ideas in a computational system called
GENCAD, applied to the layout design of residences such that they conform to the
principles of feng shui, the Chinese art of placement. This implementation allows us to
evaluate the use of GA’s for case adaptation in CBR. Experimental results show the role
of representation and constraints.

1 Introduction

Many different methods have been proposed for performing the task of case adaptation in
CBR. They have been surveyed in several publications, including [1], [2], and [3]. Different
approaches may be better for different domains, different knowledge representation schemes,
different reasoning tasks, or other reasons. Approaches may differ on the types of adaptation
they support, the amount of change in a case they permit an adaptation to make, the number of
cases they can rely on to generate solutions to new problems, and other factors. The
adaptation method we present here is flexible, in that it allows for a wide variety of options
along all of these dimensions. In our approach, several types of adaptation are available, cases
may end up being completely transformed or just slightly tweaked, and final solutions may
contain features from one or many cases.

In this paper we present a case adaptation method based on genetic algorithms. In this
method, cases are adapted incrementally and in parallel, until a satisfactory solution is found
for a given problem. We have employed this approach for design, though it can be used for

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 162-173, 1999
© Springer-Verlag Berlin Heidelberg 1999



An Evolutionary Approach to Case Adaptation 163

other reasoning tasks. Within design, we have tried it out on several domains, though in this
paper we focus on just one, introduced below. The main concern of this paper is to describe
our process model for case adaptation, not to discuss the quality of the designs produced by
the application.

Our case adaptation method supports two broad types of adaptation: parametric and
structural. Parametric adaptation of cases is achieved through mutation. Structural adaptation
of cases is achieved through crossover. Depending on the specifics of a given domain and the
richness of the representation chosen for it, several mutation and crossover operators, with
different nuances in the effects they produce, can potentially be made available.

The method assumes that the requirements of a new problem will partially match, and
therefore result in retrieving, more than one case in memory. These retrieved cases are used to
seed an evolutionary process, i.e., they form its initial population. The adaptations produced
by the crossover and mutation operators of the evolutionary process are evaluated, and the
best ones selected to participate in the next round of genetic adaptations, until a satisfactory
solution is found. Evaluation requires domain knowledge in order to recognise whether
proposed solutions are acceptable for a given domain or not; crossover, mutation, and
selection can operate independently of the domain.

Depending on which randomly evolved variations on the originally retrieved cases are
selected to remain in the population after being evaluated, final solutions may have evolved
from just one of the cases, or from all of them. They may differ greatly in structure and/or in
parameter values from all of the originally retrieved cases, or may be similar to one or several
of them. Thus, the method is useful in a wide variety of problem situations and domains
requiring different types and degrees of adaptation.

In the following sections we discuss our evolutionary case adaptation method in more
detail, we present an implementation for a specific domain and the knowledge representations
we have adopted for this domain, and we give some experimental results.

2 Case Adaptation Method

We have developed a process model of design that combines the precedent-centered reasoning
capabilities of case-based reasoning (CBR) (see for example [1]) with the incremental
evolution of multiple potential solutions, an idea taken from the paradigm of genetic
algorithms (GA’s) (see for example [4]). The process model involves the use of CBR as the
overall reasoning strategy and the use of a GA to perform the case adaptation subtask.
Because a general-purpose, knowledge-independent GA is used, case adaptation is
knowledge-lean. It is only in the evaluation module of the GA that domain knowledge is
required so that proper decisions are made about which potential solutions generated by the
GA are useful to keep in future GA cycles.

Our process model is shown in Fig. 1. In this model we assume the existence of a case
memory in which descriptions of previously existing solutions are stored. Each case is
represented as a set of attribute-value pairs. The cases that are retrieved from memory given a
new problem specification are adapted by repeatedly combining and modifying their
descriptive features. After each cycle of combination and modification, solutions are
evaluated and the best are selected, to be adapted in the next cycle. Through this incremental,
evolutionary process, the case adaptation method converges to a satisfactory solution to the
new problem. The solution will contain features and/or modifications of features from several
of the cases that were initially retrieved from memory. Thus, our process model adapts past



164 A. Gomez de Silva Garza and M.L. Maher

solutions by evolving different combinations of their features in parallel and continuously,
until a satisfactory combination is found.

! i Case
. ! . i Adaptation
New Design Case : Combination i P
Specification Retrieval ! i 7
1 1 ///
A i Vo
N
| Y *
 — ; :
I Modification !
POPULATION| ! |
CASE OF ! !
BASE | pOTENTIAL ! i
DESIGNS i :
i A !
! i
i Evaluation 1
| |
! 1
! 1
i :
[ i E :
i
]
|
Selection Satisfactory New Design

Design? Solution

Fig. 1. Evolutionary case adaptation method.

The main emphasis of our process model is on proposing new solutions based on the
knowledge contained in previously known solutions, i.e., it is a precedent-based approach.
But a major component is the evolutionary approach to adapting the known solutions in order
to generate solutions to new problems. The two strategies of CBR and GA’s complement
each other. The cases retrieved from memory serve as the initial population for a genetic
algorithm, while the genetic algorithm adapts the cases until it finds an acceptable solution.

The combination subtask of case adaptation performs several cut-and-paste crossover
operations. Each crossover is done on two randomly-chosen “parents” from the population of
potential solutions, at randomly-chosen crossover points, and produces two “offspring”
suggested solutions. The modification subtask performs several mutation operations. Each
mutation produces a new “offspring” suggested solution by:

e randomly choosing a “parent” from the population of potential solutions,

e randomly selecting an element to mutate in the description of the parent,

e randomly choosing an attribute of that element to mutate, and

e randomly selecting a new value for that attribute.

Knowledge of which values are valid for which attributes can be used so that mutation
does not suggest completely nonsensical solutions. If the process model were to be used to
design buildings, for instance, it would be a waste of time for mutation to change the value of
the number-of-stories attribute from 25 to 834 or —15, for instance.

The evaluation subtask of case adaptation analyses a suggested solution according to
domain constraints. Depending on the domain, different constraints may have to be satisfied



An Evolutionary Approach to Case Adaptation 165

in order for a solution to be considered acceptable or satisfactory. A fitness value is assigned
during evaluation to each suggested solution. The total fitness F of a given solution, given N
constraints (C; through Cy) and M problem requirements (R; through Ryy), is calculated with
the following equation:

j=1

"
I
&

where C, = 0 if constraint C, is not violated by the solution or
C, = 1 if constraint C, is violated by the solution, and
R, = 0 if requirement R, is met by the solution or
R, = 1 if requirement R, is not met by the solution.

Convergence to an acceptable solution occurs if an individual in the population has a
total fitness of 0, meaning that none of the constraints has been violated and all of the problem
requirements have been met.

The selection subtask of case adaptation takes all of the evaluated individuals in a
population of suggested solutions, including those inherited from previous adaptive cycles and
those generated in the current one, and keeps the k best ones to serve as the initial population
of the next cycle. The value of &, as well as the number of offspring produced at each cycle by
crossover and mutation, is chosen so that the size of the population does not change from one
cycle to the next. Thus, the value of k depends on the number of cases initially retrieved from
memory.

In this method of case adaptation, the synthesis of potential solutions is done in a task-
and domain-independent fashion. The power of mutation can be enhanced by providing
access to some simple domain knowledge, namely the values that are valid for the attributes
that describe objects in the domain, as mentioned above. But on the whole, domain
knowledge is needed only for evaluating the generated solutions to determine their quality. In
other words, recognition (analytical) knowledge, rather than generative knowledge, is needed
to apply our method to a given domain.

3 Implementation and Domain

We have implemented our ideas in a computational system named GENCAD written in
Common LISP. Our method of case adaptation has been applied to the structural engineering
design of high-rise buildings [5] and to the layout design of residences such that they conform
to the principles of feng shui (pronounced “fong sway”), the Chinese art of placement. Here
we describe the feng shui application.

Feng shui, also known as Chinese geomancy, is an ancient technique that, among other
things, determines the quality of proposed or existing layouts of residences according to
several rules of thumb. Some of these heuristics seem to have a basis in common sense, or in
a psychological or sociological appreciation of the human beings that inhabit (or intend to
inhabit) the residence. Other heuristics seem to be of a more superstitious nature.

There are several different feng shui sects that may contradict each other or place
different priorities on different aspects of residential layouts. Despite this variety, of prime
importance to performing any feng shui analysis is information on the relative positions of
objects. In addition, other attributes of objects are usually also taken into account, such as



166 A. Gomez de Silva Garza and M.L. Maher

their orientations, shapes, and relative sizes. In our work we have used the knowledge of feng
shui presented in [6], which corresponds to the Tibetan black-hat sect of feng shui.

Feng shui analyses different aspects of a residential layout to determine its
auspiciousness or lack thereof. Some classes of inauspicious layouts can be “cured” by the
proper placement of an acceptable curing object. Thus, feng shui knowledge is complex, in
that some potentially bad layouts can actually be acceptable if the proper cure is present. It is
not just a matter of determining whether a layout is “good” or “bad,” but even if it would
normally be considered bad, one has to determine whether it has been cured or not before
rejecting it outright.

The feng shui knowledge contained in [6] applies to three different levels of description
of a residence:

e The landscape level (the location of a residence with respect to other objects in its

environment such as mountains, rivers, roads, etc.),

e The house level (the relative placement of the rooms and functional spaces within a
residence, such as bedrooms and bathrooms, as well as the connections between
them, such as doors and windows), and

e The room level (the location of furniture, decorations, and other objects within
each room or functional space in a residence).

GENCAD applies its case adaptation GA to one of the three levels of description of a
residence at a time. This is because there are very few feng shui constraints that relate objects
belonging to different levels of description; the constraints involve relations between objects
within the same level. Thus, potential solutions to the new problem at the landscape level can
be evolved (and evaluated) independently from potential solutions to the same new problem at
the house level, etc. For other domains, GENCAD’s GA might have to operate on and evolve
hierarchical solutions containing several levels of description at once. This will have
implications for the speed of convergence as well as the complexity of the implementation of
the crossover and mutation operators.

4 Knowledge Representation

Feng shui analysis assumes knowledge of spatial relationships among the objects at the
different levels. Absolute locations and exact measures of distances and other geometric
quantities are not as important. Because of this, a qualitative spatial representation has been
chosen to describe the locations of objects within each of the three levels. We locate objects
on each level in a 3x3 spatial grid, with each sector within the grid assigned a unique number
between 1 and 9 to identify it. The grid is shown as follows, with north assumed to be at the
top of the page:

1123
4 (5|6
71819

Objects can occupy more than one grid sector, and grid sectors can contain more than
one object, making the representation flexible. The resolution of this representation is not
high, but considering the qualitative nature of a typical feng shui analysis and the number of
objects that typically need to be represented at each of the three levels, it is adequate in most
cases.



An Evolutionary Approach to Case Adaptation 167

4.1 Case Representation

GENCAD’s case library currently contains 12 cases, each of which describes one of Frank
Lloyd Wright’s prairie houses, obtained from [7]. Note that the designs of these houses do not
necessarily conform to the principles of feng shui. However, designs that are acceptable to
feng shui practitioners can still be generated by evolving combinations and mutations of the
features of the design cases. If the original cases did conform to feng shui practice, given a
new problem, convergence to a solution acceptable to feng shui practitioners might be faster,
but this is not a requirement of our case adaptation method.

Each of GENCAD'’s design cases is a residence described at the landscape, house, and
room levels. Within each level, objects are represented using attribute-value pairs to describe
features that are relevant to feng shui analysis. Some attributes such as locations and types of
objects are required for all objects, whereas others such as shapes and steepness are optional,
and don’t even make sense for some objects. A diagrammatic example of a residence at the
landscape level is shown in Fig. 2. This is followed by an abbreviated version of the symbolic
case representation of the same residence.

Landscape Level:

1 2 3 N
I\ o Tttt
4 /X //\\ 5 6
My House Fish Pond
7 8 9
Driveway

Figure 2. A residence and its place in the landscape.

(((level landscape)
(elements (((type mountain) (name dragon-mountain)

(location (1 2 4)) (steepness high) ...)
((type pond) (name fish-pond) (location (6))
(clarity murky) ...)

(

((type house) (name my-house) (location (5)))

)



168 A. Gomez de Silva Garza and M.L. Maher

When running GENCAD at the landscape level, this is the fragment of a case that
would form part of the population of the GA. The fragments describing the house and room
levels would be dealt with separately. The list of attribute-value pairs is modified through
mutation and combined with that of other cases through crossover as the GA proceeds.

4.2 Representation of Feng Shui Analysis Knowledge

Feng shui analysis knowledge is used in the evaluation function of the GA. We have taken the
text description of the analysis knowledge and converted it to a set of constraints; each
constraint is implemented as a procedure. There are several constraints at each of the three
levels of feng shui description.

An example of a feng shui constraint at the landscape level, quoted directly from [6], is:

A house facing a hill will be bad...CURE: If a house faces
a mountain and the backyard is a garden, place a spotlight
in the back of the garden and shine it toward the top of
the house, or install a flagpole at the rear of the garden
to balance ch’i. [Page 35]

This constraint is implemented by first finding the description of all the houses and
mountains/hills at the landscape level, particularly their locations and the orientations of the
houses (if known). A predicate facing has been written that, given the location and orientation
of an object, and the location of a second object (within the 3x3 grid), determines whether or
not the first object faces the second (even partially). If any of the houses is located and
oriented such that it faces any of the mountains/hills in the landscape, then the constraint has
been violated. However, first we must check whether or not a cure is present for the
constraint violation, i.e., if there is a garden behind the violating house, and if so whether there
is a flagpole in it, or a spotlight oriented towards the house. A predicate behind has been
written that, given the location of an object, and the location and orientation of a second
object, determines whether or not the first object is behind the second. The pseudocode that
performs this analysis, i.e., the procedural representation of the constraint, given a proposed
solution at the landscape level S, is shown as follows:

Get the list H of all houses in S;
Get the 1list M of all mountains/hills in S;
Get the list C of all potential cures for this constraint
in S;
For each house h in H or until a bad omen has been found:
Get the location 1h of h;
Get the orientation oh of h;
For each mountain/hill m in M or until a bad omen has
been found:
Get the location 1m of m;
If facing(lh,oh,1lm) Then:
Get the list G of all gardens in S;
Set flag g-behind? to False;
Repeat
Get the next unprocessed garden g in G;
Get the location 1lg of gj;
If behind(lg,1lh,oh) Then
Set flag g-behind? to True;



An Evolutionary Approach to Case Adaptation 169

Until g-behind?=True or all gardens in G have
Been processed;
If g-behind?=True Then
For each potential cure c¢ in C or until a bad
omen has been found:
Get the location lc of c;
Get the type tc of c;
If tc=spotlight Then:
Get the orientation oc of c¢;
If facing(lc,oc,1lh) and subset(lc,1lg)
Then signal a bad omen situation;
Else
If subset(lc,1lg)
Then signal a bad omen situation;

5 Evaluation and Experimental Results

In this section we evaluate our evolutionary case adaptation method according to three issues:
the coverage of the method, its efficiency, and the quality of the solutions it produces.

5.1 Coverage

Often, CBR is criticised because even large case bases are not guaranteed to cover the entire
search space, thus making some problems unsolvable using “pure” CBR. In our framework,
even small case bases can provide sufficient information on typical structures and contents of
solutions to problems in the domain for the method to eventually converge to a solution. Of
course, the larger the case base, the more cases are likely to be retrieved given a new set of
problem requirements, and the faster the GA is likely to find a satisfactory adaptation of their
features and converge.

If N cases are initially contained in the population of the GA, then after 1 cycle of the
GA the proposed solutions in its population will combine features from at most 2 cases (due to
crossover). Thus, after N-1 cycles some of the proposed solutions in the population can
combine features from all of the N retrieved cases. The selection operator in the GA ensures
that only those combinations that seem to be leading towards an acceptable solution are kept
for future GA cycles, i.e., it helps to prune the search.

But even an exhaustive search of all the possible combinations of the features of all
retrieved cases is not guaranteed to find satisfactory solutions to the new problem. The
inclusion of a mutation operator in the GA, in addition to combination, ensures that all points
in the search space can potentially be reached. Of course, whether a certain point will be
reached or not depends on the particular sequence of mutations and combinations followed
during a given application of the GA to the retrieved cases. The mutation operator introduces
into the proposed solutions features that weren’t present in any of the originally retrieved
cases, or different values for those features that were present. Thus, our method can
potentially cover the entire search space, even if a large case base is not available.

5.2 Efficiency

We have explored the efficiency of combining GA’s with CBR by comparing our method with
a GA that is exactly the same except for the lack of cases. In the alternative method, instead
of initiating the GA search with a population consisting of cases retrieved from memory, we



170 A. Gomez de Silva Garza and M.L. Maher

initiated it with randomly generated “cases” (i.e., random starting points in the search space).
In this way, any differences in efficiency will be attributable to the use of CBR as the guiding
framework, and we can evaluate our decision to combine the two Al paradigms of CBR and
GA’s.

In order to perform this efficiency experiment, GENCAD was run 20 times using 12
cases retrieved from a case base of floor plans of Frank Lloyd Wright prairie houses, and 20
times using 12 randomly-generated cases, on the same problem. The problem specification
for this test problem (at the landscape level) is:

(((level landscape)
(requirements ((house 1) (river 1) (trees 2)))))

This problem specification can be interpreted as “we want to build a house on a
property in which there is a river, and we’re thinking of planting two clumps of trees around
the house.” The problem is now to use GENCAD to generate a configuration containing these
four elements, specifying their relative positions within the landscape, such that the
configuration is auspicious according to the principles of feng shui.

GENCAD was given a limit of 500 GA cycles in which to find an acceptable solution,
i.e., if convergence did not occur by cycle 500, the search was ended without a solution being
given. Some of the cases in the randomly generated case base, as well as the Frank Lloyd
Wright cases, do contain two clumps of trees, and/or a house, and/or a river in the landscape.
In addition, there are configurations of these four types of element that are valid according to
feng shui practice. Therefore, achieving a solution through the cyclical combination and/or
mutation of the cases retrieved from either case base is theoretically possible.

In the experiment, 5 of the 20 trials using the random starting points converged.
Similarly, 5 of the 20 trials using the Frank Lloyd Wright cases converged. Thus, whether
cases or random starting points are used to initiate the search doesn’t seem to make a
difference as far as the frequency of convergence. However, a clear difference can be seen
when we analyse the number of GA cycles required before convergence occurred (in those
trials in which it did occur), as seen in Table 1.

Table 1. GA cycles required before convergence:

Trial # Random Trial # FLW cases
1 114 25 54
9 333 31 34
11 357 36 32
14 274 37 406
17 160 39 90
Avg.: 241.6 Avg.: 123.2

As can be seen from the results, when cases are used to guide (i.e., provide starting
points for) the search, convergence occurs on average twice as fast as when the search is
initiated from random starting points. This demonstrates the efficiency of combining the ideas
of CBR with those from GA’s. Convergence does not always occur, as can also be seen (or



An Evolutionary Approach to Case Adaptation 171

does not occur within a reasonable number of iterations). Whether it will converge or not, or
how rapidly it will converge, can vary greatly due to the random nature of the genetic
operators of crossover and mutation. However, the process can be applied again and again to
the same problem, using the same initial set of retrieved cases, and it is possible that it will
converge in future attempts.

5.3 Quality

The use of CBR as the overall framework helps ensure that the solutions proposed by our
method are of high quality. For example, a typical problem specification for a floor plan
layout at the house level is that the house should have 3 bedrooms and 2 bathrooms. A
residence of this size typically also has, as a minimum, a kitchen, a living room, and a dining
room. These are not normally given as requirements, but it is an implicit assumption that any
solution will have these additional rooms.

Now let us assume that we used the problem specification mentioned in the last
paragraph to perform a GA search using randomly generated initial solutions, or to perform an
exhaustive search of the solution space, for instance. Such searches would most probably
eventually find a solution that has 3 bedrooms and 2 bathrooms, and that satisfies any domain
constraints (such as relationships among the rooms acceptable to feng shui practitioners). But
it would be likely that these would be the only components that would be present in the
solution. Unless further knowledge and heuristics were used to guide the search, solutions
would be minimalistic.

Instead, by using cases that include kitchens, living rooms, and dining rooms (and
perhaps additional rooms that might be considered to be useful post facto such as pantries) to
initiate the search, the solutions to which our method will converge will most likely also
include these important but unspecified rooms. Thus, the quality of solutions proposed by our
method is equal or greater than if CBR were not used as the guiding framework. Cases
provide complete scenarios that serve to guide both the structure and contents of proposed
solutions.

6 Discussion

We have presented a case adaptation method that is based on ideas from genetic algorithms.
Variations on retrieved cases are evolved incrementally, and at each cycle their quality is
verified and the best variants from amongst the initial population plus the new variants
generated at the current cycle are kept. This evolutionary method of case adaptation combines
the benefits of case-based reasoning and other knowledge-based approaches with those of
general-purpose problem solvers such as genetic algorithms.

For instance, being able to use starting points for problem solving search based on
similar past experiences, and being able to apply the process model to highly-specialised
problem solving domains are two advantages of CBR. On the other hand, having a large
number of operators with greatly differing effects available, and being able to apply the
process model to a wide variety of problem solving domains are two advantages of GA’s. Our
evolutionary method of case adaptation benefits from having all of these characteristics.

Domain knowledge is required and represented in the form of constraints used for the
evaluation of proposed solutions; this is recognition knowledge, not generative knowledge.
This difference with other approaches is especially important in applying our method to tasks
such as design. In design it is relatively easy to recognise whether a proposed design is an



172 A. Gomez de Silva Garza and M.L. Maher

acceptable solution for a given problem or not, whereas it is quite difficult to come up with a
set of reasoning steps or heuristics to follow that will lead to the generation of acceptable
designs. The knowledge engineer’s task of knowledge elicitation and knowledge acquisition
is thus simplified when using our evolutionary approach to case adaptation.

This use of constraints for evaluation rather than generation is one of the differences
between our work and that of others that have used constraint-satisfation techniques in the
context of CBR, for instance [8], [9], [10], or [11]. In these projects, constraints with
potentially complex interactions guide the generation of solutions to new problems by
adapting past cases. This generation of solutions uses domain knowledge or heuristics to
make what is generally an NP-complete problem tractable. In our method, the constraints are
independent of each other, and they help in a cumulative fashion to eliminate bad solutions,
rather than in a mutually interacting way to generate good ones.

There has been other work in the past that has combined concepts from GA’s with
CBR. [12] presents a GA that is initialised based on the information held in cases. However,
in [12] cases contain descriptions of past executions of a GA (e.g., the values of the GA
parameters, the task environment in which those parameter values were used successfully,
etc.), irrespective of the type of problem being solved with the GA. Thus, cases help the GA
dynamically adapt to changing problem situations; the authors use concepts from CBR in aid
of GA’s. In our work, on the other hand, cases contain descriptions of known solutions for the
type of problem being solved, and these cases provide guidance for the search that our case
adaptation GA will perform; thus, we use concepts from GA’s in aid of CBR.

The research presented in [13] is more similar to ours, in that cases contain descriptions
of solutions to the type of problem being solved, and a GA is used to adapt the cases to solve
the problem. However, [13] is not a pure CBR approach, as only a small fraction (10%-15%)
of the initial population in the GA comes from cases in memory; most of the initial population
is generated at random, as in a classical GA. The authors do this for valid reasons of
balancing exploration and exploitation in their GA search, but it provides a different flavour to
their research. Again, their work places more of an emphasis on the GA, and on making it
efficient and effective, than on contributing to CBR research. In contrast, we have examined
the possibilities of using a GA for case adaptation from the perspective of CBR.

References

1.  Kolodner, J.L.: Case-Based Reasoning, Morgan Kaufmann Publishers (1993)

2. Leake, D.B.: Case-Based Reasoning: Experiences, Lessons, & Future Directions, AAAI Press/The
MIT Press, Boston (1996)

3. Maher, M.L. and Pu, P. (eds.): Issues and Applications of Case-Based Reasoning in Design,
Lawrence Erlbaum Associates, Mahwah, New Jersey (1997)

4. Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems Series), MIT
Press, Boston (1998)

5. Go6mez de Silva Garza, A. and Maher, M.L.: A Knowledge-Lean Structural Engineering Design
Expert System, Proceedings of the Fourth World Congress on Expert Systems, Mexico City,
Mexico (1998)

6. Rossbach, S.: Interior Design with Feng Shui, Rider Books, London (1987)

7. Hildebrand, G.: The Wright Space: Pattern & Meaning in Frank Lloyd Wright’s Houses, University
of Washington Press, Seattle (1991)

8. Zhang, D.M.: A Hybrid Design Process Model Using Case-Based Reasoning, Ph.D. dissertation,
Department of Architectural and Design Science, University of Sydney, Australia (1994)



10.

11.

12.

13.

An Evolutionary Approach to Case Adaptation 173

Hinrichs, T.R.: Plausible Design Advice Through Case-Based Reasoning, in Maher, M.L. and Pu,
P. (eds.), Issues and Applications of Case-Based Reasoning in Design, 133-159, Lawrence Erlbaum
Associates, Mahwah, New Jersey (1997)

Faltings, B.: Case Reuse by Model-Based Interpretation, in Maher, M.L. and Pu, P. (eds.), Issues
and Applications of Case-Based Reasoning in Design, 39-60, Lawrence Erlbaum Associates,
Mahwah, New Jersey (1997)

Pu, P. and Purvis, L.: Formalizing the Adaptation Process for Case-Based Design, in Maher, M.L.
and Pu, P. (eds.), Issues and Applications of Case-Based Reasoning in Design, 221-240, Lawrence
Erlbaum Associates, Mahwah, New Jersey (1997)

Ramsey, C.L. and Grefenstette, J.J.: Case-Based Initialization of Genetic Algorithms, Proceedings
of the Fifth International Conference on Genetic Algorithms, 84-91, Morgan Kaufmann Publishers
(1993)

Louis, S.J. and Johnson, J.: Robustness of Case-Initialized Genetic Algorithms, Proceedings of
FLAIRS (Florida Artificial Intelligence Conference) ’99. To appear (1999)



REMEX - A Case-Based Approach for
Reusing Software Measurement Experienceware

Christiane Gresse von Wangenheim

Federal University of Santa Catarina - Production Engineering
Florianépolis, Brazil
gresse@eps .ufsc.br

Abstract. For the improvement of software quality and productivity, organiza-
tions need to systematically build up and reuse software engineering know-how,
promoting organizational learning in software development. Therefore, an inte-
grated support platform has to be developed for capturing, storing and retrieving
software engineering knowledge. Technical support is complicated through spe-
cific characteristics of the software engineering domain, such as the lack of
explicit domain models in practice and the diversity of environments. Applying
Case-Based Reasoning, we propose an approach for the representation of rele-
vant software engineering experiences, the goal-oriented and similarity-based
retrieval tailorable to organization-specific characteristics and the continuous
acquisition of new experiences. The approach is applied and validated in the
context of the Goal/Question/Metric (GQM) approach, an innovative technology
for software measurement.

Keywords. reuse, experience factory, case-based reasoning, software engineer-
ing, software measurement, GQM

1 Introduction

Today almost any business involves the development or use of software. However,
state-of-the-practice is that software systems often lack quality and many software
projects are behind schedule and out of budget [17]. In order to successfully plan, con-
trol and improve software projects, organizations need to continuously evolve software
engineering (SE) know-how tailored to their specific characteristics and needs [8,10].
Experiences from their software projects have to systematically captured and reused
across the organization. This enables the consolidation of organization wide SE know-
how into competencies that empower the company to achieve considerable improve-
ments and benefits [32]. Currently, reuse of SE knowledge is done in an ad-hoc, infor-
mal manner, usually limited to personal experiences. For the systematic acquisition and
organization-wide communication of these experiences, corporate memories
[2,8,18,20] have to be built (see Figure 1). In the software domain, the Experience Fac-
tory (EF) approach [8] proposes an organizational infrastructure for the analysis and
synthesis of all kinds of software life cycle experiences or products. It acts as a reposi-
tory for those and supplies these experiences to various software projects. However, for
the operationalization of an EF in practice, we need a clever assistant that supplies the
right experiences from the Experience Base (EB) to the user on demand.

K.-D. Althoff, R. Bergman, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 173-187, 1999
© Springer-Verlag Berlin Heidelberg 1999



174 C. Gresse von Wangenheim

In order to comprehensively sup- 4 software projectn
port the software development software project 1
process, various types of experi-
enceware (EW) [18], including [ Planning |
expertise and lessons learned
(e.g., how to apply design in- project team

spections), quality models (e.g., SE experienceware feedback, lessons
learned, deliverables,..

distribution of rework effort per

fault type), and deliverables
(e.g., soft\fvare measurement @H@ experience
plans, requirement documents) knowledge engineer factory
related to several processes (e.g.,
design inspection, measure- Fig. 1. Experience factory organization

ment) in different environments

have to be retrieved addressing various purposes: facilitation of the planning or execu-
tion of software projects, prevention of past failures by anticipating problems, and
guidance for the solution of occurring problems. And, since each software project is
different, it is very unlikely to find an artifact fulfilling the needs of the actual project
completely. Thus, experiences have to be retrieved from projects with “similar” char-
acteristics, assuming that similar situations (or problems) require similar solutions. In
the SE domain, for example, we assume, that measurement programs with similar goals
use similar quality models or that similar problems occurring during design inspections
have corresponding solutions. Due to the lack of general SE models in practice, organi-
zational software know-how has to evolve in an incremental manner by learning from
each new software project. Thus, the EF has to support continuous learning by captur-
ing and integrating new experiences when software projects are planned and executed.
In this context, Case-Based Reasoning (CBR) [5] plays a key role [10,18,20,27], as it
provides a broad support for similarity-based retrieval for all kinds of EW and contin-
uous incremental learning. However, the operationalization of the EF is not trivial, as
relevant SE knowledge has to be identified, modeled and represented in the EB. Meth-
ods for goal-oriented retrieval providing support for different processes, objectives, and
environments in the SE domain and for the continuous acquisition and integration of
new experiences have to be developed. In this paper, we propose a case-based approach
for an integrated support platform enabling organizational learning from SE experienc-
es tailorable to organization specific characteristics. The approach is based on our ex-
periences on reusing GQM-based measurement know-how (e.g., in the context of the
industrial transfer and research projects [11,26]).

2 Reuse of GQM Measurement Plans

In this section, we give a short overview on software measurement, the application do-
main of our approach, and provide scenarios illustrating the reuse of measurement EW.
Software measurement is an essential infrastructure technology for the planning, con-
trol and improvement of software projects. Organizations have to collect quantitative
and qualitative data concerning their software products and processes, to build an em-



REMEX - Reusing Software Masurement Experienceware 175

pirical justified body of knowledge. A specific technology for goal-oriented measure-
ment is the Goal/Question/Metric approach (GQM) [9], which supports the definition
and implementation of operationalizable software improvement goals. Based on a pre-
cisely specified measurement goal, relevant measures are derived in a top-down fash-
ion via a set of questions and models. This refinement is documented in a GQM plan,
providing a rationale for the selection of the underlying measures. Data is collected wrt.
the measures and interpreted in a bottom-up fashion in the context of the models, ques-
tion and goals, considering the limitations and assumptions underlying each measure.
The establishment of measurement programs, which in practice requires a significant
planning effort, can be substantially facilitated by reusing measurement EW [16], as il-
lustrated in the following scenario.

Measurement Program at ABS/IntelliCar

GQM Goal
Analyze the software development process in order to improve the reliability from the viewpoint of the
software developer at ABS/IntelliCar
GQM Questions
Q1. Whatis the total number of defects detected before delivery?
Q2. What s the distribution of defects?
Q3. Does the type of inspections have an impact on their effectiveness?
Q4. Does the experience of developers have an impact on number of faults introduced in the system?

Quality Models

Effectiveness of inspections

Context: company IntelliCar, automobile domain

Assumptions: The defect density is comparable across documents.

Computation: effectiveness = (number of defects detected in inspection)/(size of document * training
duration)

Attributes:  number of defects detected in inspections; size of document; duration of training

Fig. 2. Excerpt of simplified example of GQM plan

Suppose a company, IntelliCar, which produces embedded software for automobiles
has two main departments: FI which develops software for fuel injection devices and
ABS which develops software for ABS brake control devices. As the company produc-
es embedded software, one of its most important goals is to produce zero-defect soft-
ware. Therefore, department FI established successfully a quality improvement pro-
gram based on measurement two years ago. Now, also department ABS wants to start
measurement-based improvement. As the contexts of both departments are similar and
the improvement goal is the same, experiences available in department FI can be reused
at ABS in order to reduce the planning effort and to improve the quality of the measure-
ment program. Based on the measurement goal «Analyze the software development
process in order to improve the reliability from the viewpoint of the software developer
at ABS/IntelliCar», relevant quality aspects and influence factors have been acquired
during interviews with the developers of department ABS. These are represented as a
set of questions in the GQM plan, as shown in Figure 2. Now, in order to operationalize
the questions of the GQM plan, quality models have to be developed. Assume, for ex-
ample, that the question «Q3. Does the type of inspection have an impact on the effec-



176 C. Gresse von Wangenheim

tiveness of inspections?», has also been evaluated in a similar measurement program in
department FI. Then, the respective model can be reused, assessing its applicability
based on its underlying assumptions. If necessary, the model is adapted to the specific
characteristics of ABS. For example, assuming that inspector capabilities vary exten-
sively between departments, the effectiveness of inspections is expected to depend not
only on the size of the inspected document (as stated in the reused model), but also on
the training of inspectors, then the new factor is included in the model.

While defining a model

for question Q2, it turned Context company IntelliCar; department FI
out that an operational re- Problem Question of the GQM plan cannot be refined into an
operational quality model due to missing information.

finement of the question
is impossible due to miss-
ing information concern-

Cause of |During the interviews the necessary knowledge has not been
Problem |acquired completely from the project personnel.

Solution |A follow-up interview was performed with the person(s) who
ing defect classification. mentioned the respective quality aspects during the first inter-
The solution of this prob- views in order to clarify the formulation of the GQM question.
lem can be guided by ex- Outcome |The required knowledge was acquired completely and the
respective quality model was defined.

periences describing how
a similar problem has Fig. 3. Example of problem experience

been successfully solved

at department FI (see Figure 3) by suggesting follow-up interviews in order to acquire
the required information completely. In addition, reusing organizational glossaries can
support the consistent usage of terms (e.g. defecr) and reusing taxonomies representing
generalization relations can help the refinement of abstract concepts (e.g. «distribution
of defects» in Q2). Other phases of the measurement planning process can be supported
accordingly through the reuse of measurement EW [16].

3 Representation of GQM Experienceware

In order to facilitate and improve the planning of GQM-based measurement programs
through reuse of EW, an Experience Base is developed, modeling and representing rel-
evant measurement EW.

3.1 GQM Experienceware Cases

As today wrt. most SE technologies no formal knowledge exists, the principal source
are individual project experiences. Thus, SE EW is primarily captured in form of cases
in the GOM-Experience Base (GQM-EB)', representing context-specific experiences
gained in a particular software project in a specific organization. In order to provide
comprehensive support, different types of EW cases are modeled by using a flexible,
object-oriented frame-like representation formalism based on [24,28] and are stored in
the GQM-EB [15,19]:
* GOM Product Experienceware Case (GOQM-PEC). These cases include GQM prod-
ucts developed during the planning of a GQM-based measurement program. GQM-
PECs are reused in similar software projects as a basis for the development of respec-

1.Here, we consider a specific instantiation of the experience base focusing on EW on the
planning of GQM-based measurement programs.



REMEX - Reusing Software Masurement Experienceware 177

tive products, resulting in a reduction of planning effort and improved quality of the
GQM products.

* GOM Problem-Solution Experienceware Case (GOM-PSEC). GQM-PSECs explicit-
ly capture problem solution strategies that have been adopted in past measurement
programs (see Figure 3). Reusing GQM-PSECs can warn for potential failures in ad-
vance and guide a solution fitting the application context. Due to the specific nature
of experiential knowledge, GQM-PSECs are represented as cases describing a specif-
ic problem, its cause, the solution applied and the outcome achieved.

Experienceware Cases are represented by a set of relevant attributes and interdependen-

cies based on domain models (see Section 3.2) [29]. To enable the retrieval of EW cas-

es from similar software projects, the environment from which the case has been ob-
tained is characterized. This is done through a minimal set of characteristics (e.g., busi-
ness sector, improvement goals, development process used), which allows to identify
similar cases and to discriminate different ones. In order to assess the reuse potential of
the case, cases are enhanced by basic information (e.g., viewpoint, representativeness).

Information about past reuses of a case, such as preconditions for reuse, required adap-

tations, cost and frequency of reuse, are explicitly captured [19] in order to facilitate the

reuse of experiences and their adaptation to specific project characteristics.

3.2  General Domain Knowledge

In order to model relevant EW and facilitate the consistent representation and acquisi-
tion of new experiences across software projects, general domain knowledge on GQM
EW is represented in the GQM-EB [16,19].

GQM EW Models. Entities related to GQM EW are explicitly modeled in a hierarchy
of classes [16,28] (see Figure 4). Each class is structured by a set of attributes represent-

GQM Product EW Case
‘ é Measurement EW ———"" 21 5 1 Solution EW Case
Experienceware

Inspection EW
GQM Goal
GQM Plan
GQM Question
GQM Model
GQM Measure
Abstraction Sheet Quality Item
GQM Product Item Variation Item
Measurement Plan
OBJECT Data Collection Procedure Questionnaire
Data Collection Instrument IMeasqremem Tool
Context Characterization Questionnaire Question nterview

Organization Characterization
Project Characterization

Measurement Characterization Periodic Event
Data Collection Event < Process Event
Software Object Artifact Event
Problem

Problem Cause

Solution

Outcome

Fig. 4. GQM EW Classes (is_a relation)

ing basic values or relationships to other entities. Attributes are defined through an
identifier, description, cardinality, its type or kind of relationship, a default value and
explicitly stating if the attribute has to be specified (mandatory) when a new instance of
this class is acquired [15].



178 C. Gresse von Wangenheim

Class| GQM Measure

Description| defines data to be collected

Attributes| Identifier | Description Cardinality | Type or Kind| Default | Mandatory
id identifies the GQM measure 1 Identifier - yes
assumptions | about the applicability of the measure 0..1 Text none no
description |describes data to be collected 0..1 Text - yes
scale defines scale of the measure 0..1 Scale - yes
unit declares unit of the measure 0.1 Unit - no
range declares range of the values of the measures 0..1 Text - no
model references the corresponding model 0..* defined-by - yes

[GQM-
Model])

A GQM measure defines which data has to be collected. It includes the explicit definition of assumptions concerning the
application of the measure. Regarding the expected values, scale, unit (only in case of numerical values) and range have to
be defined.As GQM measures are derived from models which determine the attributes to be measured, this is represented
as a defined-by relation. Based on the GQM measure the collection procedure defining when, how, and by whom the data
has to be collected is defined.

Fig. 5. Simplified example of the class GQM Measure

Type Definitions. Type definitions model qualities of SE entities, such as, developer
experience, or categorize concepts, e.g., programming languages as Unordered Symbol
with the possible values «Delphi, C++, etc.». Type definitions are used to type class at-
tributes. They facilitate the situation assessment and support the manual adaptation of
retrieved EW cases by explicitly indicating alternatives, as well, as the consistent ac-
quisition of experiences across projects. For each type, its related supertype, range and
the local similarity measure are specified. For example, the experience level of devel-
opers might be classified through the Ordered Symbols: none, low, medium, high, us-
ing the standard local similarity measure for ordered symbols. For symbol types, the
meaning of each value is explicitly defined through range definitions, e.g., «high» ex-
perience may be defined as worked for more than 2 years in the application domain. In
addition, for numerical types, the unit is explicitly stated, e.g., person-hours.
Glossaries. Glossaries define terminology and basic concepts related to software mea-
surement [16,19]. For example, «Failure: is the inability of the software to perform a re-
quired function wrt. its specifications». A glossary supports the adequate use of terms,
their consistency across an organization, and ensures that the reuse of GQM products is
based on sound assumptions.

Taxonomies. Taxonomies represent ordered arrangements of entities according to their
presumed relationships, e.g., organization hierarchy [16,19]. They guide the appropri-
ate refinement of objects of interest during the situation assessment and acquisition of
new experiences.

3.3 Knowledge Levels

Software products, processes, resources as well as characteristics and terminology vary

between different organizations. Therefore, the domain model has to be tailored to the

specific environment. Generally, we can identify different levels of knowledge valid in

different scopes of domains:

* Software measurement domain. Here, general knowledge on GQM-based measure-
ment is represented, which is transferrable between organizations. This level includes



REMEX - Reusing Software Masurement Experienceware 179

GQM EW models, general valid types and range definitions (e.g., on measurement
scale), and general valid terms in the glossary (e.g., software process).

* Organization domain. Here, organization specific knowledge related to software
measurement is represented. If the GQM technology is modified in a particular organ-
ization, the respective knowledge from the upper level is adapted accordingly. Type
and range definitions are enhanced by organization specific definitions. For example,
one organization could classify «experience of the developers» into the categories
(expert-participated in system development; medium-participated in training; none),
whereas another organization might classify experience into (high-working for more
than 2 years, medium-worked once, low-never worked in application domain). The
glossary and taxonomies are completed by organization specific terms.

* Project domain. At this level, instantiations of GQM EW cases are represented gath-
ered from particular software projects. For example, a GQM-PEC including a GQM
plan from a measurement program of the project HYPER at the department ABS/In-
telliCar.

4 Experience-Based Support of GQM Planning

4.1 Determination of Retrieval Goals

During the planning of GQM measurement programs the GQM-EB can be inquired to
find useful EW to guide, support and improve various SE tasks in a specific environ-
ment. In order to provide comprehensive support for several SE tasks, various types of
experiences have to be retrieved, from different viewpoints in different environments
addressing various purposes: support of software projects by reusing similar products
developed in the past, prevention of failures by anticipating problems, guidance for the
solution of problems by reusing solution strategies adopted in past similar problems,
and the identification of patterns of experiences for the maintenance and evolution of
the EB. Thus, a goal-oriented retrieval method [14] is developed that retrieves a set of
relevant experiences wrt. a specific reuse goal. Based on reuse scenarios, retrieval goals
are determined explicitly specifying the following dimensions:

Retrieve <object>

to <purpose>

concerning <process>

from the <viewpoint>

in the context of <environment>
For example, «retrieve lessons learned to guide problem solution concerning software
measurement from the viewpoint of quality assurance personnel at IntelliCar».
Based on the retrieval goals, reusability factors are determined. This includes the spec-
ification of relevant indexes! and their importance and the parametrization of the simi-
larity measure. For example, for the retrieval of a solution strategy, relevant indexes
might be the problem description and the task when the problem occurred, whereas po-
tential problems wrt. a specific task might be identified based on the task only.

1.As index we denote attributes of the case, which predict the usefulness of the case concern-
ing the given situation description, and which are used for retrieval and determination of the
similarity value.



180 C. Gresse von Wangenheim
4.2  Retrieval Process

Considering different retrieval goals, a goal-oriented method for similarity based re-

trieval is defined, including the following steps [14]:

Step 1. Situation assessment. The current situation is described by the user specifying
the retrieval goal and a set of indexes related to the specific retrieval goal based on a
predefined indexing scheme. The importance of each index wrt. the specific retrieval
goal is stated through a relevance factor assigned to each index. Relevance factors are
stored in the EB and can be manually adapted by the user. To facilitate the assign-
ment, relevance factors are classified into «essential, important, less important, irrel-
evant». Indexes marked as essential are perfectly matched to the ones in the situation
assessment, the ones marked as important or less important are partially matched and
the ones marked as irrelevant are not further considered. Unknown indexes are ex-
plicitly marked. Table 1 illustrates a situation assessment with an exemplary set of in-
dexes. The situation assessment is further supported by general domain knowledge
[19]: glossaries can be used for a consistent usage of terminology across projects and
taxonomies guide and direct the appropriate definition of indexes. Type and range
definitions facilitate the identification of the present values and guarantee a consistent

description across projects.

Reuse goal GQM Experience Base (excerpt)

object lesson learned (PSEC) CASE CASE CASE

purpose guide problem solution PSEC_003 PSEC_007 PSEC_011

process Sw measurement

viewpoint quality assurance personnel

environment IntelliCar

Indexes

department irrelevant ABS Fuel Injection Fuel Injection Fuel Injection

staff size less important | 10 15 100 50

application essential automobile automobile automobile automobile

domain

improvement goal important improvement of sw|improvement of sw|improvement of sw | costreduction in sw
system reliability |system reliability |system reliability |development

programming language | irrelevant Ada Fortran Ada C

dev. experience less important | high medium low low

sw system size less important | unknown 15 KLOC 80 KLOC 60 KLOC

measurement maturity |important initial - - -

task essential measurement goal | measurement goal |development of measurement goal
definition definition measurement plan | definition

Table 1. Simplified retrieval example

Step 2. Exact matching of indexes marked as essential. In a first step, the cases of the
EB are perfectly matched with the situation assessment wrt. the indexes marked as
essential, determining a set of potential reuse candidates. Table 1 shows a simplified
example: while comparing the cases of the EB with the situation assessment, case
PSEC_03 and PSEC_11 are considered as potential reuse candidates, because the val-
ues of the indexes marked as essential («application domain» and «task») are equal
to the present ones. PSEC_07, which describes an experience regarding the develop-
ment of the measurement plan, is not further considered, as the value of the index
«task» is different to the one of interest.



REMEX - Reusing Software Masurement Experienceware 181

Step 3. Partial matching of similar cases. For all potential reuse candidates a similar-
ity value is computed by partially matching the indexes (except the ones marked as
essential) using a specific similarity measure wrt. the retrieval goal (see Section 4.3).
Cases with a higher similarity value than a given threshold are considered as suffi-
ciently similar and proposed to the user as reuse candidates ranked by their similarity
values. Continuing the example shown in Table 1, case PSEC_03 is considered more
similar to the given situation than PSEC_11, because the values of the indexes of
PSEC_03 marked as important or less important are more similar to the current ones
(especially regarding «staff size», «improvement goal»).

Step 4. Selection of reuse candidate(s). Based on the proposed reuse candidates the
user can select the most appropriate case(s) and, if necessary, manually adapt them to
fit the current needs. Informed decisions are further supported by experiences explic-
itly captured in the EB about the reuses of a particular case in the past [19] (see
Section 3.1). If the system fails to propose reuse candidates, general domain knowl-
edge, e.g., GQM product models, is available to support the SE tasks.

4.3  Similarity Measure for the Retrieval of Experienceware

For the identification of «similar» EW cases concerning various retrieval goals (see
step 3/Section 4.2), we define a generic similarity measure sim(Sit",E; ") [14] that can

be parameterized for a specific goal. Taking into account specific characteristics of the

SE domain, such as the lack of explicit domain models in practice, diversity of environ-

ments, incompleteness of data, and the consideration of «similarity» of experiences, the

similarity measure is based on the following assumptions (see [14] for details):

* Depending on the retrieval goal, a particular set of indexes is defined for situation as-
sessment and matching. A set of indexes C is represented as a list of features
Co={Cy1, Cygp,...} wrt. the particular retrieval goal g. The range of the value c; of the

feature Cyi is defined by the respective range definition W; (see Figure 6).

Example Index Set Type/Range Relevance Vector|Present Situation Case E FS
R, Sit"={(Cy;, 5;)
C, | staff size Interval of numbers |less important|s; |10 15 w
[0,50] (0.15)
C,|improvement String important (0.35) [s, | “improvement of] “improvement of| E
goal system reliability system reliability ”
C;| measurement Ordered Symbol: important (0.35)  |s; |initial unknown U
maturity {initial, low, routine }
Cy4|sw system size Number [0,100] less important|sy |unknown 15KLOC R
(0.15)

Fig. 6. Example

* The present situation is assessed based on the set of indexes wrt. the retrieval goal,

represented as a list of feature-value pairs Sit’={(Cy;, s;) € Sit | relevance factor (S;)
# essential } including the features Cy; € C, and their values s; € W;.
* Inthe EB, an EW casey = (E, g, ) represents an experience by feature-value! pairs (ex-

perience E\={(E;{, ex1), (Exo, €x2),...} with the features E;; and their values e; € W;

1.Here, values represent atomic values or relations to other entities.



182 C. Gresse von Wangenheim

(and with E,” c E; andV E,;" € C, and their respective values ey;), describing the

know-how gathered in a software project, the context from which its originates, and
its relationships (see Figure 6). In addition, a threshold & € [0,1] is stated for each
case that determines, if the case is sufficiently similar to the situation assessment to
be proposed as a reuse candidate.

¢ In the SE domain, many cases may have a low similarity value, due to few identical
values, although they might be quite similar (e.g. programming languages C and
C++). Thus, local similarity measures are introduced. Generic local similarity meas-
ures V(s;,ey; ") € [0,1] for basic value types W(v) are defined in [19,28]. Local simi-
larity thresholds 6; € [0,1] are introduced for each index C,; determining if the values

are considered as (sufficiently) similar.

* Relevance factors are defined, which reflect the importance of a feature concerning
the similarity of cases wrt. a specific retrieval goal (see Figure 6). Here, for each re-
trieval goal g a specific index set C,, is used. Thus, for each index Cy; € index set Cy,
a relevance factor ©g; € [0,1] is defined in dependence on the specific retrieval goal
g. For each retrieval goal, those relevance factors are represented by a relevance vec-
tor Rg= {mg|, ®g,,...} with > og;=1 normalized in the EB.

¢ In order to explicitly deal with incomplete knowledge, the similarity of two objects is
expressed through a linear contrast of weighted differences between their common
and different features [6,30]. The following Feature Sets (FS) are distinguished:

* E: Set of corresponding features of the given situation and the stored case (E = {Cg;
| (Cg; € Sit'n Ey;") and (v'(s;,ey;)26;) }). For example, if both, the situation assess-
ment and the stored case state the feature «experience of developer» as high.

* W: Set of contradicting features of the given situation and the stored case (W = {Cg;
| (Cg; e Sit' N E,;") and (v"(s;,e);)<86;) }). For example, if in the past no effort report-
ing tools were available, but now in the given situation the feature «effort reporting
tools» is stated as available.

* U: Set of unknown features in the actual situation description (U = {Cg; | (Cg; € Ey;”
- Sit”)}). For example, when initiating a software project certain information, such
as «software system size» may be stated as unknown in the situation description.

* R: Set of redundant features not contained in the stored case (R = {Cg; | (Cg; € Sit”
-Eyi")}). For example, the feature «developer experience» may not have been con-
sidered initially, but later become important for the identification of relevant cases.

For each set, a specific weight o, B, ¥, & € [0,1] is defined.

The global similarity measure is defined as:
sim(Sit",Ey )=(0t Xie g 00 (83615 )) / (00 Xgie £ O 0 (53,6450 + (B Lie w i(1-
V(s5,e0)) + (Y zsie U O(1-07(spei ) + ©® Zsie R 05 (1-07(s5,61,7)))

Based on the similarity value calculated, a case; is considered as reuse candidate, if all

features marked as essential in the given situation exactly match the respective features
of the case, and if sim(Sit",Ek”) > global similarity threshold g, of casey.



REMEX - Reusing Software Masurement Experienceware 183

5 Continuous Acquisition and Integration of Experienceware

The incremental evolution based on feedback from industrial applications is essential
for continuously building and improving SE know-how. Consequently, the knowledge
in the GQM-EB has to be enhanced and updated each time a new measurement pro-
gram is run in the organization. This means that we have to continuously capture new
experiences from the quality assurance personnel. In order to keep the effort related to
the knowledge acquisition minimal, this process is intertwined in the retrieval/reuse
process (see Figure 7): Information provided by the user as input to the retrieval pro-
cess, such as a context characterization, and reused experienceware from the GQM-EB
are in parallel used for the creation of new EW cases.

For example, while reusing EW in

order to support the solution of a

problem encountered (see Section Capturing of Refrieval  of
2) concerning the definition of a situation description simiar cases
quality model, the user provides the 4

. . . Reuse
following situation assessment: /
«organization: IntelliCar; applica e =
tion domain: automobile; problem: [ fusediiase Reviselreuse of

reuse candidate

Question of GQM plan cannot be % 6
refined into model». This informa-
tion is used for the retrieval process, \A _ v

and in parallel for the description of \ 2 /

anew case documenting experienc-
es regarding the present situation.
Information contained in a similar Fig. 7. Integration of acquisition process

case retrieved and reused in order to

solve the current problem, is used to supplement the new case description (see Figure
8). The generated new case is reviewed by the user before storage in the EB. Additional
information (e.g. basic information) is added, and if necessary, deviations from the re-
used case are adjusted, e.g., if a solution different to the one stated in the reused case
was applied. The acquisition of new experiences is further guided through GQM EW
models, which explicitly address relevant dimensions to be captured. Glossaries and
taxonomies facilitate the consistent description of experiences across software projects.
The new acquired experiences are integrated into the existing EB to be available for fu-
ture reuse. This implies that EW cases have to be stored, domain models enhanced and,
if necessary, generic patterns of cases have to be created or modified.

Project-specific cases (GQM-PECs or GQM-PSECs) acquired in parallel to the retriev-
al process are stored as instances of GQM EW cases in the GQM-EB. Based on proto-
cols on the retrieval/reuse process and comparisons of the reused and new case, reuse
information is added to the reused case. For example, the date of reuse is added, the fre-
quency of reuse is increased, and attributes which have been adapted to fit the new sit-
uation are explicitly listed.

In addition, project-specific cases are evaluated wrt. their similarity to other cases of the
GQM-EB. If the new case differs only in small details from a case reused, an abstract



184 C. Gresse von Wangenheim

case subsuming the project-specific cases is created through case generalization. The
development of generic patterns through the knowledge engineer can be guided by tax-
onomies which provide a basis for the derivation of abstractions.

Based on an evaluation of input for Context|organization: IntelliCar; application do-
new terms defined in the retrieval main: automobile; measurement maturity:  added
low duri
ifi rocess uring
spemflc GQM EW case p Problem |Question of the GQM plan cannot be re- review
through the knowledge fined into operational quality model.
engineer the organiz a- Cause of|During the interviews the necessary knowl-
. i Problem |edge has not been acquired completely from
tional glossary and taxon- the project personnel.
omies are enhanced. reused Solution|A follow-up interview was performed with
: . case used the person(s) who mentioned the respective
The COIltll’ll'J.O'us evolution as a basis quality aspects during the first interviews in update of
and customizing of the EF for the order to clarify the formulation of the GQM reused
B : . question and organizational taxonomies on case
toa spemflc e'nV1r0nment description software entities were consulted. during
may also require the mod-  of the Outcome|The required knowledge was acquired com- review
ification of the representa- new case pletely and the respective quality model was
. . defined.
tion of EW cases, the in- -
dexing scheme and simi- Fig. 8. Simplified example of acquisition

larity measure based on

user feedback from the application. Due to the fact, that indexes depend on the specific
environment and may change over time, the continuous tailoring of the indexing
scheme needs to be supported during the whole life cycle of a GQM-EB through the
knowledge engineer. For example, supplemental context characteristics of software
projects may become relevant for the discrimination of cases. As shown in Figure 8, the
attribute «measurement maturity» had not been considered as a relevant characteristic
for the context description of a case in the past, because all experiences were related to
projects without variations concerning the maturity. Since a new measurement program
is established in a project with a different level of maturity, this attribute has become
relevant for the distinction of cases and is added to the context characterization.
Continuous learning has also to take place wrt. the similarity measure and its parame-
trization for specific retrieval goals in order to improve and optimize its performance.
Therefore, the retrieval and reuse process is supervised and, based on the feedback, ap-
propriately tailored to the specific environment through the knowledge engineer. Here,
protocols documenting the user’s (re-)actions and user-provided critics and suggestions
can serve as a basis for the maintenance through the knowledge engineer (see Table 2).

Feedback |Implication for update
Index manually added |*Addition of index to the indexing scheme
for retrieval

Relevance factor |*Modification of weight assigned to the index
manually modified |*Index frequently marked as irrelevant might be removed from the index
scheme

Increasing number of |*Changing optimistic strategy for similarity measure into a more pessimistic
retrieved reuse candidates |*Increase of tresholds

Frequent rejection of |*If a specific case is affected: increase of global treshold of the case
cases suggested as |*If different cases are affected: review of indexing scheme and similarity
reuse candidates |measure under consideration of additional critics and suggestions of the user

Table 2. Examples of retrieval feedback and its implications



REMEX - Reusing Software Masurement Experienceware 185

Based on a careful analysis of the causes, the selection of indexes and/or the similarity
measure have to be adapted accordingly in order to improve retrieval results in the fu-
ture.

6 Discussion

In the software domain, various approaches exist for reuse primarily focusing on soft-
ware code, e.g, based on library and information science, knowledge-based systems, or
database management technologies [12]. However, the majority of those approaches
fails to recognize the complexity of SE experience in general, often requires a thorough
classification of the domain, or does not provide any means for similarity-based retriev-
al.

Recently, CBR has been recognized as a promising approach for the operationalization
of learning organizations in the SE domain [2,3,18,22,27]. Applications are developed
in different SE areas, like capturing and formalizing best practices (e.g., [20]), effort
prediction (e.g., [13]), change management [23], and requirements acquisition (e.g.,
[25]). However, so far there does not exist an approach on reusing software measure-
ment EW. Only few approaches offer flexible similarity-based retrieval methods, for
example, through a context concept as a “similarity environment for the retrieval”
[1,31], dynamic ranking of importance ratings of indexes [21], or partitioning the case
base through the use of prorotypes [7]. However, if multiple retrieval goals have to be
supported by a case base, this is not sufficient. The creation of distinct case bases for
test selection and diagnosis in PATDEX [6,31], can be seen in analogy to different re-
trieval goals, although inefficient due to administration and maintenance reasons. In
contrast, our approach, systematizes the concept of goal-oriented retrieval through a
flexible and tailorable retrieval method and similarity measure based on the advanced
similarity model of PATDEX which explicitly deals with unknown information, filter
attributes, and local similarity measures.

Besides integrating experiential knowledge (in form of cases) and general domain
knowledge as in several CBR systems, our approach explicitly models different levels
of knowledge focusing on different scopes.

Concerning the tailoring and continuous evolution of the EF to organization specific
characteristics, only a few systems offer mechanisms for the systematic and integrated
acquisition of user feedback and learning possibilities regarding the similarity measure
as, e.g., the tailoring of relevance factors (see [4] for an overview), which represent the
basis for the continuous evolution of our approach.

7 Conclusion

For the successful planning and improvement of software measurement, EW has to be
captured in corporate memories and reused across the organization. Based on our expe-
riences on the application of the GQM approach in practice, we develop a case-based
approach for the operationalization of organizational learning in software measurement
focusing on the technical aspects. Relevant measurement EW is modeled, a goal-orient-
ed method for similarity-based retrieval tailorable to specific environments is devel-
oped, and an acquisition process intertwined into the retrieval/reuse process described.



186 C. Gresse von Wangenheim

Currently, we are implementing the approach. Further empirical research will have to
be carried out in experiments and industrial transfer projects to assess strengths and
weaknesses of the approach.

References

1. Althoff, K.-D., et al.: Case-Based Reasoning for Decision Support and Diagnostic
Problem Solving: The INRECA Approach. Proc. 3rd German Workshop on Case-
Based Reasoning, Germany (1995)

2. Althoff, K.-D., Bomarius, F., Tautz, C.: Using Case-Based Reasoning Technology to
Build Learning Software Organizations. Proc. of Workshop on Building, Maintaining,
and Using Organizational Memories at the 13th European Conference on Al (1998)

3. Althoff, K.-D., et al.: CBR for Experimental Software Engineering. In M. Lenz et al.
(eds.), Case-Based Reasoning Technology - From Foundations to Applications, LNAI
1400, Springer Verlag (1998)

4. Althoff, K.-D.: Evaluating Case-Based Reasoning Systems: The Inreca Case Study.
Postdoctoral Thesis, University of Kaiserslautern, Germany (1997)

5. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. Al Communications, 17(1) (1994)

6. Althoff, K.-D., Wess, S.: Case-based Knowledge Acquisition, Learning and Problem
Solving in Diagnostic Real World Tasks. Proc. of the 5Sth European Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, Scotland/UK (1991)

7. Barletta, R.: A Hybrid Indexing and Retrieval Strategy for Advisory CBR Systems
Built with ReMind. Proc. of the 2nd European Workshop on Case-Based Reasoning
(1994)

8. Basili, V. R., Caldiera, G., Rombach, H. D.: Experience Factory. In J. J. Marciniak
(ed.), Encyclopedia of Software Engineering, John Wiley & Sons (1994)

9. Basili, V. R., Caldiera, G., Rombach, H. D.: Goal Question Metric Paradigm. In J. J.
Marciniak (ed.), Encyclopedia of Software Engineering, John Wiley & Sons (1994)

10.Barr, J.M., Magaldi, R.V.: Corporate Knowledge Management for the Millennium. In
I. Smith, B. Faltings (eds.), Advances in Case-Based Reasoning, Springer Verlag
(1996)

11.CEMP Consortium. Customized Establishment of Measurement Programs. Final Re-
port, ESSI Project Nr.10358 (1996)

12.Frakes, W. B., Gandel, P. B.: Representing Reusable Software. Information and Soft-
ware Technology, 32(10) (1990)

13.Finnie, G.R., Wittig, G. W., Desharnais, J.-M.: Estimating Software Development Ef-
fort with Case-Based Reasoning. Proc. of the 2nd Int. Conf. on Case-Based Reasoning,
RI(1997)

14.Gresse von Wangenheim, C., Althoff, K.-D., Barcia, R.M.: Intelligent Retrieval of
Software Engineering Experienceware. Proc. of the 11th Int. Conf. on Software En-
gineering and Knowledge Engineering, Germany (1999)

15.Gresse von Wangenheim, C.: REMEX - A Case-Based Approach for Reuse of Soft-
ware Measurement Experienceware. Technical Report PPGEP-C3002.99E, Graduate
Program in Production Engineering, Federal University of Santa Catarina, Brazil



REMEX - Reusing Software Masurement Experienceware 187

(1999)

16.Gresse, C., Briand, L. C.: Requirements for the Knowledge-Based Support of Soft-
ware Engineering Measurement Plans. Journal of Knowledge-Based Systems, 11
(1998)

17.Gibbs, W.W.: Software"s Chronic Crisis. Scientific American (1994)

18.Gresse von Wangenheim, C.: Knowledge Management in Experimental Software En-
gineering - Create, Renew, Build and Organize Knowledge Assets. Proc. of the 10th
Int. Conf. on Software Engineering and Knowledge Engineering, San Francisco, Cal-
ifornia (1998)

19.Gresse von Wangenheim, C., von Wangenheim, A., Barcia, R. M.: Case-Based Reuse
of Software Engineering Measurement Plans. Proc. of the 10th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, California (1998)

20.Henninger, S.: Capturing and Formalizing Best Practices in a Software Development
Organization. Proc. of the 9th Int. Conf. on Software Engineering and Knowledge En-
gineering, Spain (1997)

21.Kolodner, J. L.: Case-Based Reasoning. Morgan Kaufmann, San Francisco, Califor-
nia (1993)

22.Kitano, H., Shimazu, H.: The Experience-Sharing Architecture. In D. Leake (ed.),
Case-Based Reasoning Experiences: Lessons Learned & Future Directions (1996)

23.Lam, W., Shankararaman, V.: Managing Change During Software Development: An
Incremental, Knowledge-Based Approach. Proc. of the 10th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, California (1998)

24.Manago, M. etal.: Casuel: A Common Case Representation Language. Technical Re-
port Deliverable D1, Esprit Project Inreca P6322 (1994)

25.Maiden, N.A., Sutcliffe, A. G.: Exploiting Reusable Specifications Through Analogy.
Communications of the ACM, 35(4) (1992)

26.Kempter, H., Leippert, F.: Systematische Software-Qualitdtsverbesserung durch
zielorientiertes Messen und Bewerten sowie explizite Wiederverwendung des Soft-
ware-Entwicklungs-Know-how. Proc. of the BMBF-Seminar Software Technology,
Germany (1996)

27.Tautz, C., Althoff, K.-D.: Using Case-based Reasoning for Reusing Software Knowl-
edge. Proc. of the 2nd Int. Conference on Case-Based Reasoning, Springer Verlag
(1997)

28.Tautz, C., Gresse von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. Proc. 5th German Conf. on Knowledge-Based Sys-
tems, Germany (1999).

29.Tautz, C., Gresse von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. Technical IESE-Report 015.98/E, Fraunhofer In-
stitute for Experimental Software Engineering, Kaiserslautern, Germany (1998).

30. Tversky, A.: Features of Similarity. Psychological Review, 84 (1977)

31. Wess, S.: Fallbasiertes Problemlosen in wissensbasierten Systemen zur Entsc-
heidungsunterstiitzung und Diagnostik. Ph.D. Thesis, University of Kaiserslautern,
Germany, infix Verlag (1995)

32.Zand, M., Samadzadeh, M.: Software Reuse: Current Status and Trends. Journal of
Systems and Software, 30 (3) (1995)



A Unified Long-Term Memory System*

James H. Lawton Roy M. Turner & Elise H. Turner
Air Force Research Laboratory Department of Computer Science
Rome Research Site University of Maine
Rome, NY 13441 Orono, ME 04469
lawton@ai.rl.af.mil {rmt,eht} @umcs.maine.edu

Abstract. Memory-based reasoning systems are a class of reasoners that derive
solutions to new problems based on past experiences. Such reasoners use a
long-term memory (LTM) to act as a knowledge base of these past experiences,
which may be represented by such things as specific events (i.e. cases), plans,
scripts, etc. This paper describes a Unified Long-Term Memory (ULTM)
system, which is a dynamic, conceptual memory that was designed to be a
general LTM capable of simultaneously supporting multiple intentional
reasoning systems. Through a unique mixture of content-independent and
domain-specific mechanisms, the ULTM is able to flexibly provide reasoners
accurate and timely storage and recall of episodic memory structures. In
addition, the ULTM provides support for recognizing opportunities to satisfy
suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage
of unexpected events.

1.0 Introduction

Memory-based reasoning systems are a class of reasoners that derive solutions to new
problems based on past experiences. Included in this class are case-based [7,2] and
schema-based [15] reasoners. The purpose of a long-term memory (LTM) in a
memory-based reasoning system is to act as a knowledge base of the past experiences,
which may be represented by such things as specific events (i.e. cases), plans, scripts,
etc. The key functions of an LTM are the storage and retrieval of such
representational structures. The proper performance of both of these functions is based
directly on how the structures are organized in the LTM’s knowledge base, and to
what extent the LTM can match new experiences to existing structures.

The Unified Long-Term Memory (ULTM) system is a dynamic, conceptual
memory [9,5,7] that was designed to be a general LTM capable of simultaneously
supporting multiple intentional reasoning systems. Through a unique mixture of
content-independent and domain-specific mechanisms, the ULTM is able to flexibly
provide reasoners accurate and timely storage and recall of episodic memory
structures. In addition, the ULTM provides support for recognizing opportunities to

* This material is based upon work supported by the National Science Foundateion under Grant No.
BES—9696004.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 188-202, 1999
© Springer-Verlag Berlin Heidelberg 1999



A Unified Long-Term Memory System 189

Reasoner

Reasoner
User

Reasoner Access Fum.uons User Access Functions

Support Routines

Knowledge Base

Domain-
Specific
[Knowledg & R
o

ULTM

Fig. 1 - ULTM Overview

satisfy suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage of
unexpected events.

As shown in Fig. 1 both reasoning systems and the people who develop them (i.e.
"users") access the ULTM’s knowledge base through its interface functions. The
knowledge base is divided into two parts: the domain-specific knowledge, which the
ULTM uses to control its behavior and interaction with the reasoning system(s) using
it, and the memory items themselves. The memory items stored in the ULTM’s
knowledge base represent the various reasoners’ experiences. As with many such
memory systems, the basic structure for storing and organizing items in the memory is
a Memory Organization Packet (MOP) [9]. Unlike most conceptual memories, the
MOPs in the ULTM are generic in nature, meant to be the building blocks that
reasoning systems will use to create their own structures to be stored in and retrieved
from memory. These are the structures the reasoners actually work with, and,
although they will be called different names in the various reasoning systems, we
generically refer to these representations as either a case, if it represents a specific
experience, or a MOP, if it represents a generalization of several cases or other MOPs.
These MOPs and cases are organized into a hierarchy, with more general MOPs
pointing to (loosely speaking), or indexing, more specialized MOPs or cases.

The ULTM has been tested with two particular memory-based reasoners: Orcal
[16,17] and CoCo (a generalization of JUDIS [13]). Orca is a schema-based reasoning
(SBR) system currently being developed as an intelligent control system for
autonomous underwater vehicles (AUVs). SBR systems represent most or all
problem-solving knowledge explicitly as MOP-like declarative knowledge structures
called schemas, which are used to guide all facets of behavior. CoCo is a
conversational controller that is to be part of a natural language interface to a system
of multiple AUVs. CoCo uses knowledge about intentions and conventions in
discourse, represented as Conversation MOPs (or C-MOPs) [4], to organize the
conversation goals of a distributed system.

L fact, much of the core functionality of the ULTM is based on Orca’s schema memory.



190 J.H. Lawton, R.M. Turner and E.H. Turner

Slot Description

predictive A list of those features expected (by the user) to uniquely
identify items in memory.

elaboration-heuristics MOP-specific heuristic functions for index elaboration.

preference-heuristics MOP-specific preference heuristics for MOP selection.

index-generation- MOP-specific heuristic functions for generating indices.

heuristics

suspended-goals Place to attach goals in the hope they will be recalled
opportunistically.

bookkeeping A placeholder for bookkeeping information, such as

recency and frequency statistics, generalization

information, and predictive feature tracking.
exemplars Place to store cases and MOPs that, while they fit the

current MOP, could not be immediately indexed.

Fig. 2 - MOP Slots

This paper describes the unique capabilities of the ULTM. These include the
ability to support multiple reasoning systems simultaneously, the various mechanisms
for providing domain-specific knowledge to the ULTM that is used to “fine-tune” the
retrieval and storage processes for each reasoner, and the support for recognizing
potential opportunities to satisfy suspended goals. It is assumed that the reader is
familiar with conceptual memory and memory-based reasoning. Background
information on these topics can be found in [9,5,7].

2.0 Memory Structures

A key contribution of the ULTM is that it is capable of supporting multiple memory-
based reasoning systems simultaneously. The foundation for this capability lies in the
core memory structures used: the MOPs. The ULTM's MOPs are an extension of
traditional MOPs. They are generic in nature, providing basic support for knowledge
representation, along with extensive support for memory functions. It is expected that
the reasoning systems using the ULTM will base their memory structures (i.e. their
plans, scripts, etc.) on the ULTM structure Mop?, inheriting these core capabilities.

As with other conceptual memories, the memory items in the ULTM's knowledge-
base are organized as a network in which each node is either a MOP or a specific
experience (i.e. a case). Each MOP contains generalized information characterizing
the episodes it indexes, called its norms or content frame, and a set of indices for
those episodes based on their differences. Indices point from an indexing MOP to
either an individual case or another, more specialized MOP (the indexed MOP), thus
forming a MOP/sub-MOP hierarchy [5].

In addition to the actual memory items, the ULTM’s knowledge base contains the
domain-specific knowledge needed for correct memory operation. Much of this
knowledge is in the form of reasoner-specific heuristic functions, which are used to
tailor the ULTM's retrieval and storage mechanisms to fit the particular domain. This
knowledge is associated with the corresponding memory items through slots in the

2 The knowledge representation system used by the ULTM is the frame system FrameWork [14], which is
itself implemented using the Common Lisp Object System (CLOS) [11].



A Unified Long-Term Memory System 191

MOP-1

value-1 value-2 value-3

MOP-2 MOP-3 MOP-4

Fig. 3 — Index Structure

MoP structure, which are listed in Fig. 2. The meaning of each of these slots is
explained throughout the remainder of this paper.

An index (see Fig. 3) in a conceptual memory is a two-tiered structure of features
and values, which are taken from an indexing vocabulary [7]. An indexing
vocabulary is a set of feature names and associated values that are used to construct
the indices in the MOPs. The ULTM’s indexing vocabulary (shown in the example in
Section 4.3) requires the feature names to be slots in the MOPs being used by the
reasoning system. The implementer of the reasoning system (i.e. the “user”) must
specify which slots of the system’s frames should be considered predictive features,
those that will be used to search and generate indices, by listing those slots in each
MOP’s predictive slot. The ULTM’s indexing vocabulary also requires that the
index values be described as properly formatted predicated functions, as used in
[16,17].2

3.0 Memory Retrieval

Memory retrieval occurs when a reasoning system requests the LTM to recall any
memory items matching a given probe, which is a description of a situation made up
of features and associated values. The LTM searches its collection of stored
experiences, recalling those that most closely resemble the probe.

The ULTM uses the standard retrieval process for MOP-based conceptual
memories: directed search [5,7]. Memory retrieval is initiated by a reasoning system
by calling the retrieve function. This function performs a search starting from the
appropriate starting points, or contexts, looking for items in memory that most closely
match the given probe, guided by the predictive features.

Determining which (if any) of the MOPs or cases indexed from a given MOP
match a probe proceeds as follows: for each feature listed in predictive, one or
more values are found either in the probe, working memory (if appropriate), or

3 Using a more principled approach to indexing vocabularies, such as the Universal Index Frame (UIF) for
intentional systems [10], is being considered for future work. But, since the UIF is too general to be used
directly, customizing it was beyond the scope of this project.



192 J.H. Lawton, R.M. Turner and E.H. Turner

through index transformation. These values are then matched against the MOP’s
indices, by determining if they can make index value’s predicate functions true. If
there is a match, the MOP or case pointed to by the matching index is added to a set to
be searched further or (possibly) returned.

3.1 Index Transformation

When a value for a feature cannot be found in the given probe or in working memory,
or when the value does not match any of the known index values, it may be necessary
to infer a value for that feature. Sycara and Navinchandra [12] identify three general
methods to perform this process of index transformation: elaboration, mutation and
abstraction.

Both index elaboration and mutation use heuristics to infer values for features
when none can be found in the given probe or in working memory. Elaboration
heuristics provide more detail, while mutation heuristics make key changes to known
values (e.g. changing sizes, substituting ingredients, etc.) [12]. In the ULTM, we
lump both of these transformation methods together and refer to them simply as
transformation heuristics.

Since index transformation relies heavily on domain-specific knowledge, it is
impossible for any LTM to infer values for every feature. Instead, the ULTM
provides a mechanism for the user to provide this domain-specific knowledge in the
form of heuristic functions associated with MOPs. While the ULTM does provide a
few generic index transformation functions, it is expected that the user will provide
the majority of these heuristics.

Because specifying transformation heuristics may be complicated, the ULTM
actually provides two mechanisms to add them: as rules of a rule-based system or as
regular functions. The rule-based system provides a simple, expressive mechanism
for adding elaboration knowledge that may be generally applicable, especially in
cross-domain applications. However, there may be times when expressing the desired
heuristic information is too difficult using the somewhat restrictive rule syntax, or
when the heuristic knowledge may only be applicable to a given set of MOPs or cases
(those used by a particular reasoner). In these situation the user would use the more
general heuristic function mechanism.

Adding a new transformation rule requires first defining the new rule and then
adding the rule to the ULTM’s index rule-based system (index-rBs). For example, in
the SMART simulator [17] where Orca is tested, it is possible to get values for the
depth and altitude of an AUV directly from working memory. Suppose, however, one
needed to determine how deep the water is at the AUV’s current location, which we
will call the bottom-depth. This value, the sum of the AUV’s depth and altitude, is
not directly available, and thus must be computed. The rule that computes this is*:

Rule index-bottom-depth-rule
If feature is bottom-depth
and ?d = current depth from WM
and ?a = current altitude from WM

4 For the sake of readability, this rule is not given in the actual index-RBS rule syntax.



A Unified Long-Term Memory System 193

Then
Conclude bottom-depth = (?d + ?a)

Similarly, this heuristic could be described in a function, (e.g. index-bottom-
depth-fcn). Once this function is defined, the ULTM would be told when to apply it
by associating the function (through the elaboration-heuristics slot) with the
MOP (or MOPs) for which elaborating the bottom-depth feature may be needed.
What is important is that in either case (rule or function), if the ULTM cannot find a
value for a given predictive feature in the probe or working memory, it will employ
any relevant elaboration heuristics to infer a value. In this way a user can tailor and
augment the ULTM's general directed search mechanism to insure correct behavior.

Index abstraction is another, somewhat more general, form of index
transformation. Instead of using heuristic rules or functions, index abstraction
exploits the structure of knowledge represented in a hierarchical frame system. If a
direct match for a feature value cannot be found, abstraction attempts to find a match
on a similar value (where similar refers to how closely connected the two values are
in the knowledge hierarchy) by traversing up generalization and down specialization
links.

The ULTM does not do retrieval-time index abstraction, however. Rather, when
indices are created, their values are abstracted as much as possible (with respect to the
indexing MOP). This method is more efficient, since abstraction need only be done
once, and it uses the execution context in effect at storage time, which more
accurately describes the situation under which the MOP or case is being stored. This
storage-time index abstraction is discussed in more detail in Section 4.1.

3.2 Preference Heuristics

The search of memory described above will produce a set of MOPs and/or cases
(which we will collectively refer to as MOPs) that have matched the various features
in the given probe. However, the retrieval should only return a limited number of
MOPs: those that match “best.” The problem of choosing the best matching MOPs,
known as the selection problem [6], is handled by the ULTM through the use of
preference heuristics [6]. These heuristics are functions that rank the set of MOPs
according to various criteria.

The ULTM provides several of the more common heuristic functions, which are
based on those used in PARADYME [6]. These functions rank the retrieved cases
based upon the following criteria: how well they (i.e. the retrieved cases) relate to the
reasoner's current goals, how salient and specific the features of the retrieved cases are
with respect to the given probe, and how frequently and recently the retrieved cases
were previously recalled. Each of the common heuristic functions provided by the
ULTM is given a particular case and a list of other cases to rank it against. It returns
a numeric score -- either a bonus (value > 0), penalty (value < 0), or neutral (0) value -
- which is added to the cases’ composite score. The cases are ranked by highest
composite score after applying all of the relevant preference heuristics.

While the set of preference heuristic functions provided in the ULTM should be
generally applicable to many intentional reasoning systems, it is likely that the
reasoners using the ULTM will also need to apply some domain-specific knowledge



194 J.H. Lawton, R.M. Turner and E.H. Turner

to the ranking of retrieved cases. To support this, a mechanism is provided to allow
the user to specify their own MOP-specific heuristics, by associating new preference
heuristic functions with relevant MOPs through their preference-heuristics slot.
The ULTM automatically applies these additional functions whenever it retrieves
MOPs or cases that have such functions associated with them, adding their returned
values to the composite score.

3.3 Predictive Feature Tracking

The ULTM provides limited support for predictive feature tracking, which refers to
the recording of how often each predictive feature leads to a reminding. This is done
by keeping a record of feature references, which are how often each of a MOP’s
predictive features is used, as well as MOP references, which are how often a MOP
has been searched. This information is automatically associated with the MOPs
(through their bookkeeping slot), and is retrieved with a set of accessor functions.

One should note that this form of feature tracking is very limited. It does not keep
track of which features actually contributed to determining which MOPs were
actually returned by a memory search. Rather, it merely tracks which features led to
possible choices, at the individual MOP level. To truly track the predictiveness of a
given feature, the ULTM’s mechanism would need to be extended with more
sophisticated machine learning techniques.

Also, the ULTM does not currently do anything with this tracking information.
Rather, it is provided for use by reasoning systems in such things as preference
heuristics and perhaps feature “forgetting.” For example, one could create a
preference heuristic that gives a bonus to MOPs or cases that were arrived at through
features with a high feature-reference to mop-reference ratio. Similarly, one could
remove (forget) features from a MOP’s predictive list if that ratio drops below a
certain threshold.

4.0 Memory Storage

As new events are experienced, the reasoning process may want to store them in
memory so that they may be later retrieved. The same search process is used to find a
place to store a new MOP or case in memory as would be used to retrieve it. That is,
using the case as a probe, its features are used to first select an initial context, and
then to traverse indices matching those features. At each MOP encountered during the
search, there are four possibilities that may occur for each of the MOP’s predictive
features that the probe has a value for (modified from [5]):

1) Nothing else is indexed in the MOP by that feature.

2) One or more other MOPs are indexed in the MOP by that feature,
but with values that differ from the probe’s.

3) One or more other MOPs are indexed by that feature/value pair.
4) The feature/value pair is one of the MOP’s norms.



A Unified Long-Term Memory System 195

For the first of these possibilities, we know that the probe (the MOP or case being
stored) contains a value for a predictive feature that is not currently being used in an
index. As such, we could just generate an index using that feature/value pair. But in
the ULTM, to be consistent with the retrieval process, as well as to keep the number
of indices from growing out of control, we do not. Instead, we collect all of these
"leaf" MOPs found during the search of the knowledge base and, after the search has
completed, pass them through the preference heuristics. For each MOP selected by the
preference heuristics, a set of indices is generated by determining the differences
between it and the probe. MOP differences are determined by comparing the values
for each predictive feature in the indexing MOP against values for those features in
the probe (the indexed MOP). Values that differ are used to generate indices. The
index generation process is discussed in Section 4.1. It may also be necessary to
update the norms of any MOP we add indices to, which is done through the process of
MOP generalization, described in Section 4.2.

For the second possibility, we could treat the MOP currently being searched
similarly to how it is treated in the first possibility: as a leaf node. But, since it is
actually an internal node, we know that it would be unlikely to be selected by the
preference heuristics (because of the specificity preference). Thus, in the ULTM we
have decided to directly index the probe under the current MOP when this situation
occurs. We know the probe has a value for a predictive feature that is not currently
being used in an index, so we can simply generate an index using this feature/value
pair (using the index generation process described in Section 4.1). As before, it may
be necessary to update the indexing MOP’s norm (Section 4.2). It should be noted
that for this possibility indices are generated during the search process.

In the third possibility, there are two situations we need to contend with. First, if
the probe is more specialized than the sub-MOP that was found indexed under the
current MOP, then the search simply continues from the indexed sub-MOP.
Otherwise, the probe is indexed under the current MOP, using the same difference
method described for possibility 1 above. Unlike possibility 1, however, these indices
are generated during the search.

Finally, for the fourth possibility, no indices are generated for the given
feature/value pair. So that it won’t be lost, however, if the probe cannot be indexed
by any predictive feature, it is added to the MOP’s exemplars list. The MOPs in
this list, along with any indexed MOPs, are used to update a MOP’s norms through
the generalization process (Section 4.2).

4.1 Index Generation

Once a location for the MOP or case being stored is found, one or more indices must
be generated for it. The ULTM uses the same mechanism for generating new indices,
regardless of which possibility from Section 4.0 applies. The index generation
process, shown in

Fig. 4, is given a feature and a value, which we will call the probe filler, that was
found for that feature either in the probe, in working memory, or through
transformation. The job of the index generation mechanism is to first abstract the
probe filler as much as possible (with respect to the corresponding filler in the



196 J.H. Lawton, R.M. Turner and E.H. Turner

indexing MOP, called the MOP filler) and then convert it into a properly formatted
index value (predicate function). In keeping with its overall philosophy, the ULTM
provides a set of general mechanisms which can be augmented with domain-specific
knowledge to accomplish this task.

The probe filler is first minimally abstracted, which converts certain “raw” values
(e.g. numbers and instance objects) into more standard values used by the ULTM.
Next, any slot-specific abstraction heuristics are applied to the probe filler. These
functions allow the user to abstract any value in non-standard (i.e. domain-specific)
ways, thus extending the abstraction mechanism. By using such functions, indices
can be generated that match less specific probes. The ULTM first looks for slot-
specific abstraction heuristics associated with the probe, and then with the indexing
MOP.

For example, suppose we are indexing new-MoP under old-Mop, the feature we are
indexing on is depth, and we are given a probe filler of 50. Minimal abstraction
would convert 50 into the range: (range (low 50) (high 50)). Suppose further that
the depth slot of new-MoP has a slot-specific abstraction heuristic function associated
with it that abstracts a range representing a depth by subtracting 10 from the low
value and adding 10 to the high value, thus “widening” the range. The new value for
depth would thus be the range: (range (low 40) (high 60)).

After applying any slot-specific abstraction heuristics, the highest abstraction of the
probe filler (with respect to the corresponding MOP filler) is found. This primarily
applies to values for which an abstraction hierarchy can be used (e.g. frames). If the
probe filler is a descendent of the MOP filler, it is abstracted as far as possible up the
hierarchy such that it is still a descendent of the MOP filler. If the probe filler is not a
descendent of the MOP filler, but they do have a common ancestor, then the probe
filler is abstracted up to the common ancestor. The MOP filler will be updated later
during MOP generalization (Section 4.2). If the fillers are unrelated, no further
abstraction is performed.

After the probe filler has been abstracted as much as possible, it is used to generate
index values (i.e. properly formed predicate functions). While a default predicate
form is provided by the ULTM (a general pattern matching predicate), the ULTM
provides a mechanism to apply MOP-specific heuristic functions to the abstracted

minimally abstract > apply slot-specific > fully abstract filler > generate index-value

probe filler abstraction heuristics predicate functions
verify index-value | fail P | discard index-value
predicate functions predicate function
pass
add index

check for number of
collisions > threshhold

yes create new - index colliding MOPs
generalized MOP under new MOP

Fig. 4 - Index Generation Process



A Unified Long-Term Memory System 197

(indices from other MOPs)

P-SAMPLE

goal: a-sample

depth: number
resource-req: resources

(isa ?feature a-take-sample (isa ?feature a-take-sample)

P-TAKE-SALINITY-SAMPLE P-TAKE-TEMP-SAMPLE
goal: a-take-salinity-sample goal: a-take-temp-sample
depth: 50 depth: 75
resource-req: salinity-sensors resource-req: temp-sensors

Fig. 5 - Initial Memory Contents

filler to produce index values. These heuristics are associated with MOPs through the
index-generation-functions slot.

It is possible to generate an index that is too abstract, especially using the default
mechanisms. To detect this, we verify the generated index functions by seeing if they
match the indexing MOP. If they do, the index function is discarded. If not, the
index function next must be tested to see if it causes a collision with any of the
indexing MOP’s existing indices. Two indices collide if their index values match and
they point to different sub-MOPs. An index is simply added to the indexing MOP if it
does not cause a collision.

If the index does cause a collision, but the number of colliding indices is below a
certain threshold value, the index is also just added to the indexing MOP as usual.
When, however, the number of colliding indices exceeds the threshold, a new MOP is
created as a generalization of the colliding MOPs. The newly created MOP is
indexed under the current indexing MOP, while the colliding MOPs are indexed
under the new MOP by their differences.

4.2 MOP generalization

Generalization [5,7] is the process by which the memory system updates the content
frames of MOPs. [nitial generalization occurs when a new MOP is formed because
of a collision. In this situation, the generalization mechanism is given a new MOP
and several sub-MOPs. It must fill the content frame of the new MOP with the
features common to the sub-MOPs. That is, for each feature the sub-MOPs have in
common, it must find the central tendency of the fillers for that feature in all of the
sub-MOPs. The central tendency is a sort of “average” value of the fillers taken
together, and may be defined differently for each type of filler.



198 J.H. Lawton, R.M. Turner and E.H. Turner

o

o
8 g
a-sample resqurces
[
o® 00°
(other goals) a-take-sample (other resources) sensors
a-take-salinity-sample a-take-soil-sample a-take-temp-sample salinity-sensor ~soil-sensor  temp-sensor

Fig. 6 - Abstraction Hierarchy

Generalization updates are made after the number of new sub-MOPs (those
indexed under a given MOP since the last generalization) exceeds a threshold value.
The same central tendency mechanism is used to update a MOP’s feature values as
was used when it was initially generalized.

To compute the central tendency of a collection of input values, the ULTM first
determines the dominant (i.e. most commonly occurring) type of the values. Based on
the dominant type, it then calls the appropriate specialized procedure. Currently,
specialized procedures are defined for symbols, sets, numbers (including ranges), lists
and frames. Users may create other specialized central tendency procedures to
support domain-specific filler types.

4.3 Storage Example

This section presents an example of the storage process in detail. To start, suppose
our memory contains, among other things, plans for different ocean sampling
missions (see Fig. 5)°. We wish to add p-TAKE-SOIL-SAMPLE, a plan that describes
how to perform a soil sampling mission. For the sake of this example, we will assume
that p-samMpPLE’s only predictive feature is coar, that our knowledge base contains the
abstraction hierarchy (fragments) of goals and resources as shown in Fig. 6, and that
the ULTM’s index collision threshold is set to 3.

We will assume the search arrives at P-saMpLE. Since the probe (P-TAKE-SOIL-
SAMPLE) is not a specialization of the MOPs already indexed under p-SaMPLE (p-
TAKE-SALINITY-SAMPLE and P-TAKE-TEMP-SAMPLE), it is determined that possibility 1
from Section 4.0 applies. p-TAKE-SOIL-SAMPLE is thus indexed under p-SAMPLE using
the difference procedure from Section 4.0, which determines that the two plans do
differ on the predictive feature coar.

The probe has a filler of A-TaxE-SALINITY-SaAMPLE for the feature coar. Minimal
abstraction does not change this value, and we will assume that there are no slot-
specific heuristics associated with the coaL slots of either P-TAKE-SALINITY-SAMPLE
or P-SAMPLE. We next abstract A-TAKE-SALINITY-SAMPLE up the abstraction hierarchy
(Fig. 6) to A-TakE-saMPLE. The ULTM’s default index-generation heuristic is used to
generate the index value function (isa ?feature A-TAKE-SAMPLE). While this
function will verify, it causes collisions with the existing indices for both p-TaAKE-
SALINITY-SAMPLE and P-TAKE-TEMP-SAMPLE. Since the collision threshold (3) has

5 We omit many of the details of the various MOPs, focusing on only those features and values that are
relevant to indexing in this specific example.



A Unified Long-Term Memory System 199

(indices from other MOPs)

P-SAMPLE

oal: a-sample
%epth: number
resource-req: resources

goal

(isa ?feature a-take-sample)

P- TAKE-SAMPLE

§Lﬂ a-take-samp
h: (range (low 64) (high 86))
resource-req; SEnsors

oal
(isa ?feamritake-sahmty-sample) (matches ?feature a-take-soil-sample)
P-TAKE-SALINITY-SAMPLE P-TAKE-TEMP-SAMPLE P-TAKE-SOIL-SAMPLE
goal: a-take-salinity-sample goal: a-take-temp-sample goal: a-take-soil-sample
depth: 50 depth: 75 depth: 100 )
resource-req: salinity-sensors | | resource-req: temp-sensors | | resource-reg: soil-sensors

Fig. 7 - Final Memory Contents

been met, we must use our collision handling procedure, which causes a new MOP
(which we’ll call p-TaKE-SAMPLE) to be generated and initially generalized. Initial
generalization fills P-TAKE-SAMPLE’S GOAL slot with A-TAKE-SAMPLE, its DEPTH slot
with (range (low 64) (high 86))¢, and its RESOURCE-REQ slot with sensors. The
final structure of memory is shown in Fig. 7.

5.0 Support for Opportunism

When using reasoning systems that utilize a conceptual memory, goals that cannot be
immediately satisfied can be suspended and stored in memory, indexed by the
blocked goals along with the features that are blocking their progress, but which are
not currently available. This process is referred to as predictive encoding [8]. These
suspended goals can then presumably be found by the regular search mechanism the
memory system uses whenever a reasoning system requests a retrieval with an
appropriate probe. This approach is referred to as opportunistic memory [3], and is
supported by the ULTM.

6 Computed as the mean of 50, 75, and 100 + (0.5 * standard deviation), which is 75 + 11.



200 J.H. Lawton, R.M. Turner and E.H. Turner

5.1 ULTM Opportunism Support

There are two sides to the opportunity recognition problem: the reasoning system’s
and the memory system’s. First, the reasoning system must be able to identify what
circumstances are blocking a goal’s progress. Then, using the goal and the
circumstances impeding it to form a probe, the memory system can use its regular
search mechanisms to find places to attach the suspended goal. Any time in the future
the memory system retrieves a MOP or case with a suspended goal attached to it, it
needs to notify the reasoner, which must then determine what to do with that goal.

To provide support for opportunism, the ULTM’s Mop structures have a slot called
suspended-goals, which is used by the memory system to associate suspended goals
with the MOPs. Further, two functions are provided to allow reasoning systems to
suspend and remove goals in memory: suspend-goal-in-ltm and unsuspend-goal-
in-ltm.

The function suspend-goal-in-1ltm searches all memory contexts (i.e. all starting
points), retrieving any MOP the goal could be associated with. All contexts are
searched to increase the chances that a cross-domain opportunity will be recognized.
The goal, along with a descriptor of the reasoning system suspending the goal, is
associated with each MOP’s suspended-goals slot, while the goal maintains a list of
MOPs it is suspended on. The latter list is used by the unsuspend-goal-in-1tm
function to simplify finding everywhere the goal was attached.

Any time the ULTM finds a suspended goal, it must notify one or more reasoning
systems. It uses both an asynchronous and a synchronous mechanism for this task.
The synchronous method is simple: in addition to the list of MOPs that were found to
match the probe, the retrieve function also returns a list of suspended goals that are
attached to those MOPs.

The synchronous mechanism allows the reasoning system making a retrieval
request to detect when a suspended goal has been found. However, that reasoning
system may not be the one that originally suspended the goal. The asynchronous
notification mechanism is able to notify the reasoner that suspended the goal by
calling a handler function registered by the reasoner. These handlers are user-defined,
and are expected to send a message to the registered reasoner, allowing it to deal with
the suspended goal asynchronously.

5.2 Beyond Suspended Goals

We, along with almost all other researchers working in the field of opportunistic
reasoning, have focused almost exclusively on the recognition of opportunities to
satisfy suspended goals. This is for a good reason: goals are fundamental to
intentional reasoning systems. In fact, Francis [1] claims that opportunities must be
relevant to some goal held by the reasoning system. In spite of this contention, in this
section we consider predictively encoding in memory things other than goals that
would lead to opportunity recognition.

Stepping back for a moment, we note that the key functionality of the predictive
encoding mechanism is not that it can support the recall of suspended goals, but rather
that it allows the reasoning system to be reminded of something, anything, that has



A Unified Long-Term Memory System 201

been previously considered (reasoned about). Thus we can conceivably store
anything in memory that will cause the reasoner to interrupt its current activity and
reconsider whatever it was reasoning about when the item was stored.

For example, in the near future we will be undertaking a study into utilizing
opportunistic memory to recognize when a group of AUVs should restructure their
organization (the re-organization problem). Using such an approach, a reasoner
would select an initial organization for a group of AUVs based upon the given
mission and the currently available resources (e.g. the number of AUVs and the
equipment they carry). Suppose, however, that during the process of deciding on the
initial organization, another organization (represented by some structure which we
will call org-1) is considered that would be superior, but cannot be selected because
some resources are missing. org-1 could be predictively encoded in memory, using
the missing resources as recall cues. Should those resources later become available,
org-1 would presumably be recalled by the memory system, which would notify the
reasoner.

The problem is that the reasoner must then determine what to do with this
reminding. When the item suspended in memory was a goal, this was fairly easy: just
recheck the conditions that caused the goal to be suspended, and reactivate it if they
are now met. We can do this because our reasoning systems already have the
infrastructure for dealing with goals. Reasoners would have to be modified to handle
remindings of other types. At this point, the extent of those modifications is a
research issue to be dealt with in the near future. It should be noted, though, that there
is nothing in the ULTM’s support for opportunism, as described in Section 5.1, that
precludes using it for suspending things other than goals.

6.0 Summary

The ULTM is a dynamic conceptual memory system that is capable of supporting
multiple reasoning systems simultaneously. It uses established structures and
procedures for all primary memory functions. Through a unique mixture of content
independent and domain specific mechanisms, it is able to provide reasoners accurate
and timely storage and recall of episodic memory structures in a flexible and robust
manner. Additionally, the ULTM provides support for recognizing opportunities to
satisfy suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage of
unexpected events.

References

1. Francis, A.G. Jr. (1997). “Memory-Based Opportunistic Reasoning”, Ph.D. Thesis
proposal, Georgia Institute of Technology.

2. Hammond, K. (1990). "Case-Based Planning: A Framework for Planning from
Experience", The Journal of Cognitive Science, 14(3).



202

11.

12.

13.

14.

15.

16.

17.

18.

J.H. Lawton, R.M. Turner and E.H. Turner

Hammond, K. (1993). “Opportunistic Memory”, The Journal of Machine Learning,
10(3).

Kellermann, K., Broetzmann, S., Lim, T.-S., and Kitao, K. (1989). “The conversation
mop: Scenes in the steam of discourse”, Discourse Processes, 12(1):27-61.

Kolodner, J. (1981). “Organization and Retrieval in a Conceptual Memory for Events",
Proceedings of the Seventh International Joint Conference on Artificial Intelligence.
Kolodner, J. (1989). “Selecting the Best Case for a Case-Based Reasoner”, Proceedings of
the Eleventh Conference of the Cognitive Science Society.

Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufman, San Mateo.

Patalano, A., Seifert, C., and Hammond, K. (1991). “Predictive Encodings: Planning for
Opportunities”, Proceedings of the Fifteenth Conference of the Cognitive Science Society.
Schank, R. (1982). Dynamic Memory, Cambridge University Press, New York.

Schank, R. and Osgood, R. (1990). “A content theory of memory indexing”,
Northwestern University, Institute for Learning Sciences Technical Report no. 2.

Steele, G. (1990). Common Lisp: The Language (Second Edition), Digital Press, Bedford,
MA.

Sycara, K. and Navinchandra, D. (1991). “Index Transformation and Generation for Case
Retrieval”, In Proceedings of the 1991 Case-Based Reasoning Workshop (DARPA),
Bareiss, E. (ed.), Morgan Kaufman, San Mateo, CA.

Turner, E. (1990). “Integrating Intention and Convention To Organize Problem Solving
Dialogues”, Ph.D. Dissertation, Georgia Institute of Technology technical report GIT-ICS-
90/02.

Turner, R. (1987). “Issues in the design of advisory systems: The consumer-advisor
system”, in Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, Detroit, MI.

Turner, R. (1994). Adaptive Reasoning for Real-World Problems: A Schema-Based
Approach, Lawrence Erlbaum Associates, Hillsdale, NJ.

Turner, R. (1995a). “Context-Sensitive, Adaptive Reasoning for Intelligent AUV Control:
Orca Project Update”, In Proceedings of the 9th International Symposium on Unmanned
Untethered Submersible Technology (AUV'95), Durham, New Hampshire.

Turner, R. (1995b). “Intelligent Control of Autonomous Underwater Vehicles: The Orca
Project”, Roy M. Turner. In Proceedings of the 1995 IEEE Conference on Systems, Man,
and Cybernetics, Vancouver, BC, Canada.

Turner, R. (1997). “Orca Documentation (for Version 2.1)”, CDPS Research Group in-
house report, University of Maine. http://cdps.umcs.maine.edu/Docs/orca-2.0/



Combining CBR with Interactive Knowledge
Acquisition, Manipulation and Reuse*

David B. Leake and David C. Wilson

Computer Science Department
Indiana University, Lindley Hall
150 S. Woodlawn Ave
Bloomington, IN 47405, U.S.A.

{leake,davwils}@cs.indiana.edu

Abstract. Because of the complexity of aerospace design, intelligent
systems to support and amplify the abilities of aerospace designers have
the potential for profound impact on the speed and reliability of de-
sign generation. This article describes a framework for supporting the
interactive capture of design cases and their application to new prob-
lems, illustrating the approach with a discussion of its use in a support
system for aircraft design. The project integrates case-based reasoning
with interactive tools for capturing expert design knowledge through
“concept mapping.” Concept mapping tools provide crucial functions
for interactively generating and examining design cases and navigating
their hierarchical structure, while CBR techniques provide capabilities
to facilitate retrieval and to aid interactive adaptation of designs. The
project aims simultaneously to develop a useful design aid and more gen-
erally to develop practical interactive approaches to fundamental issues
of case acquisition and representation, context-sensitive retrieval, and
case adaptation.

1 Overview

Aerospace design is a complex process that requires designers to address compli-
cated issues involving numerous specialized areas of expertise. No single designer
can be an expert in every relevant area, and becoming proficient may require
years of experience. Consequently, intelligent systems to support and amplify
the abilities of human designers have the potential for profound impact on the
speed and reliability of design generation. An appealing approach, which has
been applied in systems such as (Domeshek et al., 1994), is to augment the de-
signers’ own design experiences with relevant information from prior designs: to
provide support with case-based reasoning.

Ideally, case-based design support tools will include three related capabilities
to aid design reuse: capture of and access to specific design experiences, support

* This research is supported in part by NASA under award No NCC 2-1035. The
authors gratefully acknowledge support from Northwestern University while on leave
and many contributions by Alberto Canas, Mary Livingston, and James Newkirk.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 203-217, 1999
© Springer-Verlag Berlin Heidelberg 1999



204 D.B. Leake and D.C. Wilson

for new designers as they try to understand the lessons of those prior experiences;
and support for adapting prior designs to fit new design goals. For practical ap-
plication, the tools must not depend on extensive domain knowledge; for designer
acceptance, they must leave the designer in control. This article describes prin-
ciples for addressing these goals and their application in the case-based design
aid DRAMA (Design Retrieval and Adaptation Mechanisms for Aerospace).

The DRAMA project integrates case-based reasoning with interactive tools
for capturing expert design knowledge through concept mapping (Novak and
Gowin, 1984), with the goal of leveraging off the strengths of both approaches.
We are applying concept mapping tools from the Concept Mapping group at
the University of West Florida, led by Dr. Alberto Cafias, to provide an interac-
tive interface and crucial functions for generating and examining design cases,
as well as navigating their hierarchical structure. CBR techniques provide the
capabilities to facilitate retrieval and to aid interactive adaptation of designs.
The implemented DRAMA system supports browsing of prior design knowledge
and proactively provides designers with concrete examples of designs and design
adaptations from similar prior problems. At the same time, it unobtrusively
acquires new examples from the user’s interactive design process.

The project develops “knowledge-light” (Wilke et al., 1997) interactive ap-
proaches to addressing fundamental CBR issues of case acquisition, case adap-
tation, and context-sensitive retrieval. The system demonstrates that fully inte-
grating a CBR system into the design environment enables the system to dynam-
ically adjust the relevance criteria used to retrieve prior experiences, exploiting
task-based information without requiring the user to provide it explicitly. In
addition, the system illustrates the benefits of interactively capturing and ma-
nipulating cases at a “middle level” between traditional highly structured cases
with fixed representations, and unstructured textual cases.

The system differs from previous approaches in allowing multiple case rep-
resentations that users themselves can develop and revise. In interactive CBR
systems, a user’s ability to understand and apply a prior case may depend not
only on its content, but on how its representation matches the user’s conceptual-
ization of the domain: A seemingly more distant case may be more useful to the
user if it is more understandable. This raises interesting research questions about
supporting user-defined representations and reconciling the divergent benefits of
flexibility, customization, and case standardization as the case library grows.

2 The Task Domain

A significant concern at NASA is “knowledge loss:” that critical aerospace de-
sign expertise is the domain of a few experts and will be lost when they retire.
This has given rise to knowledge preservation efforts, a number of which have
employed CBR. For example, the RECALL tool at the NASA Goddard Space
Flight Center was developed to store and access textual reports of important
lessons (Bagg, 1997). However, different experts may conceptualize designs very
differently, making it hard for others to interpret descriptions of prior designs.



Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse 205

To make records more comprehensible, new projects have investigated the
use of concept mapping. The goal of concept mapping for design is to capture
not only important features of the designs themselves, but also the designers’
conceptualizations of those designs—the relationships and rationale underlying
their components. This raises the question of how to organize and access the
knowledge that concept maps capture, and how to facilitate its reuse. Our frame-
work uses interactive CBR techniques to support retrieval and reuse of designs
represented as concept maps.

3 Tenets of the Approach

Our tenets shaping the DRAMA framework are:

— The system should leverage a designer’s knowledge, rather than
attempting to replace it.
This requires interactivity and support rather than autonomous design gen-
eration. All parts of the process must accept user control.

— The system should support multiple conceptualizations of the de-
sign space.
The system must both allow multiple (potentially idiosyncratic) representa-
tions and support standardization when that does not impose a burden.

— Support information should automatically be focused on the cur-
rent task.
This requires that the system monitor the task context in order to anticipate
information needs and to determine how to fulfill them.

— Learning must play a central role, both at the design level and at
the level of design manipulation.
This requires the capability to capture and reuse cases both for designs and
design processes.

All the examples in this paper focus on cases containing designs, but the frame-
work could be applied to representations of processes as well. Core system meth-
ods provide a domain-independent framework for interactive capture, graphical
manipulation, and experience-supported reuse of design knowledge.

4 Background

Case-based Design Support: Case-based reasoning is widely used in design-
aiding systems. The Clavier system (Hinkle and Toomey, 1995), for example, is
a case-based advisory system put into production use to suggest and critique
designs of autoclave layouts at Lockheed. Research systems address support for
tasks such as architectural design (Goel et al., 1991; Hua and Faltings, 1993;
Gebhardt et al., 1997; de Silva Garza and Maher, 1996; Smith et al., 1995),
circuit design (Vollrath, 1998), and conceptual design of aircraft subsystems
(Domeshek et al., 1994). Many of these systems display impressive capabilities,



206 D.B. Leake and D.C. Wilson

but at the expense of considerable development effort to tailor them to domain-
specific needs. We instead provide a framework for building up case knowledge
and indexing criteria. Specific case representations, rather than being predefined,
are developed incrementally through interactions with users as the system is
applied. Users can easily augment and adjust the case representation as needed,
with simple analogical mapping processes allowing disparate types of cases to
be retrieved.

Concept Mapping: Concept mapping is a process to reveal an individual’s
internal cognitive structures by developing external representations of concepts
and propositions. A concept map (CMap) is a two-dimensional representation of
a set of concepts constructed so that the interrelationships among them are evi-
dent. Individual concepts are linked to related concepts through one or two-way
links, each link associated with a label/proposition describing the relationship.
The vertical axis generally expresses a hierarchical framework for the concepts;
for example, a concept map of design problems might represent a hierarchy of
abstract and more specific problems. However, we stress that there is no require-
ment that they represent particular relationships; they are compatible with any
structured representation.

Semantic networks are a form of concept map, but concept maps are not con-
strained by syntactic rules and have no associated semantics; they are normally
seen as a medium for informally “sketching out” conceptual structures. The vi-
sual presentation of information in concept maps provides a natural starting
point for organizing and accessing information in multiple forms (e.g., images
or video clips), which also are contained in the CMap. For example, Figure 1
shows a sample CMap describing the basic structure of the Boeing 777 aircraft,
annotated with an associated image and diagram. This CMap is displayed by
the CMap tools described in a later section.

Concept mapping has been used in educational contexts to help students clar-
ify and compare their understanding. A recent effort integrated concept mapping
into a set of knowledge construction and sharing tools linking over a thousand
schools in Latin America (Caas et al., 1995). It is currently being used to
capture a NASA Mars expert’s knowledge in CMaps organizing multimedia re-
sources, to be made available to the public on the World Wide Web, and for
knowledge construction and sharing among astrobiologists. The application of
concept mapping to design is intended both to help an expert clarify his or her
own conceptualizations and to make those conceptualizations available for ex-
amination by the expert or others (e.g., members of a design team seeking to
understand the expert’s design to evaluate or modify it, or novices seeking to
increase their own understanding). Through differences in maps that different
designers generate for the same concepts (whether in the features and relation-
ships they include, or in the level of granularity they use), concept mapping can
illuminate their different perspectives. For example, a designer specializing in
airflow might include features such as wing or surface shapes and operational



Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse 207

constraints that dictate them (e.g., the need for short-field landings), while an
avionics designer would focus on aspects such as aircraft control systems.

E‘:Boeing T77-200 Design - AncraftDesign - Local - CMap
File  Edit

Boeing
TT7-200

has-part
Conventional
hag-part Tail Layout

Retractable Landing
Gear Layout

has-part

Fly-by-ire
Flight Deck has-part

has-part has-par File
P .lgggg]}ni? = ||
Rolls—Royce_ Rolls-R 7S :
Trent 800 Enging] |Trent 800 | 25m) T

0| Roll.. =] 0 |'|

4]
Q& ~]

Fig. 1. Sample screen images from the CMap Editor.

Manual procedures have been developed to aid the initial generation of
CMaps (e.g., Jonassen et al., 1993, pp. 138-139; Novak and Gowin, 1984, pp. 24—
36), and computerized tools have been developed to facilitate this process and
to capture its results. The CMap tools, developed at the Institute for Human
and Machine Cognition of the University of West Florida, support interactive
definition and arrangement of initial maps, and manual browsing through con-
cept map-based multimedia environments and case libraries.! The system also
allows concept maps to be defined hierarchically, so that the nodes of any map
can be associated with complete maps describing them at a finer-grained level.

Motivations for Integrating CMaps and CBR: The integration of CBR
methods with interactive CMap tools provides benefits for both. Existing CMap
tools provide an interactive medium for representing and examining designs,
but their framework does not provide facilities for retrieval of relevant CMaps.
Likewise, although the tools provide capabilities for interactively defining new

! The CMap tools are publicly available from http://cmap.coginst.uwf.edu/.



208 D.B. Leake and D.C. Wilson

CMaps and manipulating their structure by adding, deleting, or substituting
components, they provide no support for the decision-making required by that
adaptation process. Consequently, their usefulness can be extended by the addi-
tion of automatic aids for retrieving relevant CMaps, for navigating CMaps and
locating relevant information, and for reusing prior CMaps.

Conversely, case-based reasoning can leverage off the interactive case defi-
nition and revision capabilities of the CMap tools. The CMap tools provide a
convenient method for entering case information in an intermediate form be-
tween textual descriptions (which are easy to generate but hard for systems to
reason about) and rich structured representations (which are hard to generate
but support complex reasoning). In our domain, the push to use concept map-
ping to understand the design process means that CMap cases will be available
at low cost as “seed cases” for the CBR system. In addition, the CMap tools al-
ready provide crucial functions for interactively generating and examining these
cases and navigating their hierarchical structure.

5 The DRAMA System

In the DRAMA system, concept maps are used to organize acquired aerospace
design cases in a form that can be browsed by other designers in order to lever-
age their own expertise by profiting from stored prior experiences. The system
uses concept mapping tools as a method for initial capture, manual browsing,
and manual modification of design cases represented as concept maps. It uses
interactive CBR techniques to retrieve relevant prior cases and to retrieve alter-
natives to support adaptation. In addition, it uses CBR to manage and present
cases that record the rationale for particular decisions and cases that suggest
adaptations of designs. The following sections discuss the main features of the
system.

5.1 Using CMaps to organize and represent design information

In DRAMA, CMaps represent two types of information. First, they represent
user-definable/modifiable hierarchies of aircraft and part types. This information
is used to organize specific design cases and to guide similarity assessment during
case retrieval. Such organization provides the designer with browsable hierarchies
of aircraft (e.g. dividing military and commercial aircraft), aircraft components
(e.g. specific wings, engines, fuel tanks), and component configurations (e.g. fuel
tanks inside or outside the aircraft) for reference during the design process.

Second, CMaps represent specific information about particular designs such
as their components and component relationships. Each component is repre-
sented as a CMap, enabling interactive viewing and manipulation of hierarchical
designs at different levels of granularity.



Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse 209

5.2 How the system supports design

To illustrate the design process, the following sections present a simple example
involving the coarse-grained configuration of an airliner after an initial set of
“seed case” designs has been provided to the system, along with hierarchies of
aircraft types organizing those designs. The steps described include retrieval of
a similar prior design as a starting point, retrieval support for adaptation and
refinement of system suggestions, and the capture of a new adaptation for future
use. The concept maps used in the following figures are simple examples; those
used by expert designers would include finer-grained technical details at lower
levels of the hierarchy. NASA domain experts are currently developing richer
concept maps to explore the framework as applied to a design initiative for
reusable spacecraft.

Retrieving a relevant prior design: The case-based design process begins by
selecting a similar example as a starting point. In addition, or if no sufficiently
similar prior example exists, the designer is free at any point to develop designs
from scratch and add them to the CMap library for future use.

The designer may choose either of two interfaces for the initial search pro-
cess, one non-interactive and the other interactive. The first (non-interactive)
option, the “Design Finder,” is a simple and traditional CBR retrieval inter-
face. The interface presents selection boxes for choosing the desired features of
a design from a pre-defined set of standard attribute types (e.g., aircraft type,
manufacturer, model number, etc.). Currently the system uses a standard pre-
defined feature set, but features could also be derived automatically from the
set of designs. Given the list of features, the system performs nearest-neighbor
retrieval, according to a predefined feature weighting scheme, to retrieve refer-
ences to potentially-relevant CMaps. These are presented to the designer along
with a match score. The designer can browse and select from the alternatives to
bring up the CMap for a particular design.

The second interface allows the designer to interactively navigate the hi-
erarchy of concept maps, exploring alternative “views” of aircraft and aircraft
component types. In our sample scenario, the designer is considering alternatives
for increasing the fuel efficiency of a large airliner. The first step is to establish a
context for the design by locating the CMap node for an aircraft similar to the
one envisioned; the designer then chooses to consider possible engine types. The
designer could also simply navigate to and browse specific engines, but in that
case less contextual information would be available to aid in adaptations.

The designer first navigates through the types of aircraft to select an aircraft,
and pulls up the top-level concept map for its design. The designer then selects
(by clicking on the concept map) the particular part to adapt. In this example,
the selection is the engine. If no CMap is already present for the component
selected (e.g., the designer wishes to fill in a sketchy design by specifying its
engine), the designer can use the interactive CMap tools to create a new CMap
from scratch, or can browse the CMaps for designs, import a design, and then
adapt as desired. If a CMap is already present for the part and it has been



210 D.B. Leake and D.C. Wilson

defined at a sufficient level of detail, the designer may also decompose the part
representation into its component CMaps and make the revisions in the sub-
components (with CBR support). Alternatively, the designer may define new
component substructures, making the representation more detailed.

When the previous case has been retrieved, the designer has four choices,
as shown in Figure 2: to adapt it (changing the representation in memory, e.g.,
when continuing work on a design begun in a previous session); to derive a new
design, by having the system make a copy to adapt; to ask the system to use its
hierarchy of aircraft parts to form an abstraction of the current design’s structure
as a template to fill in; or to ignore the proposed design and begin a new design
from scratch.

i Boeing 777-200 Design - AircraftDesign - Local - CMap =18 x]

File Edit Agents

Adapt Current Design
~ Derive From Current...

Derive From Abstraction...

Design From Scratch

=

Flight Deck

has-pan

has-part

hasspart Retractable Landing
Gear Layout
h rt
has-part as-pa :
aj pa | Paszsenger Layout Backward Sweeping
Wing Layout

Rolls-Royce Rolls-Royce
Trent 300 Engine|  |Trent 300 Engine
I@I I@I has-part has—]part has-part
21212 First 2/3/2 Business 21512 Economy
Class Layout Class Layout Class Layout
=l 2] IE]

Fig. 2. Beginning derivation of a new design from a prior case.

Adapting designs: Once the designer has navigated, for example, to the engine
of a particular aircraft, the system supports three ways of examining why the
engine was used and the alternatives that may exist. First, the designer may
simply interactively browse stored information, following links in the CMap to
examine associated information such as finer-grained concept maps, video clips
of explanations from previous designers, photographs, or specifications for the
engine. Second, the designer may request information about similar designs. The
designer may request to have this retrieval targeted to either:



Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse 211

— Focus on designs with components similar to the one that is currently of
interest (e.g., CMaps that show aircraft using similar engines)

— Focus on designs that provide similar contexts for the current type of com-
ponent (e.g., CMaps that show the engines of similar aircraft)

The algorithms underlying this retrieval are described in Section 6.3.

Retrieved alternatives are listed in order of goodness of match according to
the chosen focus. The designer may also enter additional criteria to be matched
against any textual annotations of rationale recorded by previous designers. For
example, the designer may request that fuel-efficient engines be weighted more
heavily. This prompts a re-sorting of options, using simple text matching tech-
niques from information retrieval to decide which prior rationale to consider
most relevant.

Suggesting prior adaptations: When the designer selects a component of an air-
craft to adapt, the system has access to the following information: the component
affected, any designer input of additional retrieval criteria, and the design itself.
This information is used to index into stored records of prior adaptations to
suggest adaptations that have been previously performed in similar contexts to
address similar issues. Note that this adaptation process does not assume knowl-
edge of complex constraints. DRAMA’s method reduces the amount of knowl-
edge that must be encoded, requiring the designer to evaluate the possibilities
suggested.

Performing adaptations: The designer may select any of the suggested engines
to browse further or to substitute for the engine in the design. The designer may
also simply delete or add a component to the representation using the CMap
tools. Adaptations of concept maps can be thought of as falling into three general
categories corresponding to the support that they require: additions, deletions,
and substitutions. DRAMA’s framework supports the designer’s performance of
these operations as follows:

— Additions: The designer may use the hierarchical browser or plain-text re-
trieval capability to retrieve potentially-relevant components to be linked
into the design.

— Deletions: The system can warn of potential deletion issues by proactively
retrieving similar deletions, checking them for problems, and presenting those
problems to the designer.

— Substitutions: The system can support substitution by retrieving and sug-
gesting candidate substitutions, using both the explicitly-stated criteria and
contextual information from the current map to guide the retrieval. It re-
trieves these from two sources: From stored adaptation cases encapsulating
prior substitutions, and from analogous nodes in similar designs.

When the designer states a goal and finds a suitable substitution, the system
learns adaptation cases, following research on case-based adaptation learning
(Leake et al., 1997; Sycara, 1988). These package the query, information about
the CMap that was used as context for the search, and the selected result.



212 D.B. Leake and D.C. Wilson

Storing rationale and design cases: After the designer performs a substitu-
tion, the designer is prompted to enter an optional textual annotation of why the
new alternative is preferable to the old. This question focuses rationale capture:
The designer does not record a rationale for the component as a whole (which
could involve countless factors), but simply for why it is the better component in
the current context. Focusing the explanation process in this way is related to the
common idea in CBR of aiming explanations at expectation failures (Hammond,
1989; Leake, 1992; Schank, 1982). During future adaptations, this rationale will
be provided with other information about the component, and it can also be used
as an additional index when retrieving possible substitutions. Adapted cases are
placed into the system’s hierarchies of cases at the point where the designer
found the most similar previous case.

This approach to rationale capture differs strongly from traditional rule-
based or model-based approaches. The information in CMaps and additional
learned features corresponds to the “weak explanations” advocated by Gruber
and Russell (1992), providing just enough information to guide a designer’s own
reasoning process towards inferring important aspects of the design.

6 Perspective on issues and methods

DRAMA’s approach is relevant to a number of fundamental issues for developing
practical case-based applications. This section highlights its contributions on
addressing these issues.

6.1 Interactive case acquisition

Experience deploying CBR has shown that CBR may require significant “case
engineering” effort (Aha and Breslow, 1997; Kitano and Shimazu, 1996; Mark et
al., 1996; Vof3, 1994). Research CBR systems often use carefully-structured case
representations, which enable powerful reasoning at a high knowledge acquisition
cost (Kolodner, 1993). At the other end of the spectrum, current projects in
textual case-based reasoning (Lenz and Ashley, 1998) address how to exploit case
information already stored in textual form. For such systems, case acquisition
cost is negligible, but exploiting case context is much more difficult.

CMaps provide a middle ground. CMap representations include structural
information and are intended to concisely represent key concept properties, fa-
cilitating their use by Al systems. However, concept maps do not necessarily use
any standard syntax or standard set of attributes. This places them at a middle
point between classic structured case representations and purely textual cases.
It makes them more difficult to manipulate autonomously within an AI system,
but also makes them more flexible if experts use distinctions that were not antic-
ipated, and “forgiving” when non-experts in Al are called upon to encode their
knowledge. Domain experts who use the CMap tools seem to have few problems
adapting to the concept mapping process.



Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse 213
6.2 Guiding the user towards useful representations

Although users of DRAMA are free to change existing representations or devise
new representations if needed, the system uses two methods to help standardize
representations. First, when a user draws a CMap and is about to fill in a new
link or node, it presents the user with menu of alternatives from previous maps.
If one of these is suitable, the user may select it. This builds up a set of standard
link types and concept types over time. The second is that the baseline process
for generating new design CMaps is modification of previous designs. The sys-
tem is intended to begin with a set of CMaps that reflect the conceptualizations
of a particular expert designer, reflecting that designer’s coherent view of the
factors important in a design. When new designs are generated by adaptation,
significant portions of old representations are reused for new tasks, resulting in
representations with similar structure and content. The two approaches facilitate
the case engineering task while guiding accumulated design knowledge towards a
coherent representation scheme that includes structural information. We intend
to perform empirical tests to determine the additional value of the CMap struc-
ture, compared to, for example, applying pure information retrieval techniques
on the concept map’s textual content alone.

6.3 Similarity assessment for semi-structured information

Retrieving candidate design components for making suggestions requires com-
paring the current concept map to those in memory. Concept maps afford both
structural and content information. Link structures can be viewed with or with-
out consideration of their labels (because not all corresponding labels are guar-
anteed to have been assigned the same names, requiring all names to match
may be too strong a constraint). Their structural properties may be compared
by, e.g., applying structure-mapping approaches from analogical reasoning (e.g.,
(Falkenhainer et al., 1989)). The DRAMA system is beginning to address these
issues by considering a simple model of structure and content in retrieval.

The current system retrieves candidate design components in a two-stage
process: retrieving relevant designs (e.g., designs for similar aircraft) and choos-
ing relevant concepts (e.g., the engines) from those designs. The second step is
required because the corresponding roles of concept map designs may not pro-
vide direct indications of how the components should be mapped (e.g., whether
a link designated “tail engine” in one concept map should correspond with one
designated simply “engine” in another).

Given a user-selected component (e.g. a particular engine) to be adapted and
the goal of finding other engines from similar designs, DRAMA first retrieves
similar designs, using a matching procedure that compares map structure and
content (based on the distance of corresponding concepts in hierarchical con-
cept memory), when they are included in the set of concepts. Second, DRAMA
chooses the closest matching concept from each of the retrieved maps. Because
concept maps lack a rigid semantic structure, the concept is selected both by
matching available role structure (an abstraction of the component in question,



214 D.B. Leake and D.C. Wilson

if available, represents a type of slot to be filled) and by distance in concept
memory (where the closest-matching concepts are successively paired). The re-
sults are ranked by the inverse of each map’s summed distance. This gives an
indication of the relative goodness of each design suggestion within the overall
pool of suggestions.

Once candidate concepts have been retrieved and displayed, the user can
adjust the relative ranking by entering textual descriptions of desired properties.
The system compares these with the properties annotating the candidates using
simple IR methods. Suggestions for candidates that are supported by similar
textual rationale are given added weight in the ranking.

6.4 Interactive indexing and retrieval

Ideally, the CBR retrieval process takes into account both high-level goals and
concrete design features. Applied CBR systems tend to rely on the user to explic-
itly provide this information (whether all at once or incrementally). Conversa-
tional case-based reasoning (CCBR) systems guide the retrieval process through
an interactive dialogue of questions (Aha and Breslow, 1997). However, because
poor questions or question organization may prevent retrieval or slow identifica-
tion of the right cases, a substantial case engineering effort may be required to
craft the set of questions.

DRAMA'’s alternative approach is to attempt to integrate the CBR process
tightly enough into the user’s task process that it can infer a substantial part
of the needed contextual features directly from monitoring the user’s task. The
system has access not only to the user’s retrieval request (e.g., to find a sub-
stitute engine), but also to a significant part of the context surrounding the
request that will determine the relevance of the retrieval (e.g., the aircraft for
which the engine is needed). The designer may also augment this context with
additional information (e.g., that the goal is to find a more fuel-efficient engine
that could substitute), but is not required to do so. When the designer does
provide information, the system learns new rationale-based indices, by storing
the information that the selected substitution is believed to satisfy the designer’s
constraint. We note that in itself, a feature such as “high fuel efficiency” is not
enough to fully specify a retrieval—an airliner designer seeking a high efficiency
engine would not consider the high-efficiency engine from a Cessna. In DRAMA,
the features stored from designer queries are used only to filter candidates that
are already believed to fit the task context.

DRAMA also differs from existing CCBR systems in what it retrieves. Ini-
tially, both DRAMA and CCBR systems are aimed at retrieving the most ap-
propriate complete solution from previous cases. However, in its retrieval to
support adaptation, DRAMA provides the ability to perform retrievals focused
on subparts of the problem for the user to compose. As the user adapts part of
the design, the retrieval context changes automatically, loosely corresponding to
CCBR systems’ adjusted rankings as more information becomes available.



Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse 215

7 Future Directions

The DRAMA system is an ongoing project. The CMap tools are already in use
for concept mapping at NASA, and the goal of the project is to test the system
in the context of a design project for the next generation of reusable spacecraft.
The concrete experience from this test will provide feedback and data to adjust
details of the interface, functionality, and indexing algorithms. It will also provide
data for conducting controlled tests of the quality of recommendations provided
by the system. Because the system lacks the knowledge to evaluate the quality
of the designs produced, the designer using the system bears the responsibility
of assuring that adaptations are reasonable; the key question is how well the
system aids designers in their work. However, knowledge-based tools could be
developed to provide some verification, and this would be highly desirable.

Because the CMap tools provide the capability to share CMaps across the
World Wide Web, designs from multiple designers and sites can be imported
into the system’s design process. Work is under way at the University of West
Florida to develop CMap facilities for managing concurrent CMap generation
and modification. Ideally, the design context for a particular engine, for example,
could be updated as other designers make other changes in the specifications.

The system’s capability to deal with non-uniform representations is being
enhanced by the use of IR methods such as thesaurii to aid matching. In addition
to refining the system as an aid to recording and reusing design information, we
see a long-term opportunity to apply it to reuse of information about design
processes. A CMap-style interface could be used to capture traces of the steps
used in generating a design (e.g., conceptual design, specification, numerical
simulations, etc.), to capture how a design was formulated and to guide reasoning
throughout the design process.

8 Conclusions

Our experience with the DRAMA system provides a case study of some central
issues for interactive CBR systems. Our integration of CBR with CMaps was
motivated by the complexity of aerospace design, for which autonomous intel-
ligent design tools are currently infeasible. However, the framework applies to
other design tasks as well. It provides a general “knowledge-light” model for
flexible graphically-based case acquisition, manipulation, and reuse.

The DRAMA project has identified a number of principles that we expect to
have broad implications for integrations between CBR, components and interac-
tive systems:

— Representations should be easily comprehensible and interactively adaptable
by end users; visually-based representations may be especially useful.

— Support for representation generation should help assure consistent repre-
sentations, but must not prevent the users of interactive systems from de-
veloping new representations or representational elements when needed.



216 D.B. Leake and D.C. Wilson

— CBR’s “retrieve and adapt” process to build new cases can facilitate stan-
dardization by reusing prior representational components. This can naturally
build up the case library and the representational vocabulary in parallel.

— The same types of similarity considerations used to guide retrieval can be
used to suggest representational vocabulary as cases are built.

— Retrieval should tolerate representational discrepancies.

— Interactive support systems should be sufficiently integrated into the pro-
cesses they support to be able to unobtrusively monitor and exploit infor-
mation about the task context.

The overall conclusion is that interaction must be across all parts of the CBR
system—initia