

Lecture Notes in Artificial Intelligence 1650
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

althoff@iis.uni-hildesheim.de

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

althoff@iis.uni-hildesheim.de

Klaus-Dieter Althoff Ralph Bergmann
L. Karl Branting (Eds.)

Case-Based Reasoning
Research and Development

Third International Conference
on Case-Based Reasoning, ICCBR-99
Seeon Monastery, Germany, July 27-30, 1999
Proceedings

1 3

althoff@iis.uni-hildesheim.de

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Klaus-Dieter Althoff
Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany
E-mail: althoff@iese.fhg.de

Ralph Bergmann
University of Kaiserslautern, Department of Computer Science
P.O. Box 3049, D-67653 Kaiserslautern, Germany
E-mail: bergmann@informatik.uni-kl.de

L. Karl Branting
University of Wyoming, Department of Computer Science
P.O. Box 3682, Laramie, WY 82072, USA
E-mail: karl@uwyo.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Case-based reasoning research and development : proceedings /
Third International Conference on Case Based Reasoning, ICCBR-99,
Seeon Monastery, Germany, July 27 - 30, 1999. Klaus-Dieter Althoff
. . . (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1650 : Lecture notes in
artificial intelligence)
ISBN 3-540-66237-5

CR Subject Classification (1998): I.2, J.4, J.1, F.4.1

ISBN 3-540-66237-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10703943 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

althoff@iis.uni-hildesheim.de

Preface
The biennial International Conference on Case-Based Reasoning (ICCBR) se-
ries, which began in Sesimbra, Portugal, in 1995, was intended to provide an
international forum for the best fundamental and applied research in case-based
reasoning (CBR). It was hoped that such a forum would encourage the gro-
wth and rigor of the field and overcome the previous tendency toward isolated
national CBR communities.

The foresight of the original ICCBR organizers has been rewarded by the
growth of a vigorous and cosmopolitan CBR community. CBR is now widely
recognized as a powerful and important computational technique for a wide
range of practical applications. By promoting an exchange of ideas among CBR
researchers from across the globe, the ICCBR series has facilitated the broader
acceptance and use of CBR.

ICCBR-99 has continued this tradition by attracting high-quality research
and applications papers from around the world. Researchers from 21 countries
submitted 80 papers to ICCBR-99. From these submissions, 17 papers were
selected for long oral presentation, 7 were accepted for short oral presentation,
and 19 papers were accepted as posters. This volume sets forth these 43 papers,
which contain both mature work and innovative new ideas.

In addition to a technical session of invited talks, presentations, and posters,
ICCBR-99 included an Industry Day, where the focus was on mature techno-
logy and applications in industry. Papers describing these “industrial-strength”
applications are contained in a separate volume. Information on this volume is
available at the ICCBR-99 home page, www.iccbr.org/iccbr99. The ICCBR-99
program also included four half-day workshops, also described in the ICCBR-99
home page.

The program chairs of ICCBR-99 were Klaus-Dieter Althoff, of the Fraun-
hofer Institute for Experimental Software Engineering, and L. Karl Branting, of
the University of Wyoming. The conference chair was Ralph Bergmann, of the
University of Kaiserslautern. The chairs would like to thank the program com-
mittee and the additional reviewers for their thoughtful and rigorous reviewing
during the paper selection process.

The chairs gratefully acknowledge the generous support of ICCBR-99’s spon-
sors, the American Association for Artificial Intelligence (AAAI), AcknoSoft,
BSR Consulting, DaimlerChrysler, the Fraunhofer Institute for Experimental
Software Engineering, the German Society for Computer Science (Gesellschaft
für Informatik, GI), Inference, Interactive Multimedia Systems, tec:inno, the
University of Kaiserslautern, and the University of Wyoming. We would also
like to thank Christine Harms for her assistance in making the local arrange-
ments for the conference.

May 1999 Klaus-Dieter Althoff
Ralph Bergmann
L. Karl Branting

althoff@iis.uni-hildesheim.de

VI

Program Chairs
Klaus-Dieter Althoff, Fraunhofer IESE, Germany
L. Karl Branting, University of Wyoming, USA

Conference Chair
Ralph Bergmann, University of Kaiserslautern, Germany

Industrial Chairs
Brigitte Bartsch-Spörl, BSR Consulting, Germany
Wolfgang Wilke, tec:inno GmbH, Germany

Workshop Chairs
Sascha Schmitt, University of Kaiserslautern, Germany
Ivo Vollrath,University of Kaiserslautern, Germany

Program Committee
Agnar Aamodt
Robert Aarts
David Aha
Klaus-Dieter Althoff
Kevin Ashley
Paolo Avesani
Ralph Barletta
Brigitte Bartsch-Spörl
Ralph Bergmann
Carlos Bento
L. Karl Branting
Michael Brown
Hans-Dieter Burkhard
Michael Cox
Pádraig Cunningham
Boi Faltings
Ashok Goel
Andrew Golding
Kris Hammond
Mark Keane
Janet Kolodner
David Leake
Brian Lees
Ramon López de Mántaras
Robert Macura
Mary Lou Maher
Michel Manago

Norwegian University of Science and Tech.
Nokia Telecommunications, Finland
Office of Naval Research, USA
Fraunhofer IESE, Germany
University of Pittsburgh, USA
IRST Povo, Italy
Inference Corporation, USA
BSR Consulting, Germany
University of Kaiserslautern, Germany
University of Coimbra, Portugal
University of Wyoming, USA
Siemens, Germany
Humboldt University Berlin, Germany
Wright State University, Dayton, USA
Trinity College Dublin, Ireland
EPFL Lausanne, Switzerland
Georgia Institute of Technology, USA
MERL Cambridge, USA
Northwestern University, USA
University College Dublin, Ireland
Georgia Institute of Technology, USA
Indiana University, USA
University of Paisley, UK
IIIA-CSIC, Spain
Medical College of Georgia, USA
University of Sydney, Australia
AcknoSoft, France

althoff@iis.uni-hildesheim.de

VII

Héctor Muñoz-Avila
Bart Netten
Enric Plaza
Pearl Pu
Francesco Ricci
Michael M. Richter
Edwina Rissland
Hideo Shimazu
Barry Smyth
Gerhard Strube
Brigitte Trousse
Manuela Veloso
Ian Watson
Stefan Wess
Qiang Yang

University of Maryland, USA
Delft University of Technology, NL
IIIA-CSIC, Spain
EPFL Lausanne, Switzerland
IRST Povo, Italy
University of Kaiserslautern, Germany
University of Massachusetts, USA
NEC, Japan
University College Dublin, Ireland
University of Freiburg, Germany
INRIA Sophia Antipolis, France
Carnegie Mellon University, USA
Salford University, UK
tec:inno GmbH, Germany
Simon Fraser University, Canada

Additional Reviewers
Vincent Aleven
Kati Börner
Derek Bridge
Roger Carasso
Stefanie Brüninghaus
Werner Dubitzky
Dieter Ehrenberg
Michael Fagan
Paulo Gomes
Christiane Gresse von Wangenheim
Conor Hayes
André Hübner
Jacek Jarmulak

Mario Lenz
Cindy Marling
Mirjam Minor
Petri Myllymäki
Petra Perner
Erank Puppe
Rainer Schmidt
Sascha Schmitt
Alexander Seitz
Armin Stahl
Adelinde Uhrmacher
Ivo Vollrath
David C. Wilson

Conference Support

ICCBR-99 was organized by the German Society for Computer Science (Gesellschaft für Informatik, GI) and supported by
the American Association for Artificial Intelligence (AAAI), AcknoSoft, BSR Consulting, DaimlerChrysler, the Fraunhofer
Institute for Experimental Software Engineering, Inference, Interactive Multimedia Systems, tec:inno, the University of
Kaiserslautern, and the University of Wyoming.

althoff@iis.uni-hildesheim.de

Table of Contents

Research Papers

Affect-Driven CBR to Generate Expressive Music .. 1
J. L. Arcos, D. Cañamero, and R. López de Mántaras

Probability Based Metrics for Nearest Neighbor Classification and
Case-Based Reasoning .. 14
E. Blanzieri and F. Ricci

Active Exploration in Instance-Based Preference Modeling....................................... 29
L. K. Branting

A Multiple-Domain Evaluation of Stratified Case-Based Reasoning 44
L. K. Branting and Y. Tao

Bootstrapping Case Base Development with Annotated Case Summaries 59
S. Brüninghaus and K. D. Ashley

Activating CBR Systems through Autonomous Information Gathering 74
C. Carrick, Q. Yang, I. Abi-Zeid, and L. Lamontagne

Integrating CBR and Heuristic Search for Learning and Reusing Solutions
in Real-Time Task Scheduling .. 89
J. M. A. Coello and R. Camilo dos Santos

Towards a Unified Theory of Adaptation in Case-Based Reasoning........................ 104
B. Fuchs, J. Lieber, A. Mille, and A. Napoli

A Knowledge-Level Task Model of Adaptation in Case-Based Reasoning 118
B. Fuchs and A. Mille

Development and Utilization of a Case-Based Help-Desk Support System in
a Corporate Environment .. 132
M. Göker and T. Roth-Berghofer

Modelling the CBR Life Cycle Using Description Logics 147
M. Gómez-Albarrán, P. A. González-Calero, B. Díaz-Agudo, and
C. Fernández-Conde

althoff@iis.uni-hildesheim.de

X Table of Contents

An Evolutionary Approach to Case Adaptation ... 162
A. Gómez de Silva Garza and M. L. Maher

REMEX - A Case-Based Approach for Reusing Software Measurement
Experienceware ... 173
C. Gresse von Wangenheim

A Unified Long-Term Memory System ... 188
J. H. Lawton, R. M. Turner, and E. H. Turner

Combining CBR with Interactive Knowledge Acquisition, Manipulation,
and Reuse ... 203
D. B. Leake and D. C. Wilson

When Experience Is Wrong: Examining CBR for Changing Tasks and
Environments ... 218
D. B. Leake and D. C. Wilson

Case Library Reduction Applied to Pile Foundations .. 233
C. Lei, O. Babka, and L. A. G. Garanito

Case Representation, Acquisition, and Retrieval in SIROCCO 248
B. McLaren and K. D. Ashley

Flexibly Interleaving Processes .. 263
E. Melis and C. Ullrich

A Case Retention Policy Based on Detrimental Retrieval 276
H. Muñoz-Avila

Using Guidelines to Constrain Interactive Case-Based HTN Planning 288
H. Muñoz-Avila, D. C. McFarlane, D. W. Aha, L. Breslow, J. A. Ballas, and
D. S. Nau

Speed-Up, Quality, and Competence in Multi-modal Case-Based Reasoning 303
L. Portinale, P. Torasso, and P. Tavano

A Case-Based Methodology for Planning Individualized Case Oriented
Tutoring ... 318
A. Seitz

Building Compact Competent Case-Bases ... 329
B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

 Table of Contents XI

Footprint-Based Retrieval ... 343
B. Smyth and E. McKenna

Application Papers

Is CBR Applicable to the Coordination of Search and Rescue Operations?
A Feasibility Study .. 358
I. Abi-Zeid, Q. Yang, and L. Lamontagne

Integrating Case-Based Reasoning and Hypermedia Documentation: An
Application for the Diagnosis of a Welding Robot at Odense Steel Shipyard 372
E. Auriol, R. M. Crowder, R. MacKendrick, R. Rowe, and T. Knudsen

Integrating Rule-Based and Case-Based Decision Making in Diabetic
Patient Management .. 386
R. Bellazzi, S. Montani, L. Portinale, and A. Riva

Managing Complex Knowledge in Natural Sciences ... 401
N. Conruyt and D. Grosser

ELSI: A Medical Equipment Diagnostic System ... 415
P. Cuddihy and W. Cheetham

Case-Based Reasoning for Candidate List Extraction in a Marketing
Domain .. 426
M. Fagan and K. Bloor

CBR for the Reuse of Image Processing Knowledge: A Recursive
Retrieval/Adaptation Strategy ... 438
V. Ficet-Cauchard, C. Porquet, and M. Revenu

Virtual Function Generators: Representing and Reusing Underlying Design
Concepts in Conceptual Synthesis of Mechanisms for Function Generation............ 453
Y. Han and K. Lee

Shaping a CBR View with XML .. 468
C. Hayes and P. Cunningham

Integrating Information Resources: A Case Study of Engineering Design
Support .. 482
D. B. Leake, L. Birnbaum, K. Hammond, C. Marlow, and H. Yang

althoff@iis.uni-hildesheim.de

XII Table of Contents

A Hybrid Case-Based Reasoner for Footwear Design ... 497
J. Main and T. S. Dillon

Fault Management in Computer Networks Using Case-Based Reasoning:
DUMBO System ... 510
C. Melchiors and L. M. R. Tarouco

An Architecture for a CBR Image Segmentation System .. 525
P. Perner

Supporting Reusability in a System Design Environment by Case-Based
Reasoning Techniques .. 535
H. Praehofer and J. Kerschbaummayr

Case-Based Reasoning for Antibiotics Therapy Advice .. 550
R. Schmidt, B. Pollwein, and L. Gierl

Surfing the Digital Wave: Generating Personalised TV Listings Using
Collaborative, Case-Based Recommendation.. 561
B. Smyth and P. Cotter

Case-Based Quality Management System Using Expectation Values 572
H. Taki, S. Hori, and N. Abe

ICARUS: Design and Deployment of a Case-Based Reasoning System for
Locomotive Diagnostics ... 581
A. Varma

Author Index .. 597

althoff@iis.uni-hildesheim.de

A�ect-Driven CBR to generate expressive music

Josep Llu��s Arcos, Dolores Ca~namero, and Ramon L�opez de M�antaras

IIIA, Arti�cial Intelligence Research Institute
CSIC, Spanish Council for Scienti�c Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain.
Vox: +34-93-5809570, Fax: +34-93-5809661
farcos, lola, mantarasg@iiia.csic.es

http://www.iiia.csic.es

Abstract. We present an extension of an existing system, called SaxEx,
capable of generating expressive musical performances based on Case-
Based Reasoning (CBR) techniques. The previous version of SaxEx did
not take into account the possibility of using a�ective labels to guide
the CBR task. This paper discusses the introduction of such a�ective
knowledge to improve the retrieval capabilities of the system. Three
a�ective dimensions are considered|tender-aggressive, sad-joyful, and
calm-restless|that allow the user to declaratively instruct the system
to perform according to any combination of �ve qualitative values along
these three dimensions.

1 Introduction

In recent years, many researchers in human emotions have rejected the idea of
emotion as something irrational. Emotion is now seen as fundamental to rea-
soning and this new view has raised a number of theories. One theory that �ts
musical experience particularly well is the so called \discrepancy theory" [13]
which regards emotion as a reaction to unexpected experience. Music indeed
sets up anticipations and then satis�es them. For example, in a chord cadence
(the resolution of a harmonic progression back toward a tonal center), listeners
anticipate the pleasing resolving chord (tonal center) that brings the listener
from tension to repose. It is possible (and good music always does so) to sat-
isfy very pleasingly the anticipation by withholding the resolution and therefore
hightening the anticipation. When music goes out of its way to violate the ex-
pectations we call it expressive. Musicians breathe feeling into a performance
by means of suitable deviations not only in timing (rubato) and loudness (dy-
namics) but also in vibrato, articulation and the attack of notes. With too much
deviation, music becomes too incoherent and with too little deviation becomes
cold, mechanical and boring. This phenomenon has also a neurological basis [15].
Like most neurons, auditory neurons �re constantly but are the changes in �ring
rates that are signi�cant. Some neurons answer to raw frequency information but
most are concerned with changes in sound. Firing rates change when frequency
or intensity varies. Furthermore, some 85 percent of primary auditory neurons

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 1-13, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

exhibit the phenomenon of habituation: the longer they are stimulated, the less
they respond. It can be said that the brain is mainly interested in change. This
is why typical computer-generated music in which tempo and loudness are al-
ways constant, pitch is perfect (no vibrato at all) and in which the attack of
the notes is always the same is rejected by the musically sensitive. The work
described in this paper addresses the automatic generation of expressive music
endowing the resulting piece with the expressivity that characterizes human per-
formances. Following musical rules, whatever sophisticated and complete they
are, is not enough to achieve this expressivity, and indeed music generated in
this way usually sounds monotonous and mechanical. The main problem here is
to grasp the performer's \personal touch", the knowledge brough about when
performing a score and that is absent from it. This knowledge concerns not only
\technical" features (use of musical resources) but also the a�ective aspects im-
plicit in music. A large part of this knowledge is tacit and therefore very di�cult
to generalize and verbalize, although it is not inaccessible. Humans acquire it
through a long process of observation, imitation, and experimentation [11]. For
this reason, AI approaches based on declarative knowledge representations have
serious limitations. An alternative approach, much closer to the observation-
imitation-experimentation process observed in humans, is that of directly using
the knowledge implicit in examples from recordings of human performances.

In order to achieve this we have extended SaxEx [2], a case-based reasoning
(CBR) system for generating expressive performances of melodies based on ex-
amples of human performances (for the moment SaxEx is limited to jazz ballads).
CBR is appropriate for problems where (a) many examples of solved problems
can be obtained|like in our case where multiple examples can be easily obtained
from recordings of human performances; and (b) a large part of the knowledge
involved in the solution of problems is tacit, di�cult to verbalize and generalize.

We have improved SaxEx allowing the user to control the degree and type of
expressivity desired in the output by means of qualitative a�ective labels along
three orthogonal a�ective dimensions (tender-aggressive, sad-joyful, and calm-
restless). This enables the user to ask the system to perform a phrase according
to a speci�c a�ective label or a combination of them.

2 SaxEx elements

In this section, we brie
y present some of the elements underlying SaxEx which
are necessary to understand the system (see Figure 1).

2.1 SMS

Sound analysis and synthesis techniques based on spectrum models like Spec-
tral Modeling and Synthesis (SMS) are useful for the extraction of high level
parameters from real sound �les, their transformation, and the synthesis of a
modi�ed version of these sound �les. SaxEx uses SMS in order to extract basic
information related to several expressive parameters such as dynamics, rubato,

2 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

althoff@iis.uni-hildesheim.de

Noos

SMS

analysis synthesis

Score

Cases
CBR method Musical

models

.snd.snd

Inexpressive
phrase

Expressive phrase

Input Output

.sms .sco

.mid

Fig. 1. General view of SaxEx blocks.

vibrato, and articulation. The SMS synthesis procedure allows the generation of
expressive reinterpretations by appropriately transforming an inexpressive sound
�le.

The SMS approach to spectral analysis is based on decomposing a sound
into sinusoids plus a spectral residual. From the sinusoidal plus the residual
representation we can extract high level attributes such as attack and release
times, formant structure, vibrato, and average pitch and amplitude, when the
sound is a note or a monophonic phrase of an instrument. These attributes can
be modi�ed and added back to the spectral representation without loss of sound
quality.

This sound analysis and synthesis system is ideal as a preprocessor, giving
to SaxEx high level musical parameters, and as a post-processor, adding the
transformations speci�ed by the case-based reasoning system to the inexpressive
original sound.

2.2 Noos

SaxEx is implemented in Noos [4,3], a re
ective object-centered representation
language designed to support knowledge modeling of problem solving and learn-
ing. Modeling a problem in Noos requires the speci�cation of three di�erent

3Affect-Driven CBR to Generate Expressive Music

althoff@iis.uni-hildesheim.de

types of knowledge: domain knowledge, problem solving knowledge, and met-
alevel knowledge.

Domain knowledge speci�es a set of concepts, a set of relations among con-
cepts, and problem data that are relevant for an application. Concepts and
relations de�ne the domain ontology of an application. For instance, the do-
main ontology of SaxEx is composed by concepts such as notes, chords, analysis
structures, and expressive parameters. Problem data, described using the domain
ontology, de�ne speci�c situations (speci�c problems) that have to be solved. For
instance, speci�c inexpressive musical phrases to be transformed into expressive
ones.

Problem solving knowledge speci�es the set of tasks to be solved in an appli-
cation. For instance, the main task of SaxEx is to infer a sequence of expressive
transformations for a given musical phrase. Methods model di�erent ways of
solving tasks. Methods can be elementary or can be decomposed into subtasks.
These new (sub)tasks may be achieved by other methods. A method de�nes an
execution order over subtasks and an speci�c combination of the results of the
subtasks in order to solve the task it performs. For a given task, there can be
multiple alternative methods that may solve the task in di�erent situations. This
recursive decomposition of a task into subtasks by means of a method is called
task/method decomposition.

The metalevel of Noos incorporates, among other types of (meta-)knowledge,
Preferences, used by SaxEx to rank cases, and Perspectives, used in the re-
trieval task. Preferences model decision making criteria about sets of alterna-
tives present in domain knowledge and problem solving knowledge. For instance,
preference knowledge can be used to model criteria for ranking some precedent
cases over other precedent cases for a task in a speci�c situation.

Perspectives [1], constitute a mechanism to describe declarative biases for
case retrieval that provides a clear and
exible way to express retrieval mecha-
nisms in complex-real applications that use structured representations of cases.
Our research on perspectives, presented in [1], is based on the observation that,
in complex tasks, the identi�cation of the relevant aspects for retrieval in a
given situation may involve the use of knowledge intensive methods and requires
dynamical decisions about the relevant aspects of a problem. Then, a system
capable of solving complex tasks can be forced to work with non prede�ned
retrieval indexes in the memory of cases.

Perspectives are used by SaxEx to guide its decisions about the relevant as-
pects of an input musical phrase. SaxEx incorporates two types of declarative
biases in the perspectives. On the one hand, metalevel knowledge to assess simi-
larities among scores using the analysis structures built upon the IR and GTTM
musical models. On the other hand, (metalevel) knowledge to detect a�ective
intention in performances and to assess similarities among them.

Once a problem is solved, Noos automaticallymemorizes (stores and indexes)
that problem. The collection of problems that a system has solved is called
the episodic memory of Noos. The problems solved by Noos are accessible and

4 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

althoff@iis.uni-hildesheim.de

retrievable. This introspection capability of Noos is the basic building block for
integrating learning, and speci�cally CBR, into Noos.

2.3 Backgound musical knowledge

SaxEx incorporates two theories of musical perception and musical understand-
ing that constitute the background musical knowledge of the system: Narmour's
implication/realization (IR) model [17] and Lerdahl and Jackendo�'s generative
theory of tonal music (GTTM) [16].

Narmour's implication/realization model proposes a theory of cognition of
melodies based on eight basic structures. These structures characterize patterns
of melodic implications that constitute the basic units of the listener perception.
Other parameters such as metric, duration, and rhythmic patterns emphasize or
inhibit the perception of these melodic implications. The use of the IR model
provides a musical analysis based on the structure of the melodic surface.

Examples of IR basic structures are the P process (a melodic pattern describ-
ing a sequence of at least three notes with similar intervals and same ascending
or descending registral direction) and the ID process (a sequence of at least three
notes with same intervals and di�erent registral directions).

On the other hand, Lerdahl and Jackendo�'s generative theory of tonal mu-
sic (GTTM) o�ers a complementary approach to understanding melodies based
on a hierarchical structure of musical cognition. GTTM proposes four types of
hierarchical structures associated with a piece.

Examples of GTTM analysis structures are prolongational-reduction|a
hierarchical structure describing tension-relaxation relationships among groups
of notes|and time-span-reduction|a hierarchical structure describing the
relative structural importance of notes within the heard rhythmic units of a
phrase. Both are tree structures that are directly represented in Noos because
of the tree-data representation capabilities of the language.

The goal of using both, IR and GTTM models, is to take advantage of com-
bining the IR analysis of melodic surface with the GTTM structural analysis of
the melody. These are two complementary views of melodies that in
uence the
execution of a performance.

2.4 A�ective descriptions

The use of a�ective adjectives to characterize di�erent aspects of musical per-
formance has a long tradition. In baroque music, each piece or movement had
an \a�ect" associated with it that was intended to have \the soul exert con-
trol over the body and �ll it with passions that were strongly expressed" [8].
Many lists of a�ective adjectives have been proposed by di�erent theorists, e.g.,
Castiglioni, Galilei, Rousseau, Quantz, Mattheson, or more recently Cooke [7].
The main problems with the use of a�ective adjectives for musical purposes are
that their meaning might vary over time, they are highly subjective and usually
redundant or overlapping, and it is very di�cult to assess what are the rela-
tionships between di�erent labels. In order to avoid these problems, we decided

5Affect-Driven CBR to Generate Expressive Music

althoff@iis.uni-hildesheim.de

not to use isolated adjectives, but rather to rank a�ective intentions along three
orthogonal dimensions: tender-aggressive, sad-joyful, and calm-restless. To come
out with these dimensions, we drew inspiration from the experiments conducted
by [5], where sonological analysis of jazz recordings and the listeners' perception
of them showed that a broad set of a�ective adjectives (16 in the experiments
reported there) could be clustered into a few main dimensions. In addition, these
dimensions relate to semantic notions, such as activity, tension versus relaxation,
brightness, etc., although a one-to-one correlation cannot be neatly established.

3 SaxEx system

An input for SaxEx is a musical phrase described by means of its musical score
(a MIDI �le), a sound, and speci�c qualitative labels along a�ective dimensions.
A�ective labels can be partially speci�ed, i.e. the user does not have to provide
labels for every dimension.

The score contains the melodic and the harmonic information of the musical
phrase. The sound contains the recording of an inexpressive interpretation of the
musical phrase played by a musician. Values for a�ective dimensions will guide
the search in the memory of cases. The output of the system is a new sound �le,
obtained by transformations of the original sound, and containing an expressive
performance of the same phrase.

Solving a problem in SaxEx involves three phases: the analysis phase, the
reasoning phase (performed by the CBR-method), and the synthesis phase (see
Figure 1). Analysis and synthesis phases are implemented using SMS sound
analysis and synthesis techniques. The reasoning phase is performed using CBR
techniques and implemented in Noos and is the main focus of this paper.

The development of SaxEx involved the elaboration of two main models:
the domain model and the problem-solving model. The domain model contains
the concepts and structures relevant for representing musical knowledge. The
problem-solvingmodel consists mainly of a CBR method for inferring a sequence
of expressive transformations for a given musical phrase.

3.1 Modeling musical knowledge

Problems solved by SaxEx, and stored in its memory, are represented in Noos

as complex structured cases (see Figure2) embodying three di�erent kinds of
musical knowledge: (1) concepts related to the score of the phrase such as notes
and chords, (2) concepts related to background musical theories such as impli-
cation/realization structures and GTTM's time-span reduction nodes, and (3)
concepts related to the performance of musical phrases. A�ective labels belong
to this third type.

A score is represented by a melody, embodying a sequence of notes, and
a harmony, embodying a sequence of chords. Each note holds in turn a set of
features such as its pitch (C5, G4, etc), its position with respect to the beginning
of the phrase, its duration, a reference to its underlying harmony, and a reference

6 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

althoff@iis.uni-hildesheim.de

Case

...

C5 G4 E4 C5 D5

Cmaj7harmony

melodyscore

prolong-structure

time-span-structure

IR-structureanalysis

T-P

T-S

T-S

T-W

R-W

P ID

e5e4e3e2e1performance

C5

e6

Fig. 2. Overall structure of the beginning of an `All of me' case.

to the next note of the phrase. Chords hold also a set of features such as name
(Cmaj7, E7, etc), position, duration, and a reference to the next chord.

The musical analysis representation embodies structures of the phrase in-
ferred using Narmour's and GTTM background musical knowledge. The anal-
ysis structure of a melody is represented by a process-structure (embodying a
sequence of IR basic structures), a time-span-reduction structure (embodying
a tree describing metrical relations), and a prolongational-reduction structure
(embodying a tree describing tensing and relaxing relations). Moreover, a note
holds the metrical-strength feature, inferred using GTTM theory, expressing the
note's relative metrical importance into the phrase.

The information about the expressive performances contained in the exam-
ples of the case memory, is represented by a sequence of a�ective regions and a
sequence of events, one for each note, (extracted using the SMS sound analysis
capabilities), as explained below.

A�ective regions group (sub)-sequences of notes with common a�ective ex-
pressivity. Speci�cally, an a�ective region holds knowledge describing the follow-
ing a�ective dimensions: tender-aggressive, sad-joyful, and calm-restless. These
a�ective dimensions are described using �ve qualitative labels as follows. The
middle label represents no predominance (e.g. neither tender nor aggressive),
lower and upper labels represent, respectively predominance in one direction
(e.g. absolutely calm is described with the lowest label). For instance, a jazz bal-
lad can start very tender and calm and continue very tender but more restless.
Such di�erent nuances are represented in SaxEx by means of di�erent a�ective
regions.

There is an event for each note within the phrase embodying information
about expressive parameters applied to that note. Speci�cally, an event holds
information about dynamics, rubato, vibrato, articulation, and attack. These
expressive parameters are described using qualitative labels as follows:

7Affect-Driven CBR to Generate Expressive Music

althoff@iis.uni-hildesheim.de

� Changes in dynamics are described relative to the average loudness of the
phrase by means of a set of �ve ordered labels. The middle label represents
average loudness and lower and upper labels represent respectively increasing or
decreasing degrees of loudness.

� Changes in rubato are described relative to the average tempo also by
means of a set of �ve ordered labels. Analogously to dynamics, qualitative labels
about rubato cover the range from a strong accelerando to a strong ritardando.

� The vibrato level is described using two parameters: frequency and ampli-
tude. Both parameters are described using �ve qualitative labels from no-vibrato
to highest-vibrato.

� The articulation between notes is described using again a set of �ve ordered
labels covering the range from legato to staccato.

� Finally, SaxEx considers two possibilities regarding note attack: (1) reach-
ing the pitch of a note starting from a lower pitch, and (2) increasing the noise
component of the sound. These two possibilities were chosen because they are
characteristic of saxophone playing but additional possibilities can be introduced
without altering the system.

3.2 The SaxEx CBR task

The task of SaxEx is to infer a set of expressive transformations to be applied
to every note of an inexpressive phrase given as input problem. To achieve this,
SaxEx uses a CBR problem solver, a case memory of expressive performances,
and background musical knowledge. Transformations concern the dynamics, ru-
bato, vibrato, articulation, and attack of each note in the inexpressive phrase.

The cases stored in the episodic memory of SaxEx contain knowledge about
the expressive transformations performed by a human player given speci�c labels
for a�ective dimensions. A�ective knowledge is the basis for guiding the CBR
problem solver.

For each note in the phrase, the following subtask decomposition (Figure 3)
is performed by the case-based problem solving method implemented in Noos:

{ Retrieve: The goal of the retrieve task is to choose, from the memory of cases
(pieces played expressively), the set of notes|the cases|most similar to the
current one|the problem. This task is decomposed in three subtasks:

� Identify : its goal is to build retrieval perspectives using the a�ective
values speci�ed by the user and the musical background knowledge in-
tegrated in the system. A�ective labels are used to determine a �rst
declarative retrieval bias: we are interested in notes with a�ective labels
close to a�ective labels required in the current problem.
Musical knowledge gives two possible declarative retrieval biases: a �rst
bias based on Narmour's implication/realization model, and a second
bias based on Lerdahl and Jackendo�'s generative theory. These per-
spectives guide the retrieval process by focusing it on the most relevant
aspects of the current problem.

8 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

althoff@iis.uni-hildesheim.de

Saxex-CBR

Retrieve Reuse

Identify Select

Construct
perspectives

Retrieve
using

perspectives

Rank
cases

Propose
expressive
parameters

Memorize
new solved

case

Retain

Search

Identify&Select

Fig. 3. Task decomposition of the SaxEx CBR method.

For instance, using the Narmour's IR criterion that determines as rel-
evant the role that a given note plays in a IR structure, the user can
instruct identi�cation task to build perspectives such as `look for notes
that are the �rst note of a P structure'.

� Search: its goal is to search cases in the case memory using Noos re-
trieval methods and some previously constructed Perspective(s). As an
example, let us assume that, by means of a Perspective, we declare that
we are interested in notes belonging to calm and very tender a�ective
regions. Then, the Search subtask will search for notes in the expressive
performances that, following this criterion, belong to either \calm and
very tender" a�ective regions (most preferred), or \calm and tender"
a�ective regions, or \very calm and very tender" a�ective regions (both
less preferred).

{ Select : its goal is to rank the retrieved cases using Noos preference meth-
ods. Preference methods use criteria such as similarity in duration of notes,
harmonic stability, or melodic directions. For instance, given a problem note
belonging to a descending melody group and given several retrieved cases
belonging to either ascending or descending melody groups, the melodic di-
rection preference criterion will select those cases belonging to descending
melody groups.

{ Reuse: its goal is to choose, from the set of more similar notes previously
selected, a set of expressive transformations to be applied to the current note.
The �rst criterion used is to adapt the transformations of the most similar
note. When several notes are considered equally similar, the transformations
are selected according to the majority rule. Finally, in case of a tie, one of
them is selected randomly.

9Affect-Driven CBR to Generate Expressive Music

althoff@iis.uni-hildesheim.de

{ Retain: the incorporation of the new solved problem to the memory of cases
is performed automatically in Noos. All solved problems will be available for
the reasoning process in future problems.

4 Results

We are studying the issue of musical expression in the context of tenor saxo-
phone interpretations. We have done several recordings of a tenor sax performer
playing several Jazz standard ballads ('All of me', 'Autumn leaves', 'Misty', and
'My one and only love') with di�erent degrees of expressiveness, including an
inexpressive interpretation of each piece. These recordings were analyzed, using
the SMS spectral modeling techniques, to extract basic information related to
the expressive parameters. Moreover, the di�erent a�ective regions in recordings
were manually identi�ed and codi�ed with their a�ective labels for the three
a�ective dimensions.

The set of experiments conducted with the new version of SaxEx were in
u-
enced by previously conducted experiments. These previous experiments were
intended to use examples of expressive performances of some pieces in order to
generate expressive reinterpretations of di�erent inexpressive pieces. More con-
cretely, using three di�erent expressive performances of a piece having about �fty
notes as cases in order to generate expressive reinterpretations of about thirty-
note inexpressive phrases of a di�erent piece. These experiments revealed that
the use of perspectives in the retrieval step allows to identify situations such as
long notes, ascending or descending melodic lines, etc|such situations are also
usually identi�ed by a human performer. Nevertheless, because of such experi-
ments did not take into account the expression of a�ects, SaxEx was no able to
discriminate situations where the same note was played by human performers
with di�erent a�ective intention. This implied that the solutions provided by
SaxEx were conservative.

Current experiments wanted to demonstrate two main goals: i) given the
same problem input phase and di�erent a�ective labels as input, SaxEx is able
to generate di�erent expressive performances as ouput, and ii) these di�erent
outputs are perceived by listeners in terms of the a�ective labels. To carry out
the current experiments we have used the same examples used in previous exper-
iments including the information of their a�ective labels for the three a�ective
dimensions.

Let us now illustrate some of the expressive transformations applied by SaxEx
to the �rst phrase of the `All of Me' theme (see the score in Figure 4b) imitating
precedent cases of the `Autumn Leaves' theme (see the score in Figure 4a) with
two di�erent combinations of a�ective labels: joyful and restless (J-R), or tender
and calm (T-C). When listening the di�erent human expressive performances of
`Autumn Leaves' one can notice that, �rst of all, in (J-R) performances the dy-
namics range is broader than in (T-C) performances and the average is higher in
(J-R); moreover, (J-R) performances tend to emphasize notes that are important
according to the musical structures of the phrase while in (T-C) this expressive

10 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

althoff@iis.uni-hildesheim.de

a)

b)

Fig. 4. a) First phrase from the `Autumn Leaves' theme. b) First phrase from the `All
of Me' theme.

resource is not used. Concerning rubato, the main perception between (J-R)
and (T-C) performances is that in (J-R) the beat is increased and in (T-C) is
decreased. Vibrato is mainly applied to (J-R) and (T-C) over notes with long
duration combined with a dynamics decay (for instance, over the fourth note in
Figure 4a). The main di�erence between (J-R) and (T-C) is that vibrato fre-
quency is higher in (J-R). Articulation is perceived in (J-R) close to staccato
and in (T-C) close to legato. Finally, the attack in (J-R) consisted in reaching
the �rst notes of subphrases{like fourth note (C in Figure 4a) or eight and ninth
notes (B in Figure 4a)|starting from a lower pitch. In (T-C) the attacks for
these same notes are treated in an explosive way, that is, high dynamics, high
noise and playing directly the right pitch.

The experiments performed with SaxEx have demonstrated that the system
is able to identify the relevant parts of the `Autumn Leaves' cases in the case
memory and imitate the expressive transformations stored in those cases to
generate the performances of `All of me'. Speci�cally, concerning the changes of
dynamics, while in (J-R) descending melodic progressions are transformed using
diminuendo and emphasizing the �rst note, in (T-C) the dynamics is equally
lowered in all notes. For instance, the �rst note (C) of `All of me' starts forte and
the dynamics is successively decreased yielding to piano. Concerning rubato, the
beat in (J-R) is increased and in (T-C) is decreased. Nevertheless, these changes
are not equally applied in all notes. For instance, in (J-R) the duration of the
fourth note (C in Figure 4b) is expanded and the the two following notes (D and
C) are reduced. Vibrato is applied in both, (J-R) and (T-C) performances, over
notes with long duration and dynamics decay (note examples are third and ninth
of Figure 4b). Finally, regarding the imitation of the attack transformations, in
(J-R) notes such as then �rst (C) or then seventh note (B)|are attacked starting
from a lower pitch|while in (T-C) the attacks for these same notes are explosive.

All these expressive transformations applied to the initially inexpressive ver-
sion of `All of me' are clearly consistent with the examples of the `Autumn
Leaves' performances previously described. Moreover, the use of a�ective knowl-
edge in the retrieval phase of the SaxEx CBR-method was revealed as a crucial
factor that has improved the quality of the solutions generated by the system.

11Affect-Driven CBR to Generate Expressive Music

althoff@iis.uni-hildesheim.de

The reader can visit the SaxEx website at `www.iiia.csic.es/Projects/
music/Saxex.html' for sound examples.

5 Related work

Previous work on the analysis and synthesis of musical expression has addressed
the study of at most two parameters such as rubato and vibrato [6] [10] [12], or
rubato and articulation by means of an expert system [14]. Other work such as
in [9] is focalized on the study of how musician's expressive intentions in
uence
the performances.

To the best of our knowledge, the only previous work addressing the issue
of learning to generate expressive performances based on examples is that of
Widmer [18], who uses explanation-based techniques to learn rules for dynamics
and rubato in the context of a MIDI electronic piano. In our approach we deal
with additional expressive parameters in the context of an expressively richer
instrument. Furthermore, this is the �rst attempt to deal with this problem
using case-based techniques as well as the �rst attempt to cover the full cycle
from an input sound �le to an output sound �le going in the middle through a
symbolic reasoning and learning phase.

6 Conclusion and future work

The integration of a�ective labels allows to improve the performance of SaxEx
in several ways. From the perspective of users, a more friendly interaction with
the system is possible. On the one hand, users can work in a more intuitive way,
without needing formal musical knowledge. On the other hand, it is possible to
generate a wider range of expressive intentions by combining a�ective labels in
multiple ways.

A�ective knowledge also enhances the reasoning of the system. In particu-
lar, a�ective labels constitute an additional criterion to discriminate among the
several candidate performances of a same phrase.

The experiments we are currently carrying on were designed using already
existing recordings that had been made without the purpose of communicat-
ing a�ects. As a next step, we plan to incorporate into the system additional
recordings in which the performer will be required to play according to a�ective
labels. This will allows us to obtain a richer case memory and to better assess
how the a�ect that the musician intends to communicate is perceived by the
listeners. This will also ease the task of relating a�ective labels with expres-
sive parameters|done by hand in the current experiments. This analysis could
be used in the future to have SaxEx learn automatically associations of labels
and the use of expressive parameters for situations appearing recurrently in the
cases. Finally, it would be interesting to discriminate situations where expres-
sive variations are used because of the logical structure of the score, as opposed
to situations where these variations come from the a�ective intentions of the
musician.

12 J.L. Arcos, D. Canamero, and R. Lopez de Mantaras

althoff@iis.uni-hildesheim.de

Acknowledgements

The research reported in this paper is partly supported by the ESPRIT LTR

25500-COMRIS Co-Habited Mixed-Reality Information Spaces project. We also

acknowledge the support of ROLAND Electronics de Espa~na S.A. to our AI and

Music project.

References

1. Josep Llu��s Arcos and Ramon L�opez de M�antaras. Perspectives: a declarative bias
mechanism for case retrieval. In David Leake and Enric Plaza, editors, Case-Based
Reasoning. Research and Development, number 1266 in Lecture Notes in Arti�cial
Intelligence, pages 279{290. Springer-Verlag, 1997.

2. Josep Llu��s Arcos, Ramon L�opez de M�antaras, and Xavier Serra. Saxex : a case-
based reasoning system for generating expressive musical performances. Journal
of New Music Research, 27 (3):194{210, 1998.

3. Josep Llu��s Arcos and Enric Plaza. Inference and re
ection in the object-centered
representation language Noos. Journal of Future Generation Computer Systems,
12:173{188, 1996.

4. Josep Llu��s Arcos and Enric Plaza. Noos: an integrated framework for problem
solving and learning. In Knowledge Engineering: Methods and Languages, 1997.

5. Sergio Canazza and Nicola Orio. How are the players perceived by listeners: anal-
ysis of \how high the moon" theme. In International workshop Kansei Technology
of Emotion (AIMI'97), 1997.

6. Manfred Clynes. Microstructural musical linguistics: composers' pulses are liked
most by the best musicians. Cognition, 55:269{310, 1995.

7. D. Cooke. The Language of Music. New York: Oxford University Press, 1959.
8. Mary Cyr. Performing Baroque Music. Portland, Oregon: Amadeus Press, 1992.
9. Giovani De Poli, Antonio Rod�a, and Alvise Vidolin. Note-by-note analysis of

the in
uence of expressive intentions and musical structure in violin performance.
Journal of New Music Research, 27 (3):293{321, 1998.

10. P. Desain and H. Honing. Computational models of beat induction: the rule-based
approach. In Proceedings of IJCAI'95 Workshop on AI and Music, pages 1{10,
1995.

11. W. Jay Dowling and Dane L. Harwood. Music Cognition. Academic Press, 19986.
12. H. Honing. The vibrato problem, comparing two solutions. Computer Music Jour-

nal, 19 (3):32{49, 1995.
13. Carroll E. Izard, Jerome Kagan, and Robert B. Zajonc. Emotions, Cognition, and

Behavior. Cambridge University Press, 1984.
14. M.L. Johnson. An expert system for the articulation of Bach fugue melodies. In

D.L. Baggi, editor, Readings in Computer-Generated Music, pages 41{51. IEEE
Computes Society Press, 1992.

15. Robert Jourdain. Music, the Brain, and Ecstasy. Avon Books, 1997.
16. Fred Lerdahl and Ray Jackendo�. An overview of hierarchical structure in music.

In Stephan M. Schwanaver and David A. Levitt, editors, Machine Models of Music,
pages 289{312. The MIT Press, 1993. Reproduced from Music Perception.

17. Eugene Narmour. The Analysis and cognition of basic melodic structures : the
implication-realization model. University of Chicago Press, 1990.

18. Gerhard Widmer. Learning expressive performance: The structure-level approach.
Journal of New Music Research, 25 (2):179{205, 1996.

13Affect-Driven CBR to Generate Expressive Music

althoff@iis.uni-hildesheim.de

Probability Based Metrics for Nearest Neighbor

Classi�cation and Case-Based Reasoning

Enrico Blanzieri and Francesco Ricci?

Istituto per la Ricerca Scienti�ca e Tecnologica (ITC-IRST)
38050 Povo (TN)

Italy
blanzier@irst.itc.it - ricci@sodalia.it

Abstract. This paper is focused on a class of metrics for the Nearest
Neighbor classi�er, whose de�nition is based on statistics computed on
the case base. We show that these metrics basically rely on a probabil-
ity estimation phase. In particular, we reconsider a metric proposed in
the 80's by Short and Fukunaga, we extend its de�nition to an input
space that includes categorical features and we evaluate empirically its
performance. Moreover, we present an original probability based metric,
called Minimum Risk Metric (MRM), i.e. a metric for classi�cation tasks
that exploits estimates of the posterior probabilities. MRM is optimal,
in the sense that it optimizes the �nite misclassi�cation risk, whereas
the Short and Fukunaga Metric minimize the di�erence between �nite
risk and asymptotic risk. An experimental comparison of MRM with the
Short and Fukunaga Metric, the Value Di�erence Metric, and Euclidean{
Hamming metrics on benchmark datasets shows that MRM outperforms
the other metrics. MRM performs comparably to the Bayes Classi�er
based on the same probability estimates. The results suggest that MRM
can be useful in case-based applications where the retrieval of a nearest
neighbor is required.

1 Introduction

Nearest Neighbor (NN) algorithms are a well-known and intensively studied
class of techniques for the solution of Classi�cation and Pattern Recognition
problems. Nowadays NNs are widely exploited for the retrieval phase in the
majority of the Case Based Reasoning (CBR) systems. In CBR, even if cases are
not explicitly classi�ed in a set of �nite groups (classes), often the solution space
can be clustered in a collection of sets each of them containing similar solutions.
When such a set of similar solution is labelled with a class tag, it is natural
to match the retrieval step in a CBR system with the nearest neighbor search
in a NN classi�er [3]. In this framework, for example, Bellazzi et al. [4] have
shown that the performance of a CBR system can be improved by driving the
retrieval with the information of same relevant classi�cation in the case space,
i.e. reducing the retrieval problem to a classi�cation task. In this perspective,

? Current Address: Sodalia S.p.A., 38100 Trento, Italy

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 14-28, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

improving the classi�cation accuracy for NN algorithms becomes important for
CBR.

The NN classi�cation procedure is straightforward: given a set of classi�ed
examples, which are described as points in an input space, a new unclassi�ed
example is assigned to the known class of the nearest example. The \nearest"
relation is computed using a (similarity) metric de�ned on the input space.
Many researchers [21{23, 11, 1, 2, 14, 13, 18, 19, 7, 25] focused their attention on
the use of local metrics, i.e. metrics that vary depending on the position of the
points in the input space. Conversely, more traditional global metrics assume
that similarity evaluation should be independent from the area of the input
space the cases to be compared are taken from. There are pros and cons in
using local metrics. On one hand local metrics generate classi�ers that are more
sensitive to the local changes of the data and hence more accurate. On the other
hand global metrics have fewer parameters and consequentially the classi�ers
are computationally lighter and less prone to the e�ect of noisy data. In other
words classi�ers based on global metrics have a dominant bias component of
the error whereas those based on local metric tend to have a greater variance
component [6]. The critical point seems to be the grade of locality of the metric:
choosing the 'right' locality in di�erent areas of the input space should lead to
better description of the separating surfaces.

Some of the proposed local metrics rely their e�ectiveness on the optimiza-
tion of a given criterion and ultimately on the estimation of some probabilities.
In this direction Short and Fukunaga [22] presented a seminal work constrained
to a multidimensional numerical input space. They proposed to minimize the ex-
pected value of the di�erence between the misclassi�cation error of a two-classes
NN classi�er with a �nite number of samples and the misclassi�cation error hy-
pothetically achievable with an in�nite sample. They expressed the optimal local
metric in terms of a linear estimation of posterior probabilities. More recently in
the instance based learning context, many proposals of nominal feature metrics
also involve probability estimation [23, 11, 9, 24]. In these cases the probability
estimation is performed computing frequencies of value occurrences. Finally, in
the work by Wilson and Martinez [26] the estimation of probabilities provides an
unifying framework for treating both linear (continuous or discrete) and nominal
features. Their heterogeneous distances, wich extend the VDM metric [23], deal
uniformly with both categorical and numerical features.

In spite of the centrality of the probability estimation issue in the metrics
brie
y described above, there is no unifying description in the literature of the
impact of di�erent approaches to the solution of this issue. Furthermore, little
or no attempt has been made to exploit the advanced nonparametric density
estimation techniques developed by the applied statistics community [20] and
their possible extensions to nominal features.

In this paper we describe a couple of techniques for probability estimation
and their use inside two metrics based on this estimation (Short and Fukunaga
and Minimum Risk Metric). From our point of view the approach of construct-

15Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

ing metrics via combination of well-known probability estimators and optimal
metrics presents several advantages.

{ The metrics have a clear analytical expression and motivation. For exam-
ple the metric proposed by Short and Fukunaga minimizes the di�erence
between asymptotic and �nite risk. That makes these metrics amenable to
analytical study.

{ The metrics can be computed using standard density estimation techniques.

Advances in that area can be reused here. For example, the choice of the
right degree of locality can rely on the solutions proposed for the choice of
the bandwidth in the nonparametric density estimation models.

{ The metrics can be de�ned uniformly on data sets with both numeric and

nominal attributes. This point is extremely important for CBR applications.
Combining di�erent metrics on the categorical and numerical features usu-
ally lead to poor performances [26].

Regarding the last item described above, in real world case bases both con-
tinuous and nominal features can be useful to describe cases. That poses a new
problem: how to sum contributions to the distance evaluation that come from
the comparison of pairs of categorical values together with pairs of real numbers?
This problem can be tackled in di�erent ways:

{ Ordering. Ordering and numbering the values of the nominal features and
applying a numerical metric like the Euclidean one. In general this approach
introduces arti�cial neighborhood.

{ Discretization. Discretizing the numeric features and applying a nominal
metric to them, e.g. Hamming or Value Di�erence Metric [23]. With dis-
cretization some information is inevitably lost and parameters of the dis-
cretization can be critical.

{ Combination. This is the most common approach in CBR, it consists of
combining two metrics, a nominal and a numeric, each one used on the
corresponding part of a case. A very common example of metric in this class is
that obtained by combining the Euclidean and Hamming metric. Combined
metrics are hard to adapt in a consistent way and performs poorly, as Wilson
and Martinez have shown [26].

Conversely, metrics based on probability estimation provides a natural uni-
fying framework for dealing with both kind of features. The same probability
estimation techniques is used for both type of features. Furthermore, the opti-
mality evaluation that can be done with this type of metric is impossible when
the metric is obtained by combination.

Among the metrics based on probability estimation the one proposed by
Short and Fukunaga has the strongest theoretical foundation. The original def-
inition was applicable only to cases described uniquely by numeric features. In
this paper we extend its de�nition to the most general situation, i.e., with both
type of features, by considering di�erent and more general probability estimators
than those exploited by the authors. We call this metric SF2.

16 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

Experimental results presented in this paper shows that SF2 outperforms
more standard metrics but only when we explicit restrict the scope of application
of the metric (locality) or cross{validating the estimator. The analysis of SF2
lead us to a deeper evaluation of the optimality condition underlying the Short
and Fukunaga metric and eventually to the de�nition of an alternative metric.

We propose here another metric, called Minimum Risk Metric (MRM), that
relies ist e�ectiveness on a di�erent and simpler optimality condition than that
suggested by Short and Fukunaga. In fact MRM minimizes directly the �nite
misclassi�cation risk. In order to test the e�ectiveness of the approach we run
experiments on 29 benchmark datasets and compare the classi�cation accuracies
of Short and Fukunaga Metric and MRM with the performances of other metrics
available in the literature.

The work is organized as follows: Section 2 describes the metrics studied
in this paper, in particular Subsection 2.4 brie
y presents the Minimum Risk
Metric and its optimality criterium. Section 3 describes the adopted probability
estimators. Section 4 presents the experimental results and �nally Section 5
draws conclusions and future directions.

2 Metrics

In this Section we will brie
y present four families of metrics studied in this
work. The �rst was introduced by Short and Fukunaga in the 80's [22] and is
not well know in CBR mostly because in the original de�niton seemed con�ned
to cases with only numerical features. The second family originates from the
well known VDM of Stan�ll and Waltz [23] and has stemmed a number of other
metrics, most notably those introduced by Wilson and Martinez [26]. Third, we
recall the very common metric that combines the Euclidean and the Hamming
distances. Fourth, we introduce our novel metric called Minimum Risk Metric
(MRM).

2.1 Short and Fukunaga Metric (SF2)

Short and Fukunaga [22] were the �rst to derive a NN optimal metric rely-
ing on probabilistic considerations. In their work they consider a two-class pat-
tern recognition task. Let x = (x1; : : : ; xn); y = (y1; : : : ; yn) be two examples in
[0; 1]n. Let, p(c1jx) be the probability that the example x be in class c1. Then
r(x; y) = p(c1jx)p(c2jy) + p(c2jx)p(c1jy) is the �nite 1-nearest neighbor error
rate at x (i.e., the probability of misclassifying x by the 1-nearest neighbor
rule given that the nearest neighbor of x using a particular metric is y) and
r�(x) = 2p(c1jx)p(c2jx) is the asymptotic 1-nearest neighbor error rate (i.e.,
the probability of misclassifying x by the 1-nearest neighbor rule, given a hypo-
thetically in�nite design set [10]). Short and Fukunaga show that minimizing the
expectation E[(r(x; y)�r�(x))2] is equivalent to minimize E[(p(c1jx)�p(c1jy))

2],
so the best local metric is:

17Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

sf2(x; y) = jp(c1jx)� p(c1jy)j (1)

We shall call this metric SF2. Short and Fukunaga approximate at the �rst order
jp(c1jx)� p(c1jy)j ' jrp(1jx)T (x� y)j and therefore their metric in the original
formulation can be applied only to numeric features and in a local restriction.

Myles and Hand in [17] generalize that metric to a multiclass problem and
introduce the following two:

sf2(x; y) =

mX
i=1

jp(cijx)� p(cijy)j (2)

sfm(x; y) =

mX
i=1

p(cijx)jp(cijx)� p(cijy)j (3)

where the classes ci are numbered from 1 to m. We shall still call the �rst
metric SF2, and SFM the second. It is easy to prove that on a two classes
classi�cation problem SF2 and SFM coincide. Myles and Hand use the same
technique introduced by Short and Fukunaga to approximate jp(cijx)� p(cijy)j.

2.2 Value Di�erence Metric (VDM)

Another very common metric based on probabilistic consideration is VDM in-
troduced by Stan�ll and Waltz [23] and used exclusively on input spaces with
nominal attributes. Let x = (x1; : : : ; xn) and y = (y1; : : : ; yn) be two examples
in
Qn

j=1 Fj , and jFj j is �nite. The VDM metric is de�ned as follow:

vdm(x; y) =

nX
j=1

vuut mX
i=1

�
N(xj ; ci)

N(xj)

�2 mX
i=1

�
N(xj ; ci)

N(xj)
�

N(yj ; ci)

N(yj)

�2
(4)

where N(xj ; ci) is the number of examples that have value xj for the j-th at-
tribute and are in class ci, and N(xj) is the number of examples that have value
xj for the j-th attribute. If probabilities are estimated with frequency counts
then VDM can also be written in the following form:

vdm(x; y) =
nX
j=1

vuut mX
i=1

(p(cijxj)2
mX
i=1

(p(cijxj)� p(cijyj))
2 (5)

VDM has no clear justi�cation and seems to assume attributes independence.
It is easy to conceive an ill-formed dataset where all the p(cijxj) are equal (for
example the parity bit class) and therefore VDM is not able to distinguish among
the classes. Nevertheless VDM, and a set of modi�ed versions [11, 9, 26], works
quite well on real data sets.

Wilson and Martinez extended VDM to instances with numeric attributes
[26]. They essentially discretize the numeric attributes (DVDM) and then smooth

18 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

the histogram estimation of p(cijxj) by averaging. The metric obtained with that
procedure is called IVDM. They also suggest a heterogeneous VDM that com-
bines an Euclidean metric for numeric features with a VDM, called HVDM. The
version of VDM, and the correspondig metrics IVDM and HVDM, we adopted in
our experiments is the version without weighting factors and with the absolute
values:

vdm(x; y) =
nX
j=1

mX
i=1

jp(cijxj)� p(cijyj)j (6)

An empirical study [8] has shown that this version of VDM (IVDM and DVDM)
behaves better than the others.

2.3 Combined Euclidean{Overlap Metric (HEOM)

The metric HEOM was introduced by Wilson and Martinez [26], is the combina-
tion of the Euclidean and Hamming metric. Basically HEOM is an heterogeneous
distance function that uses di�erent attributes distance functions on di�erent
kinds of attributes. If x = (x1; : : : ; xn) and y = (y1; : : : ; yn) are two examples

then heom(x; y) =
qPn

j=1 dj(xj ; yj)2 where dj(xj ; yj) is the Hamming distance

if the j-th feature is nominal and the Euclidean distance if numeric. The numeric
features are normalized using the range.

2.4 Minimum Risk Metric

Minimum Risk Metric (MRM) is a very simple metric that directly minimizes
the risk of misclassi�cation.

Given an example x in class ci and a nearest neighbor y the �nite risk
of misclassifying x is given by p(cijx)(1 � p(cijy)). The total �nite risk is the
sum of the risks extended to all the di�erent classes and is given by r(x; y) =Pm

i=1 p(cijx)(1 � p(cijy)). The approach of Short and Fukunaga and followers
is to subtract the asymptotic risk r�(x; y) and minimizing E(r(x; y)� r�(x; y)).
Instead we propose to minimize directly the risk r(x; y) and that leads to the
metric:

mrm(x; y) = r(x; y) =

mX
i=1

p(cijx)(1� p(cijy)): (7)

We observed in some experiments not shown here, that the application of MRM
inside a Nearest Neighbor classi�er leads to a classi�er equivalent to the Bayes
rule, i.e., \assign x to the class that maximizes p(cijx)". That points out that
the key element in MRM is the estimation of p(cijx). This point is dealt in the
next Section.

19Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

3 Probability Distribution Estimation

The presence of the conditional probabilities p(cijx) in both SF2 metric and
MRM requires consistent estimates p̂(cijx) and this section illustrates the prob-
ability estimation techniques used in the experiments.

We must note that, a classi�cation problem would be solved if the proba-
bilities p(cijx) were known. In fact the Bayes optimal classi�cation rule says to
choose the class ci that maximizes p(cijx). All the classi�cation methods explic-
itly or implicitly follow this rule and the estimation of p(cijx) is not simpler
than computing an optimal metric for NN. For that reason the estimation of the
quantities p(cijx) is a key issue. Notwithstanding that, we will show that even
if many of the metrics here presented are based on the same estimation of the
quantities p(cijx) the exact de�nition of the metric is determinant and di�erent
performances can be obtained.

The estimates of p(cijx) can be done directly or applying the Bayes theorem

p(cijx) =
p(xjci)p(ci)

p(x)
=

p(xjci)p(ci)
PjCj

k=1 p(xjck)p(ck)
(8)

therefore reducing to the problem of estimating p(xjck).
In the present work we carried on experiments with two di�erent estimators.

The �rst is the Naive Bayes Estimator that is the estimator that is implicit in
the Naive Bayes Classi�er. It is a natural estimator for nominal feature and it
can be extended to the numeric ones by discretization. The second is the Gaus-
sian Kernel Estimator, a non{parametric density estimator that in its original
formulation uses the Euclidean metric. In order to extend the density estima-
tion technique to nominal features the Euclidean metric is simply substituted
by HEOM and the densities are supposed to replace the probabilities in the
expressions of the metrics.

3.1 Naive Bayes Estimator

The simplest probability estimates are based on frequency counts. In this way is

possible to estimate p(ci) with p̂(ci) =
N(ci)
N

where N(ci) is the number of cases
that are in the ci class and N is the sample size. Unfortunately, probability esti-
mates based on frequencies performs poorly if the sample size is small (basically
the probabilities result understimated) and so they can be improved adopting
the Laplace{corrected estimate or equivalently incrementing arti�cially the sam-

ple size [16]. Following the �rst possibility leads to the estimate p̂(ci) =
N(ci)+f
N+fnj

where nj is the number of values of the j-th attribute and f = 1=N is a multi-
plicative factor [12].

Assuming features' independence leads to the estimates:

p̂(xjci) =
nY

j=1

p̂(xj jci) =
nY

i=1

N(xj ; ci) + f

N(ci) + fnj

20 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

which, substituted in the equation (8) are the estimates that are used in the
Naive Bayes Classi�er approach.

p̂(cijx) =

Qn
j=1

N(xj;ci)+f
N(ci)+fnj

N(ci)+f
N+fnjPjCj

k=1

Qn
j=1

N(xj;ck)+f
N(ck)+fnj

N(ck)+f
N+fnj

(9)

3.2 Gaussian Kernel Estimator

The second type of estimates used in this paper belongs to a broad class of
nonparametric density estimators represented by the multivariate �xed kernel
[20]:

f̂(x) =
1

N

nX
l=1

1

h(x; xl)n
K

�
x� xl

h(x; xl)

�
(10)

where n is the dimension of the input space, h is the bandwidth and K(t) is the
kernel function.

The bandwidth h(x; xl) can be constant on the input space or it can vary. In
relation to the bandwidth h dependency on the probe point x or on the sample
point xl, the estimator is called balloon or sample point respectively.

The Gaussian Kernel Estimator is an example of sample point estimator with
�xed bandwidth.

f̂(x) =
1

N(2�)
n=2

NX
l=1

p
jW j

hn
e
� 1
2

�
kx�xlkW

h

�2
(11)

where W is a positive de�nite diagonal matrix, and

k x� xl kW =

q
(x� xl)W (x � xl)

T
=

vuut nX
j=1

wjj (xj � xlj)
2

p
jW j =

nY
j=1

wjj

k : kW is an Euclidean weighted metric and wjj =
1
�̂j

where �j is an estimate

of the variance on the j{th dimension of the input space. In this case the optimal

bandwidth is h =
�

4
n+2

� 1
n+4

N� 1
n+4 .

4 Experimental Results

The metrics presented in Section 2 were tested on 27 databases taken from
from the Machine Learning Databases Repository at UCI [15] and on two new
databases (Derma and Opera). Derma collects data of images for the diagnosis
of melanoma collected in Santa Chiara Hospital in Trento, Italy and Opera

21Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

contains the results of a cognitive pragmatics experiment [5]. The 29 databases
contains continuous, nominal and mixed features. The main characteristics of the
databases are presented in Table 1. We extended to mixed feature databases the
estimate of the Naive Bayes Estimator by discretizing the numeric features and
the estimate of the Gaussian Kernel Estimator by substituting the Euclidean
Metric with HEOM. We normalized the numeric features with their range and
use ten intervals for all the discretizations. The unknown values were simply
ignored during the computation. The experimental technique is a 10-fold cross{
validation and as a signi�cance test we adopted the paired t-test (p < 0:05).

Table 1. The databases used in the experimentation.

Data Set Instances Classes Features Unknown

Annealing 798 6 38 9C 29S yes
Audiology(standardized) 200 24 69 69S yes
Breast-cancer 286 2 9 4C 5S yes
Bridges 108 6 11 9C 2S yes
Bridges(discretized) 108 6 11 11S yes
Credit Screening 690 2 15 6C 9S yes
Derma 152 2 44 44C no
Flag 194 8 28 10C 18S no
Glass 214 7 9 9C no
Hepatitis 155 2 19 6C 13S yes
Horse-Colic 300 2 27 7C 20S yes
House-Votes-84 435 2 16 16S yes
Ionosphere 351 2 34 34C no
Iris 150 3 4 4C no
Led+17noise 200 10 24 24S no
Led 200 10 7 7S no
Liver Disorders 345 2 6 6C no
Monks-1 432 2 6 6S no
Monks-2 432 2 6 6S no
Monks-3 432 2 6 6S no
Opera 1216 5 9 9S no
Pima 768 2 8 8C no
Post-operative 90 3 8 1C 7S yes
Promoters 106 2 57 57S no
Sonar 208 2 60 60C no
Soybean(large) 307 19 35 35S yes
Soybean(small) 47 4 35 35S no
WDBC 569 2 32 32C no
zoo 101 7 16 16S no

The experiments here presented measure the classi�cation accuracies of of the
1-NN algorithm with SF2 metric (Equation 2) and MRM (Equation 7) obtained
using Naive Bayes Estimator (Equation 9) and the Gaussian Kernel Estimator
(Equation 11). The accuracies are compared to those of DVDM (Equation 6) and
HEOM (Section 2.3). Noteworthy, the application of SF2 can be restricted to h

neighbors with respect to the metric HEOM. This means that when searching for
the SF2 nearest neighbor of an example x only the set of h HEOM neighbors of x
are considered. When the metrics are computed on the whole training set h = N

holds. Some of the experiments are led adopting as h the cross-validated value

22 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

hCV . In some cases, we also cross{validate the choice of the estimator. When
this is the case the estimator is indicated as EstCV . Both the cross{validations
are carried on with a 10-fold cross{validation on each training partition.

4.1 HEOM and Value Di�erence Metrics results

Table 2. Classi�cation accuracies for di�erent metrics. Signi�cative di�erences (p <

0:05) are shown: for instance, IVDM performs signi�catively better than DVDM on
sonar dataset.

Data Set IVDM (I) HVDM (H) DVDM (D) HEOM (E)
annealing 97:4� 1:33 > E 99:1� 1:03 > I;E 98:4� 0:98 > I;E 95:4� 2:59
audiology 80:5� 7:24 > E 80:5� 5:98 > E 80:5� 5:98 > E 72:5� 11:3
breast-cancer 66:4� 6:92 68:2� 8:21 64:3� 10:0 65:4� 8:54
bridges1 61:1� 7:97 59:3� 11:1 62:3� 16:9 65:9� 13:9 > H
bridges2 62:1� 20:0 59:3� 19:0 59:3� 19:0 55:5� 17:2
crx 79:7� 2:36 80:5� 5:21 79:5� 4:06 81:7� 3:36
derma 80:0� 12:6 73:0� 12:6 74:8� 13:4 78:1� 10:6

ag 57:4� 12:3 66:6� 8:75 > I;E 64:0� 8:34 > I;E 55:8� 12:9
glass 72:5� 12:5 > D 69:7� 9:32 > D 62:1� 11:1 71:1� 11:8 > D
hepatitis 82:6� 10:1 80:0� 9:94 82:0� 10:8 80:7� 11:8
horse-colic 85:6� 5:67 85:6� 7:70 86:6� 7:53 84:6� 4:76
house-votes-84 93:7� 3:10 93:0� 2:45 93:0� 2:45 > H 92:3� 3:82 > H

ionosphere 87:4� 3:38 > H 35:9� 4:75 88:8� 4:75 87:1� 2:81
iris 94:6� 5:25 96:6� 4:71 92:6� 4:91 95:3� 5:48
led 66:5� 13:5 66:5� 13:5 66:5� 13:5 68:0� 12:9
led17 57:5� 12:5 > E 59:5� 11:8 > E 59:5� 11:8 > E 39:0� 9:06
liver 63:9� 8:07 59:4� 11:5 64:3� 8:22 63:7� 7:82
monks-1 78:0� 13:4 78:0� 13:4 78:0� 13:4 71:5� 7:54
monks-2 92:6� 8:39 > E 92:6� 8:39 > E 92:6� 8:39 > E 57:1� 7:21
monks-3 100:� 0:00 > E 100:� 0:00 > E 100:� 0:00 > E 79:3� 8:43
opera 49:0� 4:78 49:0� 4:78 49:0� 4:78 49:0� 4:84
pima-indians-diabetes 70:5� 4:47 68:4� 4:28 70:8� 3:31 71:7� 3:15 > H

post-operative 63:3� 14:8 63:3� 13:9 62:2� 14:9 57:7� 22:7
promoters 89:7� 10:1 > E 89:7� 8:17 > E 89:7� 8:17 > E 80:1� 9:42
sonar 85:0� 8:84 > D 81:6� 6:42 76:9� 6:15 87:0� 7:19 > D
soybean-large 92:1� 4:08 90:2� 5:80 90:2� 5:80 91:1� 5:13
soybean-small 100:� 0:00 100:� 0:00 100:� 0:00 100:� 0:00
wdbc 95:2� 2:19 95:7� 2:50 94:9� 3:02 95:2� 2:34
zoo 95:0� 7:00 95:0� 7:00 95:0� 7:00 96:0� 5:16

In the �rst series of experiments we evaluate the metrics HEOM, DVDM,
IVDM and HVDM. These metrics would represent a baseline for SF2 and MRM.
Accuracy results are reported in Table 2. In this Table, when on a given dataset,
a metric m performs signi�cantly better than another one m0, the symbol >
m0 appears in the column of m. All the metrics of the VDM family appears
to outperform the HEOM but there in not a clear winner among them. This
results seems to partially contradict what observed by Wilson and Martinez [26],
i.e., that a better aproximation of the probabilities p(cijxj) used in Equation 6
for numerical features, would lead to a better metric. Moreover, HVDM, the
combined Euclidean and VDM metric, performs well even if it simply sums the
etherogeneous contributions of the two metrics.

23Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

IVDM is more sophisticated than DVDM. In IVDM the estimate of p(cijxj)
obtained by discretizing the j-th numerical featue is smoothed by interpolation.
But this approach seems not to improve DVDM to a great extent. For this reason,
in the following experiments we compare SF2 and MRM only with DVDM.

4.2 Short and Fukunaga Metric

Table 3. Classi�cation accuracies of the metrics SF2 with Naive , Kernel and cross-
validated estimator with di�erent localities. Signi�cative di�erences (p < 0:05) are
shown: for instance, Naive h = hCV performs signi�catively better than Kernel h =
hCV on led17 dataset.

Data Set Naive h = hCV (N) Kernel h = hCV (K)EstCV h = hCV (E�

CV
)

annealing 97:9 � 1:88 97:9� 1:47 97:9� 1:88
audiology 77:5 � 8:57 76:0� 10:2 75:5� 10:1
breast-cancer 63:5 � 9:48 64:3� 8:65 62:8� 9:85
bridges1 64:9 � 9:95 60:9� 12:7 64:0� 8:55
bridges2 71:4 � 19:2 66:7� 19:1 70:5� 20:8
crx 80:4 � 2:57 82:4� 4:75 80:8� 2:88
derma 78:1 � 13:1 73:5� 11:8 77:5� 14:2

ag 59:8 � 10:1 58:9� 8:16 59:8� 10:1
glass 69:2 � 11:9 73:0� 10:9 > E�

CV
68:7� 11:4

hepatitis 88:5 � 8:72 83:9� 7:93 88:5� 8:72
horse-colic 83:6 � 6:74 84:3� 6:85 83:3� 7:20
house-votes-84 93:0 � 3:78 93:9� 3:67 93:7� 3:44
ionosphere 86:5 � 3:35 92:5� 4:50 > N;E�

CV
89:4� 4:28

iris 95:3 � 5:48 94:6� 6:88 95:3� 5:48
led 68:5 � 15:4 71:5� 17:9 69:0� 14:4
led17 58:0 � 8:23 > K 43:5� 7:83 58:0� 8:23 > K

liver 66:6 � 10:7 59:4� 12:7 62:3� 12:5
monks-1 76:1 � 10:5 100:� 0:00 > N 98:1� 3:40 > N

monks-2 91:1 � 7:33 > K 56:4� 7:68 91:1� 7:33 > K

monks-3 100: � 0:00 99:7� 0:73 100:� 0:00
opera 48:4 � 4:41 48:5� 4:78 48:6� 4:74
pima-indians-diabetes 70:3 � 3:55 70:3� 3:17 70:3� 3:55
post-operative 56:6 � 18:4 53:3� 17:9 55:5� 16:5
promoters 88:5 � 7:81 83:8� 12:4 88:5� 7:81
sonar 87:0 � 7:19 89:3� 5:57 86:0� 7:74
soybean-large 92:4 � 4:94 90:5� 5:64 92:4� 4:94
soybean-small 100: � 0:00 100:� 0:00 100:� 0:00
wdbc 95:4 � 2:36 96:3� 2:53 > E�

CV
94:7� 2:01

zoo 96:0 � 5:16 96:0� 5:16 96:0� 5:16

Preliminary results showed a substantial equivalence between SF2 and SFM
and therefore we choose the simpler one. The Table 3 presents the classi�cation
accuracies of SF2 metric with di�erent estimators (Naive , Gaussian Kernel, and
the cross{validated one). Moreover the grade of locality is also cross{validated.
This means that in the computation of the SF2 nearest neighbor of an example
x, the SF2 distance from this example is only taken with examples in a subset of
the case base. This subset contains the h nearest neighbors of x with respect to
the HEOM metric. In fact, the locality of the SF2 metrics appears to be critical.
In a set of results not showed here we noted that an unrestricted application of
the metric leads to poor results when compared with DVDM and HEOM.

24 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

In Table 4 we show how the SF2 metric based on cross{validation outperforms

signi�catively DVDM and HEOM. In particular the metric with both estimator

and locality cross-validated is never worse of them and outperforms DVDM in 4

datasets and HEOM in 8 datasets. However, in a set of experiments not reported

here we noted that SF2 often performs worse than the Bayes Classi�er based on

the same estimation.

Table 4. Classi�cation accuracies of SF2 with a cross-validated estimator, DVDM and
HEOM. Signi�cative di�erences (p < 0:05) are shown.

SF2 EstCV DVDM (D) HEOM (E)
Data Set h = hCV (E�

CV
)

annealing 97:9� 1:88 > E 98:4� 0:98 95:4� 2:59
audiology 75:5� 10:1 80:5� 5:98 72:5� 11:3
breast-cancer 62:8� 9:85 64:3� 10:0 65:4� 8:54
bridges1 64:0� 8:55 62:3� 16:9 65:9� 13:9
bridges2 70:5� 20:8 > D;E 59:3� 19:0 55:5� 17:2
crx 80:8� 2:88 79:5� 4:06 81:7� 3:36
derma 77:5� 14:2 74:8� 13:4 78:1� 10:6

ag 59:8� 10:1 64:0� 8:34 55:8� 12:9
glass 68:7� 11:4 > D 62:1� 11:1 71:1� 11:8
hepatitis 88:5� 8:72 > E 82:0� 10:8 80:7� 11:8
horse-colic 83:3� 7:20 86:6� 7:53 84:6� 4:76
house-votes-84 93:7� 3:44 93:0� 2:45 92:3� 3:82
ionosphere 89:4� 4:28 88:8� 4:75 87:1� 2:81
iris 95:3� 5:48 92:6� 4:91 95:3� 5:48
led 69:0� 14:4 66:5� 13:5 68:0� 12:9
led17 58:0� 8:23 > E 59:5� 11:8 39:0� 9:06
liver 62:3� 12:5 64:3� 8:22 63:7� 7:82
monks-1 98:1� 3:40 > D;E 78:0� 13:4 71:5� 7:54
monks-2 91:1� 7:33 > E 92:6� 8:39 57:1� 7:21
monks-3 100:� 0:00 > E 100:� 0:00 79:3� 8:43
opera 48:6� 4:74 49:0� 4:78 49:0� 4:84
pima-indians-diabetes 70:3� 3:55 70:8� 3:31 71:7� 3:15
post-operative 55:5� 16:5 62:2� 14:9 57:7� 22:7
promoters 88:5� 7:81 > E 89:7� 8:17 80:1� 9:42
sonar 86:0� 7:74 > D 76:9� 6:15 87:0� 7:19
soybean-large 92:4� 4:94 90:2� 5:80 91:1� 5:13
soybean-small 100:� 0:00 100:� 0:00 100:� 0:00
wdbc 94:7� 2:01 94:9� 3:02 95:2� 2:34
zoo 96:0� 5:16 95:0� 7:00 96:0� 5:16

4.3 Minimum Risk Metric

In this Section we evaluate the Minimum Risck Metric introduced in Section 2.4.

In this case we used the Naive Bayes estimator, that in a set of experiments not

showed here seems to work best for this metric. In Table 5 MRM is compared

with the DVDM metric and HEOMmetric. MRM compares very favourable with

the exception of the monks datasets. These datasets appear to be a hard task

probably as a consequence of the assumption of the independence among features

that underlies the Naive Estimator. MRM outperforms DVDM and HEOM more

convincingly than SF2 and without any local restriction. This is obviosly an

important feature as it greatly simplify the computation of the metric.

25Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

Table 5. Classi�cation accuracy of the Minimum Risk Metric with the Naive Estima-
tor, DVDM and HEOM. Signi�cative di�erences (p < 0:05) are shown.

MRM h = N DVDM HEOM
Data Set Naive (MN)

annealing 97:6� 1:61 > E 98:4 � 0:98 95:4� 2:59
audiology 76:5� 7:47 80:5 � 5:98 72:5� 11:3
breast-cancer 73:4� 7:16 > D;E 64:3 � 10:0 65:4� 8:54
bridges1 63:0� 11:0 62:3 � 16:9 65:9� 13:9
bridges2 69:6� 19:0 > D;E 59:3 � 19:0 55:5� 17:2
crx 83:9� 1:73 > D 79:5 � 4:06 81:7� 3:36
derma 77:4� 17:9 74:8 � 13:4 78:1� 10:6

ag 61:8� 7:83 64:0 � 8:34 55:8� 12:9
glass 66:8� 13:6 62:1 � 11:1 71:1� 11:8
hepatitis 87:1� 7:88 82:0 � 10:8 80:7� 11:8
horse-colic 83:6� 7:44 86:6 � 7:53 84:6� 4:76
house-votes-84 90:5� 4:30 93:0 � 2:45 92:3� 3:82
ionosphere 91:1� 3:42 > E 88:8 � 4:75 87:1� 2:81
iris 95:3� 5:48 92:6 � 4:91 95:3� 5:48
led 72:5� 14:5 66:5 � 13:5 68:0� 12:9
led17 67:0� 9:18 > D;E 59:5 � 11:8 39:0� 9:06
liver 71:3� 9:85 > D;E 64:3 � 8:22 63:7� 7:82
monks-1 66:2� 15:0 78:0 � 13:4 > MN 71:5� 7:54
monks-2 67:1� 7:49 > E 92:6 � 8:39 > MN 57:1� 7:21
monks-3 97:2� 2:40 > E 100: � 0:00 > MN 79:3� 8:43
opera 58:0� 3:70 > D;E 49:0 � 4:78 49:0� 4:84
pima-indians-diabetes 75:1� 4:76 > D;E 70:8 � 3:31 71:7� 3:15
post-operative 64:4� 17:9 > E 62:2 � 14:9 57:7� 22:7
promoters 90:4� 6:38 > E 89:7 � 8:17 80:1� 9:42
sonar 78:3� 8:15 76:9 � 6:15 87:0� 7:19 > MN
soybean-large 92:5� 4:62 90:2 � 5:80 91:1� 5:13
soybean-small 100:� 0:00 100: � 0:00 100:� 0:00
wdbc 93:8� 2:22 94:9 � 3:02 95:2� 2:34
zoo 96:0� 5:16 95:0 � 7:00 96:0� 5:16

5 Conclusions

In this paper we have introduced two new metrics for nearest neighbor classi�-
cation that are based on probability estimation. The �rst, SF2, was originally
introduced by Short and Fukunaga [22]. We extended its de�niton to input
spaces with nominal features and introduced a di�erent estimate for the density
probability used in this metric. The second, the Minimum Risk Metric (MRM)
is very similar to SF2 but optimize a di�erent criterion, the risk of misclassi�-
cation. Among the main advantages of these types of metrics is the possibility
to manage both nominal and numerical features in an uniform way and the fact
that these metrics can be analytically studied.

The experiments show that the metric SF2 works only if locally restricted,
i.e., examples used for the SF2 nearest neighbor computation are taken in a set of
Euclidean nearest neighbors. That is surprising given the theoretical optimality
of the metric and further investigations are required to clarify this point. In fact,
in the original formulation of Short of Fukunaga the locality is not necessary for
the optimality argument but only because they adopt a linear approximation
of the probability. Nevertheless the combination of cross{validated locality and
cross-validated estimator leads to a metric that outperforms VDM and HEOM.

26 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

The Minimum Risk Metric does not require any local restriction, its per-

formances are comparable to the Bayes Classi�er, its analytical form is simple

and well founded, and �nally, equipped with a simple Naive Estimator, outper-

forms the other metrics. The choice of MRM appears to be relevant whenever

the retrieval of a neighbor is required. For this reasons MRM seems particularly

suitable for Case Based Reasoning application when a relevant classi�cation of

the cases is available.

6 Acknowledgements

We would like to thank M. Cazzani for her contribution to the implementation

of CBET, the C++ library used in the experimental evaluation of the metrics

presented in this paper.

References

1. D. W. Aha and R. L. Goldstone. Learning attribute relevance in context in

instance-based learning algorithms. In Proceedings of the Twelfth Annual Con-

ference of the Cognitive Science Society, pages 141{148, Cambridge, MA, 1990.

Lawrence Earlbaum.

2. D. W. Aha and R. L. Goldstone. Concept learning and
exible weighting. In

Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,

pages 534{539, Bloomington, IN, 1992. Lawrence Earlbaum.

3. P. Avesani, A. Perini, and F. Ricci. Interactive case-based planning for forest �re

management. Applied Arti�cial Intelligence, 1999. To appear.

4. R. Bellazzi, S. Montani, and L. Portinale. Retrieval in a prototype-based case

library: A case study in diabetes therapy revision. In European Workshop on Case

Based Reasoning, 1998.

5. E. Blanzieri, M. Bucciarelli, and P. Peretti. Modeling human communication. In

First European Workshop on Cognitive Modeling, Berlin, 1996.

6. L. Breiman. Bias, variance, and arcing classi�ers. Technical Report 460, University

of California, Berkeley, April 1996.

7. C. Cardie and N. Howe. Improving minority class prediction using case-speci�c fea-

ture weight. In Proceedings of the Fourteenth International Conference on Machine

Learning, pages 57{65. Morgan Kaufmann Publishers, 1997.

8. M. Cazzani. Metriche di similarit�a eterogenee per il problema di recupero nei

sistemi di ragionamento basato su casi: studio sperimentale. Master's thesis, Univ.

of Milano, 1998.

9. S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with

symbolic features. Machine Learning, 10:57{78, 1993.

10. T. M. Cover and P. E. Hart. Nearest neighbor pattern classi�cation. IEEE Trans-

action on Information Theory, 13:21{27, 1967.

11. R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz. Trading MIPS and

memory for knowledge engineering. Communication of ACM, 35:48{64, 1992.

12. P. Domingos and M. J. Pazzani. On the optimality of the simple bayesian classi�er

under zero-one loss. Machine Learning, 29:103{130, 1997.

27Probability Based Metrics for Nearest Neighbor Classification

althoff@iis.uni-hildesheim.de

13. J. H. Friedman. Flexible metric nearest neighbour classi�cation. Technical
report, Stanford University, 1994. Available by anonymous FTP from play-
fair.stanford.edu.

14. T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbour classi�ca-
tion. In U.M.Fayad and R.Uthurusamy, editors, KDD-95: Proceedings First Inter-
national Conference on Knowledge Discovery and Data Mining, 1995.

15. C. J. Merz and P. M. Murphy. UCI Repository of Machine Learning Databases.
University of California, Department of Information and Computer Science, Irvine,
CA, 1996.

16. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
17. J. P. Myles and D. J. Hand. The multi-class metric problem in nearest neighbour

discrimination rules. Pattern Recognition, 23(11):1291{1297, 1990.
18. F. Ricci and P. Avesani. Learning a local similarity metric for case-based reason-

ing. In International Conference on Case-Based Reasoning (ICCBR-95), Sesimbra,
Portugal, Oct. 23-26, 1995.

19. F. Ricci and P. Avesani. Data compression and local metrics for nearest neighbor
classi�cation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1999. To appear.

20. D. W. Scott. Multivariate Density Estimation: Theory , Practice, and Visualiza-
tion. John Wiley, New York, 1992.

21. R. D. Short and K. Fukunaga. A new nearest neighbour distance measure. In
Proceedings of the 5th IEEE International Conference on Patter Recognition, pages
81{86, Miami beach, FL, 1980.

22. R. D. Short and K. Fukunaga. The optimal distance measure for nearest neighbour
classi�cation. IEEE Transactions on Information Theory, 27:622{627, 1981.

23. C. Stan�ll and D. Waltz. Toward memory-based reasoning. Communication of
ACM, 29:1213{1229, 1986.

24. D. Wettschereck and T. G. Dietterich. An experimental comparison of the nearest
neighbor and nearest hyperrectangle algorithms. Machine Learning, 19:5{28, 1995.

25. D. Wettschereck, T. Mohri, and D. W. Aha. A review and empirical comparison
of feature weighting methods for a class of lazy learning algorithms. AI Review
Journal, 11:273{314, 1997.

26. D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions.
Journal of Arti�cial Intelligence Research, 11:1{34, 1997.

28 E. Blanzieri and F. Ricci

althoff@iis.uni-hildesheim.de

Active Exploration in Instance-Based Preference

Modeling

L. Karl Branting

Department of Computer Science
University of Wyoming

P.O. Box 3682
Laramie, WY 82972, USA

karl@uwyo.edu

Abstract. Knowledge of the preferences of individual users is essen-
tial for intelligent systems whose performance is tailored for individ-
ual users, such as agents that interact with human users, instructional
environments, and learning apprentice systems. Various memory-based,
instance-based, and case-based systems have been developed for prefer-
ence modeling, but these system have generally not addressed the task
of selecting examples to use as queries to the user. This paper describes
UGAMA, an approach to learning preference criteria through active ex-
ploration. Under this approach, Unit Gradient Approximations (UGAs)
of the underlying quality function are obtained at a set of reference points
through a series of queries to the user. Equivalence sets of UGAs are then
merged and aligned (MA) with the apparent boundaries between linear
regions. In an empirical evaluation with arti�cial data, use of UGAs as
training data for an instance-based ranking algorithm (1ARC) led to
more accurate ranking than training with random instances, and use of
UGAMA led to greater ranking accuracy than UGAs alone.

1 Introduction

Knowledge of the preferences of individual users is essential for intelligent sys-
tems whose performance is tailored for individual users, such as advisory agents
and self-customizing systems. While some simple preferences are easily elicited
(e.g., the preference for one soft-drink over another), more complex preference
criteria may be di�cult or extremely inconvenient for users to articulate (e.g.,
preferences among designs, schedules, plans, or other con�gurations).

A variety of approaches to automated preference acquisition are possible,
varying in the attentional cost, or cognitive load, that they impose on the user. At
one extreme is a priori knowledge, such as group membership, stereotypes, and
default models, which can be determined at no attentional cost to the user. For
example, collaborative �ltering systems typically base their preference models on
easily-obtained group membership information [GNOT92]. A second approach
that has no attentional cost is passive observation, simply recording the user's
choices.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 29-43, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

A more active approach is the \candidate/revision" or \learn-on-failure" ap-
proach, under which the system makes suggestions based on its current model
and revises the model whenever a suggestion is rejected. This approach has been
applied to text retrieval [HGBSO98], telescope observing schedules [BB94], ac-
quisition of \interface agents" [MK93], calendar management [DBM+92], and
information �ltering [Mae94].

At the opposite end of the spectrum of demands on the user from passive
learners are approaches involving queries posed to the user. One approach to
querying the user is criteria elicitation, in which the user's preference criteria
are explicitly elicited through an extended interview process [KR93]. The atten-
tional and time costs of explicit criteria elicitation make it infeasible for most
automated systems. However, exploration, querying the user with pairs to be
ranked (or larger collections from which the best instance should be selected)
can potentially lead to faster acquisition of preference models than passive ob-
servation with less burden on the user than explicit criteria elicitation.

The choice among the methods for acquisition of user-speci�c information
depends on the relative importance of the accuracy of the preference model and
the cognitive load on the user. If the burden on the user is unimportant and
accuracy of the preference model is of paramount importance, then a lengthy
elicitation process should be followed. If, by contrast, no queries of any sort are
permitted, then only a priori information and passive observations are available.

If, as is more typically the case, a small number of elicitations, such as can-
didates or queries, are permitted, the timing and contents of the elicitations
are critical for maximizing the trade-o� between ranking accuracy and cognitive
load.

This paper describes UGAMA, an approach to acquiring instances for learn-
ing preference criteria through active exploration. The next section de�nes the
preference learning task and describes previous approaches to preference learn-
ing by passive observation. Section 3 describes UGAMA, and Section 4 sets forth
an empirical evaluation showing that for many target quality functions UGAMA
leads to much faster acquisition of preference criteria than learning with an equal
number of random observations. The scope of the results and its implications
for representation design are described in the last section.

2 The Preference Learning Task

The preference learning task arises in many domains|typi�ed by design and
con�guration problems|in which the relevant characteristics of problem-solving
states can be identi�ed by users or by experts, but users di�er as to or are
unable to articulate evaluation criteria for problem solving states in terms of
these attributes.

For example, in the task of modeling individual preferences for two-dimensional
designs, experts in design can identify the characteristics of designs that deter-
mine their quality, such as symmetry, contrast, and balance. Moreover, each of
these characteristics can be expressed as a numerical or symbolic feature. But

30 L.K. Branting

althoff@iis.uni-hildesheim.de

the precise manner in which these characteristics combine to determine the over-
all e�ectiveness of a design varies with each individual and is quite di�cult for
a given individual to articulate. Similarly, in the personal scheduling task, the
relevant characteristics of schedules may be easy to identify, but their relative
importance and interaction may both vary among individuals and be di�cult
for each individual to articulate.

A preference of user u is a binary relation, Pu such that Pu(S1; S2) is satis-
�ed whenever user u prefers S1 to S2. Various approaches have been taken to
representing such relations. One approach rests on the assumption that a value
function, vu(S), expressing the quality of state S, underlies Pu [KR93]. Thus,
Pu(S1; S2) is satis�ed whenever vu(S1) > vu(S2). A second approach subsumes
preference model acquisition under supervised concept acquisition by viewing the
problem of determining whether state S1 is preferred to state S2 as equivalent
to determining whether the concatenation of S1 with S2, concat(S1; S2), is an
instance of the category \is-preferred-to." Under this approach each ranked pair
< S1; S2 > for which Pu(S1; S2) is converted into a pair of training instances:
concat(S1; S2) 2 \is-preferred-to" and concat(S1; S2) =2 \is-preferred-to". For
example, perceptron learning and decision-tree induction were applied to pref-
erence acquisition in [US87], [UC91], and [CFR91].

A third, intrinsically instance-based, approach represents preference pairs
as arcs in feature space and ranks new pairs through nearest-neighbor algo-
rithms, such as 1ARC or CIBL [BB94,BB97]. For example, the set of ranked
pairs fPu(A;B); Pu(C;D); Pu(E;F)g can be represented as shown in Figure 1

by the preference arcs

AB,

CD, and

EF (where

AB� Pu(A;B)).

feature1

Y

B

A

E

F

X

CD

feature2

Fig. 1. X is ranked higher than Y by 1ARC because of the match between hypothesis

XY and preference arc

EF . The dissimilarity between

XY and

EF is the sum of the

Euclidean distances represented by dotted lines.

In the 1ARC algorithm, a new pair of objects, X and Y is ranked by determin-

ing whether

XY or

Y X has the better match to a ranked pair in the training set.

The dissimilarity between a hypothesis, e.g.,

XY , and a ranked pair is measured

31Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

by the sum of the Euclidean distances between (1) Y and the tail of the ranked
pair and (2) X and the head of the preference pair. In Figure 1, for example, the

ranked pair

EF best matches

XY with a dissimilarity of dist(Y; F)+dist(X;E),
represented by the sum of the lengths of the dotted lines. The best match for

the alternative hypothesis

Y X is determined in the same way. In this case,

XY

matches ranked pair

EF more strongly than

Y X matches any ranked pair, so
Pu(X;Y) is predicted.

Common to all these previous approaches to preference predicate acquisition
is the assumption that the learning algorithm has no control over the choice of
instances.

3 UGAMA

This section explores the implications of relaxing the assumption that a pref-
erence learning is not permitted to choose instances to learn from, proposing
an approach based on two ideas: acquisition of Unit Gradient Approximations
(UGAs); and merging and alignment of UGAs with respect to in
ections (i.e.,
changes in derivative sign in the underlying quality function (UGAMA).

3.1 Unit Gradient Approximations

An estimation of the gradient of a quality function at a single point in feature
space can be obtained as follows. Let R be a point (termed a reference point) in
feature space. For each dimension d, create a pair < R�d; R+d > by subtracting
(respectively, adding) a small increment � from (to) the value of R in the d

dimension. If the user ranks < R�d; R+d > as equal, the d dimension is irrelevant
at R. If R�d is ranked better than R+d, Q has negative slope with respect to d
at R; if R+d is preferred, the slope is positive at R. For example, Figure 2 shows
how points P1 and P2 are � larger and smaller, respectively, than reference point
R in dimension 1, and points P3 and P4, are � larger and smaller, respectively,
than R in dimension 2. If user ranks Pu(P2; P1) and Pu(P4; P3), the UGA has
a slope of < 1;�1 >.

If there are n dimensions, then n queries are su�cient to determine the
relevance and polarity of each dimension. This information can be expressed in

a single pair,

HT , called a unit gradient approximation (UGA), in which H and
T are identical to R in irrelevant dimensions, H is � greater than and T � less
than R in dimensions with positive slope, and H is � less than and T � greater
than R in dimension with negative slope.

If the quality function happens to be a linear function whose coe�cients are
all either k, �k, or 0, for some constant k, then the UGA will be parallel to the
gradient of the function.1 Under these circumstances, a single UGA is a su�cient

1 For example, suppose that the quality functionQ(x1; x2; x3; x4) = 2x1�2x3+2x4, the
reference point is < :5; :5; :5; :5 >, and � = .1. Under these circumstances, the UGA

32 L.K. Branting

althoff@iis.uni-hildesheim.de

P1

P2

P3 R P4

dimension 1

dimension 2

δ
δδ

δ

R

dimension 1

dimension 2

Fig. 2. Determining the relevance and polarity of each dimension, and forming a UGA.
If user ranks Pu(P2; P1) and Pu(P4; P3), the UGA has a slope of < 1;�1 >

training set for 1ARC to achieve perfect accuracy, that is, correctly rank all pairs
(see Theorem 1, Appendix). As shown in Table 1, ranking accuracy given a 4-
dimensional linear function de�ned on [0; 1]4 with 50% irrelevant features is 100%
for both perceptron and 1ARC with a single UGA as training data, as compared
to only 69.9% for 1ARC and 71.1% for perceptron with a training set consisting
of 4 random instances (in 10 trials of 128 random test cases each).

Table 1. Ranking accuracy with linear quality function in 4 dimensions, two of which
are irrelevant and two of which have identical weights.

1ARC Perceptron

Random 69.9 71.1

UGA 100 100

Of course, if the coe�cients of the underlying quality function di�er by factors
other than 1, �1, or 0, the UGA will no longer be parallel to the gradient and
will therefore no longer guaranteed to rank new pairs correctly. For example,
given quality function Q(x1; : : : ; xn) =

P
n

i=1
2ixi, the ranking accuracy with a

single UGA is considerably lower than with unit weights. However, as shown
in Table 2, the ranking accuracy is still higher than with an equal number of
random instances (4 dimensions, 10 trials of 128 test cases each). In practice,
such extreme variations in the weight of relevant attributes coe�cients (i.e., in
the coe�cients of the quality function) seem unlikely.

will be (< :6; :5; :4; :6 >< :4; :5; :6; :4 >). The slope of this instance is< :2; 0;�:2; :2 >,
which is parallel to the gradient of Q, < 2; 0;�2; 2 >.

33Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

Table 2. Ranking accuracy with linear quality function in 4 dimensions with coe�cient

2d for dimension d.

1ARC Perceptron

Random 67.6 72.2

UGA 79.9 80.0

3.2 In
ected Quality Functions

The nature of the quality function underlying a person's preferences depends
both on the preferences themselves and on the representation of the attributes
used to characterize the instances. A quality function may be linear when de-
�ned on an optimal set of attributes, but nonlinear when de�ned on suboptimal
attributes. Ideally, a preference learning task should be de�ned in such a way
that user's quality functions de�ned on those attributes should be linear. But
in practice it seems unlikely that a representation guaranteed to lead to linear
quality functions for all users can be found for all domains.

For example, the width-to-height ratio of two-dimensional designs is a factor
that a�ects many peoples' preferences for designs. Some people may prefer a
width-to-height ratio near the \golden mean," (1+

p
5)=2, while others may pre-

fer a unit width-to-height ratio. If the width-to-height ratio attribute of designs
were replaced with a distance-from-golden-mean attribute, the function would
become linear in the attribute for people in the �rst group, but the unit width-
to-height ratio would be indistinguishable from

p
5 (since both are an equal

distance from (1+
p
5)=2). Similarly, if a distance-from-unit-ratio attribute were

used, the golden mean could no longer be distinguished from 2 � (1 +
p
5)=2.

Thus, width-to-height ratio itself must be used as a feature if both preferences
are to be precisely expressible. However, if the width-to-height ratio is used, then
there will be an in
ection in the quality function at the golden-mean for people
in the �rst group and at 1 for people in the second group. This example shows
that it may not always be feasible to devise a representation that is linear in
all attributes because users may di�er as to the values of an attribute that they
consider optimal.

Clearly, a single UGA is not su�cient to represent a preference predicate
based on a nonlinear quality function. If the quality function has in
ections,
then multiple UGAs must be obtained. Only if at least one UGA has been
obtained for each linear region is an accurate preference model possible. Since
each UGA requires n queries, where n is the number of dimension, the user's
patience is likely to be exhausted if the number of dimensions and linear regions
is high. Therefore, it appears that the key condition under which an algorithm
for preference acquisition through exploration must work is when the number of
in
ections in the users' quality function is greater than zero but not too large.

A single perceptron is not capable of expressing nonlinear concepts. However,
the 1ARC algorithm is capable of modeling nonlinear quality functions provided
that there is at least one ranked pair per linear region. This suggests the strategy

34 L.K. Branting

althoff@iis.uni-hildesheim.de

of eliciting a set of UGAs at random points and using them as the training set
for 1ARC.2

feature 1

feature 2

inflection

C

D

A

B E F

Fig. 3. The pair < E;F >, for which Q(E) > Q(F), is misranked because

FE matches

AB more closely than

EF matches

CD.

The limitation of this approach is that because 1ARC is a nearest-neighbor
algorithm, the position of the UGAs within each linear region a�ects ranking
accuracy. An example is illustrated in Figure 3, in which the dotted line repre-

sents the in
ection between two linear regions. Since

AB is much nearer to the

in
ection than

CD, the

FE matches

AB more closely than

EF matches

CD.
As a result, the pair < E;F > is misranked.

3.3 Merging and Aligning UGAs

Merging and alignment is a procedure to reduce this e�ect. As set forth in Fig-
ure 4 and illustrated in Figure 5, UGAs with identical slopes that are closer to
each other than to UGAs with di�erent slopes are merged. Merging a set S of

arcs consists of forming the arc
 �

Hm; Tm, where Hm is the mean of the heads
of the arcs in S and Tm is the mean of the tails of the arcs in S. The merged
UGAs from adjacent regions are then displaced, without changing their slope,
until their heads (or tails, if the tails are closer to each other than the heads)
coincide at the midpoint between their original positions. The purpose of this
displacement is to align the endpoints of the UGAs so as to coincide as closely
as possible with the in
ection in the quality function. Choosing the midpoint
of the heads (or tails) is simply a heuristic for estimating the position of the
in
ection. As shown in Theorem 2, Appendix, if two arcs each parallel to the

2 Of course, if domain knowledge exists from which one point per linear region can be
selected, this knowledge should be used to create the minimal set of UGAs. However,
in the general case it is not known how many linear regions there are.

35Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

Procedure MERGE-AND-ALIGN(UGASET)

Input: UGASET is a list of UGAs

Output: UGAMASET is list of merged and aligned UGAs

1. Let MERGERS and UGAMASET be {}

2. Let ECLASSES be a partition of UGASET into sets with equal slope

3. For each class C in ECLASSES do

a. Let SC be a partition of C into the largest sets such that every

member of SC is closer to some other member of SC than to any member

of UGASET with a different slope.

b. For every partition P in SC do

Add the arc M consisting of mean of every arc in P to MERGERS

4. For each pair of arcs (A1, A2), where A1, A2 are in MERGERS

LET M be the mean of A1 and A2.

IF A1 and A2 have different slopes AND M is closer

to A1 [equivalently, A2] than to any other arc in MERGERS

THEN {IF the heads of A1 and A2 are closer to each other than the tails

THEN {Let A1' and A2' be the result of displacing A1 and A2 so that

their heads coincide at the mean of the heads' original positions}

ELSE {Let A1' and A2' be the result of displacing A1 and A2 so that

their tails coincide at the mean of the tail's original positions}

Add A1' and A2' to UGAMASET.}

5. Return UGAMASET

Fig. 4. The merge-and-adjust algorithm.

gradient are symmetric around a single in
ection and share a common endpoint,
1ARC will correctly rank all pairs, given the two arcs as a training set. The
entire procedure of forming UGAs through successive queries, then merging and
aligning the UGAs is termed UGAMA.

4 Experimental Evaluation

Theorem 2's guarantee of ranking correctness does not extend to functions with
multiple in
ections. How well does UGAMA perform with functions with mul-
tiple in
ections, which are likely to be more typical of actual user quality func-
tions? To answer this question, an evaluation was performed with a set of arti-
�cial quality functions.

The experiments were performed on a 4-dimensional feature space, [0; 1]4

with 6 arti�cial quality functions intended to resemble human quality func-
tions. The �rst quality function, independent, shown in Figure 6, is linear in
even-numbered dimensions and in
ected at 0:5 in odd-numbered dimensions.
This corresponds to a domain, like 2-dimensional design, where some dimen-
sions (e.g., width-to-height ratio) are in
ected and others (e.g., balance) are
not. In dependent the quality function is in
ected in the sum of successive
pairs of dimensions, e.g., for 2 dimensions if d1 + d2 < 1, Q(d1; d2) = d1 + d2,
otherwise Q(d1; d2) = 2 � (d1 + d2). This corresponds to a quality function

36 L.K. Branting

althoff@iis.uni-hildesheim.de

Merge

feature 2

feature 1
inflection

feature 2

feature 1
inflection

Align

E E
F F

feature 2

inflection

feature 1

E F

Fig. 5. An example of merging and aligning UGAs. The pair < E;F >, incorrectly

ranked by the original UGAs, is correctly ranked by the merged and adjusted UGAs
1 4 7

10 13 16 19 22 25

S1

S10

S19

0
0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.9

1

Independent

Fig. 6. The 2-dimensional analog of quality function independent. The vertical axis

represents quality as a function of two features.

with pairwise interactions between dimensions. In sinusoid .5, Q is the sine
of the sum of the dimensions normalized to range from [0::�]. Exponential is

Q(d1; d2; d3; d4) = 1 � e
p

(d12+d22+d32+d42)=4. In double fold, shown in Fig-
ure 7, Q consists of 4 linear regions with in
ections perpendicular to the line
d1 = d2 = d3 = d4, and pyramid consists of 4 linear regions intersecting at
(0.5,0.5,0.5,0.5).

In each test, 8 random reference points were selected to create 8 UGAs
(through 32 queries to the test function). The accuracy in ranking randomly
selected pairs using the UGAs both before and after merging and alignment was
compared to accuracy using 32 random instances. Each function was tested with
10 repetitions of 128 random testing instances each.

Figure 8 sets forth the results using 1ARC as the learning mechanism. For
each function, UGAs resulted in higher ranking accuracy than did the random
training instances, and merging and alignment produced an additional improve-
ment in every function except exponential. Merging and alignment produces
no improvement in exponential because merging results in a single arc.

Non-instance-based learning methods are bene�ted relatively little by the
UGAMA approach. Brie
y, perceptron performs at the chance level on in
ected
quality functions. UGAMA does not improve the performance of decision-tree in-

37Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

1 4 7

10 13 16 19 22 25

S1

S10

S19

0
0.1
0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

double fold

Fig. 7. The 2-dimensional analog of quality function double-fold. The vertical axis

represents quality as a function of two features.

duction (ID3) or backpropagation, which perform with random instances, UGAs,
and UGAMA at approximately the same level as 1ARC given random instances.
This result is consistent with previous research, which has shown that instance-
based learning methods tend to work better than greedy generalizers when there
is a very small number of training instances [BB97,Aha92], such as result from
the elicitation of UGAs. Identi�cation of exploration techniques that are appro-
priate for these alternative preference-learning methods is an open question.

5 Conclusion

This paper has presented an approach for acquiring instance-based preference
models through active exploration. The empirical evaluation showed that UGAMA
lead to more rapid acquisition of preference predicates than training sets of ran-
dom instances. The results with independent showed that a ranking accuracy of
over 80% can be obtained on a quality function with in
ections in 2 di�erent
dimensions after 32 queries.

The next step in research in acquisition of preference predicates through
exploration should be testing with human subjects. The actual complexity of
human preference criteria in representative domains is unknown. The perfor-
mance requirements for preference acquisition algorithms will be better under-
stood when there are well-analyzed sets of human preference data. A second
issue in human preference testing is the number of queries that users will tol-
erate. This probably depends on the complexity of the instances being ranked
and on the level of useful assistance that can be expected from the investment of
users' e�ort. A third issue is the amount of noise or inconsistency in human pref-
erence rankings. This factor determines the extent to which preference learning
algorithms must be noise tolerant.

In view of the dramatic e�ect that quality function complexity has on the
number of instances needed to learn a preference model, design of representations

38 L.K. Branting

althoff@iis.uni-hildesheim.de

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

in
de

pe
nd

en
t

de
pe

nd
en

t

si
nu

so
id

 .5

do
ub

le
 fo

ld

ex
po

ne
nt

ia
l

py
ra

m
id

random
UGA
UGAMA

Fig. 8. A comparison of the ranking accuracy of 1ARC using random instances, UGAs,

and UGAMA on 6 quality functions.

for which users' quality functions are as nearly linear as possible is clearly essen-
tial. However, in many domains some nonlinearity appears to be unavoidable.
The UGAMA approach may therefore be a valuable tool for active preference
predicate acquisition for such domains.

Acknowledgments

This research was supported in part by a German-American Fulbright Commis-
sion Senior Scholars grant, a University of Wyoming Flittie sabbatical award,
and the University of Kaiserslautern Center for Learning Systems and Applica-
tions.
Appendix
Theorem 1.

With a training set consisting of a single preference instance parallel to the
gradient of a linear quality function, 1ARC correctly ranks all pairs with respect
to the quality function.

Proof.

Let Q(x1; : : : ; xn) =
Pn

i=1 aixi be a linear quality function of n features. The
gradient of Q is the vector G=< a1; : : : ; an >. A ranked pair parallel to G in
feature space must be of the form

PQ(A;B) � (< u1 + ca1; : : : ; un + can >< u1; : : : ; un >) (1)

39Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

where c is a positive constant.
Let (W,Z) � (< w1; : : : ; wn >< z1; : : : ; zn >) be a testing pair. 1ARC ranks

W and Z by �nding whether

AB more closely matches

WZ or

ZW . The distance

between

AB and

WZ is

dist(A;W) + dist(B;Z) =
nX

i=1

[(ui + cai � wi)
2 + (ui � zi)

2] (2)

Similarly, the distance between

AB and

ZW is

dist(A;W) + dist(B;Z) =
nX

i=1

[(ui + cai � zi)
2 + (ui � wi)

2] (3)

Thus, 1ARC will rank W as preferable to Z only if

nX

i=1

[(ui + cai � wi)
2 + (ui � zi)

2] <

nX

i=1

[(ui + cai � zi)
2 + (ui � wi)

2] (4)

However, this inequality can be simpli�ed to

nX

i=1

wiai >

nX

i=1

ziai (5)

which is equivalent to Q(W) > Q(Z).
Similarly, 1ARC will rank Z as preferable to W only if

nX

i=1

[(ui + cai � wi)
2 + (ui � zi)

2] >

nX

i=1

[(ui + cai � zi)
2 + (ui � wi)

2] (6)

which can be simpli�ed to

nX

i=1

wiai <

nX

i=1

ziai (7)

which is equivalent to Q(W) < Q(Z). Thus, the single training pair PQ(A,B)
correctly ranks all testing pairs with respect to Q.

Theorem 2.

Let Q be a piecewise linear function symmetrical around a single linear in
ec-
tion, that is, let the components of the slope on both sides of the in
ection have
the same magnitude, but let at least one component di�er in sign. Then with a
training set consisting of two ranked pairs that (1) share a common endpoint, (2)
are re
ections of one another across the in
ection, and (3) are each parallel to
the gradient of the quality function, 1ARC correctly ranks all pairs with respect
to Q.

40 L.K. Branting

althoff@iis.uni-hildesheim.de

Proof.
Assume without loss of generality that the shared endpoint is the preferred point,

as pictured in Figure 9 for training pairs

E1E2 and

E1E3 (an analogous argu-
ment can be made if the shared endpoint is the less-preferred point). Any two

E1
A A’

B B’ E3E2

Fig. 9. The in
ection between two linear regions is indicated by the dotted line.

pairs to be ranked must either both be on the same side of the in
ection or they
must be on di�erent sides of the in
ection.

(a) Same side
Let A and B be points to be ranked, and suppose that their actual ranking is

AB, i.e., Q(A) > Q(B) (if not, rename the points). Under Theorem 1,

dist(A;E1) + dist(B;E2) < dist(A;E2) + dist(B;E1) (8)

That is,

AB is correctly ranked by

E1E2. Thus,

AB could be misranked only
if

dist(A;E3) + dist(B;E1) < dist(A;E1) + dist(B;E2) (9)

However, since E2 and E3 are symmetrical across the in
ection, the in
ection
represents the set of points equidistance from E2 and E3. Any point on the same
side of the in
ection as E2 is closer to E2 than to E3. Therefore, dist(A;E3) >
dist(A;E2), so

dist(A;E2) + dist(B;E1) < dist(A;E3) + dist(B;E1) (10)

Inequalities 8 and 10 together imply that:

dist(A;E1) + dist(B;E2) < dist(A;E3) + dist(B;E1) (11)

41Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

which contradicts inequality 9. Therefore,

AB will be correctly ranked by

E1E2.

(b) Di�erent sides
Let A and B0 be points to be ranked, and again suppose without loss of generality

that their actual ranking is

AB0.

AB0 could not be incorrectly ranked unless either

dist(A;E2) + dist(B0; E1) < dist(A;E1) + dist(B0; E3) (12)

or

dist(A;E3) + dist(B0; E1) < dist(A;E1) + dist(B0; E3) (13)

Let B be the re
ection of B0 across the in
ection and let A0 be the re
ection
of A across the in
ection. Then

dist(B;E2) = dist(B0; E3): (14)

and
dist(A;E1) = dist(A0; E1) (15)

Theorem 1 implies that

dist(A;E1) + dist(B;E2) < dist(A;E2) + dist(B;E1) (16)

and
dist(A0; E1) + dist(B0; E3) < dist(A0; E3) + dist(B0; E1) (17)

Substituting dist(B0; E3) for dist(B;E2) in 16 we obtain:

dist(A;E1) + dist(B0; E3) < dist(A;E2) + dist(B;E1) (18)

which contradicts 12. Moreover, substituting dist(A;E1) for dist(A0; E1), and
dist(A0; E3) for dist(A;E2) in 17 we obtain:

dist(A;E1) + dist(B0; E3) < dist(A;E3) + dist(B0; E1) (19)

which contradicts 13.
Since, dist(A;E1) + dist(B0; E3) is less than either dist(A;E2) + dist(B0; E1)

or dist(A;E3) + dist(B0; E1),

AB0 will be correctly ranked by

E1E3.

References

[Aha92] D. Aha. Generalizing from case studies: A case study. In Proceedings of
the Ninth International Workshop on Machine Learning, pages 1{10, 1992.

[BB94] P. Broos and K. Branting. Compositional instance-based learning. In
Proceedings of the Twelfth National Conference Conference on Arti�cial
Intelligence (AAAI-94), Seattle, Washington, July 31{August 4, 1994.

42 L.K. Branting

althoff@iis.uni-hildesheim.de

[BB97] K. Branting and P. Broos. Automated acquisition of user preferences.
International Journal of Human-Computer Studies, 46:55{77, 1997.

[Bra99] K. Branting. Learning user preferences by exploration. In The Sixteenth

International Conference on Machine Learning, 27{30 June 1999 1999.
Under review.

[CFR91] J. Callan, T. Fawcett, and E. Rissland. Adaptive case-based reasoning. In
Proceedings of the Third DARPA Case-Based Reasoning Workshop, pages
179{190. Morgan Kaufmann, May 1991.

[DBM+92] L. Dent, J. Boticario, J. McDermott, T. Mitchell, and D. Zabowski. A
personal learning apprentice. In Proceedings of Tenth National Conference
on Arti�cial Intelligence, pages 96{103, San Jose, CA, July 12{16 1992.
AAAI Press/MIT Press.

[GNOT92] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative �l-
tering to weave an information tapestry. Communications of the ACM,
35(12):61{70, 1992.

[HGBSO98] Ralf Herbirch, Thore Graepel, Peter Bollmann-Sdorra, and Klaus Ober-
mayer. Learning preference relations for information retrieval. In Pro-

ceedings of the AAAI-98 Workshop on Learning for Text Categorization.
AAAI Press, July 26{27 1998.

[KR93] R. Keeney and H. Rai�a. Decisions with Multiple Objectives: Preferences

and Value Tradeo�s. Cambridge University Press, second edition, 1993.
[Mae94] P. Maes. Agents that reduce work and information overload. Communi-

cations of the ACM, 37(7):31{40, 1994.
[MK93] P. Maes and R. Kozierok. Learning interface agents. In Proceedings of

Eleventh National Conference on Arti�cial Intelligence, pages 459{466,
Washington, D.C., July 11{15 1993. AAAI Press/MIT Press.

[UC91] P. Utgo� and J. Clouse. Two kinds of training information for evalua-
tion function learning. In Proceedings of Ninth National Conference on

Arti�cial Intelligence, pages 596{600, Anaheim, July 14{19 1991. AAAI
Press/MIT Press, Menlo Park, California.

[US87] P. Utgo� and S. Saxena. Learning a preference predicate. In Proceedings of
the Fourth International Workshop on Machine Learning, pages 115{121,
1987.

43Active Exploration in Instance-Based Preference Modeling

althoff@iis.uni-hildesheim.de

A Multiple-Domain Evaluation of
Stratified Case-Based Reasoning

L. Karl Branting and Yi Tao
Department of Computer Science

University of Wyoming
Laramie, WY, USA

karl@uwyo.edu

Abstract. Stratified case-based reasoning (SCBR) is a technique in which case
abstractions are used to assist case retrieval, matching, and adaptation. Previous
work has shown that SCBR can significantly decrease the computational
expense required for retrieval, matching, and adaptation under a variety of
different problem conditions. This paper extends this work to two new domains:
a problem in combinatorial optimization, sorting by prefix reversal; and
logistics planning. An empirical evaluation in the prefix-reversal problem
showed that SCBR reduced search cost, but severely degraded solution quality.
By contrast, in logistics planning, use of SCBR as an indexing mechanism led
to faster solution times and permitted more problems to be solved than either
hierarchical problem solving (by ALPINE) or ground level CBR (by SPA)
alone. The primary factor responsible for the difference in SCBR’s performance
in these two domains appeared to be that the optimal-case utility was low in the
prefix-reversal task but high in logistics planning.

1 Introduction
Human problem solvers exhibit great flexibility in reasoning both with specific cases
and with abstractions derived from one or more cases [13]. A number of case-based
reasoning systems have modeled an important aspect of this flexibility: use of case ab-
stractions to guide case indexing, matching, and adaptation. Termed stratified case-based
reasoning (SCBR) in [4], this approach has been used for planning [3], [12], design of
control software [16], and route planning [4], [5]. A comparative analysis of various
approaches to using abstraction in CBR is set forth in [2].

Systematic empirical analyses set forth in [4] and [5] compared the performance of heu-
ristic search (A*), Refinement [11] (i.e., hierarchical problem solving), ground-level
CBR, and SCBR as a function of (1) number of levels of abstraction, (2) the size of the
case library, (3) resemblance among cases, and (4) whether the abstraction hierarchy
satisfies the downward-refinement property [1]. However, this evaluation was limited to
a route-finding domain in which there was a high liklihood, for typical problems and
case libraries, that the case library would contain a case that could be adapted to a solu-
tion to the problem as good as would be obtained through ab initio problem solving.
This liklihood, which depends on both the adaptation method and the case library cover-
age, is termed the optimal-case utility of the library and adaption method.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 44-58, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

This paper describes two sets of experiments in which SCBR was applied to alternative
domains. Section 2 describes the application of SCBR to a problem in combinatorial
optimization, sorting by prefix reversal. Section 3 describes a prototype application of
SCBR to logistics planning. These experiments suggest that optimal-case utility is a key
factor in the applicability of SCBR.

2 SCBR for Combinatorial Optimization

2.1 The Prefix-Reversal Problem

Sorting by reversals is the task of determining the minimum number of subsequence
reversals necessary to transform one sequence into another. This task, which arises in
molecular biology [15], has been shown to be NP-hard in the general case [6]. Sorting by
prefix reversals is a special case of this problem in which all reversals must be of se-
quence prefixes. Bounds for sorting by prefix reversals were derived in [8].

A prefix-reversal problem is given by specifying start and goal states, each represented
as a list of elements. An n-prefix-reversal problem is a prefix-reversal problem involving
permutations of an n-element sequence. For example, a 7-prefix-reversal problem is as
follows:

Start: (D G C E A F B)

Goal: (A B C D E F G)

A solution is a sequence of operations, where each operator represents the length of the
prefix being reversed. For example, the solution to the problem above is (3 6 4 5 7 4 5):

 (D G C E A F B) (D E A F G C B) (E D C B A F G)
 3 5 5

 (C G D E A F B) (G F A E D C B) (A B C D E F G)
 6 7

 (F A E D G C B) (B C D E A F G)

 4 4
2.2 Abstraction for Prefix Reversal

A simple abstraction mechanism for the prefix-reversal problem is to simply drop from
the representation the object that occurs last in the goal state, thereby aggregating all
states that differ only in the position of this object into a single state. A solution to the
original problem can’t be any shorter than the solution to an abstraction of that problem,
so the solution length of the abstraction is an admissible distance heuristic, h*, for A*.
Moreover, if a solution is obtained for the abstract problem, then at most 4 additional

(D G C E A F B) (D E A F G C B) (E D C B A F G)
 3 5 5

 (C G D E A F B) (G F A E D C B) (A B C D E F G)
 6 7

 (F A E D G C B) (B C D E A F G)

 4 4

45A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

operations are required to solve the original problem. This is because if there are n
objects, the operations (p, n, n-1, p-1) will move the pth object to last place without
altering the position of any other objects.

Refinement search [11] can be performed using this abstraction hierarchy by solving an
abstraction of the original problem, then using this solution as a heuristic for search at
the next lower level of abstraction. This process is repeated until the ground level is
reached. A very strong alternative heuristic for this problem counts the number for pairs
adjacent in the goal state that are not adjacent in the current state. This adjacent-pairs
heuristic is also admissible, because a prefix reversal can reduce the number of such
pairs by at most one.

2.3 Algorithms

To evaluate the effectiveness of SCBR at reducing search in this domain, four different
approaches were compared: A*, using the adjacent-pairs heuristic; refinement; ground-
level CBR (GRCL), which adapts every case in the library and returns the one with the
shortest adapted solution; and Reuse-Closest (RCL), an SCBR algorithm that starts with
the most specific matching cases (or the most abstract cases, if no cases match), finds
the refinements of each case, adapts each refinement (using A* to find the shortest adap-
tation paths from the start and goal positions to the solution path at that level of abstrac-
tion), and selects the refinements having the shortest adapted solution paths. All four
algorithms are described in detail in [4].

As in the route-finding problem described in [4], adaptation in RCL consisted of using
A* to find the shortest paths from the start and goal positions to the solution path at the
current level of abstraction to form a solution consisting of these paths concatenated
with a reused segment of the old solution. Thus, an adapted solution must include a
portion of the original solution.

2.4 Experimental Evaluation

The dependent variables of interest were search cost, as measured by the number of
nodes expanded by A*, and the solution quality, as measured by solution length. The
independent variables were:

l The number of abstraction levels (1,2,3,4)
l The size of case library (1,5,10,50,100,500,1000)

Experiments were performed with 8-prefix-reversal, and results were based on 1000
random test cases.

Varying the number of abstraction levels In the first experiment, the number of cases
in case library was fixed at 100 and the number of abstraction levels was varied from 1 to
4. As shown in Figure 1, the number of nodes expanded by A* and GRCL remained

46 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

constant since these algorithms do not make use of the abstraction hierarchy. Refinement
performed slightly better than A*, indicating that abstract solution length is a good heu-
ristic in this domain. RCL expands the smallest number of nodes, given 3 or more ab-
straction levels.

Varying the Case Library Size Figure 2 shows the effect of varying the size of the case
library. The number of nodes expanded by A* and Refinement remained constant, be-
cause these algorithms do not use cases. The number of nodes expanded climbed steadily
for GRCL, but was relatively constant for RCL. Unfortunately, the smallest number of
nodes was expanded by GRCL with a case library consisting of a single case. Evidently,
a case library consisting of a single case reduces search by converting the original prob-
lem of searching for a path to a single state into two easier problems, each consisting of
a search for a solution path consisting of, on average, about 7.7 states.

Fig. 1. Mean nodes expanded in 8-prefix-refersal as a function of the number of abstraction
levels.

 A

ve
ra

ge
 N

um
be

r
of

 N
od

es
 E

xp
an

de
d

2199

 GRCL

 0 1 2 3 4

Number of abstraction levels

 900

 800

 700

 250

 200

 150

 100

 50

A*

Refine-
ment

RCL

47A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

Solution Length Tables 1 and 2 show mean solution lengths as a function of abstraction
levels (100-case library) and case library size (3 levels of abstraction), respectively.

Since the adjacent-pairs heuristic is admissible, A* always finds a shortest solution path.
Moreover, Refinement also always finds the shortest path because it uses A* at every
level, and the length of the next more abstract solution is itself an admissible heuristic.
GRCL is guaranteed to return the case requiring the least adaptation. However, the con-
sistent value of 9.3 for the mean solution length obtained by GRCL indicates that the

 A* HSOLVE GRCL RCL
1 abstract level 7.7 7.7 9.3 9.5
2 abstract levels 7.7 7.7 9.3 10.1
3 abstract levels 7.7 7.7 9.3 9.9
4 abstract levels 7.7 7.7 9.3 10.0

Table 1. Mean Solution Lengths for 8-prefix-reversal as a function of the number of abstract
levels

 A

ve
ra

ge
 N

um
be

r
of

 N
od

es
 E

xp
an

de
d

 0 5 10 50 100 500 1000
 Number of Cases

2229 GRCL

 A*

 Refine-
ment

 RCL

 50

100

 200

 150

Fig. 2. Mean nodes expanded in 8-prefix-refersal as a function of the number of cases.

48 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

adaptation available to GRCL and RCL (splicing paths onto a reused portion of the old
solution) leads to decreased solution quality, even when applied to the most adaptable
case in the case library. This is because both problems and solutions are uniformly dis-
tributed through state-space in the prefix-reversal problem, so the likelihood that an
optimal solution to a new problem will involve reuse of a segment of an old solution is
quite low, even if the number of cases is high.

Since RCL can produce solutions no better than those produced by GRCL, the weakness
of the adaptation method guarantees that RCL cases are suboptimal as well. Moreover,
while RCL’s use of abstract cases to guide retrieval was much less expensive than GRCL’s
exhaustive matching, the higher mean solution length for RCL means that it did not
always find the case leading to the shortest solution.

2.5 Summary

The prefix-reversal experiment illustrated that SCBR can reduce search in a combinato-
rial optimization problem. However, the experiment also illustrated that SCBR cannot
compensate for a weak adaptation method that is incapable of producing solutions as
good as those found through ab initio problem solving.

3 Logistics Planning

The utility of using case abstractions for indexing and adaptation has been demonstrated
in planning domains characterized by task-decomposition abstraction hierarchies [3],
[12]. However, development of task-decomposition hierarchies is, in general, a difficult
and time-consuming task. The second experiment was designed to explore the feasibility
of using SCBR as an indexing technique using inexpensive ‘off-the-shelf” abstraction
hierarchies. In the early 1990s, several Ph.D. projects developed techniques for auto-
mated creation of abstraction hierarchies in the STRIPS formalism, e.g., [8], [14]. One
such system, ALPINE, is available to researchers as part of the PRODIGY [7] release
version 4 (www.cs.cmu.edu/afs/cs/project/ai-repository/). Alpine is guaranteed to pro-
duce abstraction hierarchies with the ordered monotonicity property [14], a weaker con-

Table 2. Mean Solution lengths for 8-prefix-reversal as a function of the number of cases

 A* HSOLVE GRCL RCL

1 case 7.7 7.7 10.5 10.5
5 cases 7.7 7.7 10.0 10.0
10 cases 7.7 7.7 10.1 10.1
50 cases 7.7 7.7 9.5 10.0
100 cases 7.7 7.7 9.3 9.9
500 cases 7.7 7.7 8.9 10.0
1000 cases 7.7 7.7 8.7 9.6

49A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

dition than the downward refinement property shown in [5] to contribute to (although
not to be essential to) the effectiveness of SCBR.

An evaluation of the relative contribution of hierarchical problem solving and CBR to
SCBR would have the most information value if it involved an ablation of each compo-
nent, that is, if the hierarchical problem solving, ground-level CBR, and ground-level ab
initio problem solving components were tested both in isolation and in combination.
However, writing a planning system that embodied every combination of these factors
was a task beyond the scope of this exploratory project. We therefore selected SPA
([10], a least-commitment generative planner with very simple and general case-retrieval
and adaptation mechanisms, as our main planning engine. SPA has no mechanism for
hierarchical problem solving, however, so we used ALPINE as our hierarchical problem
solver.

The logistics problem domain, taken from the PRODIGY version 4.0 release, includes
14 predicates and 6 operators in STRIPS notation. Problems in this domain involve
transportation of objects between various locations through a combination of truck and
airplane operations. A logistics transportation problem is given by initial state and a goal
state specification. The description of an initial (or any other) state is composed of a list
of objects and their corresponding types together with a set of instantiated predicates
(i.e. literals) that describes the configuration of those objects. For example, Problem 5 in
our test set can be depicted graphically as follows:

Initial State:

 city1 city2

 po1 airp1 airp2 po2

Goal State :

 po1 airp1 airp2 po2

Fig. 3. A Logistics Transportation problem

50 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

In STRIPS notation, the problem is as follows:

(init
‘((object o1)
(pos-office po1)
(pos-office po2)
(airplane p1)
(truck t1)
(truck t2)
(airport airp1)
(airport airp2)
(city c1)
(city c2)
(loc-at airp1 c1)
(loc-at po1 c1)
(part-of t1 c1)
(loc-at airp2 c2)
(loc-at po2 c2)
(part-of t2 c2)
(same-city airp1 po1)
(same-city po1 airp1)
(same-city airp2 po2)
(same-city po2 airp2)
(at-obj o1 po1)
(at-truck t1 airp1)
(at-truck t2 airp2)
(at-airplane p1 airp1)))

(goal ‘((at-obj o1 airp2)))

One plan for this problem is :

(DRIVE-TRUCK T1 AIRP1 PO1)
(LOAD-TRUCK O1 T1 PO1)
(DRIVE-TRUCK T1 PO1 AIRP1)
(UNLOAD-TRUCK O1 T1 AIRP1)
(LOAD-AIRPLANE O1 P1 AIRP1)
(FLY-AIRPLANE P1 AIRP1 AIRP2)
(UNLOAD-AIRPLANE O1 P1 AIRP2)

3.2 Abstraction Hierarchy Creation

ALPINE’s problem-independent abstraction hierarchy creating algorithm, described in
[14], was applied to various sets of logistics problems. Unfortunately, most resulted in
hierarchies with only a single abstraction level. This illustrates a general pitfall of tech-
niques, like SCBR, that used abstraction hierarchies: techniques for automated creation

51A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

of abstraction hierarchies are still in their infancy. Eventually, however, a set of 9 train-
ing cases and 14 testing cases were selected for which ALPINE created a 4-level ab-
straction hierarchy:

(Abstraction
 (Static = loc-at same-city)
 (Level-2 = at-obj
 inside-truck
 inside-airplane)
 (Level-1 = at-airplane)
 (Level-0 = at-truck)
 :order
 (Level-2 > Level-1 Level-0))

3.3 Case-Library Creation

Ground level cases for the case library were created using the SPA function plan-from-
scratch..Abstract cases were then created bottom-up by the following algorithm:

Function AbstractCases (initial, goal, levels, hierarchies)
 cases := nil;
 plan := plan-from-scratch (initial, goal);
 case := make-case(initial, goal, plan);
 push(case, cases);
 for i:=1 to levels-1 do

initial := drop-literals(initial,first(hierarchies));
goal := drop-literals(goal,first(hierarchies));
plan := fit-plan (initial, goal plan);
case := make-case(initial, goal, plan);
push(case, cases);
pop(hierarchies);

 Return cases;

As in the route-finding domain, logistics cases with initial and goals that are distinct at
one level of abstraction may have identical initial and goal states at higher levels of
abstraction. The case library may therefore be organized as a forest as described in [4]
and illustrated in Figure 4. Note that abstraction is over states, and that abstract plans are
formed by adapting lower-level plans to solve the abstract problem.

3.4 Case Retrieval

In SCBR, the retrieval process starts at the most abstraction level of the case library.
After the best-matching of the most abstract cases is determined, the matching process is
repeated with the children of the best case until the ground level is reached. In this

52 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

Level 2 case52

 …… ……

 case51 case71
Level 1

 …… …...

 case50 case70

Level 0

 …… ……

Initial:
 (at-obj o1 po1)

Goal:
 (at-obj o1 airp2)

Plan:
(drive-truck ?truck7 airp1 po1)
(load-truck o1 ?truck5 po1)
(drive-truck ?truck6 po1 airp1)
(unload-truck o1 ?truck4 airp1)
(fly-airplane ?airplane3 airp1
airp2)
(load-airplane o1 ?airplane2 airp1)
(unload-airplane o1 ?airplane1
airp2)

Initial:
 (at-obj o1 po1)
 (at-airplane p1 airp2)

Goal:
 (at-obj o1 airp2)

Plan:
(drive-truck ?truck9 po1 airp1)
(load-truck o1 ?truck8 po1)
(fly-airplane p1 airp2 airp1)
(unload-truck o1 ?truck7 airp1)
(load-airplane o1 p1 airp1)
(fly-airplane p1 airp1 airp2)
(unload-airplane o1 p1 airp2)
(load-airplane o1 p1 airp2)
(unload-airplane o1 p1 airp2)

Prob7
Initial:
 (at-obj o1 po1)
 (at-truck t1 po1)
 (at-truck t2 airp2)
 (at-airplane p1 airp2)

Goal:
 (at-obj o1 airp2)

Plan:
(load-truck o1 t1 po1)
(drive-truck t1 po1 airp1)
(fly-airplane p1 airp2 airp1)
(unload-truck o1 t1 airp1)
(load-airplane o1 p1 airp1)
(fly-airplane p1 airp1 airp2)
(unload-airplane o1 p1 airp2)
(load-airplane o1 p1 airp2)
(unload-airplane o1 p1 airp2)

Prob5
Initail:
 (at-obj o1 po1)
 (at-truck t1 airp1)
 (at-truck t2 airp2)
 (at-airplane p1 airp1)

Goal:
 (at-obj o1 airp2)

Plan:
(drive-truck t1 airp1 po1)
(load-truck o1 t1 po1)
(drive-truck t1 po1 airp1)
(unload-truck o1 t1 airp1)
(load-airplane o1 p1 airp1)
(fly-airplane p1 airp1 airp2)
(unload-airplane o1 p1 airp2)

Initial:
 (at-obj o1 po1)
 (at-airplane p1 airp1)

Goal:
 (at-obj o1 airp2)

Plan:
(drive-truck ?truck7 airp1 po1)
(load-truck o1 ?truck5 po1)
(drive-truck ?truck6 po1 airp1)
(unload-truck o1 ?truck4 airp1)
(load-airplane o1 p1 airp1)
(fly-airplane p1 airp1 airp2)

Fig. 4. Case Library Structure

53A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

application of SCBR to planning, the retrieval procedure at a given abstraction level
consists of two steps. First, the goals of new problem are matched against the goals of
each of the set of cases, and the case or cases with the greatest number of matches are
identified. If there are several cases whose goals match equally well, the SPA procedure
fit-plan is applied to each, and the candidate with the fewest open conditions is chosen as
the best. The process is repeated for the children of the current best match until the
ground level is reached. See [18] for details.

3.5 Experimental Procedure

In this experiment, 6 different planning algorithms were compared.

l ALPINE. ALPINE performs hierarchical problem solving.
l SPA. Ground-level, ab initio planning using the SPA procedure plan-from-scratch.
l SPA-cbr. Ground-level cbr using plan-from-library, SPA’s case-based planner.
l SPA-cbr-cascading. SPA-cbr with learning, i.e., each new case is added to the case

library.
l SCBR. Uses the procedure described above for indexing and fit-plan for adaptation
l SCBR-cascading. SCBR with learning.

Solvability It quickly became apparent that many of logistics problems were not solv-
able by all the algorithms within a reasonable time (less than 2 hours) even on a large lisp
server (indeed, the greatest barrier to an empirical evaluation of SCBR in this domain
was simply accumulating a sufficiently large corpus of problems that could be solved by
an ab initio, ground-level planner). The first experiment tested the ability of each algo-
rithm to solve the 14 test problems.

The 9 training cases, selected because they could all be solved by SPA plan-from-scratch
procedure, were given as training data to the CBR planners, SPA-cbr, SPA-cbr-cascad-
ing, SCBR, and SCBR-cascading. Fourteen test cases (set forth in [18]) were then pre-
sented, in order, to each algorithm. Problems that were not be completed in 2 hours were
considered unsolved.

Table 3 sets forth the results of this experiment. Cells containing an ‘x’ represent un-
solved problems. As shown in Table 3, the largest number of problems was solved by
SCBR-cascading, and the fewest were solved by ALPINE. Unexpectedly, SPA-cbr-cas-
cading performed no better than SPA-cbr. No method was able to solve problem 8.

54 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

Alpine SPA SPA-cbr SPA-cbr-
cascading

SCBR SCBR-
cascading

Prob1 √ √ √ √ √ √
Prob2 × √ √ √ √ √
Prob3 √ √ √ √ √ √
Prob4 √ √ √ √ √ √
Prob5 √ √ √ √ √ √
Prob6 × × × × √ √
Prob7 × × √ √ √ √
Prob8 × × × × × ×
Prob9 √ √ √ √ √ √
Prob10 √ √ √ √ √ √
Prob11 √ √ √ √ √ √
Prob12 × × × × × √
Prob13 × × × × × √
Prob14 × × × × × √

Table 3. Problems solvable by each algorithm.

 A

ve
ra

ge
 S

ol
ut

io
n

L
en

gt
h

(S
te

ps
)

 8

 7

 6

 5

 Alpine SPA SPA SPA SCBR SCBR
 -cbr -cbr -cascading
 -cascading

Fig. 5. Average Solution Length for the logistics problems

Solution Length The mean solution lengths of the six algorithms for the seven problems
that all could solve is set forth in Figure 5. The variation among solution lengths was
slight, with the shortest solutions produced by Alpine, SCBR, and SCBR-cascading.

55A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

Execution Time The mean execution times of the six algorithms for the seven problems
that all could solve is set forth in Figure 6. Alpine outperforms SPA, SPA-cbr, and SPA-
cascading, but the lowest execution times were for SCBR and SCBR-cascading.

3.5 Summary

In the logistics domain, SCBR-cascading solved the largest number of cases—13 of the
14 cases—followed by SCBR, which solved 12 cases. SCBR and SCBR-cascading had
the lowest execution times, and Alpine, SCBR, and SCBR-cascading tied for shortest
solution lengths.

4 Discussion

The results of the evaluation in the logistic planning domain are preliminary because of
the relatively small number of problems involved. However, the evaluation demonstrates
that use of abstract cases for indexing can produce improvements the performance of
planning systems given even a completely generic abstraction hierarchy and a general-
purpose planner. The faster execution time of SCBR and SCBR-cascading than SPA-cbr
and SPA-cbr-cascading given identical case libraries and an identical adaptation proce-

Time (ms)

 14000

 13000

 6000

 300

 250

 200

 Alpine SPA SPA SPA SCBR SCBR
 -cbr -cbr -cascading
 -cascading

Fig. 6. Mean Execution Time for 7 Planning Problems

56 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

dure indicates that SCBR led to retrieval of cases that were less expensive to adapt than
the cases retrieved by SPA’s ground-level retrieval mechanism.The shorter solution length
for SCBR and SCBR-cascading, identical to the solution length for Alpine, also indi-
cates that SCBR retrieved cases that more appropriate for each given problem.

The key distinction between the prefix-reversal task, a domain in which SCBR per-
formed poorly, and the domains in which SCBR performed well, including the route-
finding domain [4]and the logistics planning domain, appears to be that the optimal-case
utility was high in the latter two problems but low in the prefix-reversal problem. The
optimal-case utility was high in the logistics planning domain because the fit-case proce-
dure was capable of adapting a case to a high-quality solution even to a very dissimilar
problem. This is illustrated by the fact that SCBR-cascading did in fact solve every
problem but one using fit-case as the adaptation mechanism. SCBR’s ability to index the
most adaptable case therefore led to greatly improved performance. Similarly, in the
route-planning domain [4], the topography of the grids led to a high probability that any
two cases would overlap and therefore to a high optimal-case utility. By contrast, cases
were very unlikely to overlap in the prefix-reversal problem, and the adaptation mecha-
nism was incapable of adapting arbitrary cases to solutions as good as could be obtained
ab initio. As a result, the optimal-case utility, and therefore the performance of SCBR as
measured by solution quality, was low.

It has been widely recognized that adaptability is a more important criterion for case
retrieval than surface similarity to the current problem [17]. Unfortunately, the adapta-
tion costs of a given case cannot, in general, be determined without actually performing
the adaptation. However, the cost of adapting an abstraction of a case to an abstraction of
the current problem can be a very accurate heuristic for ground-level adaptation costs.
The logistics planning experiment demonstrates that SCBR is a general, domain-inde-
pendent approach to retrieval by adaptation cost. The prefix-reveral experiment indi-
cates, however, that SCBR nevertheless only reduces search cost when the adaptation
mechanism and case-library size assures that optimal-case utility is high.

Acknowledgements

This research was supported by NSF Faculty Early Career Development Grant IRI-
9502152, a German-American Fulbright Kommission Senior Scholar grant, a Flittie sab-
batical grant, and by the University of Kaiserslautern Center for Learning Systems and
Applications.

References

1. F. Bacchus and Q. Yang , Downward Refinement and the Efficiency of Hierarchical
Problem Solving, Artificial Intelligence, 71:43-100, 1996.

2. R. Bergmann and W. Wilke, On the Role of Abstraction in Case-Based Reasoning,
Advances in Case-Based Reasoning, Third European Workshop, Springer Verlag,
1996.

57A Multiple-Domain Evaluation of Stratified Case-Based Reasoning

althoff@iis.uni-hildesheim.de

3. R. Bergmann and W. Wilke, Building and Refining Abstract Planning Cases by
Change of Representation Language, Journal of Artificial Intelligence Research,
3:53-118, 1996.

4. L. K. Branting & D. W. Aha, Stratified Case-Based Reasoning: Reusing Hierarchi-
cal Problem Solving Episodes, Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, August, pp. 20
– 25, 1995.

5. L. K. Branting, Stratified Case-Based Reasoning in Non-Refinable Abstraction Hi-
erarchies, Proceedings of the Second International Conference on Case-Based Rea-
soning, Springer, pp. 519-530, July 1997.

6. A. Caprara, Sorting by Reversals is difficult, Proceedings of the First Annual Inter-
national Conference on Computational Molecular Biology, pp. 75-83, January 1997.

7. J. G. Carbonell, C. A. Knoblock, and S. Minton. Prodigy: An integrated architec-
ture for planning and learning, In K. Vanlehn, editor, Architectures for Intelligence,
Erlbaum, Hillsdale, NJ, 1990.

8. J. Christensen. A hierarchical planner that generates its own hierarchies. Proceed-
ings of the Eighth National Conference on Artificial Intelligence, pp.1004-1009,
AAAI Press:Boston, MA (1990).

9. W. H. Gates, Bounds for Sorting by Prefix Reversal, Discrete Mathematics, 27:47-
57 (1979).

10. S. Hanks and D. S. Weld, A Domain-Independent Algorithm for Plan Adaptation,
Journal of Artificial Intelligence Research 2:319-360, 1995.

11. R. Holte, C. Drummond, M. Perez, R. Zimmer, and A. MacDonald, Search With
Abstractions: A Unifying Framework and New High-Performance Algorithm, Pro-
ceedings of the Tenth Canadian Conference on Artificial Intelligence, Morgan
Kaufmann, pp. 263-270 (1994).

12. S. Kambhampti and J. Hendler, A Validation-Structure-Based Theory of Plan Modi-
fication, Artificial Intelligence 55:193-258, 1992.

13. G.Klein and R. Calderwood, How do People Use Analogues to Make Decisions?,
Proceedings of the DARPA Workshop on Case-Based Reasoning, Morgan Kaufman
Publishers, Inc., 1988.

14.C. A. Knoblock, Automatically Generating Abstractions for Planning, Artificial
Intelligence 68(2):243-302, 1994.

15. J. Setubal and J. Meidanis, Introduction to Computational Molecular Biology, PWS
Publishing Co., 1997.

16. B. Smyth and P. Cunningham, Deja Vu: A Hierarchical Case-Based Reasoning Sys-
tem for Software Design, Proceedings of the European Conference on AI, John Wiley,
pp. 587-589 (1992)

17. B. Smyth and M. Keane, Adaptation-Guided Retrieval: Questioning the Similarity
Assumption in Reasoning, Artificial Intelligence (in press) 1999.

18. Y. Tao, A Multiple-Domain Evaluation of Stratified Case-Based Reasoning, M.S.
Thesis, Department of Computer Science, University of Wyoming, August, 1998.

58 L.K. Branting and Y. Tao

althoff@iis.uni-hildesheim.de

Bootstrapping Case Base Development with Annotated
Case Summaries?

Stefanie Brüninghaus and Kevin D. Ashley

University of Pittsburgh
Learning Research and Development Center, Intelligent Systems Program, and School of Law

3939 O’Hara Street, Pittsburgh, PA 15260
steffi+@pitt.edu, ashley+@pitt.edu

Abstract. Since assigning indicies to textual cases is very time-consuming and
can impede the development of CBR systems, methods to automate the task are
desirable. In this paper, we present a machine learning approach that helps to boot-
strap the development of a larger case base from a small collection of marked-up
case summaries. It uses the marked-up sentences as training examples to induce a
classifier that labels incoming cases whether an indexing concept applies. We il-
lustrate how domain knowledge and linguistic information can be integrated with
a machine learning algorithm to improve performance. The paper presents experi-
mental results which indicate the usefulnessof learning from sentencesand adding
a thesaurus.We also consider the chancesand limitations of leveraging the learned
classifiers for full-text documents.

1 CBR in Domains where Cases are Texts
Over the last years, a number of CBR systems have been developed for domains where
the cases are available as unstructured or semi-structured text documents. Examples of
such domains are the law (Ashley & Aleven 1997; Branting 1991; Rissland, Skalak, &
Friedman 1993), business problems (Baudin & Waterman 1998) and in particular the fast
growing area of helpdesk systems (Lenz 1998; Aha, Maney, & Breslow 1998; Racine &
Yang 1997).

Where the task is merely to find the most similar textual cases related to a user’s
situation, CBR techniques in combination with Information Retrieval (IR) can be used
directly to retrieve textual cases. These case-based retrieval models have been applied
successfully in systems like FAQ-Finder (Burke et al. 1997) or FaLLQ (Lenz 1998). In
many other applications, however, where more advanced CBR is carried out, it is neces-
sary to map the unstructured textual case to a structured, symbolic representation, with
which the CBR system can perform its reasoning (Ashley & Brüninghaus 1998).

When the CBR system involves a symbolic comparison of cases or requires the adap-
tation of cases, the extra effort of indexing the raw cases has to be made. As yet, this has
been an almost exclusively manual chore. Having experts manually index texts and rep-
resent cases, however, can be prohibitively expensive and time-consuming (Racine &

? This research has been supported by the National Science Foundation, under Grant IRI96-
19713. We thank West Group and in particular Peter Jackson for making the WestLaw The-
saurus accessible to us.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 59-73, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

Yang 1997; Daniels & Rissland 1997). Such costs may even prevent the development
or maintenance of CBR systems. Methods to facilitate indexing or representing cases
automatically are desirable.

A promising approach is to start with a small collection of manually indexed cases,
and employ these examples to automatically assign indices to new, unseen cases. Pre-
viously, we introduced a classification-oriented approach to building a case base from a
small set of examples (Brüninghaus & Ashley 1997). Our success, however, was ham-
pered by the fact that most learning algorithms designed for classifying texts are of lim-
ited use for small collections.

In this paper, we discuss recent progress toward bootstrapping the development of
a larger case base by using a small collection of manually-indexed case summaries. We
found that case summaries can be annotated with little extra cost while the initial case
base is being constructed. In this way, a collection of short sentences or paragraphs re-
lated to the indices in a CBR system can be more easily acquired. These sentences are
significantly less complicated than the full documents and can be used as examples for
a symbolic tree-learning algorithm. This also allows us to add domain knowledge and
linguistic information, and to employ a more powerful representation.

In the remainder of this paper, we first introduce our application, case-based legal
argumentation. We show an example of an indexing concept and illustrate why it is dif-
ficult to assign it to documents automatically. We then consider problems with widely
used text classification methods, and how these problems are addressed by our system
SMILE2. We discuss its design and demonstrate the learning techniques we use. After
reporting a recent experiment, we consider the chances and limitations of further lever-
aging the learned classifiers. The paper concludes after discussing related work.

2 A Typical CBR Application Involving Cases As Texts: CATO
The law is a domain where CBR has been applied successfully (Ashley & Aleven 1997;
Branting 1991; Rissland, Skalak, & Friedman 1993), and where the cases are texts. Our
CATO system is an instructional environment for teaching argumentation skills to law
students (Aleven 1997), based on a model of case-based argumentation. When trying
to convince a court to rule in favor of or against a party’s claim, legal advocates com-
pare the problem scenario to previously decided cases. They analogize the problem to
favorable cases and distinguish it from unfavorable ones. In doing so, they often com-
pare and contrast cases in terms of prototypical fact patterns, which tend to strengthen
or weaken a party’s claim. A model of this reasoning has been implemented in CATO.
The system deals with claims for trade secret misappropriation, in which a plaintiff com-
plains that the defendant has used its confidential product information to gain an unfair
competitive advantage. CATO employs a set of 26 such abstract fact patterns, or fac-
tors, to compare and contrast cases by means of eight basic argument moves with which
it composes arguments how to decide the problem scenario. A hierarchy of legal issues
and their interrelations enables CATO to reason with partially matched cases and make
arguments about the significance of distinctions (Ashley & Aleven 1997). CATO has a
Case Database of 147 cases. For each of these cases, we have (1) a symbolic factor rep-
resentation, (2) a squib, or short summary of the facts, and (3) the full-text opinion, in

2 SMart Index LEarner

60 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

which the court announces its decision and reasoning.
Each of CATO’s factors is an indexing concept and may guide comparisons among

cases to which it applies. In trade secret law, for instance, the allegedly misappropriated
product information must meet certain criteria to be protectable as a trade secret. If a
similar product is available from other manufacturers, the information may be generally
available and not be protected against use by competitors. In CATO this fact pattern is
represented by a factor favoring plaintiff, F15, Unique-Product, defined as follows:

Plaintiff was the only manufacturer making the product. This factor shows that the
information apparently was not known or available outside plaintiff’s business. Also, it
shows that plaintiff’s information was valuable for plaintiff’s business.

As an empirical matter, we have found that the evidence for a factor is typically en-
countered in a few clumps in the case texts, in the form of sentences or short passages.
Some examples of sentences from cases in CATO’s Case Database which indicate that
factor F15 applies are:

� Innovative introduced evidence that Panl Brick was a unique product in the industry.
(from Innovative v. Bowen)

� It has a unique design in that it has a single pole that a hunter can climb instead of
having to climb the tree. (from Phillips v. Frey)

� Several features of the process were entirely unique in transistor manufacturing.
(from Sperry Rand v. Rothlein)

� The information in the diagram was not generally known to the public nor to any of
Tri-Tron’s competitors. (from Tri-Tron v. Velto)

� It appears that one could not order a Lynchburg Lemonade in any establishment
other than that of the plaintiff. (from Mason v. Jack Daniel Distillery)

As the example sentences suggest, inferring from the text of a case that factor F15
applies is relatively straightforward for a human. As already noted, like other factors,
the evidence for factor F15, Unique-Product, is concentrated in a few such sentences.
Also, there tend to be only a fairly small number of ways in which courts describe the
factual situations related to this factor. In other words, the sentences relevant to F15 fol-
low a small number of patterns, focus on a limited set of issues and use similar wording.
(There can be exceptions, however.) Generally, when indexing new cases, experts can
identify without much difficulty the passages and sentences that pertain to the factor. In
fact, when they read the case, they may simply underline the sentences in the text rele-
vant for the factor.

It can be more difficult to infer from a text that other factors apply, such as F6, Securi-
ty-Measures. In general, a plaintiff’s claim is strengthened to the extent that it takes mea-
sures to maintain the security of its secrets. There are, however, many things a plaintiff
can do (e.g., lock up the secret, obtain nondisclosure agreements from its employees,
prohibit visitors from seeing a process, encode the secret.) The case texts display a much
wider variety of different patterns of descriptions from which it may be inferred that F6,
Security-Measures, applies.

61Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

Even for factors that are easier to infer such as F15, Unique-Product, one still needs
some linguistic information. In legal texts, as in texts generally, the negation or restric-
tion of statements is very important. In the sample sentence drawn from the Mason case,
for example, the negation of “order” is crucial: “It appears that one could not order a
Lynchburg Lemonade in any establishment other than that of the plaintiff.” If one could
order the product somewhere else, it would not be unique, after all! An ability to recog-
nize phrases, like “agreed not to disclose”, would also be useful. While the words taken
separately are not very predictive for a factor, the combination corresponds to an impor-
tant concept in trade secret law.

3 Previous Experiments

As noted, at the last ICCBR, we presented a classification-based approach to assign-
ing factors to new cases (Brüninghaus & Ashley 1997). We considered each of CATO’s
factors as a concept, where the cases in CATO’s Case Database were the positive and
negative training examples, depending on whether the factor applied or not. In an ex-
periment, we used statistical learning algorithms to induce a classifier for each factor.
For most factors, however, the classifiers could not discriminate between positive and
negative examples of a factor.

While the statistical text learning methods work very well for simpler concepts, and
where the collections are large, assigning indices for CBR is a more difficult problem.
As discussed in the previous section, like CBR indices in other applications, CATO’s
factors are rather complex and abstract concepts. In addition, CATO’s database yields a
relatively small number of manually-indexed cases for the training set, about 150 docu-
ments. Despite the small number of training instances, the vocabulary in the cases is very
large. This makes it difficult to apply advanced statistical learning methods which tend
to require large numbers of examples to learn text classifiers, usually in the magnitude
of thousands of documents.

The complexity of the documents also makes our problem harder than indexing cases
in many other domains. Legal opinions are notoriously long and difficult texts. They are
usually between two and twenty pages long. The prose style is often dense, and many
terms have a specific meaning in a legal context. Frequently, only part of the text deals
with the substantive trade secret claim. The court may also discuss jurisdictional and
procedural issues or even other claims.

The representations employed in statistical methods for text learning are not pow-
erful enough for indexing such documents. Typically, the statistical methods rely on a
bag-of-words model, where a document is represented as a vector of weights over the
content words. Stopwords are removed, and all information like word order is discarded.
To decide whether a factor is present in a case, however, negation and other linguistic in-
formation can be very important. (See Section 2.) Likewise, the bag-of-words represen-
tation does not facilitate inclusion of any domain knowledge, for example, to overcome
the problems of synonymity.

After analyzing the results in more detail, we decided to take a different approach,
which we implemented in SMILE. It takes a set of marked-up sentences from case sum-
maries instead of entire documents as examples, uses a decision tree algorithm to learn
rules, and adds domain knowledge in the form of a thesaurus to the induction process.

62 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

Since the evidence for a factor can be found within a few sentences in an opinion, it can
be better captured by a small set of short rules induced from the relevant portions of the
training texts.

3.1 Focus on Smaller Units of Information
Compared to running learning algorithmswith full-text documents, employingsentences
as examples has three major advantages:

1. It allows focussing on smaller and more relevant examples, namely the marked-up
sentences or passages pertaining to a factor. This requires one to tag the sentences
referring to a factor manually. The marked-up sentences will, in effect, become the
training examples for the learning algorithm. Although it is a manual process, this
step adds little work for an expert indexing the cases.

2. The use of marked-up sentences instead of the complete opinions as training exam-
ples offers computational advantages. We decided to use a decision tree induction
algorithm, which gets hopelessly bogged down by large numbers of attributes. Re-
ducing the complexity of the examples also allows us to add knowledge from per-
forming natural language processing (e.g., parsing which becomes impractical for
the full-text opinions.)

3. Learning from marked-up sentences facilitates including domain knowledge, in the
form of a domain-specific thesaurus. If the examples are sentences, the knowledge
contained in a thesaurus can be better applied at the relevant points.

3.2 Using a Decision Tree Induction Algorithm
As argued above, the evidence for assigning an indexing concept to a case can often
be found in a few sentences. Within these sentences, judges tend to use a limited set
of phrases and expressions to indicate the presence of a factor. These patterns are best
captured by individual rules, like those implicit in the trees learned by a decision tree al-
gorithm. Figure 1 shows how this is reflected in an excerpt from a decision tree learned
in the experiments reported in Section 5. The factor F16, Info-Reverse-Engineerable,
applies if plaintiff’s information could be ascertained by reverse engineering, that is, by
inspecting or analyzing the product. The expressions “reverse engineerable”, “easily du-
plicate the information” and “revealed upon inspection” are characteristic for this factor
and can be easily found as alternative paths in the tree.

This intuition is supported further if one considers the relation between the instance
space in which the examples are represented and nature of the the factors (Aha, Kibler,
& Goldstone 1991; Quinlan 1993). The factors comprise a (small number of) different
real-world situations. They are not simple, linearly seperable concepts in the instance
space. Linear classifiers, which employ a hyperplane to discriminate between positive
and negative instances, are ill-suited for the task, as our previous experiments indicate.
It is more appropriate to use a learning method (like a decision-tree algorithm) that splits
the instance space into multiple class regions, which correspond to the different situa-
tions and are defined by the presence/absence of words and phrases in the examples.

3.3 Integrating an Application-Specific Thesaurus
A charateristic of legal texts is the use of different terms that refer to the same concept.
A learning algorithm by itself can not cope with this synonymity. For instance, it can-

63Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

reverse

+ –

+ –

+

etc.

–

reverse engineerable

easily duplicated

revealed upon inspection

F16 applies if the information is:

F16 applies inspect...

reveal

F16 applies

F16 applies

duplicate...

Fig. 1. Rules implicit in a decision tree and the corrspondingtext patterns

not infer that “covenant” is another word for “contract.” This is likely to decrease the
performance, in particular when the number of training instances is not very large.

Attorneys often use legal thesauri (Statski 1985), which list synonyms and some-
times definitions for terms used in legal documents. (In other domains, similar thesauri
and glossaries exist.) Usually, legal thesauri are not available online. For our experi-
ments, we were fortunate to have access to the thesaurus used internally by West Group,
one of the largest legal publishers. It comprises about 20,000 sets of synonyms. Each
word belongs to between one and six synonym sets. Examples relevant to trade secret
law are:

� clandestine concealed disguised hidden secret undisclosed unrevealed
� commodity goods inventory material merchandise product stock supplies
� admission disclosure discovery revelation

4 How SMILE Works
In this section, we show (simplified) examples of how our program works with training
instances that are sentences, and illustrate how domain knowledge and linguistic infor-
mation can be integrated.

4.1 Example Sentences in Case Texts
For the experiments reported here, we marked up the summaries of CATO’s cases. An
example is the Forest Laboratories case3, which has the factors F1, Disclosure-In-Nego-
tiations, F6, Security-Measures, F15, Unique-Product,and F21, Knew-Info-Confidential.
This shows a short section of its squib:

[f15 Plaintiff’s packaging process involved various “tempering steps” that were not
used by competitors or described in the literature. f15][f6 Only a handful of plaintiff’s
employees knew of the packaging operations, and they were all bound by secrecy agree-
ments. f6][f6 There was also testimony that packaging information was closely guarded
in the trade. f6]

... [f1 Plaintiff’s president sent a letter to defendant which conveyed plaintiff’s man-
ufacturing formula. f1][f21 The letter also stated that the disclosure was made in confi-
dence and that “we agree with you that details on packaging, etc. should be taken up
later”. f21] ...

3 Forest Laboratories, Inc. v. Formulations, Inc., 299 F.Supp. 202 (E.D.Wis.1969)

64 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

For our classification approach, the bracketed sentences are positive instances for the
respective factor; all other sentences are negative instances. A factor can be considered
to apply to a case if at least one of the sentences is a positive example for the factor.

For the first experiments, the cases were treated as binary attribute vectors, although
we are currently working on improving this representation. We removed all stopwords,
and removed the most common endings, like plural-s. The sentence indicating F1 would
be internally represented as: (plaintiffpresident send letter convey manufacture formula).

4.2 Decision Tree Induction

We implemented the basic ID3 algorithm (Mitchell 1997), currently without methods for
pruning the trees. We selected this methods because it seems to correspond best to out
ideas. However, there is no reason why other learning algorithms could not be used. In
particular inductive logic programming may prove useful for the integrationof linguistic
information.

First, let us consider a simple example. Ideally, judges would describe the facts of
a case in simple and straightforward phrases. They would always use the same words
or expressions, never use negation, etc. Then the positive (+) and negative (–) instances
given to a classifier might look like this4:

+ The product was unique.
– His product was identical to plaintiff’s.
– The recipe was always locked in a unique safe.
– Plaintiff employed unique security measures.

In inducing the tree, the algorithm recursively selects the attribute that best discrim-
inates between positive and negative examples and splits up the training set, according
to whether this attribute applies. The process is repeated until it has a set of only pos-
itive or negative examples. Here, ID3 would first split up the examples into those that
have the word “product”, and those that do not. It would then try to find a way to dis-
tinguish between the first and the second example, and select the word “unique”. The
corresponding decision tree is shown in Figure 2.

Product?

+ –

+ –

Positive Negative

Unique? Negative

Fig. 2. Decision tree for F15, Unique-Product

Of course, judges do not restrict their factual descriptions in this way. In the next
section we discuss how adding knowledge from a legal thesaurus and adding linguistic

4 To make the examples easier to understand, we show the full text.

65Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

knowledge may help, when dealing with the far more complex language found in legal
case opinions.

4.3 Adding a Thesaurus

A well-known problem with ID3 is its tendency to overfit the data. In particular with
many attributes available, the algorithm learns overly specific trees, which often mis-
classify new examples. The knowledge in a thesaurus can help to overcome that prob-
lem. All words in a synonym group can function like a single attribute, which applies
to more cases. This can lead to simpler, less overfitted trees. To illustrate our intuitions
about adding a thesaurus, assume that we have the following examples of some concept:

+ He signed the contract.
+ He signed the covenant.

– He signed the postcard.
– He signed the book.

Half of the examples is positive, half negative. No (single) term can discriminate
between positive and negative examples. A decision tree algorithm would create a tree
as in Figure 3, branching out too much. The knowledge to recognize that covenant and
contract are synonyms is missing, and there is no reliable way to make that inference.
With the help of a thesaurus, however, it is possible to induce a better tree.

There are two ways to include the information of a thesaurus.

Contract?

+ –

Positive Negative

Covenant?Positive

+ –

Fig. 3. Decision tree learned without adding a thesaurus

A thesaurus can be used to discover synonyms while inducinga decision tree. Instead
of learning a tree where the nodes are words, we can learn a tree where the nodes are
categories from the thesaurus. The relevant category in the WestLaw Thesaurus for this
example is: � agreement contract covenant promise testament

If we modify the learning algorithm accordingly, ID3 will choose this category to
perfectly discriminate between positive and negative examples, shown in Figure 4. This
tree will also correctly classify unseen examples which use the term agreement instead
of contract or covenant.

Alternatively, one can use a thesaurus to expand examples in advance, by adding
all possible synonyms before the learning algorithm is applied. Our positive examples
would then appear like:

+ He signed the contract. + agreement covenant promise testament
+ He signed the covenant. + agreement contract promise testament

66 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

Concept 2004: agreement
contract covenant
promise testament

+

NegativePositive

–

Fig. 4. Decision tree learned with synonym information

A tree can then be learned easily for the example sentences by choosing either the
term “covenant” or “contract” to distinguish between positive and negative examples.
This also results in a simpler tree, and thereby can help to avoid overfitting.

4.4 Proposed Use of Linguistic Information

The most promising way to include linguistic information about the relation of words in
sentences, or about the role of expressions, may be to integrate a parser into the learn-
ing system. The version of SMILE evaluated in this paper did not include this linguistic
information. Nevertheless, this is a convenient place to dicuss our design for integrating
a parser. Assume we have the examples:

+ No other manufacturer made filled chocolate.

– The manufacturer made hunter stands.

The only reliable way to discriminate between the two examples is to include as an
attribute the fact that in the positive instance “manufacturer” is modified by “no other”.
(The terms “filled chocolate” and “hunter stand” are very rare, they would be pruned
away from the examples’ representation.)

The attribute can be found by parsing the sentence (e.g., using CMU’s Link Parser,
available from http://www.link.cs.cmu.edu) The output for the positive instance in the
example above would be:

///// no other manufacturer.n made.v filled.v chocolate.n .

Xp
Wd

DsIDCR Ss
Os

A

From this parser output, various information can be derived. The subject, object and
verb of the sentence are identified, the words’ part-of-speech is tagged, and, most inter-
esting for the task at hand, the combination no-other is labeled as determiner of a noun
(Ds), and as an idiomatic string stored in the dictionary (IDC).

Similarly, information about phrases, or the role of attributes in the sentence can be
derived and used in learning a decision tree. For instance, the phrase “filled chocolate”
is indicated by an adjective link (A) between “filled” and “chocolate”. As noted above,
we have not currently integrated this information in SMILE, but we are in the process
of doing so.

67Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

5 Experiment

In a simplified environment, we tested how well our approach works with the ID3 al-
gorithm. Our goal was to find out whether using sentences instead of full-text opinions
would be useful, and whether there would be any benefit from adding a thesaurus. For the
time being, we did not investigate in what ways the representation could be improved,
for example, by including linguistic knowledge. That will be the next phase of our ex-
perimentation.

The experiments were run as a stratified 5-fold cross validation. We used a separate
random partitioning of the positive and negative examples, because the distribution is
very skewed. At the same time, we have a rather small number of examples. By keeping
the ratio constant, we tried to prevent outliers in the test sets, which can decrease the
experiments’ validity.

5.1 Experimental Setup and Assumptions

For this experiment, we used a subset of CATO’s factors:

� F1, Disclosure-In-Negotiations
� F6, Security-Measures
� F15, Unique-Product

� F16, Info-Reverse-Engineerable
� F18, Identical-Products, and
� F21, Knew-Info-Confidential.

We have selected these factors because we anticipated that they would provide a
range of difficulty for the learning algorithm. We expected F15, Unique-Product, to be
found much more easily than F6, Security-Measures. Courts employ a small set of pat-
terns and some standard phrasing in discussing a product’s uniqueness. By contrast, the
squibs identify a very wide variety of different fact situations from which it may be in-
ferred that F6 applies. There are many things a plaintiff can do to maintain the secrecy
of its information (e.g., lock up the secret, obtain nondisclosure agreements from its em-
ployees, prohibit visitors from seeing a process.)

It is important to note that we have omittedsome of CATO’s factors which we believe
would be even harder to learn from examples than F6. F5, Agreement-Not-Specific, for
instance, is often difficult for a human to discover, and asserting its presence requires
more abstract inferences. Probably only very advanced natural language understanding
would be appropriate. Also, CATO’s Case Database contains only five cases in which
this factor applies, so it is not a good candidate to show the applicabilityof a new method.

To simplify the problem further, we used CATO’s squibs, rather than the full-text
opinions as training and test examples. The squibs are short summaries, about one page
of text, whose primary function is to restate the case facts. The drafters of the squibs
had CATO’s factors squarely in mind in preparing the summaries of the case facts. Thus,
finding factors in the squibs is a much easier problem than finding factors in the full-text
opinions. We adopted this simplification, however, to get a set of consistently marked-up
examples, to avoid having the learning algorithm get bogged down computationally, and
to satisfy our curiosity as to whether the method would work with the shorter documents
before we undertook to scale up to the more complex opinions. In Section 6, we discuss
how this can be leveraged to full-text opinions.

On a practical note, using manually prepared case summaries may appear like a con-
tradiction of the goal of reducing indexing cost. The major problem, however, is that in-

68 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

dexing requires an extremely well-trained expert who knows the area of the law as well
as the indexing concepts, or factors. On the other hand, it appears to be fairly easy for
untrained law students to summarize cases. Even with little knowledge of the specific le-
gal application, they can identify the pertinent facts and at low cost write a squib that’s
helps an expert to mark up a case.

5.2 Results

We were interested in assessing the effect of two techniques, namely using marked up
sentences instead of the full documents to discover the factors, and adding a domain
specific thesaurus. The results of the experiments suggest that both are beneficial.

As shown in Table 1, the decision tree algorithm achieved precision and recall of up
to 80% for finding which factor applies to a case.

48.78% 32.14% 30.00% 80.55% 44.44% 58.97%

71.42% 50.00% 60.00% 81.69% 54.54% 63.88%

f15 f21 f1 f6 f16 f18

Precision

Recall

Table 1. Precision and recall for finding factors in cases

Although these results are positive, there is still room to improve precision and re-
call. As we pointed out before, the experiments did not include any linguisticknolwedge.
In particular, negation was not represented. In Section 2, however, we showed examples
why this is necessary for some of the factors.

In order to get a baseline for comparison, we used CATO’s factor names, which are
intended to capture the meaning of the respective factor. These names were derived from
the relevant legal authorities and contain the terms most widely used by judges, attor-
neys and lawmakers. A human expert will most likely use the factor name as a query,
when searching for cases with that factor in an information retrieval system. The results
in Table 2 indicate that the factor names are too restrictive, they capture too few real
situations, which can be overcome by a machine learning approach.

43.75% 30.30% 5.88% 45.30% 31.03% 34.04%

50.00% 50.00% 10.34% 55.03% 45.00% 51.61%

4.17% 6.06% 2.00% 2.79% 20.69% 4.26%

100% 40.00% 33.33% 71.43% 60.00% 66.67%

F15 F21 F1 F6 F16 F18

ID3 - for
sentences

Recall

Precision

Words from
name

Recall

Precision

Table 2. Precision and recall for finding whether a sentence indicates a factor

Even more interesting, adding a thesaurus helps when classifying sentences under
factors, but the usefulness depends on the factor. In Figure 5, we show the relative im-
provement of using the thesaurus both during (solid color) and before learning (striped)
when compared to the unaided decision tree algorithm. We calculated the difference in
precision between the learner that used the thesaurus and the one that did not, and di-
vided by the precision for the plain learning algorithm. The result is the relative change

69Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

in precision, and allows us to compare the effects across factors. We did the same for
accuracy, and for both ways of integrating the thesaurus.

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

123
123
123
123
123
123
123
123
123
123
123
123
123
123
123
123

123
123
123

123
123
123
123
123
123
123
123
123
123
123
123

123
123
123
123
123
123
123
123
123123

123
123
123
123
123

12
12
12
12

12
12
12
12
12
12

12
12
12
12
12 123

123
123
123
123
123
123
123
123
123
123

f15 f21 f1 f6 f16 f18
-0.4

-0.2

0

0.2

0.4

0.6

recall - thesaurus used while learning

precision - thesaurus used while learning

12345
12345
12345
12345

recall - thesaurus used before learning

1234
1234
1234

precision - thesaurus used before learning

Improvements with Thesaurus by Sentences

Relative improvement over
plain decision tree learner:

Fig. 5. Relative improvements of precision and recall by adding the thesaurus

The graph indicates, that for factors F15, Unique-Product,and F21, Knew-Info- Con-
fidential, adding the thesaurus clearly improves performance. This confirms our intu-
itions, see Section 4.3. For F1, Disclosure-In-Negotiations, adding the thesaurus during
learning is useful, and adding it before learning is without effect. For F16, Info-Reverse-
Engineerable, and F18, Identical-Products, adding the thesaurus increases precision, and
decreases recall. It seems that the thesaurus makes the algorithm more “conservative”
in discovering positive instances. We will have to study the learned decision trees and
misclassifed examples in more detail, before we can really understand the reasons. The
thesaurus is also not useful for factor F6, Security-Measures, which could have been ex-
pected. In a commercial context, there is a wide variety of measures to keep information
secret. They are often very practical matters not related to legal concepts. For those ex-
amples, a thesaurus of legal terms is unlikely to show much effect.

In sum, we have found that using a decision tree induction algorithm for marked-up
sentences as examples is clearly the right approach to take. It reduces complexity, and
yet the individual sentences contain enough information to be useful as examples of the
factors. By contrast, in our previous experiments where we attempted to learn factors
from full-text opinions, the statistical learning methods could only learn the goal con-
cepts to a much more limited degree. Most of the time the classifiers could not discover
the positive instances, which led to low precision and recall.

6 How can this be leveraged?
One of the simplifications in our experiments was the use of CATO’s squibs, rather than
the full-text opinions. This allowed us to mark up the collection of squibs for the re-
ported experiment, and also greatly reduced the computational complexity of the learn-
ing process. The experiments would have been prohibitively time-consuming otherwise
- in terms of both human labor and required CPU time. For the cases included in this
experiment, we have 2200 sentences in the squibs, with an average length of 7.5 words
(after removing stopwords, very infrequent terms and duplicates). The corresponding
full-text opinions comprise 28,000 sentences, with an average length of 11.5 words.

70 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

However, our ultimate goal is to assign factors to the full-text opinions. We wanted
to find out whether the classifiers learned over the squibs would be applicable for this
task. Since we do not have the full-text opinions marked up like the squibs, we will focus
on an informal discussion of the results for the factors with the best and worst results.

Generally, we found that the usefulness of the decision trees learned from summaries
depends very much on the nature of the factor. For factors like F15, Unique-Product,
which represent rather well-defined and uniform situations, the classifiers learned from
the example sentences in the squibs worked well for opinions. As we expected, the clas-
sification rules did not work as well for factors that are more abstract and comprise a
wide variety of real-world situations, like factor F6, Security-Measures.

Even though we did not include any linguistic information, the algorithm assigned
F15 to the full text-opinions with recall of 75 % and accuracy of 45 %. When we an-
alyzed the cases flagged as false positives, we found many instances like “Defendant’s
expert stated that the use of this process was indeed known in the industry, although
[it] was not specifically discussed in any industry literature,” which is an explicit state-
ment that F15 does not apply. Even though this is an incorrectly classified sentence, we
think the classifier has worked here as well as we would like. As discussed above, we
anticipate that such false positive instances can be filtered out by integrating linguistic
knowledge.

The classification rules did not perform as well for factor F6. This factor captures a
wide variety of measures, from requiring employees to sign non-disclosure agreements,
to locking away recipes. The learned decision trees tend to include the predictive words
to cover each of these situations, and hence falsely label many sentences as positive in-
stances of F6.

To our surprise, we also found that the system had spotted instances of F6 in virtually
every case opinion. We looked more closely at the sentences classified under F6 and the
decision tree’s rules. From a few positive examples for F6 that read “... were not allowed
to see ...”, ID3 had induced a rule to classify sentences with the word “see” as positive
instances of F6. In legal opinion texts, however, “see case-name” is used very frequently
and signals a citation. Conceivably, domain-specific problems like this can be overcome
by adding background knowledge to the representation to filter out citations. Another
source for false positive classifications were citations of statutes (e.g., “ the extent of
measures taken by him to guard the secrecy of the information”). This could also be
avoided by filtering out these statutory citations.

7 Related work

Overcoming the “knowledge-engineering bottleneck” of indexing textual cases for CBR
is an important issue for many applications. There have been a number of approaches for
applying CBR in domains where the cases are available as text.

The approach most similar to our work is SPIRE (Daniels & Rissland 1997). Its goal
is to facilitate the indexing of legal documents for HYPO-style CBR. For each slot in
SPIRE’s frame-based case representation, the system has a small library of passages.
When a new case text is to be indexed, an IR relevance-feedback module uses these “ex-
amples” to retrieve the most promising sections within the new document. Obviously,
SPIRE is very similar to our approach. The application is the same, and like SMILE,

71Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

SPIRE uses a collection of previously indexed cases (or passages) to facilitate future
case indexing. In fact, the results reported in (Daniels & Rissland 1997) encouraged
us to pursue our idea to focus on sentences. However, SPIRE harnesses existing tools,
and does not harness any additional domain knowledge. While SPIRE’s intuitive appeal
and simplicity are clearly strengths, it cannot deal, for example, with negation or syn-
onymity. Probably, SPIRE’s approach would not work for indexing concepts that are
more abstract than the frame-slots it fills, like our factors (especially F6) or where an
indexing concept is associated with a number of different fact patterns, like F16 (see
Figure 1). SMILE attempts to overcome these problems by integrating domain and lin-
guistic knowledge.

The Indexing Assistant (Baudin & Waterman 1998) helps humans index business
reengineering cases. Previous cases are classified under a business taxonomy, so that
experience can be reused in similar situations. While the system also takes a text-classi-
fication approach, it does not attempt to include any further knowledge, and treats the
entire documents as one piece.

The research on conversational CBR further supports our underlying intuition to fo-
cus on sentences as instances. In NaCoDAE (Aha, Maney, & Breslow 1998), cases are
represented by sets of question/answer pairs and short case summaries, which resemble
our marked-up cases. This case structure may be used to assign indices automatically.

FAQ-Finder (Burke et al. 1997) (and its successors) uses an integrated CBR/IR ap-
proach to retrieve FAQ-sections related to a user’s questions. The system employs addi-
tional knowledge in the form of a domain-independent conceptual dictionary, but does
not have a deep representation of the user’s questions or the documents. Similarly, the
FaLLQ system (Lenz 1998) takes a case-based approach to retrieve previous problem
solving descriptions. Starting with basic IR techniques, the system integrates different
knowledge-levels and uses a case-based approach to define similarity between docu-
ments. Unlike our work, neither approach derives a symbolic case representation, and
both focus on case-based retrieval of text. Case Advisor (Racine & Yang 1997) uses
statistical and IR measures and identifies keywords to index technical problem solv-
ing episodes for future retrieval, but it also does not rely on deeper indexing terms, like
CATO’s factors.

8 Conclusion

We have presented SMILE, an approach to bootstrapping the development and mainte-
nance of case bases in domains where the cases are texts. SMILE uses sentences from
a small marked-up collection of case summaries as examples for a machine learning al-
gorithm. Based on our experiments, we think that using case summaries to facilitate the
development of case bases in textual domains is a promising approach. The results also
indicate that it can be beneficial to apply domain knowledge in the form of a thesaurus.
The usefulness of these techniques depends on the nature of indexingconcepts. For some
of these concepts, the classifiers learned from sentences in case summaries can be lever-
aged for the full-length documents.

We have also discussed ways to improve the representation from a simple bag-of-
words model by adding linguistic information. Together with including further domain
knowledge, this will be the focus of our ongoing research.

72 St. Bruninghaus and K.D. Ashley

althoff@iis.uni-hildesheim.de

References
Aha, D., Kibler, D., and Goldstone, R. 1991. Instance-based Learning Algorithms.
Machine Learning 6:37–66.
Aha, D., Maney, T., and Breslow, L. 1998. Supporting Conversational Case-Based
Reasoning in an Integrated Reasoning Framework. In Proceedings of the AAAI-98
Workshop on Case-Based Reasoning Integrations.
Aleven, V. 1997. Teaching Case-Based Argumentation through a Model and Examples.
Ph.D. Dissertation, University of Pittsburgh.
Ashley, K., and Aleven, V. 1997. Reasoning Symbolically about Partially Matched
Cases. In Proceedings of the 15th International Joint Conference on Artificial Intelli-
gence.
Ashley, K., and Brüninghaus, S. 1998. Developing Mapping and Evaluation Tech-
niques for Textual CBR. In Proceedings of the AAAI-98 Workshop on Textual Case-
Based Reasoning.
Baudin, C., and Waterman, S. 1998. From Text to Cases: Machine Aided Text Catego-
rization for Capturing Business Reengineering Cases. In Proceedings of the AAAI-98
Workshop on Textual Case-Based Reasoning.
Branting, K. 1991. Building Explanations from Rules and Structured Cases. Interna-
tional Journal on Man-Machine Studies 34(6).
Brüninghaus, S., and Ashley, K. 1997. Using Machine Learning for Assigning Indices
to Textual Cases. In Proceedings of the 2nd International Conference on Case-Based
Reasoning.
Burke, R., Hammond, K., Kulykin, V., Lytinen, S., Tomuro, N. and Schoenberg, S.
1997. Question-Answering from Frequently-Asked Question Files: Experiences with
the FAQ-Finder System. AI Magazine 18(1).
Daniels, J., and Rissland, E. 1997. What you saw is what you want: Using cases to seed
information retrieval. In Proceedings of the 2nd International Conference on Case-
Based Reasoning.
Lenz, M. 1998. Defining Knowledge Layers for Textual Case-Based Reasoning. In
Proceedings of the 4th European Workshop on Case-Based Reasoning.
Mitchell, T. 1997. Machine Learning. Mc Graw Hill.
Quinlan, R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufman.
Racine, K., and Yang, Q. 1997. Maintaining Unstructured Case Bases. In Proceedings
of the 2nd International Conference on Case-Based Reasoning.
Rissland, E., Skalak, D., and Friedman, T. 1993. Case Retrieval Through Multiple In-
dexing and Heuristic Search. In Proceedings of the 13th InternationalJoint Conference
on Artificial Intelligence.
Statski, W. 1985. West’s Legal Thesaurus and Dictionary. West Publishing.

This article was processed using the LATEX macro package with LLNCS style

73Bootstrapping Case Base Development with Annotated Case Summaries

althoff@iis.uni-hildesheim.de

Activating CBR Systems through Autonomous

Information Gathering

Christina Carrick and Qiang Yang
Simon Fraser University

Burnaby, BC, Canada, V5A 1S6
(ccarrick)(qyang)@cs.sfu.ca

Irene Abi-Zeid and Luc Lamontagne
Defense Research Establishment Valcartier

Decision Support Technology
2459, boul. Pie XI, nord

Val Belair, Quebec, Canada, G3J 1X5
(irene.abi-zeid)(luc.lamontagne)@drev.dnd.ca

Abstract. Most traditional CBR systems are passive in nature, adopt-
ing an advisor role in which a user manually consults the system. In this
paper, we propose a system architecture and algorithm for transforming
a passive interactive CBR system into an active, autonomous CBR sys-
tem. Our approach is based on the idea that cases in a CBR system can
be used to model hypotheses in a situation assessment application, where
case attributes can be considered as questions or information tasks to be
performed on multiple information sources. Under this model, we can use
the CBR system to continually generate tasks that are planned for and
executed based on information sources such as databases, the Internet
or the user herself. The advantage of the system is that the majority
of trivial or repeated questions to information sources can be done au-
tonomously through information gathering techniques, and human users
are only asked a small number of necessary questions by the system.
We demonstrate the application of our approach to an equipment diag-
nosis domain. We show that the system integrates CBR retrieval with
hierarchical query planning, optimization and execution.

1 Introduction

Case-based reasoning (CBR) has enjoyed tremendous success as a technique for
solving problems related to knowledge reuse. Many examples can be found in the
CBR literature [17,18, 12, 11, 21]. One of the key factors in ensuring this success
is CBR's ability to allow users to easily de�ne their experiences incrementally
and to utilize their de�ned case knowledge when a relatively small core of cases
is available in a case base.

Despite the tremendous success, traditional uses of CBR have limited its
potential. In previous research, most interactive CBR retrieval systems often in-
volve few users [1] who provide most of the answers to queries in order to retrieve

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 74-88, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

cases. In its most commonmode, a CBR system involves just one user, who pro-
vides most, if not all, of the necessary information for feature values in order to
perform similarity-based retrieval. For example, in a typical help desk operation,
a call-center customer service representative (CSR) often enters a conversational
mode, in which questions are answered by the customer, and entered by the CSR
by hand. This style of interactive problem solving is important, but nevertheless
is not the only mode in which to utilize a CBR system.

Our aim is to develop a more autonomous framework in which answers to
CBR questions can be gathered automatically frommultiple information sources.
The motivation for our work derives from the evolution of an industrial-strength
CBR system CaseAdvisor, developed by the CBR group at Simon Fraser Uni-
versity [24]. It allows a help desk organization to capture and reuse the experience
and knowledge of its most experienced help desk and customer support personnel
in a knowledge database that is easy to build, maintain and use. CaseAdvisor
represents a typical interactive CBR (or conversational CBR [1]) application.
After a user enters a natural language description of a problem, a set of cases
that closely match the description is retrieved. These cases are interactively eval-
uated by a user based on a set of questions associated with them. When a user
provides an answer to a question, a nearest neighbor algorithm is used to re-rank
all retrieved cases and their associated questions in order to obtain the currently
most relevant cases. The process is repeated until the user �nds the target case.

Our observation is that much of the interactive question-answering process
can in fact be automated. This is because many answers are available at di�erent
information sources, such as databases and web sites. In this model, a user is
just one of the information sources to be queried. Following this direction, we
advocate a novel approach to making such a CBR system \active" in the lifetime
of an application.

In this work, the CaseAdvisor system takes up the role of a continual
hypothesis evaluator. Each hypothesis is implemented as a case in the CBR sys-
tem. The answers to the questions of the cases can still be obtained from the
user; however, this is just one channel from which to obtain the information.
We assume that there is a collection of information sources available to provide
answers to the questions, or values to the attributes, in an autonomous way.
We also assume that relevant information is distributed, so that no one source
contains all of the information necessary to answer a question and information
must be autonomously gathered and integrated. Moreover, an attribute provides
only a high-level question which may need to be broken down into sub-questions
and tasks by a hierarchical planning process. This task planning is adone au-
tonomously by an information gathering sub-system. In this manner, a passive
and purely interactive advisory system is turned into an active, information
gathering system by using the questions in the case base as the queries to the
information gathering component. We are thus inserting the information gath-
ering component into the Retrieve stage of the CBR cycle, where the user may
decide to Reuse the case at any point where the retrieval is deemed adequate.

75Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

This extension to CaseAdvisor has been implemented in JAVA to facilitate
access to heterogeneous data sources, and can be applied to many situation
assessment domains. Medical diagnosis and scienti�c theory formation are good
examples of the situation assessment process: given some initial information a
working hypothesis (a possible diagnosis or theory) is formed. Experimentation
and testing then takes place to �nd further evidence to con�rm or refute the
working hypothesis, possibly generating alternative working hypotheses in the
process. We have so far applied this situation assessment model to a military
search and rescue domain and a Cable-TV equipment diagnosis domain. In the
former, an initial indication about a missing aircraft will activate a case retrieval
and evaluation process, in which various information sources are consulted in a
continual manner [23]. In the equipment diagnosis area, again initial indications
of an equipment failure will prompt the retrieval of most relevant hypothesis
through a CBR retrieval process. A subsequent information gathering process
will allow di�erent hypothesis about the equipment fault to be more accurately
assessed, and in the assessment process, part of the problem may be �xed. We
will highlight the equipment diagnosis area later in our paper.

Our work makes contributions to case based reasoning research in several as-
pects. First, the model represents a method in which one can turn a passive CBR
system into an active CBR system, thus increasing \interactive e�ciency"[1]. A
second novelty of the system is that a CBR system is used as an information

task generator to generate information gathering tasks in an autonomous man-
ner. Many well-known CBR systems [4,5, 13] assume that the values are known
for the attributes of retrieved cases. However, in situation assessment tasks, many
values are not known. Therefore there is a need for verifying and retrieving these
values through sophisticated query planning. Third, since we assume an open
system architecture in which many information sources are expected to coexist,
the system integrates a CBR component with an information gathering com-
ponent. The information-gathering component performs global task expansion,
planning and optimization.

Well-known CBR systems can be enhanced by our model. Systems such as
HYPO [4, 5] and CASEY [13], rely on problem descriptions that are collections of
attributes and values to retrieve similar cases. Cases in their case bases are also
assumed to have their attribute-values ready for comparison with the incoming
problem description. However, these systems do not emphasize on how these
attributes and values are obtained. Our approach nicely complements these and
other CBR systems in that an autonomous model is provided for gathering
information in order to execute case based reasoning. In addition, our system
complements case based planning (CBP) systems [20] in that, while CBP systems
adapt a plan case after a similar plan is identi�ed, in our approach \information
plans" are adapted during the retrieval process in order to �nd the most similar
case.

The organization of the paper is as follows.We �rst present a system overview
in Section 2. Then we discuss in Section 2.1 the case base representation and
the case retrieval process. In Section 2.2 we describe how to use the system to

76 C. Carrick et al.

althoff@iis.uni-hildesheim.de

generate questions and how we select one of those questions for execution. We
then discuss in Section 2.3 how to use a task planning and execution module to
gather the information. Finally, in Section 3, we present a practical example of
how our system can reduce the number of questions posed to the customer in a
cable TV call centre domain. We conclude the paper with discussions of related
works, our future research plans and conclusions.

2 System Overview

Fig. 1. The situation assessment cycle intersects the CBR cycle in the Retrieve stage.

As shown in Figure 1, our situation assessment system is made up of several com-
plex modules which interact internally in a cyclical fashion as well as externally
with a number of data sources, and intersecting the CBR cycle in the Retrieve
phase. At the initiation of the cycle, the Global Knowledge Space (GKS) con-
tains all relevant information which is known by the user and has been entered
into the GKS. From the GKS is created a problem state, which is used to query
the CaseAdvisor case base. This constitutes the situation assessment portion
of the system, in which two or more competing hypotheses are produced which
best explain the information contained in the GKS. These retrieved hypotheses
then form the context for the information gathering task. The Task Selector
uses the working hypothesis (that which best explains the data) as well as the
competing hypotheses to formulate a set of all questions which may further

77Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

distinguish the hypotheses. The Task Selector then chooses from that set one
question which is to be executed as an information task, and the Task Executor
plans and executes that task using the available data sources. (Decomposition
of an information task results in sub-tasks and possibly tasks which may need
to be performed in the process of answering the information task.) Should the
question be unanswerable, control returns to the Task Selector module which
chooses a new question as an information task for the Task Executor. When
the Task Executor has obtained an answer to the question, the information is
placed in the GKS, an updated problem state is created and used to query the
case base, and the set of competing hypotheses is thus re-evaluated.

2.1 Situation Assessment

The situation assessment in our system is provided by a case-based retrieval
system. The case base stores previous situations and their associated attributes
as cases. A case in our system is de�ned as a tuple < H;S; T >, where H

is a textual description of the diagnosis or hypothesis of the situation, S is a
set of one or more <question,answer,weight> tuples representing a typical state
leading toH, and T is a conjunction of zero or more tasks which may be executed
should H be the working hypothesis. These tasks in T are di�erent than those
information tasks generated by the unanswered questions from S in that they are
not intended to aid in the accuracy of the situation assessment and are merely
things which should be done if H is the working hypothesis (such as \Notify
supervisor.").

Hypothesis: parental control switch on

Question Answer Weight

problem description poor reception of the cable signal 1.00

channels a�ected speci�c channels 0.70

uses parental control yes 0.80

has cable box yes 0.40

outlets concerned 1 0.30

Fig. 2. A sample case from the cable TV call centre domain.

In our cable TV call centre domain, a case consists of a problem cause (the
situation) and its associated conditions and e�ects (the state) as shown in Figure
2. The cable TV case base consists of a number of these cases, and a problem
cause can be identi�ed by the given exemplar state. The information contained
in the GKS is used to formulate a problem state - the current state represented
as a set of existing conditions and/or e�ects. This is currently accomplished by
extracting from the GKS all statements relating to any of the questions in the
case base. This problem state is used by the retrieval system to �nd the cases
in the case base which most closely match the problem state using a k-nearest-

78 C. Carrick et al.

althoff@iis.uni-hildesheim.de

neighbour algorithm. The problem cause in each case retrieved then becomes a
possible hypothesis.

2.2 The Task Selector

Once we have retrieved the most likely hypotheses for a problem state, one ques-
tion must be chosen to become an information task for execution. This selection
involves estimating the costs of performing the information tasks, combining
this estimation with the estimated information quality of the questions, and
optimizing (possibly trading o�) the two.

InformationQuality When deciding which high-level information task should
be executed to re�ne the situation assessment, it is useful to take into account
how much information can be gained by its execution. It is desirable to maximize
information gain so that a working hypothesis can be con�rmed or refuted as
quickly as possible, with as few questions as possible. As noted in [1], using
the information gain formula typically found in decision tree induction (as in
[19]) is not feasible when the case space is sparse. For this reason we have used
an estimation of information gain which we will denote information quality for
clarity.

To begin, we consider the information quality for only those questions which
are unanswered in the set of retrieved cases. This allows us to eliminate questions
which may be unanswered but are irrelevant to the current context (where the
context is de�ned by the set of competing hypotheses). We currently measure
information quality by considering three factors which would seem to have some
in
uence on the importance of a question:

{ the number of times the question appears in the retrieved cases,
{ the weights of the question in the di�erent cases, and
{ the ranks of the cases containing the question.

The last two heuristics have previously been used in our CaseAdvisor system.
In the current study all of these factors were given equal weighting in calculating
the information quality, though we are also studying the e�ects each of these
factors typically has on the information quality of a question. Questions are
then ranked according to their estimated information quality, and this ranking
can be further utilized in the task selection process.

Estimating Cost of Query Execution The cost of executing an information
task far outweighs the cost of planning such a task [10]. It is therefore a worth-
while endeavor to take the time to �nd a good plan for gathering information.
Di�erent data sources may have di�erent monetary costs for accessing them, are
able to respond in di�ering amounts of time, etc. For example, the plan frag-
ment shown in Figure 3 gives four possible locations for �nding the answer to
the high-level task: the customer pro�le, the customer accounts database, the

79Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

Fig. 3. A partial expansion tree for the query \Does the customer use a parental control

switch?"

log of installation and maintenance work, and the customer herself. Checking
the work log may incur a high time cost if the data is remotely stored, while
local customer pro�les may be old or incomplete. Each source has various cost
constraints, some of which may be more important than others. The problem is
then to �nd the best execution plan, which minimizes the cost of answering that
question.

In order to estimate the cost of answering a question, it is necessary to for-
mulate an execution plan. We accomplish this task by creating a hierarchical
task network (HTN) [22,7] from a library of task schemata1. This HTN presents
an explicit parent-child relationship on information tasks, where a sub-task can
either be directly executed, or can be decomposed into its constituent parts. It
also contains any temporal constraints, user-imposed preferences and cost esti-
mates which are important in the estimation of the cost of answering a question.
It is also possible to be able to perform a task (or some part of it) in a number of
di�erent ways. An execution plan for an information task can then be seen as a
constrained AND/OR graph of decompositions (conjunctions) and alternatives
(disjunctions). The HTN query plan represented by the AND/OR graph can be
di�erent for di�erent situations and information state in the data sources.

Figure 3 shows a partial AND/OR tree for the execution of an information
task to �nd out whether a customer uses a parental control switch. Any path
through this tree which covers all children of each encountered AND node and
at least one child of each encountered OR node is a possible plan to execute
the information task. These schemata contain not only information pertaining
to the AND/OR structure of a plan, but

Our system currently estimates execution cost using a mini-max network

ow algorithm on its query expansion network. All leaf nodes in AND/OR trees
(directly executable queries) have associated with them a cost value which is a
function of time cost, dollar cost and reliability cost. For each candidate query,
the Task Selector examines all leaf nodes in its AND/OR tree. The cost values

1 For brevity we do not show the schemata here.

80 C. Carrick et al.

althoff@iis.uni-hildesheim.de

are propagated upward to the root node, taking the sum at AND nodes and the
minimum at OR nodes. It then remains to traverse the tree from the root node,
taking the minimum at each OR node. The resultant traverse of the tree is a
minimum cost solution and the leaf nodes in this traverse form a low-cost query
execution plan. The topic of planning and tree traversal will be visited again in
Section 2.3.

Combining Information Gain and Execution Cost In choosing an infor-
mation task (or question) for execution, it is important to pay attention to both
the information quality of the question and also the estimated cost of that ques-
tion. If a question has a very high information content but it is unlikely that
we will obtain an answer before �nal decisions must be made, then perhaps a
faster question with slightly less information quality is in order. Thus there can
be a trade-o� between information quality and execution cost. Currently, our
system uses hard-coded parameters in a function of gain and cost, though we
are considering the bene�ts of having user- or domain-speci�ed priorities on the
di�erent constraints involved.

2.3 The Task Planner and Executor

The Task Planner and Executor module performs the usual information gather-
ing tasks of planning, optimizing and executing an information task. It receives
the information task which has been chosen by the Task Selector module and
searches that task's AND/OR tree for the least-cost plan. Since each leaf node
speci�es how it is to be executed, the leaf nodes in this solution plan are executed
by invoking the functions, modules or agents whose calls are contained therein.
This AND/OR tree search algorithm returns a low-cost solution plan for an-
swering the question when the AND/OR graph is a tree (i.e. an executable task
does not show up twice in the graph). When information sources are shared by
di�erent tasks, the optimization problem of �nding a lowest-cost solution plan
is NP-hard; we are currently experimenting with di�erent heuristic algorithms
for solving it.

If all possible solutions to the task fail (i.e. all children of the top-most OR
node have been exhausted and no solution has been found), then control returns
to the Task Selector module to choose an alternate question for answering. This
process continues until a question has successfully been answered or until there
are no more question options. In the latter case, processing halts and the working
hypothesis is presented as an assessment of the situation. When a question has
been successfully executed, the answer to the question is placed in the GKS. This
triggers the creation of a new problem state to be formed from the contents of the
updated GKS. The problem state is presented to the case-based retrieval system,
and hypotheses are retrieved with new matching scores based on the updated
input state. This cycle continues until there are no more questions which can
aid in the accuracy of the case retrieval, or until halted by the user.

81Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

3 Sample Scenario

To demonstrate the utility of our system we show here a sample problem from the
cable TV troubleshooting domain. Figure 4 shows three cases retrieved by the
customer's problem description of \poor reception", and the six questions which
are relevant to those retrieved cases in the order produced by our information
quality heuristics.

Case I: signal problems

problem description poor reception of the cable signal 1.00

channels a�ected speci�c channels 0.80

local signal clear 0.95

Case II: customer not subscribed to package

problem description poor reception of the cable signal 1.00

channels a�ected 29 { 58 0.75

channels a�ected 29 { 43 0.75

channels a�ected 44 { 58 0.75

subscribed no 0.50

Case III: parental control switch on

problem description poor reception of the cable signal 1.00

channels a�ected speci�c channels 0.70

uses parental control yes 0.80

has cable box yes 0.40

outlets concerned 1 0.30

Q1 Which channels are having the problem?

Q2 Is the picture clear on the local set?

Q3 Does the customer use a parental control switch

Q4 Is the customer subscribed to these channels?

Q5 Does the customer have a cable box?

Q6 How many outlets have the problem?

Fig. 4. Cases relevant to the problem description \poor reception", and the questions

relevant to those cases.

Figure 5 shows the results of a diagnostic session in which a customer has
poor reception on certain cable channels. There were �ve data sources avail-
able in our cable TV domain: a customer pro�le database, a customer accounts
database, a work/installation log, a database of current signal problems, and the
customer herself. Figure 5(a) gives the results obtained from the initial problem
description, and shows that question Q1 has been chosen for execution. This
question is posed to the customer, as we currently have no on-line means of
obtaining the information. The response to this question is then added to the
problem state and the new retrieval from the case base gives us the results in
Figure 5(b). At this point Q2 is chosen for execution. A partial expansion for

82 C. Carrick et al.

althoff@iis.uni-hildesheim.de

this information task is shown in Figure 6, and the execution plan chosen is the
highlighted path. Note that at node C the �rst path chosen was to a database
of current signal problems, which resulted in failure due to the absence of the
requested information at that site. It was then necessary to re-plan and chose
an alternate, next-best solution. Once all of the information was obtained and
integrated to answer the question, this answer was added to the problem state
and again the case base performed a re-assessment.

This process continued through all of the cycles depicted in Figure 52. The
four on-line data sources provided answers to all questions but Q1 in a real-
istic fashion. This shows a tremendous potential for reducing the duration of
the question-answer session with the customer. By using information gathering
techniques, we also reduce the burden of information search on the call centre
employee and speed up retrieval of information, thus diagnosing problems more
quickly and servicing more customers in a shorter amount of time.

The sample session just presented shows how our system can be useful with
a passive CBR diagnosis mechanism: when a customer recognizes that she has
a problem, she can invoke the system with an input problem state and the
information gathering component obtains evidence to aid in the diagnosis. But
these same mechanisms can also be used in an active manner. Consider the use of
active databases and monitoring agents in the information gathering component:
instead of waiting for a new question to be posed, these monitors and triggers
become activated whenever a relevant change occurs in a data source. We can
then use this information to foresee a problem. The case base can continually re-
rank retrieved cases, based on these changes in the data sources. We then have a
system which already has much of the information needed for a diagnosis when a
customer calls in with their problem description. This integrated technique can
be seen as performing active case-based reasoning in a backward fashion, where
the reasoning (AND/OR tree expansion) occurs from the objectives back to the
information sources. In [15], we study how to combine active databases and CBR
in a forward manner. Indeed, an active system such as this could even predict
that customers will phone the call centre with a particular problem given changes
in the local signal, listed outages, last-minute changes in the TV schedule, etc.

4 Related Work

In the case-based reasoning community, Conversational CBR (CCBR) has at-
tracted substantial research [1]. CCBR, essentially interactive CBR, involves the
re�nement of diagnoses through interaction or conversation with the user, asking
questions which are considered to have high information gain. These questions
are based upon the unanswered attributes in the problem case which are rele-
vant to the retrieved cases, and are ranked according to some heuristic such as
the number of cases in which the attribute occurs. Popular in help-desk applica-
tions, commercial tools such as Inference Corporation's CBR Express exemplify

2 We had turned o� the solution threshold, allowing re-assessment to take place until

there were no further questions to be answered.

83Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

initial input: poor cable reception
retrieved: signal problems 45

customer not subscribed to package 27
parental control switch on 27

chosen question: Which channels are having the problem?
sources queried: customer

(a)
retrieved: signal problems 64

parental control switch on 36
chosen question: Is the picture clear on the local set?
sources queried: GKS, signal problems database, local monitor

(b)
retrieved: parental control switch on 56

signal problems 44
chosen question: Does the customer use a parental control switch?
sources queried: GKS, customer pro�le database

(c)
retrieved: parental control switch on 65

signal problems 35
chosen question: Does the customer have a cable box?
sources queried: GKS, customer pro�le database

(d)

retrieved: parental control switch on 69
signal problems 31

chosen question: How many outlets are having the problem?
sources queried: GKS, customer accounts database

(e)

retrieved: parental control switch on 71
signal problems 29

(f)

Fig. 5. Results of a diagnostic session in which a customer has poor reception on
certain cable channels. Selected questions are planned and executed among the various
data sources, and the increasing amount of known information leads to an increased
accuracy in the diagnosis.

CCBR [1]. These systems attempt to �nd the quickest way to increase the ac-
curacy of diagnosis through estimating information gain. Further research has
used model-based inferencing to reduce the number of questions asked of the
user by eliminating redundant questions [3]. These systems still remain user-
guided however, and therefore need not consider certain problems introduced by
IG such as cost estimation and planning information tasks. [2] discusses ongoing
research in which state information can be collected from users and also from
sensors, leading into research in optimizing cost and gain estimations.

CBR and HTN planning have also been integrated in the NaCoDAE/HTN
system [16]. There, however, the CBR is used to interactively generate plans,
where these plans are constrained by the HTN. This puts the NaCoDAE/HTN
system at the Revise stage of the CBR cycle, which is complementary to our

84 C. Carrick et al.

althoff@iis.uni-hildesheim.de

Fig. 6. The task expansion for the information task \Check the local signal."

work. A similar system to NaCoDAE/HTN is our CaseAdvisor system as
described in [24], which attaches a case with a decision tree. When a candidate
case is identi�ed, the decision tree is evaluated, prompting the user with a series
of questions and actions to follow. The decision tree search essentially performs
the case adaptation work.

In the area of automated information gathering, many researchers have been
investigating methods of reducing the cost of executing a query through query
reformulation and optimization [14,9, 8, 6, 10]. This is a query in the database
sense, and corresponds to a single question which must be answered through
the information gathering component in our work. These generally involve as-
signing various costs (dollar cost, time cost, accuracy cost, etc.) to data sources
and reasoning to minimize those costs. For example, the SIMS system models
subsumptive relations which are useful in query formulation, and also facilitates
descriptive models of resources for query optimization. The InfoSleuth system is
the result of intensive research in ontologies, and also uses a frame-based, three
level representation to provide a detailed model of the domain and resources
[9]. In more
exible systems such as BIG [14], users are able to specify which
costs are more important to them and the cost-minimizing function takes this
into account. Thus, the BIG system optimizes IG plans according to user prefer-
ences. Given the quality, cost and time features of accessing the various available
data sources, BIG attempts to optimize these features with respect to a set of
user-speci�ed constraints on the features. This allows for di�erent de�nitions of
\optimal", depending on the user of the system.

5 Future Work

With the support of the preliminary results obtained, we are eager to investigate
aspects of our system further. Several variants of the task selection and query
planning algorithms are worth investigation, taking into account di�erent con-
straints and optimizing those constraints. Global optimization of the planning
process should take into account various cost, content overlap and information

85Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

gain information of the information sources. However, this discussion is beyond
the scope of this paper. We have several proposals for improving the cost esti-
mation/optimization algorithm and are performing such studies:

{ rearranging sub-queries within planning constraints to minimize data source
accesses,

{ studying the e�ects of global optimization as opposed to local optimization,
and

{ learning and/or estimating the cost of a new data source.

Also under investigation are the impacts information quality and execution-
time have on the time to converge to an assessment. Perhaps a question with
high information content would be worthwhile executing even if the execution
time was estimated to be very high, if it would allow convergence to a single
situation assessment hypothesis soon afterwards. Discovering a relationship be-
tween information quality, execution time and time to convergence would allow
us to create a cut-o� where we could say that the information quality is not
worth the execution time.

Uncertainty in gathered information is another aspect which we consider
important in future versions of our assessment system. At present, all information
inserted into the GKS is given a weight of 1.0, though there is the option available
to weight the information from the GKS with degrees of certainty. Using this
option will impact not only the maintenance of the GKS, but also our task
selection algorithm as it may be desirable to verify already \known" information
which has a low certainty.

We also see as important the problem of displaying to the user all of the use-
ful information about the assessment process, without being obtrusive. Since our
program is meant to act as a support to the user, working quietly in the back-
ground, we do not wish to overload the user with process information. Indeed,
it is information overload which our system attempts to overcome. However, the
user should feel in control and this involves giving the user access to the various
processes which are taking place within the system. Even if it is not an option for
the user to override a system decision, it can make new users more comfortable
with the system to simply know the data upon which plans are being made.

6 Conclusions

Using automated information gathering to aid in situation assessment is a novel
research topic. We have combined a case-based retrieval system with information
gathering techniques which results in a fewer number of questions posed to the
user. The advantage of the system is that the majority of trivial or repeated
queries to information sources can be done autonomously through an agent-like
system, and human users are only asked a small number of necessary questions
by the system. Under this model, we can also use the CBR system to continu-
ally generate questions that are planned for and executed based on information
sources such as databases and the Internet, resulting in an active diagnostic

86 C. Carrick et al.

althoff@iis.uni-hildesheim.de

system. In the cable TV call centre domain, this concept shows a tremendous
potential for reducing the duration of the question-answer session with the cus-
tomer. By using information gathering techniques, we also reduce the burden of
information search on the call centre employee and speed up retrieval of infor-
mation, thus diagnosing problems more quickly and servicing more customers
in a shorter amount of time. Our system also goes a long way to facilitating
self-diagnosis via the internet or an automated phone system, further reducing
call centre costs.

Acknowledgments

We thank Canadian Natural Science and Engineering Research Council, Rogers
Cablesystems Ltd. and Canadian Cable Labs Fund, Canadian Institute for Robotics
and Intelligent Systems (IRIS), Defense Research Establishment Valcartier and
Simon Fraser University for their support. We thank Michael Zhang, Geof Glass
and Nathan Paziuk for their comments on this work.

References

1. D. Aha and L. Breslow. Re�ning conversational case libraries. In Proceedings of
the Second International Conference on Case-based Reasoning (ICCBR-97), Prov-
idence, RI, July 1997.

2. D. W. Aha, L. A. Breslow, and T. Maney. Supporting conversational case-based
reasoning in an integrated reasoning framework. Technical Report AIC-98-006,
Naval Research Laboratory, Navy Center for Applied Research in Arti�cial Intel-
ligence, Washington, DC, 1998.

3. D. W. Aha, T. Maney, and L. A. Breslow. Supporting dialogue inferencing in con-
versational case-based reasoning. Technical Report AIC-98-008, Naval Research
Laboratory, Navy Center for Applied Research in Arti�cial Intelligence, Washing-
ton, DC, 1998.

4. K. Ashley. Modelling legal argument: Reasoning with cases and hypotheticals. MIT
Press, Bradford Books, Cambridge, MA, 1990.

5. K. Ashley and E. Rissland. A case-based approach to modeling legal expertise.
IEEE Expert, 3(3):70{77, 1988.

6. O. M. Duschka and A. Y. Levy. Recursive plans for information gathering. In
Proceedings of IJCAI-97, Nagoya, Japan, August 1997.

7. K. Erol, J. Hendler, and D. S. Nau. Htn planning: Complexity and expressivity. In
Proceedings of the 12th National Conference on Arti�cial Intelligence (AAAI-94),
pages 1123{1128, Seattle, WA, 1994. AAAI Press/The MIT Press.

8. M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster: An information
integration system. In Proceedings of the ACM SIGMOD Conference, May 1997.

9. R. J. B. Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Un-
nikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration
of information in open and dynamic environments. In Proceedings of SIGMOD'97,
1997.

87Activating CBR Systems through Autonomous Information Gathering

althoff@iis.uni-hildesheim.de

10. C. A. Knoblock, Y. Arens, and C.-N. Hsu. Cooperating agents for information
retrieval. In Proceedings of the 2nd International Conference on Cooperative In-
formation Systems, Toronto, Canada, 1994. University of Toronto Press.

11. J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publisher, Inc., 1993.
12. J. Kolodner and D. Leake. a tutorial introduction ot case-based reasoning. In

D. Leake, editor, Case-Based Reasoning:Experiences, lessons & Future Directions.
American Association for Arti�cial Intelligence, 1996.

13. P. Koton. Reasoning about evidence in causal explanation. In Proceedings of
the Seventh National Conference on Arti�cial Intelligence (AAAI-88), Cambridge,
MA, 1988. AAAI Press/MIT Press.

14. V. Lesser, B. Horling, F. Klassner, A. Raja, and T. Wagner. Information gathering
as a resource bounded interpretation task. Technical Report 97-34, University of
Massachusetts Computer Science, March 1997.

15. S. Li and Q. Yang. ActiveCBR: Integrating case-based reasoning and
active databases. Technical Report TR 1999-03, School of Comput-
ing Science, Simon Fraser University, Burnaby BC Canada, January 1999.
http://www.cs.sfu.ca/ qyang/Papers/activecbr.ps.gz.

16. H. Mu~noz-Avila, D. C. McFarlane, D. W. Aha, L. Breslow, J. A. Ballas, and
D. Nau. Using guidelines to constrain interactive case-based htn planning. Tech-
nical Report AIC-99-004, Naval Research Laboratory, Navy Center for Applied
Research in Arti�cial Intelligence, Washington, DC, 1999.

17. T. Nguyen, M. Czerwinski, and D. Lee. Compaq quicksource|providing the con-
sumer with the power of ai. AI Magazine, 1993.

18. A. Perini and F. Ricci. An interactive planning architecture: The forest �re �ght-
ing case. In M. Ghallab, editor, Proceedings of the 3rd European Workshop on
Planning, pages 292{302, Assissi, Italy, September 1995. ISO Publishers.

19. J. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.
20. M. Veloso, H. Munoz-Avila, and R. Bergmann. General-purpose case-based plan-

ning: Methods and systems. AI Communications, 9(3):128{137, 1996.
21. I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems.

Morgan Kaufmann Publishers, Inc., 1997.
22. Q. Yang. Formalizing planning knowledge for hierarchical planning. Computational

Intelligence, 6, 1990.
23. Q. Yang, I. Abi-Zeid, and L. Lamontagne. An agent system for intelligent situa-

tion assessment. In F. Giunchiglia, editor, Proceedings of the 1998 International
Conference on AI Methodologies, Systems and Applications (AIMSA98), volume
1480 of Lecture Notes in AI, pages 466{474, Sozopol, Bulgaria, September 1998.
Springer Verlag.

24. Q. Yang, E. Kim, and K. Racine. Caseadvisor: Supporting interactive problem
solving and case base maintenance for help desk applications. In Proceedings of
the IJCAI 97 Workshop on Practical Applications of CBR, Nagoya, Japan, August
1997. International Joint Conference on Arti�cial Intelligence, IJCAI.

88 C. Carrick et al.

althoff@iis.uni-hildesheim.de

Integrating CBR and Heuristic Search for
Learning and Reusing Solutions in Real-time Task

Scheduling

Juan Manuel Adán Coello1, Ronaldo Camilo dos Santos2

1 Instituto de Informática, PUC-Campinas, Cx.P. 317, CEP 13.020-904,
Campinas, SP, BRAZIL

juan@zeus.puccamp.br
2 FEEC/UNICAMP, Campinas, SP, BRAZIL

ronaldo@dca.fee.unicamp.br

Abstract. This paper presents the Case-Based Reasoning Real-Time Schedul-
ing System (CBR-RTS) that integrates into a case-based reasoning framework a
heuristic search component. The problem addressed involves scheduling sets of
tasks with precedence, ready time and deadline constraints. CBR-RTS reuses
the solution of known cases to simplify and solve new problems. When the
system does not have applicable cases, it tries to find a solution using heuristic
search. A particularly interesting feature of CBR-RTS is its learning ability.
New problems solved by the heuristic scheduler can be added to the case base
for future reuse. Performed tests have shown that small bases of cases carefully
chosen allow to substantially reduce the time needed to solve new complex
problems

1 Introduction

According to a widely accepted definition in the real-time systems community, real-
time systems are those systems whose correctness depends not only on the logical
results of the computations, but also on the time at which the results are produced [1].
To meet that requirement, a real-time software development environment should
integrate flexible programming languages that support the specification of real-time
constraints with scheduling algorithms that determine when, and where, in the case of
a multiprocessor or distributed hardware, the components of a program should exe-
cute.

The problem of guaranteeing that the timing constraints of a program are going to
be met at run-time is fairly simple when the corresponding task model is also simple.
For example, when a program is composed of independent periodic tasks, the rate
monotonic or the earliest deadline first scheduling algorithms [2] can be successfully
used. As the programming model becomes more complex, as is needed by most real
applications, scheduling turns into a computationally intractable problem [3], that is
usually solved using heuristic algorithms.

The application of heuristic algorithms requires to map programming model repre-
sentations to scheduling algorithm representations, usually some kind of directed

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 89-103, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

labeled graph [4].
An inherent characteristic of traditional schedulers based on heuristic search is its

lack of ability to learn from experience. New problems identical, or very similar, to
other problems already solved in the past have to be solved again, form first-
principles, every time they are found. This procedure wastes time and resources usu-
ally scarce to deal with problems previously faced, for which it was already found a
solution or discovered that the problem can not be solved applying available methods.

According to cognitive scientists, the reuse of known solutions to solve new prob-
lems is routinely done by human beings when facing new complex problems. In the
artificial intelligence field, this problem solution paradigm is known as Case-Based
Reasoning (CBR) [5].

In this work, we study a new scheduling architecture that integrates into a case-
based reasoning framework a heuristic search component.

The paper is structured as follows. In section 2 we present the real-time problem
being considered. In section 3, we describe the architecture of the Case-Based Rea-
soning Real-Time Scheduling System (CBR-RTS). In section 4 we discuss some
experiments that were conducted to evaluate the system. In section 5 we review some
related work. Finally, in section 6, we present some concluding remarks and point out
suggestion for future work.

2 The Real-Time Scheduling Problem Addressed

Real-time systems can be classified in two main classes: Soft Real-Time Systems
(SRT) and Hard Real-Time Systems (HRT). In SRT systems, the performed tasks
should be executed as fast as possible, but it is not vital that they finish before a dead-
line, however, in HRT systems, if rigid deadlines are not met, severe consequences
can take place.

A real-time system consist typically of a control system, the computer and its inter-
faces, and a controlled system, for example an automated factory, that can be seen as
the environment with which the computer interacts. Due to the characteristics of con-
trolled systems, control systems usually are composed of different processes, or tasks,
that can be seen as abstractions of sequences of code (computer instructions).

Real-time tasks can be characterized by several constraints, including, timing con-
straints, periodicity, precedence relations, mutual exclusion relations, resources, pre-
emption and allocation.

Tasks timing constraints can be specified by the parameters arrival time, ready
time, computation time and deadline. The arrival time of a tasks, a, is the time when
the task is invoked by the system. The ready time, r, is the time when the task be-
comes ready for execution, and is greater or equal to a. When there are no additional
resource restrictions, r = a. The computation time, c, is the worst case CPU time
needed to execute the task, including associated overhead, for example context
switching time. The deadline, d, is the time before which the task must finished its
execution, and is relative to the task arrival time. The “absolute” deadline of a task is
thus given by a + d.

Depending on the arrival pattern of a task it can be classified as periodic or aperi-

90 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

odic. Periodic tasks are executed once each time interval p and all their timing con-
straints can be determined off-line. In particular, for a given periodic task P, the arri-
val time of its i-th execution instance, a[Pi], is equal to a[Pi-1] + p. Aperiodic tasks do
not have deterministic arrival times, they can arrive at any time and are related to
events whose occurrence is unpredictable, as alarm conditions.

A precedence relation between tasks exists when one task depends on the results
produced by the other task execution. If, for example, task A precedes task B, task B
can start its execution only after task A finishes.

Mutual exclusion occurs when certain shared resources can not be accessed simul-
taneously by several tasks, otherwise the resource can go to an inconsistent state. This
happens, for example, when several tasks need to read and write concurrently a shared
memory position or a record in a file.

Besides the CPU, some task may need additional resources to execute, as I/O units,
dedicated processors, etc. In this case, the ready time of the task is usually greater
than its arrival time, since it is generally necessary some additional time to allocate
the needed resources.

A task can be preemptable or nonpreenptable. A task is preemptable if its execu-
tion can be interrupted by higher priority tasks and later resumed at the point where it
was interrupted. Nonpreemptable tasks once started execute until they finish or ex-
plicitly release the processor.

When there are multiple processor or processing nodes in a system, tasks have to
be allocated considering several factors, including, processor load balancing, commu-
nication load balance, fault tolerance and resources available in each node.

In hard-real-time systems the scheduling decisions can and must be made off-line.
They can be made off-line because the bulk of the computation in those systems is
done by periodic tasks, where constraints, particularly timing constraints, are known
in advance of their execution. Decisions must be made off-line because in hard-real-
time systems it is mandatory that timing constraints are met at run-time. As most
scheduling problems are NP-complete, it is not practical to try to find a schedule for a
set of tasks dynamically, when they are invoked. If the system includes periodic and
aperiodic tasks, there are general techniques that can be used to transform sets of
aperiodic tasks into equivalent sets of periodic tasks [6,7].

We will address here the problem of off-line scheduling sets of periodic hard real-
time tasks whit timing and precedence relation constraints in monoprocessor comput-
ers. This type of scheduling problem is usually represented using acyclic directed
labeled graphs, that here we will call scheduling graphs. In a scheduling graph, nodes
represent the tasks to be scheduled and arcs their precedence relations. Nodes and arcs
labels can be used to specify their timing constrains.

In our system, a node may have attached a computation time, c, a ready time, r ,
and a deadline, d. The label of an arc can be used to specify the time needed to trans-
fer a message between communicating tasks in a distributed system. But, as we are
considering the problem of scheduling in a monoprocessed computer, we will not
attach costs to arcs.

Scheduling graph represents all the periodic tasks to be executed, and it is assumed
that all the tasks have the same period. If a feasible schedule for this set of tasks is
found, the schedule can be indefinitely repeated. When the tasks to be scheduled have
different periods, we can construct a graph that represents all the occurrences of each

91Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

task in the cyclic window, defined as the least common multiple (LCM) of the tasks’
periods. If that is done, the period of each task instance in the scheduling graph can be
defined as being equal to the cyclic window. For example, lets consider that we have
two tasks, T1 and T2, with periods 50 and 100, respectively, ready times equal to their
arrival times and deadlines equal to their periods. In the corresponding scheduling
graph, we will have one execution instance of T2 and two execution instances of task
T1 both will have a period 100 (the LCM of the two tasks periods). The first instance
of T1, T11 will have its ready time at time 0 and its deadline at time 50 and the second
instance, T12 , will have its ready time at 50 and its deadline at 100. Details about the
production of scheduling graphs from programs can be found in [4].

Searching for a feasible schedule to a given scheduling graph, constructed as de-
scribed above, consist in finding the start times of each node in the graph. If we were
dealing with a distributed system, we will have also to find an allocation for each
node, but this problem will not be considered here.

Figure 1 shows an example of a simple scheduling problem with four tasks, T1, T2,
T3 and T4. Each task is represented by a node, for example, task T1, represented by
node 1, has a computation time, c, of 3 time units, ready time, r, at 3 time units after
its arrival time and deadline at 30 time units after its arrival time. Task T1 precedes
tasks T2 and T3, and tasks T2 and T3 precede task T4. The diagram in figure 2 shows a
feasible schedule for this problem. If this schedule is repeated at each cyclic window,

3 3 30

7 52 30 15 30

4

1

2 3

4

ci

i node id.

i

ci computation time

ri ready time

di deadline

precedence

ri di

3 30

Fig. 1. Representation of a scheduling problem

T1 T2 T3 T4

3 6 13 15 20 24 30

Fig. 2. A schedule to the problem in figure 1

92 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

in this case with duration of 30 time units, all tasks will meet their timing constraints.

3 CBR-RTS Architecture

We will begin this section with a brief introduction to the architecture of the sys-
tem and its functionality and then, on the following subsections, provide additional
information together with the presentation of a simple example that illustrates the
topics being discussed.

The structure of the CBR-RTS system is presented in figure 3. It consists of a case
base (CB), a case retrieval module, a case reuse module, a heuristic search module
and a solution expanding module.

The case base stores the description of scheduling problems solved in the past and
their respective solutions.

The retrieval module is responsible for finding in the case base old problems simi-
lar to the new problem or to parts of it.

The reusing module adapts the retrieved cases to solve the problem. It may happen
that with the retrieved cases it is possible to solve the whole problem or only some of
its parts. In the latter situation, the parts solved (subgraphs of the original problem
graph) are abstracted into a single node in the problem scheduling graph, and we say
that the problem was simplified, or contracted. The simplified problem is resubmitted
to the retrieval and reusing modules as many times as necessary to find a complete
solution to the problem or until there are no more similar cases in the case base. If a
solution is found, it is passed to the expander module. If the simplified problem, and

Fig. 3. CBR-RTS System Architecture

NEW
PROBLEM

RETRIEVE

Problem +
Similar Cases

REUSE

HEURISTIC
SEARCH

CASE BASE
New Case

(Problem + Solution)

Contracted
Solution

Similar
Cases EXPAND

SOLUTION

Problem
Simplified

Problem
Simplified

93Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

consequently, the original problem, could not be solved reusing the stored cases, it is
submitted to the heuristic search module.

The heuristic search module implements a dedicated scheduling algorithm that will
searches for a feasible solution to the problem. If it finds a solution, it is included, as a
new case, in the case base and is submitted to the expander module. If a solution is
not found, the original problem, without any simplification, is submitted to the dedi-
cated scheduler that will try to find a solution to the original problem. If one is found,
it is outputted and included in the case base.

It is possible to implement a backtracking mechanism that could progressively
undo previous simplifications and try new ones, or try to apply the search algorithm to
the problem in early stages of simplification, but currently this is not done.

The expander module does the proper unfolding of nodes that abstract parts of the
original problem before outputting the problem solution.

In the following subsections we discuss in more detail the architecture and func-
tionality of the system and illustrate it using a simple example, that consists in finding
a solution to the problem represented in figure 4.

3.1 Case Representation

A case is stored as a pair (problem,solution). A problem is represented by a labeled
acyclic directed graph, as shown in figure 1, where the labels are used to specify its
tasks timing constraints. The solution corresponds to a schedule that satisfies the
problem timing constraints, as illustrated by the Gantt diagram in figure 2. For a given
problem, the corresponding schedule shows the start time of each node (task) in the

7

3

4

2

4

5

2

2 50

2 50

2 50

1 50

x

1

2

7

2 50

4 50

1 50

3

5

4

6

Fig. 4. Graph describing a new problem

94 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

problem graph.
Figure 5 illustrates a case in the case base. The graph on the left represents the

problem, and the Gantt diagram on the right the corresponding solution.

3.2 Case Retrieval

The case retrieval module searches the case base looking for stored cases (old solved
problems) similar to the current problem. Since cases are stored as graphs, similarity
assessment involves subgraph isomorphism detection. A case is similar to a problem
if:

1. The case and the problem are described by isomorphic graphs and the timing
constraints of the problem are the same or less strict than those in the case; or

2. The case is part of the problem, i.e., it is described by a graph that is isomor-
phic to some subgraph of the problem (a subproblem) and the timing con-
straints of the subproblem are the same or less strict than those in the case.

If ri , ci , and di are the ready time, computation time and deadline, respectively, of
task i in the problem, and r’i , c’i, and d’i the equivalent times for the corresponding
tasks in the case, we say that the problem’s timing constraints are the same or less
strict than those of the case if the following is valid for all corresponding nodes
(tasks):

 ri ≤ r’i ; ci ≤ c’i and di ≥ d’i

In the current version of CBR-RTS, subgraph isomorphism detection is done using
an implementation made by Messmer [8] of Ullman’s algorithm [9].

Figure 4 shows an example of a new problem to be solved and figure 5 a case re-
trieved from the case base. We can see that that the case is similar to subproblem x in
the new problem. Both, the case and the subproblem, are represented by isomorphic
graphs and the subproblem's timing constraints are less strict than the case's timing
constraints.

3

7

4

5

3 30

15 302 30

3 30

T1 T2 T3 T4

3 6 13 15 20 24 30

4

32

1

Fig. 5. Old problem in the case base, similar to subproblem x of the new problem

95Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

3.3 Case Adaptation and Reusing

The retrieval module can find an exact match for a problem in the case base or, more
often, one or more partial matches. If an exact match is found, the solution in the case
can be used without any adaptation.

When partial matches are found, they can be similar to the complete problem or to
some of its subproblems. If there is a case that is similar to the complete problem, the
solution to the case can also be applied without any modification, because the tasks in
the subproblem have computation times equal or lower than those in the case and,
consequently, a schedule that satisfies the case will also satisfy the subproblem.

When a solution is reused as above, it is very likely that the subproblem schedule
has some "gaps", because some of its tasks can have lower computation times than
that on the case. This is not necessarily a problem since these gaps can be used to
schedule aperiodic tasks [10].

When there are retrieved cases similar to subproblems in the new problem, the
cases are used to solve the subproblems and the corresponding subgraphs are ab-
stracted to a single node. When this is done we say that the problem was simplified or
contracted, because it has now less tasks (nodes) to be scheduled, what usually means
that it becomes a simpler scheduling problem, since the complexity of scheduling
problems increases with the problem size.

The retrieved cases are not mutually exclusive, because they can share some nodes
an arcs. This implies that when the system reuses a certain case, it may be excluding
the application of others. The reusing module adopts the strategy of reusing the larg-
est subgraph retrieved first.

In the current implementation, only subproblems that form a group are abstracted.
We define a group as a graph composed of an entry node, an exit node and internal
nodes. Internal nodes and the exit node can have as predecessors only the entry node
or other internal nodes, in the same way, the entry node and the internal nodes can
have as successors only other internal nodes or the exit node. This restriction is done
to make easier the expansion of the final problem schedule, and in the future can be
relaxed.

The node that abstracts a subproblem will receive the ready time, and deadline of

1

7

4 2 50

2

6
5 1 50

4 50

2 50

x

21

 Fig. 6. New problem simplified

96 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

its entry and exit nodes, respectively, and its computation time will correspond to the
finish time of the last scheduled task minus the start time of the first schedule task in
the case.

The retrieval and reusing cycle continues until the problem is transformed into a
single node, in which case the problem is completely solved and the schedule found
so for can be expanded, as will be described in section 3.5. If the cycle stops without
finding a solution, that is, the problem could not be reduced to a single node and there
are no more similar cases in the case base, the simplified problem is submitted to the
heuristic search module.

Figure 6 shows the problem in figure 4 simplified using the case shown in figure 5.
We can see that subproblem x was replaced by an equivalent node, x. As we can see,
node x has the start time of node 2 (the entry node in the subproblem), the deadline of
node 5 (the exit node in the subproblem) and the computation time equal to the finish
time of last schedule node (node 4) minus the start time of the first scheduled node
(node 1) in the case. This simplified problem has no similar cases in the case base, so
it will be submitted to the heuristic search module that will try to solve it using a
dedicated scheduler.

3.4 Heuristic search

The heuristic search module is used when it is not possible to solve a new problem
using solely past experiences stored in the case base. The heuristic search module
may find a solution to the problem or discover that the problem is not schedulable. In
both situations a new case can be stored in the case base. The problem description (a
labeled graph) and the solution (a schedule), or an indication that the problem is not
schedulable, are stored in the case base. That is, the system can learn solutions to a
new type of problem or learn that this type of problem can not be solved. Both lessons
are worth remembering.

In the current version of CBR-RTS, the heuristic search module uses a dedicated
scheduler, named PSPS (Periodic and Sporadic Processes Scheduler), based on a
branch and bound search algorithm proposed by Xu and Parnas [11].

T1 Tx T6 T7
2 6 27 32 34 50

Fig. 7. Schedule produced by PSPS to the new problem simplified

97Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

In our example, the simplified version of the new problem, shown in figure 6, has
no similar cases in the case based and is submitted to the heuristic search module,
that produces the schedule shown in figure 7.

3.5 Solution Expansion and Output

When a problem is solved, the schedule found for the simplified problem is expanded
to restore the subproblems that were abstracted to single nodes during problem sim-
plification.

In our example, figure 8 shows the expansion of the solution produced by the heu-
ristic search module to the problem presented in figure 4. As we can see, in the time
interval reserved to node x the expander introduced the solution to subproblem x. This
solution is generated adapting the solution in the case that is similar to subproblem x,
as shown in figures 5 and 6.

4 CBR-RTS Evaluation

This section discusses the performance of CBR-RTS when applied to solve nine
problems of different sizes and complexity. The performance of CBR-RTS in solving
these problems is compared to the performance of the PSPS system alone (the dedi-
cated scheduler).

The hypothesis that is being tested is that the reuse of solved old cases can contrib-
ute to reduce the time needed to find feasible schedules for new problems. As our
retrieval module involves isomorphism graph detection, a NP-hard problems as is our
original scheduling problem, several parameters, for example, the size of each case
and of the whole case base, will have a major impact on the performance of the sys-
tem. In the described experiments we decided to evaluate the behavior of CBR-RTS
when working with a case base composed of small cases. This case base will rarely
allow to solve new problems in one single step, but should permit to simplify large
problems that can be solved in multiple retrieve-simplify steps.

T1 T2 T3 T4 T5 T6 T7

2 6 9 16 18 23 27 32 34 50

x

Fig. 8. Final Schedule for the new problem

98 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

4.1 The Case Base (CB)

As Miyashita and Sycara [12], we assume that although scheduling is an ill-structured
domain, it exhibits some regularities that could be captured in a case. In our context,
we assume that scheduling problems tend to present typical structural regularities and
attribute values that characterize the main classes of problems handled. Several prob-
lems that have identical precedence relations are represented by graphs that share a
common structure. These structures can be automatically learned by the system as it
faces new problems.

In order to simulate a situation in which CBR-RTS had already passed for a learn-
ing period, fourteen small problems, described by graphs from 2 to 6 nodes, were
presented to the system. Since the CB is initially empty, and because the presented
problems are not similar to each other, they are completely solved by the heuristic
search module and stored in the CB. The structure, ready times and execution times of
these problems were chosen in a way that they could be highly reusable in the solu-
tion of the testing problems described below.

4.2 Testing Problems

After an initial training phase, as described before, nine testing problems, P1, P2, ... P9,
were submitted to the system. These problems have different sizes and several combi-
nations of precedence relations and timing constraints. The system was able to find a
complete solution to all but the 9th problem reusing the cases stored in the CB. For
P9, after two retrieve-simplify cycles, the system had to use the heuristic search mod-
ule because there were no similar cases on the CB.

The conducted experiments can give a preliminary idea of the performance of the
CBR-RTS system when working with a stable CB, that is, a case base that permits to
solve most new problems without having to employ the heuristic search module.

4.3 CBR-RTS Performance

Table 1 shows the total processing times required by CBR-RTS and PSPS for solving
problems P1 to P9 in a 167 MHz Sun Ultrasparc 1 workstation with 64 MB of RAM.
We can see that as problem size and complexity increase there is also a appreciable
increase in the relative performance of CBR-RTS compared with PSPS. This means
that the cost of reusing stored cases can be sensible lower than that of generating a
solution from scratch.

Table 1 also shows CBR-RTS processing times by phase. As expected, we can see
that the retrieval phase accounts for most of the processing time of CBR-RTS, indi-
cating that this is an important point to focus in future work.

The solution of problem P9 is an example of a situation where the system is learn-
ing a new case. In this example, CBR-RTS can not find a solution to the problem
using only stored cases, but it is able to simplify the problem. The simplified problem
is submitted to PSPS (the heuristic search module of the system) that finds a solution
in approximately 30% of the time it will require to solve the complete problem.

99Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

Table 1. CBR-RTS and PSPS processing times (seconds)

PSPS CBR-RTS

Problem
#

Problem
Size

(nodes)

Total Time Total Time Retrieval Reusing Learning

1 5 0.10 0.25 0.24 0.01 0
2 9 0.07 0.51 0.42 0.09 0
3 9 0.15 0.28 0.26 0.02 0
4 10 0.16 0.40 0.36 0.03 0
5 15 0.29 0.93 0.76 0.17 0
6 16 0.62 0.58 0.51 0.06 0
7 21 1.77 1.03 0.91 0.11 0
8 38 6.99 4.60 3.90 0.69 0
9 25 4.66 2.49 0.94 0.11 1.43

It is clear that the above evaluation is based on a very limited number of examples.
The objective was to test the system and have a preliminary idea of its performance.
We are working in testing the system to see how it scales up to large problems and
case bases.

5 Related Work

In this section we will briefly review some systems that adopt solution strategies
similar to ours in the domain of scheduling, and some systems, as Casey [13], that
although working in a different domain have in some degree inspired the design of
CBR-RTS.

Cunningham and Smyth [14] explore solution reuse in job scheduling. In their
work, cases represent highly optimized structures in the problem space, produced
using simulated annealing. They address single machine problems where job setup
time is sequence dependent (an example of a non Euclidean Traveling Salesman
Problem). Their objective is to produce good quality schedules in very quick time.
Although we share the same conceptual framework, our work differs in a number of
ways. We address distinct types of scheduling problems and we employ different case
representations and retrieval and reusing strategies that seem to make our approach
amenable for a wider category of scheduling scenarios.

Other systems also combine CBR with some other strategy to solve scheduling
problems. CABINS [12], for example, integrates CBR and fine granularity constraint-
directed scheduling. CABINS constructs cheap but suboptimal schedules that are
incrementally repaired to meet optimization objectives based on the user preferences
captured in cases. As in CABINS, we also assume that although scheduling is an ill-
structured domain, it exhibits some regularities that can be captured in a case.

Some of the basic ideas of the CBR-RTS system can be found in Casey [13], a well
know example of system that integrates CBR and search. Casey is built on top of a

100 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

model based program implemented using rules that diagnoses heart defects. The case
library is constructed using this rule based program. Casey searches the case library to
see if it has old cases that can be used to diagnose a new patient, if no similar cases
are found, the problem is submitted to the rule based program. When know solutions
are reused, Casey can be 2 to 3 orders of magnitude more efficient that the rule based
program.

PRODIGY/ANALOGY [15] is also a well know system that combines CBR with
search in the solution of planning problems. The case library is seeded by cases
solved by a general problem solver, based in a combination of means-ends analysis,
backward chaining and state space search. Cases permit to acquire operational knowl-
edge that can be used to guide the generation of solutions for new problems, avoiding
a completely new search effort.

Although most CBR systems use flat representations in the form of attribute-value
pairs, several authors have addressed the issues raised by structured representations,
as the graphs used in CBR-RTS. The interested reader can find more details in [16]
and [17].

6 Conclusions

The experiments described in this paper suggest that the CBR-RTS system, based on
the integration of CBR with heuristic search, can contribute to reduce the processing
time required to schedule complex problems. However, in order to better evaluate the
potential and behavior of the system, and the subjacent architecture, it must be sub-
mitted to a testing procedure with a wider coverage than that provided by the experi-
ments described in this paper.

CBR-RTS has a modular architecture that easily supports evolution. Each compo-
nent of the systems constitutes itself an interesting research subject.

The current structure of the case base and the corresponding retrieval algorithm
seem adequate for case bases storing a moderate number of small cases, as the ones
considered in the experiments described in this paper. New organizations and retrieval
strategies might have to be considered when dealing with case bases storing a high
number of complex cases.

A particularly important problem in real-time systems is to develop deterministic
schedulers that can compute schedules in bounded time. Although in the general case
this can not be achieved by the NP-hard nature of scheduling problems, it would be
valuable if this could be done in a reasonable amount of situations. Polynomial time
subgraph isomorphism algorithms, as the one proposed by Messmer [8], can be used
to address this issue.

An interesting extension to the reusing module is to try to employ old cases to
solve subproblems even when they do not form a group.

The heuristic search module can also evolve in a number of ways, for example
with the creation of a library of methods for solving different types of scheduling
problems, besides the one currently considered.

The management of the case base is also an interesting theme. The definition of
criteria to be used to decide which new cases to incorporate into the case base is one

101Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

of the relevant questions to be considered. There are several possibilities here. For
example, the case base can be formed only of carefully chosen small cases that permit
to simplify a extensive number of large problems, as done in the experiments de-
scribed in section 4. It could be also interesting to prioritize the memorization of un-
schedulable problems that require the searching algorithms to spend a lot of time and
resources to reach that conclusion.

Currently, the heuristic search module is used only after a problem can not be fur-
ther simplified. Other integrations between the retrieval and the heuristic search mod-
ules are possible and could be interesting to study. For example, instead of trying to
find occurrences of stored cases in the problem graph, as done in the current version,
the graph could be initially divided into groups and the system could try to see if these
groups are present in the case base. After reusing the best retrieved cases to simplify
the problem, the groups for which there were no applicable cases could be scheduled
by the heuristic search algorithm, before proceeding in the retrieval-simplification
process.

Acknowledgments.

We thank Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP) for
partially supporting this research under grant #1996/11200-3. We would also like to
thank ICCBR'99 anonymous reviewers for their very useful comments and sugges-
tions. We tried to incorporate their feedback in preparing this version of the paper,
naturally, remaining mistakes and omissions are our own.

References

1. Stankovic, J. A. Misconceptions About Real-Time Computing. IEEE Computer, October,
1988.

2. Liu, C.L., J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. JACM, vol. 20. no.1, 1973.

3. Blazewicz, J., J.K. Lenstra and A.H.G.R. Kan. Scheduling Subject to Resource Con-
straints: Classification and Complexity. Discrete Applied Mathematics 5: 11-24, 1983.

4. Adán Coello, J. M., M. F. Magalhães, K. Ramamritham. Developing predictable and
flexible real-time systems. Control Engineering Practice. 6(1):67-81. 1998.

5. Kolodner, J. Case-Based Reasoning. Morgan Kaufmann, 1993.
6. Mok, A. K. Fundamental Desing Problems of Distributed Systems for the Distributed

Hard-Real-Time Environment. PhD Thesis, Dept. of Electrical Engineering and Computer
Science. Massachusetts Institute of Technology. 1983.

7. Sprunt, B., L. Sha and J. Lehoczky. Aperiodic Task Scheuling for Hard-Real-Time Sys-
tems. The Journal of Real-Time Systems 1, 27-60. 1989.

8. Messmer, B. T. Efficient Graph Matching algorithms for Preprocessed Model Graphs.
PhD Thesis. Institute of Computer Science and Applied Mathematics, University of Bern,
Switzerland, 1996.

9. Ullman, J. R. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31-42,
1976.

10. Ramamritham, K., G. Fohler, J.M. Adán. Issues in the static allocation and scheduling of

102 J.M.A. Coello and R. Camilo dos Santos

althoff@iis.uni-hildesheim.de

complex periodic tasks. In: Proc. 10th IEEE Workshop on Real-Time Operating Systems
and Software. 1993.

11. Xu, J. and D. L. Parnas. Scheduling processes with release times, deadlines, precedence,
and exclusion relations. IEEE Transactions on Software Engineering, 16(3):360-369.
1990.

12. Miyashita, K. and K. Sycara. CABINS: A framework of Knowledge Acquisition and
Iterative Revision for Schedule Improvement and Reactive Repair. CMU Technical Report
CMU-RI-TR-94-34. The Robotics Institute, Carnegie Mellon University, USA, 1995.

13. Koton, P. Reasoning about evidence in causal explanation. In Proceedings of AAAI-88.
AAAI Press/MIT Press. Cambridge, MA, 1988.

14. Cunningham, P. and B. Smyth. Case-Based Reasoning in Scheduling: Reusing Solution
Components. Technical Report TCD-CS-96-12, Department of Computer Science, Trinity
College Dublin, Ireland. 1996.

15. Veloso, M. PRODIGY/ANALOGY: Analogical Reasoning in General Problem Solving.
In Topics in Case-Based Reasoning, S. Wess, K. Althoff and M. Richter (Eds.) Lecture
Notes in Artificial Intelligence, Springer-Verlag, 1994.

16. Bunke, H. and B. T. Messmer. Similarity Measures for Structured Representations. In
Topics in Case-Based Reasoning, S. Wess, K. Althoff and M. Richter (Eds.) Lecture
Notes in Artificial Intelligence, Springer-Verlag. 1994.

17. Gebhardt, F. Methods and systems for case retrieval exploiting the case structure. FABEL
report no. 39. GMD, Germany. 1995.

103Learning and Reusing Solutions in Real-Time Task Scheduling

althoff@iis.uni-hildesheim.de

Towards a Unified Theory of Adaptation
in Case-Based Reasoning

Béatrice Fuchs1, Jean Lieber2, Alain Mille3 and Amedeo Napoli2

1 Université Lyon III, IAE, équipe Modeme
15 Quai Claude Bernard, 69239 LYON cedex 02

2 LORIA – UMR 7503, BP 239 – 54506 Vandœuvre-lès-Nancy Cedex
3 LISA-CPE, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne Cedex

Email: fuchs@univ-lyon3.fr, lieber@loria.fr

am@cpe.fr, napoli@loria.fr

Abstract. Case-based reasoning exploits memorized problem solving episodes,
called cases, in order to solve a new problem. Adaptation is a complex and crucial
step of case-based reasoning which is generally studied in the restricted frame-
work of an application domain. This article proposes a first analysis of case adap-
tation independently from a specific application domain. It proposes to combine
the retrieval and adaptation steps in a unique planning process that builds an or-
dered sequence of operations starting from an initial state (the stated problem)
and leading to a final state (the problem once solved). Thus, the issue of case
adaptation can be addressed by studying the issue of plan adaptation. Finally, it is
shown how case retrieval and case adaptation can be related thanks to reformula-
tions and similarity paths.

1 Introduction

Case-based reasoning (CBR) associates to a given problem P a solution, which is built
by reusing the memorized solution of a problem P' similar to P. The CBR cycle is com-
posed of three main steps: the retrieval in which the similar problem P' is searched in
the case base; the adaptation in which the solution of the similar problem P' is adapted;
and the possible memorization of the problem P and its solution, in the perspective of
a future reuse. The implementation of this reasoning cycle has given birth to the notion
of CBR system which takes advantage of a case base, and possibly of other knowledge
bases, in order to solve problems of design, interpretation, diagnostic, planning, etc.

Adapting the solution of a known problem in order to solve a new problem is one
of the key ideas on which CBR relies. Many researchers of the CBR domain think that
adaptation is very difficult to model and depends heavily on the application domain and
thus has to be implemented in an ad hoc manner. In this article, a general model of
adaptation is proposed, in the same way that plan adaptation is modeled (this approach
is also studied in [Hanks and Weld, 1995]). Moreover, the adaptation itself can be con-
sidered as a planning process whose initial state is the starting solution (the solution
of the known problem P') and final state is the adapted solution (the solution of the
problem P). In the following, a plan is considered as a triple (I;G;O) where I is an

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 104-117, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

initial state, G is a goal statement and O is a set of operations allowing to satisfy the
goal statement given the data associated with O.

Modeling adaptation in this way enables to theoretically and practically consider
the combination of adaptation and retrieval, in order to be sure to retrieve an adaptable
case and to guide the adaptation of such a case.

The issue of adaptation in CBR is detailed in section 2 and some of the major contri-
butions about adaptation and its model in CBR are summarized in section 3. Then, our
approach is presented in two steps: it is shown that a case can be considered as a kind
of plan description (section 4), and it is explained how retrieval and adaptation can be
considered in an unified framework (section 5). A complete example of our approach is
presented in section 6. A discussion and a conclusion end this paper (sections 7 and 8).

The approach presented in this paper can be the basis of a formalization of CBR and
can be reused to design CBR systems possibly in any domain.

2 The issue of adaptation in CBR

The aim of case-based reasoning is to solve a problem called target problem (or new
problem) and denoted by target, by using a case base which is a finite set of cases.
A case is given by a problem P and the solution Sol(P) of this problem; it is de-
noted by the ordered pair (P; Sol(P)). A case of the case base is called a source case
and is denoted by (source; Sol(source)); source is called the source problem. Re-
trieval consists in choosing in the case base a case (source; Sol(source)) similar to
target.1 Adaptation consists in taking inspiration from the solution Sol(source) in
order to solve target. It can be symbolized by the figure 1 which can be read this way:
“Given source, Sol(source), target and the relations between these objects, what
is Sol(target)?” This adaptation scheme is inspired from [Carbonell, 1986].

source

�

�

�
target

�

�

�

Sol(source) Sol(target)?

Fig. 1. The adaptation scheme. The vertical dash lines represent the relation between a problem
and one of its solutions; the horizontal lines represent the relation between the sources and the
targets.

Case-based reasoning relies on the reuse of past experience in order to solve a new
problem. By definition, reuse involves that past experience, considered in a new context,
has to be adapted to this new context. Thus, the retrieval of a similar case aims at finding

1 In fact, similarity is generally evaluated between source and target but Sol(source) can
play a role in this evaluation. Indeed, the part of source which is relevant with respect to its
solution Sol(source) can be used to assess the similarity (see e.g. [Veloso, 1994]).

105Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

an adaptable case. Therefore, it is important that the knowledge used for retrieval is
directly linked with the knowledge used for adaptation. In other words, the designer of
a CBR system should not dissociate these two knowledge sources in practice. Even if
the adaptation task is performed by the user or another problem solving system (then
it will be a subproblem of the main problem solving cycle) the retrieval step should be
controlled by knowledge directly linked with adaptation. Ideally, the retrieved case is
adaptable in order to be reused for solving a new problem.

Let us consider again the adaptation scheme of figure 1. It can be considered along
vertical and horizontal dimensions. The vertical dimension corresponds to the relation
between the problems and the solutions. This relation is precised in section 4. The hor-
izontal dimension corresponds to the relation between the “targets” (the target problem
and its solution that has to be found) and the “sources” (the source problem and its
know solution). The two horizontal lines of the adaptation scheme correspond to the
retrieval and adaptation processes: the line between problems read from right to left
–from target to source– represents the retrieval process, the line between solutions
read from left to right –from Sol(source) to Sol(target)– represents the adapta-
tion process. Thus retrieval and adaptation can be viewed as two “parallel” processes.
This issue is detailed in section 5. Before presenting these two “orthogonal” views of
adaptation, some other approaches of adaptation are presented in next section.

3 Some Approaches of Adaptation

Derivational and transformational analogies have been introduced in [Carbonell, 1986]
as two different adaptation processes. The former consists in adapting the memorized
solution construction process in order to produce a solution to the new problem, whereas
the latter consists in copying the memorized solution and substituting some elements by
other elements in order to produce the solution of the new problem. In particular, it can
be noticed that, when the plan of solution construction is known, then the solution can be
immediately computed and thus is also known, and so the plan of solution construction
can be considered to be the real solution (at least, the solution that should be returned
by the retrieval process). By combining retrieval and adaptation and by considering the
retrieval/adaptation process as a problem solving in planning, there is no fundamental
difference between substituting some elements of solution and substituting some steps,
which puts in question the duality between derivational and transformational analogies.

Among the recent works about adaptation, the following ones are the ones which
have more inspired our works and which have marked the researches on adaptation (see
also [Voß, 1996a]):

– The adaptation-guided retrieval described in [Smyth and Keane, 1996] is an ap-
proach of retrieval taking into account some adaptation knowledge. This knowledge
is represented by the adaptation specialists and the adaptation strategies. When a
source case is compared to a target problem, the specialists needed to the adaptation
of this case are pointed out. The case needing the minimum of adaptation effort is
chosen and afterwards adapted by the application of specialists, which is guided
by the strategies. The strategies control in particular the order of the application of
specialists.

106 B. Fuchs et al.

althoff@iis.uni-hildesheim.de

– In [Leake et al., 1997a] is presented an approach to adaptation which relies on a
search in memory of the best cases in which some elements of solution will be
substituted. This search is based on a contextual similarity (see also [Hammond,
1989], [Leake, 1993], [Leake, 1995], [Leake et al., 1995], [Leake et al., 1996],
[Leake et al., 1997b], [Leake et al., 1997c]).

– The adaptation problem can be seen as a constraint satisfaction problem, which in-
volves that a constraint-based model is well-suited for the studied problem (such
a model is often well-suited for problems of simulation, design, architecture, etc.).
The solution of a new problem is built by satisfying the new constraints and by
transforming a memorized solution [Hua et al., 1996] (see also [Hua et al., 1994],
[Smith et al., 1995], [Purvis and Pu, 1995], [Smith et al., 1996], [Kumar and
Raphael, 1997]).

– In the framework of hierarchical adaptation [Bergmann and Wilke, 1995], abstract
cases (i.e., cases that help to consider a problem at different level of abstraction:
the more abstract is the context, the “easier” to solve is the problem) are exploited
instead of concrete cases and a refining of the solutions down the different levels of
abstraction enable to build a solution of the new problem (see also [Voß, 1996b],
[Voß, 1996c], [Bergmann and Wilke, 1996], [Branting and Aha, 1995], [Smyth,
1996]).

– In [Koehler, 1996], case-based planning is presented in the framework of descrip-
tion logics and is analyzed from a formal viewpoint: cases are plans represented by
formulas in a temporal logic and the indexes of these cases are represented by con-
cepts in a description logic. Indexes are organized in a hierarchy which is exploited
by a classification process, which is the basic mechanism of retrieval. A problem
source can be chosen in order to be reused to solve a problem target if the
indexes associated to the initial and final states of these problems verify the follow-
ing constraints: idx(inittarget) v idx(initsource) and/or idx(goalsource) v
idx(goaltarget). The connective and corresponds to the strong retrieval and the
connective or to the weak retrieval. If the retrieval is strong, then each source case
verifying the above conditions can be reused in order to solve target. If the re-
trieval is weak, the best candidate case is the one sharing the more subgoals or
preconditions (or both) with the problem target. In this circumstances, it is possi-
ble to fix a minimum threshold for the adaptation effort and if no candidate satisfy
this threshold, the construction of a solution of target must be done thanks to a
from scratch planner.

Each of these works deals with a specific aspect of adaptation, at a given level of
abstraction. However, the adaptation process is always considered to be deconnected
to the other operations of the CBR, in particular, of the retrieval process. In order to go
further, it is necessary to try to address two challenges: (1) being able to define generally
what is a case and to model adaptation independently of any application domain, (2)
combining the retrieval and adaptation operations in a single operation. The previous
works and some works done with applications have been helpful to Mille, Fuchs and
Herbeaux, on the one hand, and to Melis, Lieber and Napoli, on the other hand, to model
their viewpoints about adaptation which, together, enable to address the challenges (1)
and (2):

107Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

– Works like DESIGNER [Chiron and Mille, 1997] in the design domain of supervi-
sion systems, like PAD’IM [Fuchs et al., 1995; Mille et al., 1999] in the domain of
decision helping, like ACCELERE [Herbeaux and Mille, 1998] or SYSEXPERT (pre-
sented at [Mille et al., 1995]) have given a first field of study for an initial attempt
to a unified theory of adaptation presented in [Mille et al., 1996]. The adaptation
of a case is considered as a plan adaptation which steps are considered at different
levels of granularity, which enables to model it with the use of simple operations of
adding or removing elements at the same level of granularity.

– The work presented in [Melis, 1995] on the one hand, and the one presented
in [Lieber and Napoli, 1996; Lieber and Napoli, 1998], on the other hand, share
a common view of adaptation which has involved the notions of reformulation and
similarity path [Melis et al., 1998]. A reformulation is an ordered pair (rP ; rS)
where rP is a relation between two problems pb0 and pb1 –pb0 rP pb1– and rS
is a functional relation associating to a known solution Sol(pb0) of pb0 a solution
Sol(pb1) of pb1 –Sol(pb0)

rS
7�! Sol(pb1). rS is called a specific adaptation func-

tion. Two reformulations (r1P ; r
1

S) et (r2P ; r
2

S) can be composed: if pb0 r1P pb1 and
pb1 r2P pb2 then it is possible to adapt a solution Sol(pb0) of pb0 in a solution

Sol(pb2) of pb2 by applying r1S and r2S in sequence: Sol(pb0)
r1
S

7�! Sol(pb1)
r2
S

7�!

Sol(pb2). More generally, a sequence pb0 r1P pb1 : : : pbq�1 r
q
P pbq is called a

similarity path between pb0 and pbq. Retrieval consists in finding a similarity path
between a source problem (to be chosen in the case base) and the target problem.
Adaptation consists in applying in sequence the specific adaptation functions riS .
Thus, retrieval points out not only an adaptable case but also builds a similarity path
which will be reused by the adaptation process.

What is presented below is the result of a research work which aims at “unifying”
the work described in [Mille et al., 1996] that considers a case as a plan and the work
described in [Melis et al., 1998] that combines retrieval and adaptation in a unique
process.

4 A case is a kind of plan

A problem to be solved is represented by the description target for which a descrip-
tion of a solution Sol(target) is required. The problem description contains the goal
statement (the descriptors which have to be satisfied by the solution) and the initial
context, i.e., the descriptors which are satisfied at the beginning of the problem solv-
ing process. For short, a descriptor can be a pair (attribute, value) or a constraint that
must be verified. To satisfy a descriptor means either that the value of the correspond-
ing attribute has to be found or that the corresponding constraint must be satisfied. The
description of the solution is composed of the descriptors which must be verified in
order to satisfy the goal given the initial context of the case (remember that the solution
is a byproduct of the construction plan of the solution, cf. x3). Recall that a plan is a
triple (I;G;O) and according to this view, every case is represented by an initial state I
–the initial context–, a final state G –the goal statement– and a sequence of operations
O leading from the state I to the state G (for the sake of simplicity, such a sequence

108 B. Fuchs et al.

althoff@iis.uni-hildesheim.de

is supposed to be a totally ordered list of state-operation pairs). This hypothesis is not
too restrictive since the elaboration of the solution can be seen as a plan of problem
solving (see [Polya, 1957], [Newell, 1980] and [Laird et al., 1987] for discussions on
this viewpoint). This means that an initial state, a goal and a set of operators –enabling
to generate a state space– are necessary (such a problem is called a search problem
in [Charniak and McDermott, 1985]). The problem solving process for problems such
as finding an apartment price or identifying an unknown object relies on a combina-
tion of adding, removing and substituting attribute values, and these three operations
can be considered as elementary operations associated with a plan. Then, case adapta-
tion can be reduced to plan adaptation, giving a way to take advantage of general and
context-less works done on adaptation [Hanks and Weld, 1995].

d2

d3

d1

dj

dk

dk+1

dn

[d1,d2,d3] = Initial State

[d1,d2,d3,di] = Intermediate State

[d1,d2,d3,di,...,dj] = Intermediate State

[d1,d2,d3,di,...,dj,...,dk]= Intermediate State

[d1,d2,d3,di,...,dj,...,dk,...,dK+1] = Final State

dk,dk+1

Goal Statement

A case as a list of
descriptors A case as a plan

Fig. 2. The descriptors [d1; d2; d3] represent what is true at the beginning of the problem solving
process (the initial state), while [dk; dk+1] represent what has to be true when the problem will be
solved (the goal statement). Other descriptors represent different parts of the solution. From the
initial state, the problem solving process can be represented by its different intermediate states
integrating new solution elements until the goal statement is satisfied.

Plan adaptation has been presented in the literature with two approaches [Hanks and
Weld, 1995]: a generative approach in which all the knowledge necessary for generat-
ing a solution plan from scratch is available, and a transformational approach in which
the previous hypothesis is not necessary and that is based on reuse (to find a solution in
the latter case is not warranted). Actually, in both approaches, the knowledge needed to
identify the steps to be transformed expresses, in a way or another, the role played by
one step (element of the solution) in order to satisfy the goal description and to be con-

109Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

form to the description of the initial state. The differences between the description of
the target problem and the description of the retrieved source problem allow to evaluate
the variation to be reduced in the description of the source solution in order to elaborate
the description of the target problem. For instance, if source is the problem “How can
I go from Paris to Munich?” and target is “How can I go from Lyon to Munich?”, the
observed difference –the difference between the initial states Paris and Lyon– enables to
modify the journey Paris-Munich so that it becomes Lyon-Munich, for example by con-
catenating the short journey Lyon-Paris and the journey Paris-Munich. In the generative
approach, this allows to start from a general plan which is not in contradiction with the
problem, and to generate the missing steps, whereas, in the situation of transformational
approach, this enables to locate the steps to be substituted or to be modified (either a
single modification or a sequence of modifications). In both situations, the adaptation
can be decomposed into a generalization of the source case compatible with the target
problem, then to a specialization satisfying the descriptors of the target problem. The
next section details the generic steps of such an adaptation.

5 Adapting a case like a plan

Solving a problem consists in building the list (ordered or not) of the solution descrip-
tors leading to the satisfaction of the goal statement. In planning from first principles
(i.e., without the concrete experience represented by a case base) it is a plan generation
problem which has been the subject of numerous works. Using a concrete experience,
typically in the framework of CBR, involves a different approach, such as the following
(illustrated by the figure 3 which is an instantiation of the adaptation scheme presented
at the figure 1):

(a) Elaborating an index of the problem target, denoted by idx(target). This in-
dex is constituted by the relevant descriptors (initial state, goal statement) of the
problem to be solved.

(b) Finding an index idx(source) of the source case similar to idx(target). Each
case from the base must have an associated index to make this comparison possible.

(c) From the index idx(source), the problem source can be found easily.
(d) The solution Sol(source) of source is taken as a starting point for solving the

target problem. This item references the correspondence between retrieval in the
problem description space and adaptation in the solution description space.

(e) The solution Sol(source) is generalized in order to stay consistent with the index
idx(source): a solution Sol(idx(source)) of the index of the source problem is
searched.

(f) The solution Sol(idx(source)) is specialized in order to become a solution
Sol(idx(target)) for the generalization idx(target) of the target problem.

(g) Then the solution Sol(idx(target)) is specialized in order to take into account
simplifications made during the generalization of target into idx(target) (cor-
responding to elaboration, step (a)).

Note that this approach is a specialization of the more general approach of refor-
mulation (see section 2). Indeed, the steps (a), (b) and (c) can be considered as the

110 B. Fuchs et al.

althoff@iis.uni-hildesheim.de

source

(d)
��

idx(source)
(c)

oo

�

�

�

�

�

�
idx(target)

(b)
oo

�

�

�
target

(a)
oo

�

�

�

Sol(source)
(e)

// Sol(idx(source))
(f)

// Sol(idx(target))
(g)

// Sol(target)

Fig. 3. General scheme of target problem resolution from a source plan.

construction of a similarity path (during retrieval), and the steps (e), (f) and (g) corre-
spond to the application of specific adaptation functions (during adaptation). Note also
that step (b) and the corresponding step (f) can be decomposed into several simple steps.
In [Lieber and Napoli, 1996], in the framework of strong classification step (b) simply
consists in searching an index idx(source) more general than idx(target); in the
framework of smooth classification, a whole sequence of relations rP between an index
idx(source) to be chosen and the index idx(target) is searched.

6 An Example in Route Planning

This example consists in building a route in order to reach an ending town from a start-
ing town by using a network of roads. A case is a route that we denote by
(init; goal; date; vehicle; segments; duration) where init is the initial town,
goal is the final town, date is the date of the journey, vehicle is the vehicle used,
segments is a sequence of intermediary segments and duration is the duration of the
journey. A segment is denoted by (start; end) where start is the starting town and
end is the ending town. A target problem is given by an initial town inittarget and a
goal town (to be reached) goaltarget.

The domain theory is given by a set of towns fA;B; :::; Ig, and, for every town T, a
set containing some of its direct neighbors T0 2 neighbors(T): T0 can be reached from
T using an elementary route. The known neighbors are represented by the following
table:

T neighbors(T)

A fB;E;Gg
B fA;C;Eg
C fB;D;Eg
D fC;F; Ig
E fA;C; F;Gg
F fD;E;Hg
G fA;E;Hg
H fF;Gg
I fDg

111Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

The distance between two towns T and T0 is defined as follows:

d(T; T0) =

8<
:
0 if T = T0

1 if T 2 neighbors(T0)
+1 if T 62 neighbors(T0)

The elaboration step builds an index of the target problem by retaining only the
descriptors inittarget and goaltarget that are juged more relevant. The index of the
source case is reduced to the pair composed of the initial town and the goal town, other
descriptors such as date and vehicle are juged less relevant:

idx(target) = (inittarget; goaltarget)

idx(source) = (initsource; goalsource)

A distance between a source index and a target index is defined as follows:

dist(idx(source); idx(target)) = d(initsource; inittarget)

+ d(goalsource; goaltarget)

The content of the case base is

case number idx(source) Sol(source)

1 (A;C) f((A;B); (B;C)); 2:00g
2 (C;G) f((C;E); (E;G)); 1:30g
3 (A;D) f((A;B); (B;C); (C;D)); 3:00g
4 (D;C) f((D;C)); 1:00g
5 (H;E) f((H;F); (F;E)); 2:00g
6 (E;B) f((E;C); (C;B)); 2:15g
7 (G;D) f((G;E); (E;C); (C;D)); 2:45g
8 (B; I) f((B;C); (C;D); (D; I)); 3:15g

A target problem target = (B;D; February; 2CV Citro�en) is created. The
elaboration of the index of the target gives idx(target) = (B;D). This index is
matched with the source case indexes giving the following distance table:

case number idx(source) dist(idx(source); idx(target))

1 (A;C) 2
2 (C;G) +1
3 (A;D) 1
4 (D;C) +1
5 (H;E) +1
6 (E;B) +1
7 (G;D) +1
8 (B; I) 1

The general solving scheme of a target problem presented in figure 3 is the following
(illustrated by figure 4):

112 B. Fuchs et al.

althoff@iis.uni-hildesheim.de

source idx(source) idx(target) target

Sol(source) Sol(idx(source)) Sol(idx(target)) Sol(target)

(a)(b)(c)

(d)

(e) (f) (g)

(B,D,15/02/99,2CV Citroën)(B,D)(A,D)(A,D,10/6/99,Fiat Uno)

{((A,B),(B,C),(C,D),3H00)} ((A,B),(B,C),(C,D)) ((B,C),(C,D)) {(B,C),(C,D),1H45)}

Fig. 4. Solving the target problem by reusing the case 3.

(a) The index of the target problem is built: idx(target) = (B;D).
(b) An index of a source case is searched in the case base. Possible values are (A;D)

and (B; I): both minimize dist(idx(source); idx(target)). idx(source) =
(A;D) is chosen arbitrarily.

(c) From (A;D), the source case (A;D; June; Fiat Uno) is reached.
(d) The solution Sol(source) = f((A;B); (B;C); (C;D)); 3:00g of the source case

is reused for the target problem.
(e) The generalization of Sol(source) in Sol(idx(source)) suppresses the descrip-

tor duration: Sol(idx(source)) = ((A;B); (B;C); (C;D)).
(f) The solution is specialized in Sol(idx(target)) = ((B;C); (C;D)) by removing

the segment (A;B). Such an adaptation operation is described among other ones
in [Lieber and Napoli, 1998].

(g) The solution Sol(idx(target)) is specialized in
Sol(target) = f((B;C); (C;D)); 1:45g where the descriptor duration has
been evaluated and added to the solution.

7 Discussion and Future Work

In this article, a unified model of the retrieval and adaptation steps in CBR is proposed.
This model is simple and clear and puts in question the common idea saying that adap-
tation can be only contextual. Moreover, this proposition could be used for a deep dis-
cussion about the two key phases of the CBR cycle. It must be noticed, however, that we
have assumed that a problem can be considered as a planning problem, with a general
meaning of this notion, i.e., an initial state, a goal statement and a collection of operators
which enables to generate a state space are needed (such a problem is called a search
problem in [Charniak and McDermott, 1985]). Then adaptation can be considered as
a sequence of generalizations, specializations and substitutions performed at different
levels of abstraction in the process of solution construction. Note that a substitution can
be seen as a composition of a removal and an adjunction.

It is necessary to justify more precisely the assumption made on the type of prob-
lems and to show that it works correctly on every type of problems: this is one of the
first future works. Moreover, we need to make more progress in the formal description
of this work in order to formalize the retrieval-adaptation process independently of any

113Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

context. Then, such a formalization could be used as a guideline during the design of a
CBR system.

Some issues of this study must be detailed. First, the links between the vertical and
horizontal views of adaptation (sections 4 and 5, respectively) must be studied precisely.
Then, the links with the works on plan adaptation have to be pointed out. Finally, the
steps (a), (b) and (c) of case retrieval and the corresponding steps (e), (f) and (g) of
adaptation must be studied in detail.

To complete this study, the learning step of case-based reasoning must be integrated.
In this context, learning is not limited to the storage of a new ordered pair (problem,
solution) in the case base, but means also learning new retrieval and adaptation knowl-
edge from retrievals and adaptations already performed and which have led to a stored
and analyzed success or failure. Several research directions can be considered, linked
with the explanations that can be entailed from a success or a failure of the solving pro-
cess (such an approach is also studied in [Ihrig and Kambhampati, 1997]). The learn-
ing mechanism consists then in exhibiting a sequence of justifications –of success or
failure– which will be used as rules during the future adaptations and of “use instruc-
tion” during case reuse.

This model work mainly derives from two complementary works –[Mille et al.,
1996] and [Melis et al., 1998]– which themselves rely on real-world applications
(DESIGNER, PAD’IM, ACCELERE and SYSEXPERT for [Mille et al., 1996] and OMEGA

and RESYN/CBR for [Melis et al., 1998]). As future work, we plan to study systemati-
cally other applications of CBR in the light of this model. A last future work, which fully
justifies this model, is its use for the design of CBR applications. Thus, the usefulness
of this formalism and its limitations could be more accurately pointed out.

8 Conclusion

In this paper, elements for a unified theory of adaptation in the case-based reasoning
framework are presented. First, the assumption that case adaptation can be considered
as a plan adaptation is justified. Under this assumption, the works on adaptation in case-
based planning can be reused. Then, case adaptation –seen as a kind of plan adaptation–
is defined in parallel with case retrieval. Indeed, the steps of the target problem elabo-
ration (or indexing), of the search for an index of the source problem, and of the search
for a source problem corresponding to this index are related to three adaptation steps.
This point of view is mainly based on the study of real-world applications and can be
made operational. More work remains to be done, especially to make more precise and
to formalize this study, so that it can be reused for CBR system constrution. Moreover,
this study has also to take into account the learning step of CBR to give a complete
account of the CBR process.

References

[Bergmann and Wilke, 1995] R. Bergmann and W. Wilke. Building and Refining Abstract Plan-
ning Cases by Change of Representation Language. Journal of Artificial Intelligence Research,
3:53–118, 1995.

114 B. Fuchs et al.

althoff@iis.uni-hildesheim.de

[Bergmann and Wilke, 1996] R. Bergmann and W. Wilke. PARIS : Flexible Plan Adaptation by
Abstraction and Refinement. In A. Voß, R. Bergmann, and B. Bartsch-Spörl, editors, Workshop
on Adaptation in Case-Based Reasoning, ECAI-96, Budapest, Hungary, August 1996.

[Branting and Aha, 1995] L. K. Branting and D. W. Aha. Stratified Case-Based Reasoning:
Reusing Hierarchical Problem Solving Episodes. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI’95), Montréal, volume 1, pages 384–390,
August 1995.

[Carbonell, 1986] J. G. Carbonell. Derivational analogy: A Theory of Reconstructive Problem
Solving and Expertise Acquisition. In Machine Learning, volume 2, chapter 14, pages 371–
392. Springer-Verlag, 1986.

[Charniak and McDermott, 1985] E. Charniak and D.V. McDermott. Introduction to Artificial
Intelligence. Addison Wesley, Reading, Massachusetts, 1985.

[Chiron and Mille, 1997] B. Chiron and A. Mille. Aide à la conception d’environnements de
supervision par réutilisation de l’expérience. In JICAA’97, ROSCOFF, 20-22 Mai 1997, pages
181–187, 1997.

[Fuchs et al., 1995] B. Fuchs, A. Mille, and B. Chiron. Operator decision aiding by adaptation of
supervision strategies. In Lecture Notes in Artificial Intelligence vol 1010, First International
Conference on Case-Based Reasoning, ICCBR’95, pages 23–32, Sesimbra, Portugal, 1995.
Springer-Verlag, Berlin, Germany.

[Hammond, 1989] Kristian Hammond. Case-based planning: viewing planning as a memory
task. Academic Press, San Diego, 1989.

[Hanks and Weld, 1995] S. Hanks and D.S. Weld. A Domain-Independent Algorithm for Plan
Adaptation. Journal of Artificial Intelligence Research, 2:3191–360, 1995.

[Herbeaux and Mille, 1998] O. Herbeaux and A. Mille. ACCELERE : un système d’aide à la
conception de caoutchouc cellulaire exploitant la réutilisation de l’expérience. Journal Eu-
ropéen des Systèmes Automatisés, 1998. Soumis au Journal Européen des Systèmes Automa-
tisés, disponible comme rapport de recherche.

[Hua et al., 1994] K. Hua, I. Smith, and B. Faltings. Integrated Case-Based Building Design.
In S. Wess, K.-D. Althoff, and M.M. Richter, editors, Topics in Case-Based Reasoning – First
European Workshop (EWCBR’93), Kaiserslautern, Lecture Notes in Artificial Intelligence 837,
pages 458–469. Springer Verlag, Berlin, 1994.

[Hua et al., 1996] K. Hua, B. Faltings, and I. Smith. CADRE: case-based geometric design.
Artificial Intelligence in Engineering, 10:171–183, 1996.

[Ihrig and Kambhampati, 1997] L.H. Ihrig and S. Kambhampati. Storing and Indexing Plan
Derivation through Explanation-based Analysis of Retrieval Failures. Journal of Artificial In-
telligence Research, 7:161–198, 1997.

[Koehler, 1996] J. Koehler. Planning from Second Principles. Artificial Intelligence, 87:145–
186, 1996.

[Kumar and Raphael, 1997] B. Kumar and B. Raphael. Cadrem: A case based system for con-
ceptual structural design. Engineering with Computers, 13(3):153–164, 1997.

[Laird et al., 1987] J.E. Laird, A. Newell, and P.S. Rosenbloom. SOAR: An Architecture for
General Intelligence. AI Magazine, 33(1):1–64, 1987.

[Leake et al., 1995] D. B. Leake, A. Kinley, and D. Wilson. Learning to Improve Case Adapta-
tion by Introspective Reasoning and CBR. In M. Veloso and A. Aamodt, editors, Case-Based
Reasoning Research an Development. Proceedings of the First International Conference on
Case-Based Reasoning - ICCBR-95, pages 229–240, Sesimbra, Portugal, 23–26 octobre 1995.
Lecture Notes in Artificial Intelligence, volume 1010, Springer Verlag, Berlin.

[Leake et al., 1996] D. B. Leake, A. Kinley, and D. Wilson. Acquiring case adaptation knowl-
edge: A hybrid approach. In Proceedings of the 14th National Conference on Artificial Intelli-
gence, Menlo Park, CA, pages 684–689. AAAI Press, Menlo Park, CA, 1996.

115Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

[Leake et al., 1997a] D. B. Leake, A. Kinley, and D. Wilson. A Case Study of Case-Based CBR.
In D. B. Leake and E. Plaza, editors, Case-Based Reasoning Research and Development –
Second International Conference, ICCBR’97, Providence, RI, USA, Lecture Notes in Artificial
Intelligence 1266, pages 371–382. Springer Verlag, Berlin, 1997.

[Leake et al., 1997b] D. B. Leake, A. Kinley, and D. Wilson. Case-based similarity assessment:
Estimating adaptability from experience. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence. AAAI Press, Menlo Park, CA, 1997.

[Leake et al., 1997c] D. B. Leake, A. Kinley, and D. Wilson. Learning to integrate multiple
knowledge sources for case-based reasoning. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, 1997.

[Leake, 1993] D. B. Leake. Learning adaptation strategies by introspective reasoning about
memory search. In AAAI93 Workshop on Case-Based Reasoning, pages 57–63, 1993.

[Leake, 1995] D. B. Leake. Representing self-knowledge for introspection about memory
search. In Proceedings of the AAAI Spring Symposium on Representing Mental States and
Mechanisms, 1995.

[Lieber and Napoli, 1996] J. Lieber and A. Napoli. Using Classification in Case-Based Planning.
In W. Wahlster, editor, Proceedings of the 12th European Conference on Artificial Intelligence
(ECAI’96), Budapest, Hungary, pages 132–136. John Wiley & Sons, Ltd., 1996.

[Lieber and Napoli, 1998] J. Lieber and A. Napoli. Correct and Complete Retrieval for Case-
Based Problem-Solving. In H. Prade, editor, Proceedings of the 13th European Conference on
Artificial Intelligence (ECAI-98), Brighton, United Kingdom, pages 68–72, 1998.

[Melis et al., 1998] E. Melis, J. Lieber, and A. Napoli. Reformulation in Case-Based Reasoning.
In B. Smyth and P. Cunningham, editors, Fourth European Workshop on Case-Based Reason-
ing, EWCBR-98, Lecture Notes in Artificial Intelligence 1488, pages 172–183. Springer, 1998.

[Melis, 1995] E. Melis. A model of analogy-driven proof-plan construction. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), pages 182–189,
Montréal, 1995.

[Mille et al., 1995] A. Mille, J.-L. Di-Martino, and A. Michel. Adaptation : the key-point in
Case Based Reasoning. A case study : Digester Programming Helping, 1995. presented at
the Workshop on practical developments strategies for industrial strength Case Based Reason-
ing applications, 16th International Conference on Artificial Intelligence, IJCAI’95, Montreal,
Canada.

[Mille et al., 1996] A. Mille, B. Fuchs, and O. Herbeaux. A unifying framework for Adaptation
in Case-Based Reasoning. In A. Voß, editor, Proceedings of the ECAI’96 Workshop: Adaptation
in Case-Based Reasoning, pages 22–28, 1996.

[Mille et al., 1999] A. Mille, B. Fuchs, and B. Chiron. Le raisonnement fondé sur l’expérience :
un nouveau paradigme en supervision industrielle ? à paraı̂tre dans la Revue d’Intelligence
Artificielle, 1999.

[Newell, 1980] A. Newell. Reasoning, Problem Solving, and Decision Processes: The Problem
Space as a Fundamental Category. In R. Nickerson, editor, Attention and Performances VIII,
pages 693–718. Lawrence Erlbaum Associates, Hillsdale, NJ, 1980.

[Polya, 1957] G. Polya. How to Solve it. Doubleday Anchor Books, New York, NY, 1957.
[Purvis and Pu, 1995] L. Purvis and P. Pu. Adaptation Using Constraint Satisfaction Techniques.

In M. Veloso and A. Aamodt, editors, Case-Based Reasoning Research And Development. Pro-
ceedings Of The First International Conference On Case-Based Reasoning - ICCBR-95, pages
289–300, Sesimbra, Portugal, 23–26 Octobre 1995. Lecture Notes In Artificial Intelligence,
Volume 1010, Springer Verlag, Berlin.

[Smith et al., 1995] I. Smith, C. Lottaz, and B. Faltings. Spatial composition using case : Id-
iom. In Manuela Veloso and Agnar Aamodt, editors, Case-Based Reasoning Reasearch And
Development, Iccbr’95, pages 88–97, Sesimbra (Portugal), Octobre 1995.

116 B. Fuchs et al.

althoff@iis.uni-hildesheim.de

[Smith et al., 1996] I. Smith, R. Stalker, and C. Lottaz. Interactive case-based spatial composi-
tion. 1996.

[Smyth and Keane, 1996] B. Smyth and M. T. Keane. Using adaptation knowledge to retrieve
and adapt design cases. Knowledge-Based Systems, 9(2):127–135, 1996.

[Smyth, 1996] B. Smyth. Case-Based Design. PhD thesis, Trinity College, University of Dublin,
1996.

[Veloso, 1994] M. M. Veloso. Planning and Learning by Analogical Reasoning. LNAI 886.
Springer Verlag, Berlin, 1994.

[Voß, 1996a] A. Voß, editor. Proceedings of the ECAI’96 Workshop: Adaptation in Case-Based
Reasoning, 1996.

[Voß, 1996b] A. Voß. Structural Adaptation with TOPO. In A. Voß, R. Bergmann, and
B. Bartsch-Spörl, editors, Workshop on Adaptation in Case-Based Reasoning, ECAI-96, Bu-
dapest, Hungary, August 1996.

[Voß, 1996c] Angi Voß. How to solve complex problems with cases. Engineering applications
of artificial intelligence, 9(4):377–384, 1996.

117Towards a Unified Theory of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

A Knowledge-level Task Model of Adaptation in

Case-Based Reasoning

B�eatrice Fuchs1, Alain Mille2

1 Universit�e Lyon III, IAE - �equipe Modeme, 15 quai Claude Bernard,
69 239 Lyon cedex 02, fuchs@univ-lyon3.fr

2 CPE-Lyon, LISA, �equipe Raisonnement �a Partir de Cas,
43 bd du 11 novembre 1918, 69 616 Villeurbanne cedex, am@cpe.fr

Abstract. The adaptation step is central in case-based reasoning
(CBR), because it conditions the obtaining of a solution to a problem.
This step is di�cult from the knowledge acquisition and engineering
points of view. We propose a knowledge level analysis of the adaptation
step in CBR using the reasoning task concept. Our proposal is based on
the study of several CBR systems for complex applications which im-
ply the adaptation task. Three of them are presented to illustrate our
analysis. We sketch from this study a generic model of the adaptation
process using the task concept. This model is in conformity with other
CBR formal models.

1 Introduction

CBR systems reuse the solution of a solved case to build a solution of a new
problem. The basic CBR cycle is made of �ve steps : a request specifying a new
problem to solve being given, the system elaborates1 a new problem description
named the target problem, retrieves a case named the source case from a case

base, reuses the solution of the source case by adapting it for the target problem,
retains the new case in order to make it available for further problem solvings.

The adaptation step in CBR is central because it conditions the obtain-
ing of a solution to the problem. This step has been studied in several papers
[Hanks and Weld, 1995], [Vo�, 1997], [Bergmann and Wilke, 1995], [Vo�, 1996],
[Leake et al., 1997], [Hua et al., 1993], [Hua et al., 1996], [Koehler, 1996] but it
is still di�cult to approach and it is rarely implemented in practical applica-
tions. Instead of handling adaptation, most systems retrieve a case and simply
copy its solution in order to propose it to a user or another kind of reasoning
system. So, the needed adaptation step is done outside the CBR cycle. This can
be explained by the fact that, from the knowledge engineering point of view, it is
di�cult to model the reasoning process and the implemented knowledge ; more-
over, there is no simple way to warrant the correctness of the solution. Thus,
systems where adaptation is taken into account in the CBR cycle are tied to a
particular application domain.

1 This step is generally integrated to the retrieve step in most CBR models.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 118-131, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

Very few works are devoted to the formalization of the adaptation process.
In particular, few works focus on the following questions : how to decide a mod-
i�cation of a solution element ? Which method is to be used ? What kind of
knowledge is used ? How is used domain knowledge ? How can the global con-
sistency of the solution be assessed ? What kinds of reasoning mechanisms are
implemented ? How is controled the adaptation process ? etc. In order to give
some answers to these questions, we propose in this paper a generic model of
adaptation that speci�es its reasoning tasks at the knowledge level. The aim of
this model is to clarify the existing relations between the retrieval and adap-
tation tasks by highlighting the pieces of knowledge controling these tasks, the
communications between tasks, and implemented inference mechanisms.

In previous works, we proposed a generic model of CBR in order to syn-
thesize functionnalities of these systems [Fuchs, 1997]. This approach provides
�rstly a description framework of existing systems, and secondly a generic model
that constitutes an help for the design of new systems. The adaptation part is
presented here. We present in section 2 the task formalisms used for the descrip-
tion. In section 3, we describe the �rst three steps of CBR, the main focus being
on the tasks retrieve and reuse and their relations. In section 4 presents the
general principle of the retrieval - adaptation steps and in section 5 we use the
task decomposition formalism to describe the adaptation process in three CBR
systems chosen for the importance they give to the adaptation part, and also
because they are well documented in the litterature. We end our proposal with
a generic model of adaptation using the two task formalisms in section 6.

2 The task formalisms

The problem solving process is classically divided into tasks. A problem can be
achieved either in a direct way by an algorithmic method, or by a decomposition
into a set of simpler tasks. This representation allows to model which pieces of
knowledge control the reasoning process ; moreover, it allows to keep trace of
the reasoning process for explanation purpose [Goel, 1996].

We use two task oriented formalisms : a task speci�cation formalism close
to [Armengol and Plaza, 1994] and a task decomposition formalism close to
[Aamodt and Plaza, 1994]. The task speci�cation formalism describes the tasks
individually (�gure 1), by the input pieces of knowledge, a label clarifying the
functions performedby the task, the pieces of knowledge produced as output, the
knowledge models used as support, and the implemented reasoning mechanisms.
This model is similar to the one presented in [Armengol and Plaza, 1994], but
its accuracy is superior because every element acting on a task has a precise role
(input, output, control, reasoning mechanism).

The second formalism expresses the hierarchical decomposition of tasks into
subtasks and a default control associated to the subtasks (�gure 2). In this tree
representation, the root node is the main task, and the edges are the decompo-
sition relations leading to subtasks.

119A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

Reason with
past cases

Request

classification
matching

Domain
models

modified

the
augmented
memory of
past cases

Memory of
past cases

Conceptual models
of the domain

Fig. 1. A partial speci�cation of the main task Reason with past cases. The CBR

task is activated by a request expressing a problem to be solved, it uses a case base ; its

output is the case base augmented with a new solved case. It is supported by knowledge

models of the application domain and uses classi�cation and matching mechanisms.

Elaborate

Create
a case

Test
solution

Correct the solution

Store
the case

SelectSearch

Revise

Retain

Reuse
Prepare the case

Copy Adapt

Explain
differences

Learn

Copy
solution

Copy solution
method

+

+Order of the tasks

Controls :

Possible subtask alternatives

Retrieve

Multiple occurrences of the task

Reason with past cases

Fig. 2. The partial decomposition (limited to the two �rst levels) of the main
task Reason with past cases.

The controls symbols have been added for a better understanding of
the model, because links towards subtasks have not always the same mean-
ing. Although controls should be speci�ed in problem solving methods, this
model is conform to a task oriented view of knowledge level modeling
[Aamodt and Plaza, 1994].

3 The case model

According to this approach, we propose to de�ne the case model i.e. a de�nition
of the case that takes into account the problem and solution parts, and also the
transformation of a case through reasoning tasks : a case C is composed of a
problem Pb, a solution S and a reasoning trace R (�gure 3) : C = (Pb, R, S).

120 B. Fuchs and A. Mille

althoff@iis.uni-hildesheim.de

The problem is described using a set of descriptors2 D and a request Rq point-
ing the goal to be reached by the reasoning process. D includes a set of constraints
that have to be satis�ed by the solution and serves as a partial speci�cation of
S : Pb = (D, Rq). The solution S is an object built by the reasoning process R
and satisfying the constraints speci�ed in Pb. The reasoning trace R is the set
of reasoning steps, intermediate results and decisions that are taken in order to
satisfy Rq from the starting state D.

Reasoning R

Object (information
constituting the

solution)

Solution SProblem Pb

Domain
Ontology

Request

a case C

Reasoning
tasks

Inputs of the
problem

is described using
is described

using

has part

has part has parthas part

Fig. 3. The case model

A case is created at the beginning of the CBR cycle and contains only the
problem part. The reasoning part of the case is the trace of the way the solution
has been obtained through the di�erent steps. For example, the matching rela-
tions between the source and target problems are included in the reasoning part
of the target case. A case takes place as input and output of di�erent reasoning
tasks and is modi�ed by an enrichment process all along the CBR cycle. The
task speci�cation formal model de�nes precisely the role played by the di�erent
knowledge models, and has the objective to underline the transformation of a
case through the di�erent reasoning steps.

Some CBR systems use a case decomposition of a problem in subproblems
[Vo�, 1997], allowing to guide the reuse of pieces of cases to solve a complete
case. Actually, if several authors claim to use multiple cases to solve a new one,
from our point of view, it is always possible to see each process of problem solving
as a speci�c CBR cycle using subcases corresponding to the description of the
subproblems. Consequently, for a given subproblem to solve, a unique subcase
is selected in the CBR concerned subcases base. Figure 4 illustrates this point
of view.

According to this point of view, the analysis of CBR tasks does not lack
generality when considering the reuse task as involving a single case. When
reusing multiple di�erent cases can be expressed as more simple CBR cycles
applied to subproblems.

2 A network of objects, attributes and values.

121A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

Subcase Subcase

Subcase SubcaseSubcase

Case

Design plan

subplan

subplan

subplan

subplansubplan

Fig. 4. A point of view on the case decomposition.

4 Principle of the retrieval-adaptation steps

We have modelled the CBR process by using �ve tasks corresponding to the
�ve main reasoning steps. Let us describe the �rst three tasks of interest for
us (see �gure 5). Elaborate produces a target problem by collecting the prob-
lem descriptors and then prepares the retrieval task : it builds an abstraction
of the target problem named index by selecting indices, i.e. a subset of relevant
descriptors. Retrieve chooses a source case whose solution will be reused for
the target problem. It gradually selects a set of cases from the case-base using
the index previously built. Generally, this task is performed by a sequence of
cycles, each one being composed of two subtasks : the search task extracts a
set of source cases, and the select task retains only a subset depending on the
speci�c criteria. The search task has two subtasks ; the �rst subtask match links
the source and target problems in order to underline similarities and di�erences ;
the second subtask assess computes a criteria re
ecting the similarity or dis-
similarity, to be used later by the select task. Reuse copies the solution of the
selected source case and adapt modi�es it in order to give it consistency with
the speci�c context of the target problem. The matching process is at the basis
of the adaptation step.

Request Target problem,
Index of the target

problem

Target problem,

Matching of the source
and target cases

Source case,

Solved
target case

Retrieve Reuseexternal
agent

Elaborate

Fig. 5. The three �rst tasks of the CBR cycle.

122 B. Fuchs and A. Mille

althoff@iis.uni-hildesheim.de

We focus now on the adaptation step (grey rectangle on �gure 5). The match-
ing task draws a set of relations between source and target cases. These relations
express either the identity of some elements, or their dissimilarities although they
may have some similarities that have to be underlined by a deeper analysis.

A matchingM is a set of relationsRM between descriptors of a source and the
target. A matching relation RM may be expressed as a triple RM = (ds; dt; Rst),
where ds is a descriptor of the source case, dt a descriptor of the target, and
Rst an explanation linking ds to dt and made of a sequence of relations of the
knowledge network. If ds and dt are identical, Rst is an identity relation. If not
Rst expresses for example that descriptors are instances of the same class, or that
they play the same role in the context. The matching process is an important
step because it summarizes similar elements between source and target problems,
and may involve a large amount of knowledge. Every relation between the source
and target problems is examined by the adaptation task. An adaptation step is
the application of an appropriate adaptation operator depending on the kind
of relation considered, taking into account the consequences of the established
di�erences on the solution descriptors. An adaptation operator may remove, add
or modify a solution element. When adding or modifying an element, di�erent
methodsmay be used in order to �nd a new element : abstraction / specialization
process, use of explanations, use of causal relations, use of heuristics, etc. Figure
6 summarizes the relationships between matching and adaptation :

Solution ?

Solution
source

case

target
case

Dependency relations

Matching
relations RM

adaptation

Pbs = (Ds,Rqs), Ds = {ds}

Pbt = (Dt,Rqt), Dt = {dt}

{Rst} matching = {RM}

Fig. 6. The matching and adaptation processes and their relationships.

In an approximate way, an adaptation process applies to a solution element
a set of relations which are reciprocal of those of the matching process3. Thus,
di�erences pointed out by the matching process give a signi�cant indication
about the amount of work to be done by the adaptation process in order to
modify the solution of the source case, because they are signi�cant of the needed
adaptation knowledge.

3 With the main di�erence that it must take into account other kinds of relations link-
ing problem elements to solution elements, and that are not necessarily (in general
not al all) explicit.

123A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

In order to illustrate this principle, we present now three systems to study
the adaptation process.

5 A study of three CBR systems

The chosen systems are :

{ D�ej�a Vu, a plant-control software design system [Smyth, 1996]
{ Pad'im, a decision support CBR system in industrial supervision

[Mille, 1995], [Fuchs et al., 1995].
{ Resyn/CBR, a case-based planner in the domain of organic chemistry syn-

thesis [Lieber, 1997], [Lieber and Napoli, 1996].

5.1 D�ej�a Vu

D�ej�a Vu uses an adaptability-guided retrieval method. It assesses a criteria that
predicts the adaptability of a case and returns a source case the easiest to adapt,
associated to the adaptation rules to apply. The adaptation process uses adap-

tation specialists that perform local modi�cation depending on speci�cation dif-
ferences of problems, and adaptation strategies co-ordinating the application of
specialists and treating global consistency problems. An adaptation specialist
has a condition part corresponding to the type of speci�cation di�erence it is
able to process, and an action part specifying the adaptation steps of the solution
using transformation operators. In the retrieval step, relevant characteristics of
the target problem are used to activate the adaptation knowledge to use. The
unactivated adaptation specialists are used to discard cases that are not useful
for the target problem. The activated adaptation specialists are used to select
locally adaptable cases. Adaptation strategies are needed to detect con
ict prob-
lems in locally adaptable cases. A global adaptation cost is assessed, based on
activated specialists and strategies.

Adapting a case uses adaptation knowledge that was activated in the retrieval
step, and the matching helps to point out modi�cations to bring out in order to
produce the target solution (�gure 7).

+

Reuse the solution of a case

Copy
solution

Verify consistency

Verify
locally

Verify
globally

Select a difference
and the associated

adaptation specialist
or strategy

Remove an
element Substitute an

element

Add an
element

+

Modify the solution

Adapt

Fig. 7. The decomposition of the reuse task in D�ej�a Vu.

124 B. Fuchs and A. Mille

althoff@iis.uni-hildesheim.de

Adaptation specialists are applied in order to handle speci�cation di�erences
and perform local modi�cations on solution elements without controlling the
modi�cations performed by other specialists. Adaptation strategies co-ordinate
the application of specialists in order to avoid con
icts that may lead to impasses
and to check the solution consistency after local modi�cations.

In D�ej�a Vu, the retrieve and reuse steps are tightly coupled. Cases are linked
to adaptation knowledge activated at the retrieval step. The adaptation process
performs modi�cations already underlined in the retrieval step ; strategies are
applied when the consistency checking process points out modi�cation needs
after adaptation specialists have been applied.

5.2 Pad'im

Pad'im provides an appropriate supervision environment for situations that are
similar to known situations. The supervision domain is de�ned thanks to the
supervision object concept, specialized in subclasses : the structural object, the
function, etc. A supervision environment is composed of a set of dashboards that
are viewed by operators on control panels. A dashboard has a set of views repre-
senting the evolution of the supervised system and re
ects supervision objects.
The retrieval of cases (or supervision episodes) begins with a discrimination
based on the general context of the supervision episode. A conceptual similar-
ity is assessed by a matching process of the supervision objects and measures
the degree of similarity of the objects in the source and target cases. The ob-
served dissimilarities of supervision objects are analyzed in order to produce an
explanation of their role in a supervision environment. The matching process
summarizes similarities between objects, dissimilarities and their explanation.
The search for an explanation tries to �nd relations between the objects and the
di�erent elements describing the situation. Reusing a supervision environment
means �nding which supervision objects have to be represented in the new super-
vision environment. The reuse task is performed by two subtasks (�gure 8). The
�rst subtask copy copies the supervision environment of the retrieved episode
for the current one and the second subtask adapt a supervision environment

modi�es it.

Reuse a supervision environment

Copy the ending
supervision environment

Adapt the supervision
environment

Modify the supervision environmentSelect a
supervision object

Substitute the concept of the
newenvironment by role similarity

Modify the representation
of the supervision object

Verify ergonomic
constraints

Fig. 8. The decomposition of the reuse task in the Pad'im system.

125A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

The starting point for the adaptation of a supervision environment is the
matching of supervision objects. It is performed using three subtasks. The �rst
subtask uses the explanations of supervision objects in order to modify those
of the newly copied supervision environment in the target case. Explanations
guide the adaptation operations : objects are determined by an explanation
matching process. A substitution operation is done by the replacement of ob-
jects by explanation similarity. A substitution may be for example an abstrac-
tion/specialization process.

In the Pad'im system, the adaptation process is guided by cases matching.
The application of an adaptation operation is conditioned by a speci�cation
di�erence. Explanations express dependency relations between a problem and
its solution and constitute the adaptation operations to be performed.

5.3 Resyn/CBR

In Resyn/CBR, a case is a synthesis plan that builds a target molecule from
basic molecules. Synthesis plans are organized in a co-subsumption hierarchy
de�ning the structural inclusion of networks representing molecules. A synthe-
sis plan is an ordered sequence of transformations that split a target molecule
into simpler molecules. A problem is described by a target molecule m to syn-
thesize. A solution is a synthesis plan C(m) of the target molecule. Synthesis
plans are indexed by molecules of the co-subsumption hierarchy. The retrieval
of a synthesis plan relies on two kinds of classi�cations : a strong one and a
smooth one. Strong classi�cation classi�es the target molecule in the subsump-
tion hierarchy in order to �nd the most speci�c subsumers mk of m and the
associated synthesis plan P (mk). If no subsumers refer to synthesis plans, then
smooth classi�cation is tried. Let mk a source problem, m a target problem,
and M = I(mk) the index associated to a problem mk, such as mk � I(mk).
the strong classi�cation sets mk such as S(mk;m) = mk � M � m. Smooth
classi�cation consists in modifying the molecules M of the hierarchy and the
target molecule m in order to obtain a subsumption relation and to try strong
classi�cation again. The problem is to �nd modi�cation functions � and such
as : S(mk;m) = mk � M ' �(M) � (m) ' m. The retrieval task returns
a pair (P (mk); S(mk;m)) where S(mk;m) is a similarity path between mk and
m that ensure the adaptability of the plan P (mk) for m. A similarity path is a
sequence of relations between mk and m passing through a set of indexes of the
hierarchy : mk � m1

k � ::: � m
p
k � mq (= :::(= m1 (= m.

The adaptation of a retrieved synthesis plan P (mk) of a molecule mk for a
target molecule m creates a new synthesis plan p(m) using the similarity path
between m and mk (�gure 9).

The relations of the similarity path guide the plan rewriting process. Ev-
ery relation in the similarity path corresponds to an adaptation step with an
associated rewrite function applied sequentially to the plan P (mk) in order to
obtain the plan p(m). Thus, relation � is associated to a generalization func-
tion, relation � is associated to a specialization function, and the relation (=

126 B. Fuchs and A. Mille

althoff@iis.uni-hildesheim.de

+

Reuse a plan

Copy the plan Adapt the plan

Select a relation of the
similarity path

Modify : apply an adaptation function

Abstract : remove
atoms or links specialize

Transform : add steps

Add atoms or
links

Substitute atoms or links
with other types

+

Fig. 9. The task decomposition of the Reuse task in Resyn/CBR.

is associated to a transformation function. The reuse step is easy because the
operations that have to be performed are determined during the retrieval step.

In Resyn/CBR, the retrieval and reuse steps are tightly coupled : the adap-
tation step control relies on the similarity path that underline generalization re-
lations, specialization relations and transformation relations between the source
and target cases. The retrieval step warrants the adaptability of the selected case
by developping particular relations.

6 A generic model of adaptation

Some invariants can be extracted from the study of these three systems4, we have
summarized them in the hierarchical task model of �gure 10 and the speci�cation
model of �gure 11.

The reuse task has two subtasks : the copy task copies the solution of
the retrieved case for the target problem, and the adapt task handles problem
di�erences and discrepancies. The copy task copies either the solution or the
method that produced the solution of the retrieved case 5, and begins to adapt.
This task has been modelled in such a way because most CBR systems represent
the reuse step as a copy of the solution followed by modi�cations of the copied
solution.

The adapt task focuses �rst on di�erences between problems in order to de-
termine the solution elements which have to be modi�ed and the adaptation
methods to apply to the solution. The starting point is the matching of the

4 Other systems, not presented in this paper, have been studied for the analysis.
5 The distinction between transformational adaptation and derivational adaptation
refers to Carbonell's work, but from our point of view, we think that this distinction is
not fundamental because it is possible to consider that the solution of the case itself is
the reasoning trace. This view has also been modelled in [Aamodt and Plaza, 1994].
Meanwhile, our point of view would need further studies to be fully justi�ed, and
our task descriptions are intended to describe transformational adaptation.

127A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

+

Reuse

Adapt : reduce
discrepancies

Copy

Copy
solution

Copy solution
method

Select a
discrepancy

Modify : apply a method Verify
consistency

None
Use the

case
base

Use domain
knowledge Use heuristic

method

Use abstraction /
specialization

Use a
retrieved

case
Use a causal
explanation

Use other
explanations

+

Remove Substitute Add
+

Search an element

+

Fig. 10. The decomposition of the reuse task.

cases performed during retrieval ; it determines the di�erences to be handled
by adaptation knowledge. These di�erences are augmented with new inconsis-
tencies that are detected by the verify consistency task after modi�cations
have been performed on solution elements. Discrepancies include problem spec-
i�cation di�erences as well as inconsistencies (de�ciencies, suboptimal results)
resulting from solution modi�cation. The adaptation model contains solution
transformation operators. Discrepancies are studied in the adaptation task in
order to apply speci�c adaptation operators and to modify solution elements of
the target.

Systems performing an adaptability guided retrieval choose cases by high-
lighting these kinds of relations and the associated adaptation knowledge at
the retrieval step, in order to assess �rstly the feasibility of the adaptation and
secondly an estimated adaptation cost of a source case.

The task reduce differences chooses di�erences, applies consequently the
appropriate adaptation knowledge, and controls the consistency of the obtained
solution.

When some solution elements are modi�ed, inconsistencies may appear
[Maher et al., 1995]. These inconsistencies may be viewed as new di�erences to
handle by the adaptation process and are added to the list for further adapta-
tions. The modi�cation operations may use di�erent methods depending on the
kind of relations underlined while handling a di�erence. Domain knowledge to
which are connected cases is used in order to �nd an element, for example by an
abstraction/specialization process.

128 B. Fuchs and A. Mille

althoff@iis.uni-hildesheim.de

Target case
modified

deduction
Abstraction/specialization

Reuse

Target case

Target
case

discrepancies
Selected

discrepancy
Target case

New
inconsistencies

Matching of
the cases

(differences)

Source
case

Verify
consistency

Select a
discrepancyCopy

Domain model

Modify :
apply a
method

Case baseAdaptation
model

Fig. 11. The speci�cation of the reuse task.

Figure 11 underlines knowledge models and knowledge pieces that are im-
plied in the adaptation process. Although we have de�ned separate knowledge
models in our framework (similarity model for retrieval, adaptation model for
adaptation, domain model, etc.), each of them have strong relationships with
other models. So, we can consider every piece of knowledge of the speci�cation
model that acts on a task, and we can compar the above CBR systems according
to the knowledge which is implied in the adaptation process.

In D�ej�a Vu, problem speci�cation di�erences are matched with premises of
adaptation rules in the retrieval step. The adaptation actions to be performed in
the adaptation step are already linked to speci�cation di�erences. The case se-
lected for reuse is chosen if there exists the corresponding adaptation knowledge
and if the associated cost is minimal. When adapting the solution, new adapta-
tion needs may appear when modi�cations are performed, and speci�c adapta-
tion rules may be triggered consequently. Adaptation action parts of adaptation
rules consist in a set of operators to transform graph structures. Basic operators
perform substitutions, deletions and insertions.

In the Resyn/CBR system, a similarity path indicates a sequence of relations
between the source and target problems passing through indexes of the hierar-
chy. Every kind of relation is associated to an appropriate adaptation function.
So, �nding an adaptable case means �nding a similarity path whose relations
correspond to an adaptation function with a minimal cost. The di�erent kinds
of relations are the generalization relation, the specialization relation and the
transformation relation. The generalization relation implies the deletion opera-
tor, the specialization relation implies the insertion or substitution operator and
the transformation relation implies the insertion operator.

In the Pad'im system, problem speci�cation di�erences are explained by
searching a sequence of relations linking a supervision object with an element
of the situation. An explanation expresses the role played by a supervision ob-
ject in a situation and uses the objects and relations of the domain knowledge.
The corresponding adaptation action is generic and consists in substituting an

129A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

object by searching an object having a same role, deleting an object or inserting
an object depending on the kind of explanation.

7 Discussion and conclusion

In this paper, we present a way to model the adaptation step of CBR applica-
tions at the knowledge level through two kinds of formalisms: a task speci�cation
model focusing on the pieces of knowledge involved in a particular task, and a
task decomposition model making explicit how the reasoning process can be
decomposed in a hierarchy of subtasks to achieve the problem solving. Beyond
the simple decomposition framework, the formalism of decomposition allows to
express how the di�erent tasks can be brought into operation (iteration, dis-
junction, conjunction, etc.), while the generic role of each piece of knowledge
involved to achieve a task is made explicit in the task speci�cation model. Ac-
tually, a relatively complete set of generic models have been developed on the
basis of our proper experience of CBR systems development, and we have veri�ed
their relevance on several di�erent other systems. We plan to place these generic
models at disposal for CBR developers in order to make easier the development
of new CBR systems. Researchers and developers can also use our approach to
propose domain-dependent generic models. A �rst corresponding symbol level

environment has been developed [Fuchs, 1997] for our proper CBR systems, and
we are trying to make it available through standard tools.

The adaptation step, although central in the problem solving process, is rarely
modelled in the same manner than other steps of CBR. An explicit connexion of
this step with the others in order to model uniformly the CBR cycle is justi�ed
�rstly in order to understand and to study the adaptation process and secondly in
order to provide a methodological basis for the engineering of CBR systems. The
development of several complex applications and the study of several systems
has led us to a generic task model of the adaptation process that caracterizes
the knowledge used and the kind of reasoning performed. The task model is
decomposed into a small number of subtasks of preparation, modi�cation and
control of the adaptation process. The study of the adaptation process may be
continued in two complementary directions : a formalization of the adaptation
process as a plan modi�cation process strongly coupled to the similarity search
process, and the development of adaptation operators explicitely controlled by
adaptation knowledge.

References

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-Based Reasoning :
Foundational Issues, Methodological Variations, and System Approaches. AI Com-

munications, 7(1):39{58.

[Armengol and Plaza, 1994] Armengol, E. and Plaza, E. (1994). A Knowledge Level
Model of Case-Based Reasoning. In Richter, M. M., Wess, S., Altho�, K.-D., and

130 B. Fuchs and A. Mille

althoff@iis.uni-hildesheim.de

Maurer, F., editors, First European Workshop on Case-Based Reasoning - EWCBR-
93, pages 53{64, University of Kayserslautern, Germany. LNAI, vol. 837, Springer
Verlag, Berlin.

[Bergmann and Wilke, 1995] Bergmann, R. and Wilke, W. (1995). Building and re�n-
ing abstract planning cases by change of representation language. Journal of Arti�cial
Intelligence Research, 3:53{118.

[Fuchs, 1997] Fuchs, B. (1997). Repr�esentation des connaissances pour le raisonnement
�a partir de cas : le syst�eme ROCADE. Th�ese d'universit�e, Universit�e Jean Monnet,
Saint-Etienne, France.

[Fuchs et al., 1995] Fuchs, B., Mille, A., and Chiron, B. (1995). Operator Decision
aiding by Adaptation of Supervision Strategies. In Veloso, M. and Aamodt, A.,
editors, First International Conference on Case-Based Reasoning - ICCBR-95, pages
23{32, Sesimbra, Portugal. LNAI, vol. 1010, Springer Verlag, Berlin.

[Goel, 1996] Goel, A. (1996). Meta cases: Explaining case-based reasoning. In Smith,
I. and Faltings, B., editors, Third European Workshop on Case-Based Reasoning -
EWCBR-96, pages 150{163, Lausanne, Suisse. LNAI, vol. 1168, Springer Verlag,
Berlin.

[Hanks and Weld, 1995] Hanks, S. and Weld, D. S. (1995). A domain independant
algorithm for plan adaptation. Journal of Arti�cial Intelligence Research, 2:319{360.

[Hua et al., 1996] Hua, K., Faltings, B., and Smith, I. (1996). CADRE : Case Based
Geometric Design. Arti�cial Intelligence in Engineering, 10:171{183.

[Hua et al., 1993] Hua, K., Smith, I., and Faltings, B. (1993). Exploring case-based
design: CADRE. Arti�cial Intelligence for Engineering Design, Analysis and Manu-
facturing (AI EDAM), 7(2):135{144.

[Koehler, 1996] Koehler, J. (1996). Planning from Second Principles. Arti�cial Intel-
ligence, 87:145{186.

[Leake et al., 1997] Leake, D., Kinley, A., and Wilson, D. (1997). Learning to integrate
multiple knowledge sources for case-based reasoning. In Proceedings of the 15th
International Joint Conference on Arti�cial Intelligence. Morgan Kaufmann.

[Lieber, 1997] Lieber, J. (1997). Raisonnement �a partir de cas et classi�cation
hi�erarchique. Application �a la plani�cation de synth�ese en chimie organique. Th�ese
d'universit�e, Universit�e Henri Poincar�e Nancy 1, Nancy, France.

[Lieber and Napoli, 1996] Lieber, J. and Napoli, A. (1996). Adaptation of Synthesis
Plans in Organic Chemistry. In Workshop on Adaptation in Case-Based Reasoning,
ECAI-96, pages 18{21, Budapest, Hungary.

[Maher et al., 1995] Maher, M. L., Balachandran, M. B., and Zhang, D. M. (1995).
Case-Based Design. Lawrence Erlbaum Associates, Mahwah, New Jersey.

[Mille, 1995] Mille, A. (1995). Raisonnement bas�e sur l'exp�erience pour coop�erer
�a la prise de d�ecision, un nouveau paradigme en supervision industrielle. Th�ese
d'universit�e, Universit�e Jean Monnet, Saint-Etienne.

[Smyth, 1996] Smyth, B. (1996). Case-Based Design. Doctoral thesis of the Trinity
College, Dublin.

[Vo�, 1996] Vo�, A., editor (1996). Proceedings of the ECAI'96 Workshop: Adaptation
in Case-Based Reasoning.

[Vo�, 1997] Vo�, A. (1997). Case Reusing Systems - Survey, Framework and Guide-
lines. Knowledge Engineering Review, 12(1):59{89.

131A Knowledge-level Task Model of Adaptation in Case-Based Reasoning

althoff@iis.uni-hildesheim.de

Development and Utilization of a Case-Based
Help-Desk Support System in a Corporate Environment

Mehmet Göker1 & Thomas Roth-Berghofer2

1 DaimlerChrysler Research and Technology 3, FT3/KL
P.O. Box 2360, D89013 Ulm, Germany
mehmet.goeker@daimlerchrysler.com

Phone: +49 731 5052856 Fax: +49 731 5054210

2 tec:inno GmbH
Sauerwiesen 2, D67661 Kaiserslautern, Germany

roth@tecinno.com
Phone: +49 6031 606400 Fax: +49 6031 606409

Abstract: Current Case-Based Reasoning (CBR) process models present CBR
as a low maintenance AI-technology and do not take the processes that have to
be enacted during system development and utilization into account. Since a
CBR system can only be useful if it is integrated into an organizational
structure and used by more than one user, processes for continuous knowledge
acquisition, -utilization and -maintenance have to be put in place. In this paper
the short-comings of classical CBR process models are analyzed, and, based on
the experiences made during the development of the case-based help-desk
support system HOMER, the managerial, organizational and technical
processes related to the development and utilization of CBR systems described.

1. Motivation

Case-Based Reasoning (CBR) has long been considered as an AI technology with
comparably low maintenance effort. However, with the advent of CBR systems in
industrial environments, issues that have to do with the processes involved in putting
a knowledge repository into operation in an organization arise. Especially the
processes involved in initial and continuous knowledge acquisition, case-base and
domain-model maintenance as well as the organizational impact of and impact of the
organization on a CBR system have not been analyzed and understood completely.
These aspects are currently neither covered in academic CBR models nor supported
adequately in commercially available CBR systems.

On the following pages we describe the processes that had to be enacted during the
development and utilization of the case-based help-desk support system HOMER [2].
After the processes had been derived from one specific application, they were
verified, revised and re-used during several other CBR-projects by means of the
INRECA-IIi methodology [1]. We believe that most of the results can be transferred
to other domains and applications

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 132-146, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

2. Current Case-Based Reasoning Process Models

Several variations of the Case-Based Reasoning process model exist in literature [cf.
3,4,5,6]. The basic idea behind all approaches is to retrieve problem solving
experience that has been stored as a case in a case-base, adapt and reuse it to solve
new problems and, if not successful, learn from failures.

On the abstract level the CBR process can
be described to be comprised of four main
tasks (Fig.1): Retrieve, Reuse, Revise and
Retain [6].

During Retrieval the most similar case or
cases in the case-base are determined based
on the new problem description.

During Reuse the information and
knowledge in the retrieved case(s) is used to
solve the new problem. The new problem
description is combined with the information
contained in the old case to form a solved
case.

During Revision the applicability of the
proposed solution (solved case) is evaluated.
If necessary and possible the proposed case
is repaired.

If the case solution generated during the
reuse phase is not correct and cannot be repaired, the case-base is updated with a new
learned case or by modification of some existing cases in the Retain task.

3. Shortcomings of Current Case-Based Reasoning Process
Models

3.1. Effects of User Groups

A CBR System is a means to store, share and re-use experience. If the experience
stored in a CBR system is only used by the person who enters it, the use of the system
will be rather limited. The goal of developing a CBR system, especially in a corporate
environment, is to create a means to capture, cumulate and re-use corporate
experience with all the benefits that are associated with such a venture [cf. 8].

It has been claimed that "Knowledge Acquisition for a case-based system is
natural" [5], and that "CBR offers a significant benefit for knowledge maintenance: a
user may be able to add missing cases to the case library without expert intervention"
[7]. While this may indeed be true for static domains with a very limited number of
users of the system, we would like to be somewhat more cautious to this respect.

If a CBR System is not only used by one user but rather a group of users, the
quality (in terms of representation and content) of the new cases that each user creates
will vary. This will have a negative effect on the overall quality of the case-base (in

5(9,6(

5(75,(9(

5
(
8
6
(

5
(
7
$
,1

*HQHUDO�
.QRZOHGJH

3UREOHP

6XJJHVWHG�
6ROXWLRQ

&RQILUPHG�
6ROXWLRQ

5HWULHYHG
&DVH�

6ROYHG�
&DVH

7HVWHG��
5HSDLUHG�

&DVH

3UHYLRXV
&DVHV

1HZ
&DVH

1HZ
&DVH

/HDUQHG
&DVH�

Fig.1: The Case-Based Reasoning Process Model
according to Aamodt and Plaza [9]

133Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

terms of correctness, coverage and minimality) and reduce the effectiveness and
efficiency of the system in general. Processes that ensure that the overall quality of
the case-base does not deteriorate when new cases are entered have to be put in place.
Depending on the user group that is going to utilize the system, the content of the
case-base and the user interface of the system have to be adapted as well.

3.2. Effects of Time

Current CBR process models base their description on a static view of the domain.
While this assumption is acceptable for academic purposes, it does not hold for real
world applications.

Every real-world domain changes over time. Solutions that were applicable some
time ago will become invalid. Indices that were suitable will become obsolete and
similarities will change. Methods to ensure that the CBR system is up-to-date have to
be developed and tasks that realize these methods have to be incorporated into the
CBR process models.

3.3. Impact on/of the Organization

Both during the development and the utilization of a CBR System, changes in the way
knowledge is handled take place within an organization. Personnel has to be dedicated
to the task of acquiring and maintaining knowledge, the system has to be integrated
into the daily operations and has to become part of the organizational culture. A CBR
system can only be successful in the long run, if enough personnel to maintain, use
and develop the system are available and set aside by management [cf. 9].

4. Case-Based Help-Desk Support Systems

Help-desks support end-users of complex technical equipment by providing
information about the usage of the equipment and keep the systems operational by
performing necessary maintenance tasks. Help desk operators are expected to be able
to solve problems on very short notice, in a very short time, and to be knowledgeable
in all areas that are related to the technical system at hand.

Help-desk operators use their own experiences to solve most of the problems that
are relayed to them. However, as systems become more complex, the areas help-desk
operators are experts in tend to diverge, i.e., problem solving experience is distributed
among experts and the areas of expertise do not necessarily overlap. Nevertheless,
when an end-user has a problem, he or she wants it solved as soon as possible. If that
expert is not available, the user has to wait, which is annoying and not acceptable in a
commercial environment. The problem-solving experience must be available to every
help-desk operator at all times [2].

The goal of developing a case-based help-desk support system is to create a
knowledge repository that contains problem-solving experiences for a complex
technical domain that changes over time. This knowledge repository will be used in
an organization, by a group of people with varying levels of expertise, in a time-
critical operation. It is obvious that the development and use of such a system does
not only involve technical processes, but also raises managerial and organizational

134 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

issues. In the following sections, we describe the tasks that must be performed to
develop a case-based help-desk support system and the processes that have to be put
into place to make such a system operational.

5. Processes During Case-Based Help-Desk System Development
and Utilization

5.1. Process Types

Table 1 lists the processes that have to be considered and /or performed during the
development and utilization of a case-based help-desk system. We distinguish
between organizational, technical and managerial processes [1].

Organizational processes cover those parts of the business process that need to be
changed in order to make best use of a new software system. Technical processes
transform and evolve product information from the problem description to the final
(software) system. They address the development of the system and the required
documentation itself. Managerial processes provide an environment and services for
enacting the technical and the organizational processes.

System Development System Use

Managerial Processes - Goal Definition
- Awareness Creation
- CBR-Tool Selection

- Progress Verification and
Controlling

Organizational Processes - Project Team Selection
- Initial Domain Selection
- Project Team Training
- Knowledge Acquisition

Process Development
- Utilization Process

Development

- End-User Training
- Continuous Knowledge

Acquisition
- Utilization Process

General IT-
System
Related

- System Specification
- System Implementation
- System Integration
- System Verification

- Continuous System
Maintenance

Technical
Processes Knowledge

Repository
Related

- Initial Knowledge
Acquisition

- Core Knowledge
Acquisition

- Continuous Knowledge
Acquisition and
Maintenance

Tab. 1. Processes during case-based help-desk support system development and use.

5.2. Managerial Processes During System Development

Goal Definition. For a case-based help-desk support system project to be successful,
precise goals must be determined at the outset. This enables management to fix the
direction in which the project should develop and to measure the success of the

135Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

project upon completion. Hard (quantitative) and soft (qualitative) success criteria
should be identified [cf. 9]. Hard criteria are measurable quantities and cover aspects
like:

• problem solution quality (first-call resolution rate, solution correctness, and
consistency, average cost of proposed solution, and so on),

• process quality (average time needed to solve a problem, average number of
escalations needed, quality of dynamic priority assignment, and so on),

• organizational quality (speedup in help-desk operator training, flexibility of
staffing, cost per interaction, and so on).

Soft criteria, on the other hand, measure the subjective quality of the help-desk and
cover aspects like:

• end-user satisfaction (availability of the help-desk, perceived competence,
friendliness, and so on),

• help-desk operator satisfaction (workload, work atmosphere, repetitiveness of
tasks, intellectual stimulation, and so on), and

• corporate aspects (preservation of knowledge, publicity, and so on.).
The goals must be communicated to the project team, and the team has to be

motivated to achieve them.
When project goals are selected, it is important that these goals be realistic both in

terms of their time frame and whether they can be achieved with an acceptable
amount of resources.

Awareness Creation and Motivation. The case-based help-desk support system
project targets the most precious asset of the employees: their experience. The
project’s goal is to collect the problem-solving experience of each relevant employee
and make it available to whomever needs it in the organization.

Obviously the help-desk operators will have a motivational barrier to giving away
their experience. Every employee knows that “knowledge is power.” In help-desk
environments or domains where experience is being used to solve problems having
experience translates into being superior and indispensable, whereas giving away the
knowledge can be perceived as becoming obsolete.

However, as soon as help-desk operators become part of a project team and
understand that sharing knowledge means that they will get back much more than
they invest, most barriers disappear. It has to be made clear that the user and
beneficiary of the developed system is not going to be an anonymous “company,” but
they themselves. They will be able to access the experience of their colleagues and
solve problems they could not solve before, as well as end situations in which
colleagues constantly pester them for advice. The resulting help-desk system will
enable them to work with increased efficiency and effectiveness.

Apart from the help-desk operators, management has to be motivated as well. CBR
is perceived to be rather academic by most managers. While to them investing
resources into a database project seems to be no problem, investing into CBR is
investing into a venture with an uncertain outcome. It has to be clarified that CBR is
an established technology and by no means only an academic playground. The case-
based help-desk support project must be seen as part of the long-term knowledge
management strategy for the company. Since knowledge increases and evolves, the

136 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

experience in a CBR system must be maintained continuously. System development
is only the initial phase in any CBR project.

Without continuous management support and employees who are willing to fill and
use the system, any CBR project is bound to fail.

CBR Tool Selection. Based on the project, domain, and user-group specifications, a
suitable tool to develop the case-based help-desk support system must be selected.
Criteria to be taken into account include:
• the operating environment in which the system is going to be used (hardware and

software, network architecture, database type, and so on),
• the complexity of the technical domain (home appliances or networked

workstations),
• the level of experience of both the end-users and the help-desk operators,
• the organization of the help-desk (number of levels, physical locations, and so on),
• the project goals that have been defined.
Since the case-based help-desk support system is going to serve as a (long-term)
knowledge repository for the organization, this selection should be based not only on
technical criteria, but also should take into account economic and organizational
considerations, as well as strategic decisions of the company.

5.3. Organizational Processes During System Development

Project Team and Initial Domain Selection. The creation of a project team to serve
as the “knowledge engineers” and the selection of a group to serve as initial test users
of the system are the first organizational steps that must be taken.

Apart from the person implementing the case-based help-desk support system
(CBR consultant), the project team should contain help-desk personnel who are very
experienced in the relevant subdomain to be modeled and well respected by the help-
desk operators outside the project group. Once selected, the members of the group
should be kept constant, i.e., fluctuations should be avoided.

The group of initial users should comprise two types of help-desk personnel: One
that is on a comparable level of expertise with the project team with respect to the
selected subdomain (i.e., expert users) and help-desk personnel who are less familiar
with the specific problem area (i.e., novice users). While the expert test-users can
communicate to the project group in their language, the novice users will represent
the target group for which the system is being implemented. Feedback from both
types of users is required for a successful project. After a first “rapid prototype” has
been implemented, the expert users can give hints regarding problems with the
knowledge modeled in the system. The members of the novice user group, on the
other hand, will serve as models of the help-desk operator who will use the system.
The vocabulary in which the cases are being represented and the knowledge contained
within them has to be adjusted to the novice user group

Which domain one selects for the initial knowledge acquisition is of utmost
importance. The domain should be representative of the problems that are being
handled at the help-desk, both in terms of complexity and frequency. It should also be
a problem area that accounts for a considerable amount of the workload and about
which the help-desk operators are interested in sharing (obtaining) knowledge.

137Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

Training the Project Team. Training the project team is an organizational process
that has a major impact on the success of the help-desk project. At the beginning of
the project, the project team is (most of the time) inexperienced with respect to CBR
and knowledge acquisition. Since the project group will be responsible for system
maintenance and continuous case acquisition after the development has finished, it is
very important that they are trained in CBR, as well as in knowledge acquisition and
modeling, during the initial knowledge acquisition.

While the project team should also get advanced training to be able to model, fill,
and maintain the knowledge in the system, the test users only need to be trained in
using the resulting case-based help-desk support system.

Development of the Knowledge Acquisition and Utilization Processes. The
introduction and use of a case-based help-desk support system usually causes a re-
evaluation and modification of the existing knowledge and information management
processes in a help-desk environment. After the development of the case-based help-
desk support system is complete, it will serve as the central source of information for
the help-desk operators. To ensure a smooth flow of information, the knowledge
sources and formats, as well as the qualification of the personnel that requires the
knowledge, have to be analyzed, and processes that allow efficient and effective
acquisition and use of knowledge have to be developed. One should keep in mind that
while the group enacting the initial knowledge acquisition process is the project team
and rather experienced, the users who use the system in the end (both in terms of
knowledge retrieval and continuous acquisition) may be less qualified.

During the development of HOMER [2], we found it very useful to define three
roles for the knowledge acquisition and utilization processes during the use of the
help-desk system:

• the help-desk operator,
• the CBR author,
• the CBR administrator.

Help-desk operators are the users from the target group. Their duty is to use the
implemented help-desk system in their daily work. If they cannot find an appropriate
solution with the system, they will have to solve the problem on their own and
generate a new case. Depending on the domain and on managerial decisions, this new
case may or may not be made immediately available as an “unconfirmed” case to the
other help-desk operators. For maintenance purposes, the operators are also
encouraged to comment on the quality and applicability of the cases in the case base.

The unconfirmed, new cases have to be verified in terms of their correctness and
suitability for the case base by the CBR author(s). The CBR author is a person with
experience both in the domain and in using the CBR system. While the CBR author
can decide on the quality and inclusion of a case in the case base, he or she is not
allowed to perform modifications on the vocabulary, the similarity, and the adaptation
knowledge. These can only be performed by the CBR administrator.

The personnel enacting the roles of the CBR author(s) and the CBR administrator
should be included in the project group from the start of the project. It should be noted
that both these roles require a considerable amount of resources and should be
performed by dedicated personnel. If the organization or the size of the help-desk

138 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

does not permit dedicating more than one person to these tasks, the duties of the CBR
author and CBR administrator should be performed by one person.

5.4. Technical Processes During System Development

General IT-System Development Related Processes. The development of a case-
based help-desk support system is similar to any other IT project in most aspects. As
usual, the system has to be specified, implemented, integrated, and verified in
accordance with standard software engineering techniques. However, the user-
interface and the connection to supporting programs (integration) are two features that
require additional attention.

The user interface of the case-based help-desk support system has to be developed
in accordance with the user group (i.e., second level, first level, or even end-user), the
specific domain, and company policies (who is allowed to see what kind of data). It
has to present the right data, at the right moment, and on the right level of abstraction.

A case-based help-desk support system cannot operate in isolation. While the CBR
system will store experience, it will not contain data regarding device configurations,
maintenance contracts, and users. Since this information is needed during problem
solving, the system has to have interfaces to the databases containing this information.

Most help-desks use trouble-ticket tools in their daily operations; they record,
manage, trace, escalate, and analyze the calls they receive. While these trouble-ticket
tools are very useful in handling calls, they do not provide means to capture and reuse
problem-solving experience. Depending on the environment, the case-based help-desk
support system should also either be integrated into the user interface of the trouble-
ticket tool or vice-versa. Data from the trouble-ticket system has to be transferred to
the CBR system to initialize the attributes that relate to the data that has already been
acquired. Except for very complex second-level applications, it is not feasible to have
two points of entry to the problem-solving process.

Initial Knowledge Acquisition for the Case-Based Help-Desk Support System. A
CBR system is useless without cases. When the case-based help-desk support system
is handed over to the help-desk operators, it has to contain enough cases to cover at
least part of the relevant problems at the help-desk. Initial knowledge acquisition
serves three major goals:

• training the project team in knowledge acquisition,
• initializing the knowledge in the system,
• collecting enough help-desk cases to bootstrap the system.

During initial knowledge acquisition, the knowledge in the system can be distributed
among the domain model (vocabulary), similarity measure, adaptation knowledge,
and the case base. These knowledge containers [10] have to be created and filled. In
principle, each container could be used to represent most of the knowledge. However,
this is obviously not very feasible, and the CBR consultant should carefully decide on
the distribution of knowledge into the containers. After the initial knowledge
acquisition is completed, this distribution is more or less fixed and should only be
changed with caution.

The processes for the acquisition of knowledge for each container run in parallel
and cannot be easily separated during the initial knowledge acquisition. Since the

139Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

vocabulary lays ground for entering the cases and describing the similarity measures
and adaptation knowledge, it has to be available first. However, to be able to create a
domain model (i.e., the vocabulary), one has to understand how the domain is
structured, and this can only be done by looking at the cases, the similarities, and the
adaptation rules.

In our experience, the best way to approach this problem is to create and use
standardized forms to acquire an initial amount of cases from the project team. The
form should be developed in co-operation with the project team. A sample form that
was developed for the initial case acquisition for the HOMER application is shown in
Tab. 2.

The first thing that must be done is to ask the project team to fill out as many case
acquisition forms as they can. By looking at the elements of the forms, the vocabulary
(i.e., the phrases that have to be used and the domain structure) can be derived and a
vocabulary that is capable of describing the cases that have been on the forms can be
modeled.

By asking the project team what the range of possible values for each attribute on
the forms is and inquiring what would have happened if one of the values on a form
were different, a broad range of cases can be created and the vocabulary expanded in
a short time. Discussions among the project team members raise the level of
understanding of both the approach and the problems, and should be encouraged in
this early phase. During initial knowledge acquisition, it is also advisable to have
more cases on an “everyday” level rather than having a few extremely specific ones.

Homer Case Acquisition
Problem Nr : ��� Date:���������
Author:�6��,WDQL Verified by: -��)OHLVFK

Problem Description (Failure) 3ULQWHU�GRHV�SULQW�SDJHV�IXOO�RI�JLEEHULVK
Reason (Fault))LOH� LV� 3RVWVFULSW�� 3ULQWHU� GRHV� QRW

XQGHUVWDQG�36
Solution 6HQG�)LOH�WR�3RVWVFULSW�3ULQWHU��GHOHWH�ILOH

IURP�TXHXH
What did you check to find out what the problem was ?
3ULQWHU�0RGHO +3�/-��/
)LOH�7\SH 3RVWVFULSW

Other Notes: 7KH� UHYHUVH� RI� WKLV� SUREOHP� GLG� DOVR
KDSSHQ��VRPHERG\�VHQW�D�3&/�ILOH�WR�D�SXUH
36�SULQWHU

Tab. 2. Sample form for initial case acquisition.

While the initial vocabulary is being created and value ranges fixed, questions
regarding adaptation rules and similarities should be posed and the results entered into
the system.

140 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

One of the major challenges one must face when creating a system to capture and
represent the experience of domain experts, is determining the level of abstraction
with which the domain and the knowledge will be modeled. If the model used is too
simplistic, it will cause problems while the experience is being captured and will miss
important details. If, however, the domain model is too specific, the user will get lost
quickly in useless details, and knowledge acquisition will be very tedious and time
consuming. Maintenance is very difficult for both a too-simplistic and a too-complex
model.

The decision to use a structured domain model approach as opposed to a textual
query-answer-based approach depends on the system’s intended users. For
inexperienced help-desk operators, a tool with which simple problems can be solved
by answering a limited number of questions is of great value [18]. However, for
experienced help-desk operators who would not bother to use a system for
(subjectively) trivial problems, a structured domain model approach yields better

results. The system will be able to
present the not-so-obviously
similar solutions that the help-
desk operators could not find.
Since knowledge contained in the
domain model is used in
similarity calculation, the

retrieved solutions will be similar in a semantic and structural manner. The domain
model allows the solutions in the case base to be applicable to a broader range of
problems.

The cases in the help-desk domain should be modeled in accordance with the
approach the help-desk operators use in solving problems. We found the approach
shown in Fig. 2 very suitable.

The Problem Description is the first information the help-desk operator gets from
the end-user. This description is what the end-user subjectively perceives as the
problem. It may or may not have to do with the actual cause of the failure.

The Diagnosis Path consists of the questions the help-desk operator must ask or
the information he or she must obtain from various sources to arrive at a diagnosis.
The diagnosis path contains the minimal amount of information that is necessary to
diagnose the problem.

The Solution contains the fault, i.e., what caused the problem, and the remedy, i.e.,
how to solve the problem. Depending on how the system is implemented and what
statistical information is needed for further evaluation, some additional,
administrative data may also be added to the case description.

Each complete path from problem description to solution makes up one case.
Once the cases from the initial forms have been entered into the help-desk system,

the system should be shown to the project group to verify the results it delivers.
Afterwards the initial knowledge acquisition can continue as more cases are entered
from additional forms and the knowledge containers are incrementally updated.

Initial knowledge acquisition takes place in two steps. During the first, preliminary
knowledge acquisition, the cases for the prototype of the case-based help-desk

Problem Diagnosis
Path

Solution

Fig. 2. Basic structure of a help-desk case.

141Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

support system are collected. While the collected cases will help to initialize the
knowledge containers and train the project team, the collection of the “core” cases for
the system should be done in a second step, the core knowledge acquisition.
Nevertheless, the approach that is used in both processes is similar.

6. Using the System

6.1. Managerial Processes During System Use

Project progress with respect to the qualitative and quantitative criteria selected as
project goals must be monitored constantly during system development and use [cf.
9]. Regular project reviews should take place. Standard project planning and
controlling techniques can and should be applied to case-based help-desk support
projects.

Measuring the impact of the help-desk system on the efficiency and effectiveness
of the target group (increase in first-call problem resolution, decrease in problem
solution time, and so on) and making the results available to both the project and the
target groups will motivate the help-desk operators to use the system and help
uncover deficiencies.

6.2. Organizational Processes During System Use

Knowledge Utilization and Acquisition Process. The knowledge utilization and
acquisition processes that have been defined during system development have to be
enacted during system use. The use of the case-based help-desk support system
contains the Application Cycle in which the system is used by the help-desk operator
and the Maintenance Cycle in which the system is maintained by the CBR author and
the CBR administrator (Fig. 3, section 6.3).

During the application cycle, the cases that are stored in the case-based help-desk
support system are being used to solve problems. Even if no new cases are being
acquired during this cycle, statistical data regarding the quality and usage of the cases
(last retrieval time, last application date, success rate and so on) can be collected. This
data can be used to determine the quality of the cases and for maintenance purposes.

Whenever a help-desk operator decides that the proposed solution is not
appropriate, a new case has to be entered into the case base. However, since the
quality of these cases varies according to the user entering them, they cannot be
transferred to the case base without being verified by the CBR author. This is done in
the maintenance cycle by the CBR author and the CBR administrator.

Training the Help-Desk Operators. Just as the test-users were trained during the
project team training, the help-desk operators have to be introduced to the basics of
CBR technology and the developed case-based help-desk support system. Since the
operators are going to participate in the continuous acquisition of knowledge,
standards on how to store cases have to be introduced and taught. Feedback-channels
also should be created and introduced during this training.

142 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

6.3. Technical Processes During System Use

Continuous Knowledge Acquisition and Maintenance. The knowledge contained
in a case-based help-desk support system is an incomplete model of the domain in the
real world. Whenever the real world changes, the model in the system has to be
updated. The necessity for changes in the model may either arise from real changes in
the world or from the learning effect associated with using the case-based help-desk
support system. By learning, the system improves the model’s coverage of the real
world. Since the model is incomplete by definition, with growing knowledge, updates
in the knowledge containers will be necessary.

While nobody would consider purchasing
a database system with the assumption that
it would continue to work without any
maintenance at all, there seems to exist a
misconception about knowledge-based
systems in this respect. All concepts used for
maintaining database systems are also
applicable to knowledge-based systems.
However, because of the semantics
associated with the information in
knowledge-based systems, additional
maintenance operations are necessary.
Learning and changes in the real world can
make maintenance necessary for each
knowledge container.

The utilization of a case-based help-desk
support system comprises two linked
process cycles: the Application Cycle and
the Maintenance Cycle (see Fig. 3).

The Application Cycle takes place each
time a user solves a problem with the case-based help-desk support system. During
the application of the CBR system, the standard tasks Retrieve, Reuse, and Revise
must be performed [6]. If the case solution generated during the reuse phase is not
correct and cannot be repaired, a new solution has to be generated by the help-desk
operator. The solution that has been retrieved by the system or created by the help-
desk operator is put to use during the Recycle task. The Application Cycle is
performed by the end-user of the system (help-desk operator).

Whenever a new solution is generated during system use, this case is stored in the
case buffer, made available to all help-desk operators as an "unconfirmed case", and
sent to the Maintenance Cycle. These steps as well as the maintenance cycle itself are
not visible to the standard help-desk operator.

The Maintenance Cycle consists of the Retain and Refine tasks. While the
Application Cycle is executed every time a help-desk operator uses the CBR system,
the Maintenance Cycle can be executed less frequently, i.e., only when there is a need
for maintaining the system or at regular intervals.

Maintenance
CycleRetain Refine

Application
Cycle

Reuse

ReviseRetrieve

ReCycle

Fig. 3. Processed during the use of a
case-based help-desk system

143Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

During the Retain task, the CBR author checks the quality of the new cases that
were generated by the helpdesk operators and stored in the case buffer.

The CBR author verifies and approves the representation and content of each case.
In terms of representation, the cases should

• contain the information that is necessary and sufficient to solve the problem,
• be described on an appropriate abstraction level.

The content is verified by checking whether the case is
• correct,
• (still) relevant, and
• applicable.

During the Refine phase, maintenance steps for the knowledge containers are
performed by the CBR administrator. The case base, vocabulary, similarities, and
adaptation knowledge have to be refined, and the potentially quality-decreasing
effects of external changes in the domain, as well as the inclusion of new cases in the
case base, have to be counteracted.

The goal of the Refine task with respect to the case base is to keep the case base
correct, to have maximal coverage of the problem space, and to have no redundant
cases. After each case has been validated in the retain task, their suitability for
inclusion in the case base has to be determined.

Before a new case is taken into the case base, it must be checked to see
• whether it is a viable alternative that does not yet exist in the case base,
• whether it subsumes or can be subsumed by an existing case,
• whether it can be combined with another case to form a new one,
• whether the new case would cause an inconsistency, and
• whether there is a newer case already available in the case base.

The operations that have to be performed during case base maintenance vary
depending on the application domain and the vocabulary that is used to represent the
cases [cf. 12, 13, 14, 15, 16].

Both the inclusion of new cases and changes in the domain may have an effect on
the validity and quality of the compiled knowledge containers (vocabulary, similarity,
adaptation knowledge) as well. The maintenance of these containers is also performed
in the Refine step. Since changes in the vocabulary can cause information in the cases
to be no longer available or missing (e.g., attributes can be added and deleted, classes
can be moved) maintenance of the vocabulary should be performed with utmost
caution [cf. 17].

It should be noted that the refinement of the knowledge containers does not
necessarily have to be triggered by external events but may also be performed through
introspection. By analyzing the content of the knowledge containers, more efficient
ways to structure the domain, adaptation rules, and similarities, as well as new cases,
can be discovered or derived.

While maintenance operations for the case base can be performed by the CBR
author, maintenance of the vocabulary, the similarity, and adaptation knowledge
should only be performed by the CBR administrator.

General IT-System-Related Processes. Once the case-based help-desk support
system has been put into operation, it has to be debugged, monitored, and updated

144 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

continuously. The necessity for updates does not necessarily have to come from the
help-desk system itself, but may also be initiated by changes in the (IT) environment.
Since these processes are not CBR-specific but apply to IT systems in general, we
refrain from going into their details here.

7. Summary

Current CBR-process models only cover the technological aspects of CBR system
development. While the tasks given in these models suffice to develop systems that
are used by a limited number of users in a static environment, problems that arise
from larger user groups with differing levels of experience as well as dynamic
domains are disregarded. Case-Based Reasoning in real world environments is not
necessarily a low maintenance AI-technology and processes related to knowledge
acquisition and maintenance play a very important role in the success of CBR projects
in corporate environments.

In order to develop case-based help-desk systems that are being used in a dynamic,
corporate environment by a large group of users, managerial, organizational and
technical processes have to be taken into account. It has to be kept in mind, that once
a CBR system is in place, continuous knowledge acquisition and maintenance is
necessary. Processes for knowledge acquisition and maintenance have to be
developed and put in place, and personnel has to be dedicated to perform these tasks.

8. References

1. Bergmann, R., Breen, S., Göker, M., Manago, M., Wess, S. "Developing Industrial Case
Based Reasoning Applications: The INRECA Methodology.", Lecture Notes in Artificial
Intelligence, 1612, Berlin, Springer Verlag, 1999

2. Göker M., Roth-Berghofer Th., Bergmann R., Pantleon T., Traphöner R., Wess S., Wilke
W., "The Development of HOMER: A Case-Based CAD/CAM Help-Desk Support Tool",
Smyth B. & Cunningham P. eds., "Advances in Case-Based Reasoning, Proceedings of the
Fourth European Workshop on Case-Based Reasoning EWCBR98 Dublin, September 23-
25,1998", LNAI 1488, pp. 346-357, Berlin, Springer Verlag, 1998

3. Riesbeck C., Schank R., "Inside Case-based Reasoning", Lawrence Erlbaum Associates,
Publishers, Hillsdale 1989

4. Hammond K., "Case-Based Planning-Viewing Planning as a Memory Task", Academic
Press Inc, HBJ Publishers, San Diego, 1989

5. Kolodner J., "Case-based Reasoning", Morgan Kaufmann Publishers Inc, San Mateo, 1993
6. A. Aamodt, E. Plaza., ”Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches“, AICOM Vol.7 Nr.1, pp.39-59, March 1994
7. Leake D., “CBR in Context: The Present and the Future” in Leake D. (ed.), “Case-Based

Reasoning – Experiences, Lessons and Future Directions”, pp. 3-30, AAAI press / MIT
press, Menlo Park California, Cambridge Massachusetts, London, 1996

8. Kitano H., Shimazu H., “The Experience Sharing Architecture: A Case Study in
Corporate-Wide Case-Based Software Quality Control” in Leake D. (ed.), “Case-Based
Reasoning – Experiences, Lessons and Future Directions”, pp. 235-268, AAAI press /
MIT press, Menlo Park California, Cambridge Massachusetts, London, 1996

145Development and Utilization of a Case-Based Help-Desk Support System

althoff@iis.uni-hildesheim.de

9. Stolpmann M. Wess S. "Optimierung der Kundenbeziehungen mit CBR systemen-
Intelligente Systeme für E-Commerce und Support", Addison Wesley Longmann (Business
& Computing), Bonn, 1999

10. Richter M., "Introduction", in Lenz M., Bartsch-Spörl B., Burkhardt H. D., Wess S.
(Eds.), "Case-Based Reasoning Technology, From Foundations to Applications", Lecture
Notes in Artificial Intelligence Vol. 1400, pp.1-15, Springer-Verlag, Berlin, Heidelberg
1998. Also: Richter M., "The Knowledge Contained in Similarity Measures", Invited talk
at ICCBR95, http://wwwagr.informatik.uni-kl.de/~lsa/CBR/Richtericcbr95remarks.html

11. Wilke W., Vollrath I., Bergmann R., “Using Knowledge Containers to Model a
Framework for Learning Adaptation Knowledge”, ECML (European Conference on
Machine Learning) Workshop, Prag, 1997

12. Leake D., Wilson D., "Categorizing Case-Base Maintenance: Dimensions and
Directions", Smyth B. & Cunningham P. eds., "Advances in Case-Based Reasoning,
Proceedings of the Fourth European Workshop on Case-Based Reasoning EWCBR98
Dublin, September 23-25,1998", LNAI 1488, pp. 196-207, Berlin, Springer Verlag, 1998

13. Smyth B., McKenna E., "Modeling the Competence of Case-Bases", Smyth B. &
Cunningham P. eds., "Advances in Case-Based Reasoning, Proceedings of the Fourth
European Workshop on Case-Based Reasoning EWCBR98 Dublin, September 23-
25,1998", LNAI 1488, pp. 208-220, Berlin, Springer Verlag, 1998

14. Surma J., Tyburcy J., "A Study on Competence-Preserving Case Replacing Strategies in
Case-Based Reasoning", Smyth B. & Cunningham P. eds., "Advances in Case-Based
Reasoning, Proceedings of the Fourth European Workshop on Case-Based Reasoning
EWCBR98 Dublin, September 23-25,1998", LNAI 1488, pp. 233-238, Berlin, Springer
Verlag, 1998

15. Racine K., Yang Q., "Maintaining Unstructured Case-Bases", Leake B. & Plaza E. eds.,
"Case-Based Reasoning Research and Development", Proceedings of the second
International Conference on Case-Based Reasoning ICCBR-97 Rhode Island, July 1997,
LNAI 1266, pp. 553-564, Berlin, Springer Verlag, 1997

16. Hüttemeister A., "Wartung einer Fallbasis", Diploma Thesis, University of Kaiserslautern,
Department of Computer Science, February 1999

17. Heister F., Wilke W., "An Architecture for Maintaining Case-Based Reasoning Systems",
Smyth B. & Cunningham P. eds., "Advances in Case-Based Reasoning, Proceedings of the
Fourth European Workshop on Case-Based Reasoning EWCBR98 Dublin, September 23-
25,1998", LNAI 1488, pp. 221-232, Berlin, Springer Verlag, 1998

18. Thomas, H., Foil R., Dacus, J. : "New Technology Bliss and Pain in a Large Customer
Service Center", in: Case-Based Reasoning Research and Development, Proceedings of
the ICCBR97, Leake, Plaza (eds.), , pp. 166-177, LNAI1266, Springer Verlag, Berlin,
1997

i Funding for this work has partly been provided by the Commission of the European Union
(INRECA-II: Information and Knowledge Reengineering for Reasoning from Cases; Esprit
Contract no. 22196). The partners of INRECA-II are: Acknosoft (prime contractor, France),
DaimlerChrysler (Germany), tecInno (Germany), Irish Multimedia Systems (Ireland), and the
University of Kaiserslautern (Germany). http://www.inreca.org
Acknowledgements
The authors would like to thank Prof. M. Richter for triggering the ideas that led to this
publication during the EWCBR 98 in Dublin.
We would also like to thank the reviewers of this paper for their encouraging and very helpful
comments.

146 M. Goeker and T. Roth-Berghofer

althoff@iis.uni-hildesheim.de

Modelling the CBR Life Cycle

Using Description Logics ?

Mercedes G�omez-Albarr�an, Pedro A. Gonz�alez-Calero,
Bel�en D��az-Agudo and Carlos Fern�andez-Conde

Dep. Sistemas Inform�aticos y Programaci�on
Universidad Complutense de Madrid

28040 Madrid, Spain
email:falbarran, pedro, belend, carlosfg@sip.ucm.es

Abstract. In this paper Description Logics are presented as a suitable
formalism to model the CBR life cycle. We propose a general model
to structure the knowledge needed in a CBR system, where adaptation
knowledge is explicitly represented. Next, the CBR processes are de-
scribed based on this model and the CBR system OoFRA is presented
as an example of our approach.

1 Introduction

In the last few years, Description Logics (DLs) have caught a great interest
within the CBR community [9, 14, 18]. Their declarative semantics helps in the
domain comprehension, the understanding of the case indexes and the formal
de�nition of di�erent powerful inference mechanisms. Their ability to automat-
ically classify concepts and recognise instances is a useful property for the case
base management. Their ability to build structured case descriptions provide a

exible and expressive way to represent the cases and their solutions.

In this paper, we propose a domain-independent model for developing CBR
systems that takes advantage of DLs, and whose main contributions are:

{ the de�nition of a scheme that structures all the knowledge needed in the
CBR processes,

{ the structured representation presented for the cases, and
{ the use of the DLs inference mechanisms, supplemented with special purpose

algorithms, for the retrieval, adaptation and learning CBR tasks. We propose
a domain-independent similarity measure for the retrieval of cases that can
be complemented with domain-speci�c similarity knowledge. Our general
adaptation scheme is based on substitutions and the search of substitutes is
guided by a set of memory instructions. The learning process extends not
only to the cases but also to the adaptation knowledge.

? This work is supported by the Spanish Committee of Science & Technology (CICYT
TIC98-0733)

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 147-161, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

The paper is organized as follows. Section 2 describes the basics of DLs. The
general scheme for the representation, retrieval, and adaptation and learning
processes is de�ned is Sections 3, 4, and 5, respectively. In Section 6, our approach
is applied to OoFRA, a case-based planning system. Limitations of the proposed
approach appear in Section 7. Section 8 contains related work and conclusions.

2 Basic Concepts on DLs

The idea of developing knowledge representation systems based on a struc-
tured representation of knowledge was �rst pursued with Semantic Networks
and Frame Systems. One problem of these solutions is the need of a formal
ground to de�ne the semantics of the knowledge representation. In this way,
DLs born trying to provide knowledge representation with this formal ground.

In DLs, there are three types of formal objects [5]:

{ Concepts: Descriptions with a potentially complex structure, formed by com-
posing a limited set of description-forming operators.

{ Roles: Simple formal terms for properties.
{ Individuals: Simple formal constructs intended to directly represent objects

in the domain of interest as concept instances.

Concepts can be either primitive or de�ned. De�ned concepts are represented
in terms of necessary and su�cient conditions that individuals have to satisfy
in order to be recognized as instances of those concepts. Primitive concepts
are just represented as necessary conditions, so it is impossible to infer that
individuals are instances of primitive concepts. But if it is explicitly asserted
that an individual is an instance of a primitive concept, the system will apply all
the concept restrictions to the individual. Roles also can be primitive or de�ned.
Primitive roles introduce new necessary conditions in the role, and de�ned roles
introduce both necessary and su�cient conditions.

Concepts, roles and individuals are placed into a taxonomy where more gen-
eral concepts/roles will be above more speci�c concepts/roles. Likewise, individ-
uals are placed below the concept(s) that they are instances of. Concepts and
individuals inherit properties from more general descriptions as well as com-
bine properties as appropriate. Thus, DL-Systems has two main components:
A general schema concerning the classes of individuals to be represented built
from primitive concepts and role restrictions, usually referred as TBox, and a
partial or total instantiation of this schema, containing assertions relating either
individuals to concepts or individuals to each other, usually referred as ABox.

A key feature of DLs is that the system can reason about concept descrip-
tions, and automatically infer subsumption relations. We say that a concept C
subsumes the concept D (C � D) if all the individuals that satisfy the de-
scription of D, also satisfy the description of C. There are several variations of
deductive inferences, depending on the particular DL. Some of the most typical
are Completion and Classi�cation [3]. In Completion, logical consequences of as-
sertions about individuals are inferred, and in Classi�cation, each new concept
is placed under the most speci�c concepts that subsume it.

148 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

The core of DL-Systems is its concept language L, which can be viewed as a
set of constructs [2, 5] for denoting concepts and relationships among concepts.
An assertion language is also de�ned which lets express individual features.

3 CBR Knowledge Representation Using DLs

We propose a model where the knowledge needed for the CBR processes is struc-
tured in three interrelated but conceptually di�erent portions of a knowledge
base KB represented using DLs (a related categorization of the CBR knowledge
in containers was described by Richter [17]): KB = hB;DK;PSKi, where

{ B contains the general knowledge used to structure and represent the cases.
{ DK contains the domain knowledge used for case representation, query for-

mulation and case adaptation.
{ PSK contains the CBR process support knowledge, i.e. the knowledge, apart

from the one in DK, that is used in case retrieval and adaptation.

B is domain independent but the knowledge included in DK and PSK de-
pends on the speci�c application domain where this representation model is
applied. We will describe the PSK contents in Sections 4 and 5. The DK por-
tion models the speci�c domain being considered: the basic domain entities are
formalized as DLs individuals described by the concepts of which they are in-
stances, and the relations they have with other individuals. In this section, we
mainly deal with the B portion, where case structure is detailed.

The B portion It contains a distinguished concept Case to represent the gen-
eral case structure. The stored cases are represented as individuals that are
automatically classi�ed as instances of Case. Moreover, each case is linked by
DLs relations {desc and sol{ to its descriptive components, the description of a
problem {or situation{ and a solution to this problem, respectively.

The description of a Case instance ci is a DK individual di that represents
the characteristics of the problem {or situation{ described by case ci. Instance
di is also used as the case index in the organization and retrieval tasks.

The solution of a Case instance ci is a B individual si that represents the
solution of the problem di described by case ci. The solution si is connected
{through the r-has-item relation{ with a set (possibly ordered) of instances each
representing a solution component or item. Each one of these items is in its turn
described by its relations with other individuals. The relation contents links
each solution item with a DK individual that formalizes this part of the so-
lution. Optionally, the item-number relation is used to identify an item when
the representation of some kind of order among the items is required. The de-
pendency relations {depends-on-description and depends-on-item{ are used to
include adaptation knowledge in a solution item itemj , relating it with the de-
scription component(s) and/or the solution item(s) that have an in
uence on it,
i.e. with the components where a change will cause itemj adaptation. The use
of this adaptation knowledge will be broadly explained in Section 5.

149Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

4 Retrieval

Retrieval is implemented as a two step process: �rst, a number of individuals are

retrieved and, second, they are ranked by applying a similarity function.

There are two di�erent methods to implement retrieval using the reasoning

mechanisms available in DLs:

{ Retrieval based on concept classi�cation, where a concept description cq

is built using the restrictions speci�ed in the query. This concept is then

classi�ed, and �nally all its instances are retrieved.

{ Retrieval based on instance recognition, where an individual is built and a

number of assertions are made about it based on the features speci�ed in the

query. Instance recognition is applied to retrieve the most speci�c concepts

of which this individual is an instance, and then all the instances of these

concepts are retrieved.

There are two main di�erences between these two methods:

{ The type of restrictions that can be included, since concept description lan-

guage and assertion language are di�erent. Concept description language is

richer because restrictions about role type and cardinality can be included.

{ Instance completion. There are a number of inferences that are only applied

to individuals. DLs systems do not enrich concept descriptions with inferred

constraints, but just take the concept de�nition as it is, and classify it ac-

cordingly. On the other hand, when an individual is recognized as instance of

a given concept, based on the su�cient conditions for belonging to that con-

cept, then necessary conditions on the concept de�nition are automatically

asserted on the individual.

So, both approaches have its pros and cons, namely expressiveness vs. comple-

tion. We have decided to implement retrieval as an instance recognition process

mainly for one reason: instance completion accomplishes a kind of query com-

pletion where additional constraints can be automatically inferred from those

explicitly asserted by the user. In this way, we have a straightforward method

to let the domain knowledge assist in the crucial process of query formulation.

Although it is not likely to happen, the most speci�c concepts of which the

individual representing the query is recognized as an instance may have no more

instances. In that situation the most speci�c concepts subsuming those concepts

would be selected, and their instances retrieved. This process should be repeated

until a non empty set of instances is retrieved.

Once the system has retrieved a number of instances representing the candi-

date case descriptions, these are ranked by their similarity with respect to the in-

dividual representing the query. For this purpose we apply a domain-independent

similarity function along with a number of domain-speci�c heuristics, as de-

scribed in the following subsection.

This model also allows for the de�nition of a minimum similarity threshold

such that new individuals are retrieved until one is found whose similarity with

150 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

the query is above the given threshold. The number of retrieved individuals is
increased by accessing to the instances of more and more abstract concepts.
This way, we cope with the fact that it is not guaranteed that the most similar
individuals can be found among those that are instances of the most speci�c
concepts of which the query is an instance.

4.1 Similarity Measure

Similarity is computed for a given pair of individuals, where an individual can
represent a case description or, in general, the value of a given feature. As de-
scribed in Section 3 an individual is de�ned in terms of the concepts of which
that individual is an instance and the slots asserted for it, which are represented
as relations connecting the individual to other individuals or primitive values.
Therefore, a similarity measure should take into account both types of features.

Concept-based similarity To de�ne a similarity measure on concepts we use
an idea taken from the vector space model used in Information Retrieval [19].
In this model, every indexable item is represented by an attribute vector,
and the similarity between two items is obtained by some kind of algebraic
manipulation of the vectors associated with them. We consider as attributes
the concepts de�ned in the knowledge base, C = fc1; : : : ; cNg, and say that
individual i has attribute cj if i is an instance of cj . This way, an attribute
vector is associated with every individual, and the conceptual similarity be-
tween two individuals is computed as the cosine of the angle formed by the
vectors which represent them, a similarity function usually applied in the
vector space model.

Slot-based similarity A slot is de�ned by a relation (role) and a set of in-
dividuals (�llers). We consider comparable only those slots with the same
relation, and obtain the similarity between two slots as the similarity be-
tween their sets of �llers. When comparing sets of individuals we recursively
apply the function of similarity between individuals, accumulating for every
individual of one set the maximum of the results obtained by comparing
that individual with every individual of the other set. This recursion ends
when comparing individuals without slots, which similarity is given by the
concept-based similarity term.

The similarity between two individuals is computed as the sum of their
concept-based similarity and the similarity among their slots. A more detailed
description of the similarity function can be found in [6].

This domain-independent function can accurately take into account the struc-
ture of the knowledge base. Nevertheless, our framework also allows for the in-
tegration of domain-speci�c similarity knowledge in one of the following ways:

Concept-speci�c similarity knowledge This kind of restriction lets specify
that instances of a given concept should be compared by a subset of their
slots. This way, descriptive slots can be distinguished from those others that
provide additional information, but should not be considered when deter-
mining the similarity between two individuals.

151Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

Relation-speci�c similarity knowledge This kind of restriction lets specify
that an alternative function should be applied when computing the similarity
between the �llers of a given role (i.e., the values of a given attribute). For
example, this mechanism could be used to specify the similarity between
values of primitive types by specifying the function to be applied on those
relations that are to be �lled by primitive values.

According to the knowledge base division presented in Section 3, domain-
speci�c similarity knowledge is explicitly represented in PSK. A high level mech-
anism is in charge of combining the di�erent similarity measures, trying �rst
to obtain domain-speci�c measures and if none apply, computing the domain-
independent function.

5 Adaptation

Built upon the model for structuring the knowledge needed in CBR tasks de-
scribed in Section 3, we propose a substitution-based adaptation mechanism.
Adaptation is guided by the explicit representation of dependency relations {
depends-on-description, depends-on-item, generalized as dependsOn{ stored in
case solutions, as a process that propagates changes from description to solution
items, as follows:

1. The list L of items in the solution that need to be adapted are obtained.
These items are those that depend on a feature of the case description which
has been substituted by a new value in the query, or those others that depend
on a solution item that needs to be adapted.

2. Every item in L is substituted by a proper new item. First, those that only
depend on values from the case description, then, those that depend on other
items of the solution that have already been adapted. Of course, circularity
is not allowed in the dependency relation.

The search for substitutes is accomplished as a kind of specialized search

which takes advantage of the knowledge base organization. This process can
take one of two forms: a general purpose search algorithm, or the replay of
previously learnt search knowledge represented as search heuristics.

5.1 Specialized Search

Specialized search, as described in [11], is a way of �nding appropriate substi-
tutes for a case solution element, where instructions are given about how to �nd
the needed item. In our model, memory instructions correspond to a relation
path that connects one case item with another case element. We assume that,
whenever an item of the case is said to depend on a case element, a path of
relations exists connecting both individuals. Formally:

dependsOn(i1; i2) , def 9r1; : : : ; rn : ((compose r1 : : : rn) i2 i1)

152 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

The path of relations leads to the place of the knowledge base where sub-
stitutes have to be found. For example, if dependsOn(i1; i2) stands and i2 has
already been substituted for another value i0

2
, then a substitute i0

1
for i1 has to

be found, such that: �rst, there is a connection between i0
2
and i0

1
similar to that

between i2 and i1; and second, i0
1
is similar to i1.

In other words, we are searching for a substitute in the surroundings of i1
that is connected to i0

2
. In order to implement this process we need to �nd the

shortest path between i2 and i1 and, then, use that path and i1 to �nd the
appropriate i0

1
. The �rst problem is reduced to that of searching for the shortest

path in the directed acyclic graph de�ned by the individuals in the knowledge
base. The second process is the goal of the search operator which is described in
the next subsection.

5.2 Search Operator

The search operator takes as arguments: the individual o which has substituted
an element that previously appeared in the case; an ordered list of relations {
relation path{ [r1; : : : ; rk] that connects the DK individual that o has substituted
with the DK individual i that has to be substituted due to its dependency on the
already substituted individual; and the individual i. The operator searches for
those individuals connected to o through [r1; : : : ; rk] which are instances of the
most speci�c concept of which i is an instance. If none is found, or a minimum
similarity threshold has been speci�ed such that none of the retrieved individuals
is above that threshold, then search restrictions are generalized. Two kinds of
generalizations are applied:

1. Rising the abstraction level of the concepts whose instances are being con-
sidered.

2. Rising the abstraction level of the relations that connect o to the instances
being considered.

This way, we take advantage of the two terminological abstraction hierarchies
that can be de�ned in DLs, namely, the concept hierarchy and the relation
hierarchy. Generalizations are applied on both, concepts and relations, level by
level, until proper substitutes are found.

As an example, let's consider the situation depicted in Figure 1. Here, the
search operator would �nd substitutes in two steps:

1. First, it searches for individuals connected to o through [r1; : : : ; rk] which
are instances of C1. And none is found.

2. Second, the concept and the relation path are generalized. Supposing that
only rk�1 among [r1; : : : ; rk] can be generalized, individuals connected to o

through [r1, . . . , r
G

k�1
, rk] which are instances of C are retrieved: a, b and

c. These individuals will be ranked by the similarity function, and the most
similar will be returned.

153Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

r
2

r
k

i

level 0

level 1

r
k

r
k-1

r
k-1

G
r

k

o

a

b c

r
k-1

G

.....

r
1

C

C
2

C
1

Fig. 1. Search (o, [r1; : : : ; rk], i)

5.3 Search Knowledge Learning

The search as described in the two previous sections is implemented as an algo-
rithm that �nds a relation path and retrieves individuals that satisfy the given
restrictions, generalizing them if needed. The cost of this process depends on the
size of the knowledge base and it may become quite expensive when applied to
knowledge bases of realistic size. To alleviate this problem, the system includes
a learning component that records every successful search as a search heuristic.

Search heuristics are represented as individuals in the PSK portion of the
knowledge base including the following slots:

origin < concept >

destination < concept >

path < relation� list >

concept-level < integer >

relation-level< integer >

weight < integer >

which indicates that instances of origin and destination are connected through
the relations in path, and that the recorded search was successful when the rela-
tion path was generalized to relation� level and the individuals were instances
of destination rised to concept� level. Since more than one heuristic may exists
connecting the same pair of concepts, the weight slot is included in order to
record the number of times that an heuristic has been successfully applied.

When searching for substitutes, search heuristics are �rst considered if appli-
cable. An heuristic is applicable when the dependency being processed, depends-
On(i1, i2), involves an instance of destination and origin, respectively. Of course,
applicable heuristics are tried in weight order. And, only when none of the ap-
plicable heuristics retrieves substitutes, the general algorithm is applied.

6 OoFRA: a CBR System for Framework Reuse

Object-oriented frameworks are collections of interdependent classes that de�ne
reusable and extensible architectural designs for speci�c domains. When devel-

154 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

oping software based on framework reuse, the generic architecture de�ned by the
framework must be customized and/or extended. Extensible systems tend to be
very sophisticated and complex, so that users do not often know the concepts,
commitments and decisions involved in the solutions provided. In the case of
frameworks, this results in implementations which do not map the domain or-
ganization. A domain entity does not correspond to a speci�c framework class,
but to a group of classes that collaborate. The actions a domain entity can make
correspond to methods that are not de�ned in a speci�c class, but they are
dispersed among the group of classes corresponding to the entity.

Due to their potentially large size and complexity, the ability to quickly un-
derstand and extend frameworks is a critical issue. One way to simplify frame-
work reuse is to pro�t from prototypical examples about usual mechanisms
for extending and customizing them. So, we have developed OoFRA (Object-
oriented Framework Reuse Assistant), a CBR system whose case base is popu-
lated with these prototypical usage examples, and deals with the retrieval and
adaptation tasks. Our system uses Loom, a knowledge representation system de-
scendant of the KL-ONE system [13]. We have applied the approach described
in the previous sections to support the reuse of the framework, included in the
VisualWorks environment, for developing applications with Graphical User In-
terface (GUI). A previous prototype of this system can be found in [7].

6.1 The Knowledge Base of the System

Following the representation model described in Section 3, OoFRA knowledge
base consists of three portions KB = hB;DK;PSKi. Next, we describe them.

The DK portion It contains general purpose GUI concepts and concepts spe-
ci�c to the framework, together with the instances of these concepts representing
the GUI entities, and the framework classes, methods and collaborations.

The general purpose GUI concepts are the types of the GUI entities and of
the operations that can be made on/by these entities. Some concepts speci�c
to the framework are: those corresponding to the object-oriented concepts class
and method; and the concept contract that represents the collaborations among
classes relating the target of the collaboration to the classes that collaborate.

The instances of the general purpose GUI concepts represent the GUI enti-
ties and actions. They de�ne the domain terminology which acts as a description
language that will be used in the case indexing and in the user query formula-
tion. The individuals representing the classes, methods and collaborations of the
framework are used in the solution description and in the adaptation process.

The B portion Let's see the case structure and the information stored in each
case component by means of an example: the case that shows how to obtain
the selected text in an input �eld, whose representation is depicted in Figure 2
(shady boxes correspond to DK individuals).

155Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

Fig. 2. Example case: Obtain selected text in an input �eld

The case description is i-access-partial-data, a DK individual representing
the framework extension/customization problem that the case is intended to
help solve: the GUI action \access part of the text shown in an input �eld".

The solutions in OoFRA cases consist of an ordered sequence of steps. So,
the cases can be seen as plans. In the sample case the solution consists of two
steps. The �rst step records the controller class accessed in this part of the
solution, represented by the DK individual i-InputFieldControllerClass, and the
class dependency on an element of the description, represented by i-input-�eld,
the DK individual corresponding to the widget that appears in the problem
description. The second step shows the method of the previous step class used
in this part of the solution, represented by the DK individual i-PE-selection-
method, and the method dependency on the class from the �rst step.

The PSK portion It comprises a set of search heuristics and the comparison
criteria showing the descriptive slots for the DK individuals. An example of
search heuristic is \to �nd the controller class that collaborates for a widget,
�rst, look for the contract target related to the widget, second, look for the
contract corresponding to this contract target and, third, look for the class that
acts as the controller component". An example of comparison criterion is the
one that establishes the aspect considered when comparing two methods: two
methods are similar if their operation speci�cations are similar.

6.2 Case Retrieval in OoFra

Let's illustrate the case retrieval with a simple situation. Let's suppose the user
tries to �nd a usage case that explains how to obtain the selected element in

156 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

a list-box. The user builds the description of her action selecting a verb that
corresponds to a domain action, for instance access, and the appropriate values
for some/all the verb modi�ers, for instance, list-box for the widget, data for the
accessed widget part and single selection for the number of selections.

From this information, and applying the retrieval mechanism described in
Section 4, the closest case found by the system is the one that shows how to
obtain the selected text in an input �eld. However, this case needs to be adapted
in order to be useful: the class and the method used are related to an input �eld,
not to a list-box.

6.3 Adapting a Case in OoFRA

First, let's see why does our system adapt the case retrieved in the previous
section. Both solution steps need to be adapted. In the �rst step, the class
accessed depends on the GUI widget appearing in the problem description solved,
and the widget in the user problem description is di�erent from the widget in
the retrieved case problem. So, it should be substituted by another class. The
method used in the second step depends on the class accessed in the �rst one.
Therefore, a change in the class involves a change in the method.

Now, let's see how does our system adapt the case. When applying the search
operator to the �rst step, the origin is the individual of the DK base represent-
ing the widget list-box, the heuristic selected is the one that helps to �nd the
controller of a widget and the comparison criterion is the one that can be ap-
plied to classes. The search operator returns i-SequenceControllerClass, the DK
individual representing the class that acts as the controller of a list-box, as the
substitute for the original class. When applying the search operator to the sec-
ond step, the origin is the class returned by the adaptation of the �rst step, the
heuristic is the one that helps to �nd the methods of a class and the comparison
criterion is the one that can be applied to methods. The system tries unsuccess-
fully to �nd methods of this class similar to the one is going to be substituted.
So, the system relaxes the adaptation process generalizing the relation paths and
the level used to look for similar individuals.

Let's see, for instance, what happens when generalizing the relation path in
the adaptation of the �rst step (Figure 3). The relation path resulting from the
heuristic chosen in the �rst adaptation attempt starts in the DK individual rep-
resenting a list-box, and, through the relations inverse-contract-target, inverse-
contract and controller-comp, ends in the DK individual i-SequenceController-
Class that represents the list-box controller. On generalizing the relation path,
only the last relation can be substituted by the more abstract relation contract-

comp. The generalized path leads, then, to the four classes that collaborate when
the widget is a list-box.

On generalizing the level used when searching similar individuals, these four
classes, together with the class i-ActiveWindowClass, can be considered as pos-
sible substitutes for the class i-InputBoxControllerClass. However, before com-
puting the similarity, the class i-ActiveWindowClass is excluded because it is
not connected with the origin given to the search operator.

157Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

level 0

level 1
i-list

inverse-
contract-target

i-list-contract-
target

inverse-contract
i-list-contract

c-class

c-widget-class c-window-class

i-Sequence
ControllerClass

i-Sequence
ViewClass

i-SelectionIn
ListClass

i-Spec
WrapperClass

i-InputBox
ControllerClass

i-Active
WindowClass

con tract-compcontroller-comp

contract-comp
visual-comp

contract-comp

contract-comp

data-model-comp

wrapper-comp

Fig. 3. Use of generalized relation paths in the OoFRA adaptation process

The similarity function is applied to the rest of the classes. According to
the comparison criterion for classes, the four classes can act as substitutes. The
application of the relaxed adaptation process to the second step is similar to this
of the �rst one. The result of the case adaptation consists of four pairs (class,
method), each one corresponding to one of the classes, that are shown ordered
by similarity value to the user as appropriate substitutes for the class and the
method in the retrieved case.

7 Limitations of the proposed approach

In order to point out the main limitations of the approach here described, we
separately consider the two main proposals it comprises: to use DLs as the
formalism to represent the knowledge needed by a CBR system; and to take
advantage of the DLs reasoning mechanisms to implement the CBR processes.
As a representation mechanism, DLs surpasses the average in expressiveness,
with the plus of a formal grounded semantics. On the other hand, e�ciency is the
minus, since DLs can not compete with standard data base technology in terms
of retrieval speed. With regard to the implementation of the CBR processes, as
we have shown through this paper, special purpose algorithms must supplement
DLs reasoning mechanisms. Nevertheless, this combination su�ers from some
limitations:

{ The concept hierarchy should be balanced in depth. The similarity function
takes into account not only shared features but also the total number of fea-
tures an individual has. So, those individuals which are deep in the hierarchy
{i.e., have more features{ will never be chosen if individuals, with a similar
{or even smaller{ number of shared features with the query, exist higher in

158 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

the hierarchy. This situation should be avoided when it is the result of an
unbalanced knowledge representation, where a portion of the domain has
been described in more detail {with more levels of abstraction{ than others,
and individuals from di�erent parts of the KB are to be compared.

{ The adaptation process has the general limitation of substitution based
methods, which can not change the structure of the solution being adapted.
More speci�c is the need for an explicit representation of dependencies be-
tween description and solution items, restricting the possible adaptations,
which, in a sense, has to be foreseen, since only recorded dependencies are
explored in case adaptation.
Finally, a limitation is imposed by the basic assumption of the adaptation
process: a dependency can only be stated if a relation path exists between
the dependent individuals. This restriction may be taken into account when
developing the KB, or more probably, may lead to changes in the KB as the
case base gets populated.

The application of the proposed model to the OoFRA system has o�ered a
satisfactory runtime performance although, there has not been an exhaustive,
formal and precise study about its scaling-up. As future work we are studying the
e�ciency issues based on the empirical studies (e.g. [8]) that evaluate how cer-
tain DLs implementations behave with respect to typical and random knowledge
bases, instead of the analytical studies to determine the worst case performance.
The more expressive a DLs is, the higher the computational cost of the reasoning
tasks than can be performed in it. That makes necessary to consider the par-
ticular CBR application expressiveness and performance requirements to choose
an adequate DLs.

The real knowledge bases used in [8] range from 138 to 435 concepts and
from 10 to 52 roles. Moreover, the randomly generated knowledge bases range
from 0 to 150 concepts (small), to 2000 concepts (large) and to 5000 concepts
(very large). These previous performance results and our feedback from OoFRA
make us feel optimistic with respect to the behaviour results of our model.

8 Related Work and Conclusions

During the last few years, many researches have suggested the use of DLs to
organize, represent and retrieve cases in CBR systems like mrl [9, 10], cato [1],
Resyn/CBR [14, 15], ora [6] and a diagnosis system for the French telephone
network [4, 18]. The common ground is to take advantage of the DLs reasoning
mechanisms for some tasks in the CBR life cycle.

The approach presented in this paper proposes the use of DLs as a suitable
formalism to represent all the knowledge used by the CBR processes and to
model the tasks involved in the CBR life cycle. A particularity of our approach
is the formalization of a domain independent scheme to represent cases where
solutions include explicitly represented adaptation knowledge.

As in [1, 4, 18], we use DLs instances to represent the cases, but instead of
considering a simpli�ed representation approach, we take advantage of DLs as

159Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

a formalism to represent complex and structured cases {and indexes{ in the
line of [16]. In [16] cases are represented as structured concepts composed of
features classi�ed in a subsumption hierarchy. We represent cases with two main
components {its description and its solution{ that are automatically organised by
the subsumption relation. The use of the subsumption relation to automatically
organise cases or indexes is also shared by [1, 4, 9, 15, 18].

We have de�ned a retrieval process where a DLs instance is created with the
user requirements, and is automatically completed by the DLs instance comple-
tion mechanism. A domain independent numerical similarity measure for cases
has been described, where case structure and knowledge base organization is ac-
curately taken into account. Also, we have shown how the domain-independent
similarity measure can be integrated with domain-speci�c similarity knowledge.
Previous works also select the best cases by using a numerical approach [9, 21]
or a declarative approach [16, 14].

A main contribution in using classi�cation for case adaptation is done in [14,
15]. Although the authors consider a frame-based case representation, the ideas
are also applicable to DLs. In [14] the adaptation process takes advantage of the
hierarchy to generalise certain case's components {using the least common sub-
summer operation{ according to the query case. In [15], the concept hierarchy is
used to qualitatively measure case distances. The similarity path that separates
on the hierarchy the query case description from other case's descriptions, is
used as a sequence of generalization and specialization steps to be applied to the
case solutions. Case adaptation proposed in [14, 15] allows only the generaliza-
tion and/or specialization of case components. We present a general adaptation
scheme based on substitutions that uses DLs to represent the case we want to
adapt, to identify the item that should be substituted in the solution, and to
guide the search towards the most suitable replacement.

When using DLs instances/concepts to represent cases/indexes, there is a
simple way to learn new cases or indexes: adding additional instances or con-
cepts to the hierarchy, that are automatically positioned at the correct place by
the DLs reasoning mechanisms. Apart from this simple approximation to case
learning, we have included adaptation knowledge learning that also takes advan-
tage of the DLs reasoning mechanisms: search knowledge is learnt by memorizing
and weighting the search heuristic succesfully used to �nd a substitute for a non
apropriate solution component. In [12] a related approach {not using DLs{ for
acquiring adaptation knowledge is presented.

With regard to the application of CBR to software reuse, in [21] a CBR
approach to code reuse is presented. In [20] CBR is presented as a candidate
technology for the reuse of software knowledge due to the big number of com-
monalities existing between the CBR cycle and the reuse tasks.

As a �nal conclusion, we have shown the practical applicability of the pro-
posed model in the implementation of the CBR processes, by developing OoFRA,
an e�ective assistant in object-oriented framework reuse.

160 M. Gomez-Albarran et al.

althoff@iis.uni-hildesheim.de

References

1. Ashley, K. & Aleven, V., 1993: \A logical representation for relevance criteria", in
Topics in CBR (Wess S., Altho� K. & Richter M., eds.), Springer-Verlag.

2. Borgida, A., 1996: \On the Relative Expressiveness of Description Logics and Pred-
icate Logics", Arti�cial Intelligence Journal, vol. 82, no. 1-2, pp. 353-367.

3. Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L. & Borgida,
A., 1991: \Living with CLASSIC: When and How to Use a KL-ONE-Like lan-
guage", in Principles of Semantic Networks, Morgan Kaufmann.

4. Coupey, P., Fouquere, C. & Salotti, S., 1998: \Formalizing Partial Matching and
Similarity in CBR with a Description Logic", Applied Arti�cial Intelligence, vol.
12, no. 1, pp. 71-112.

5. Donini, F.M., Lenzerini, M., Nardi, D., & Schaerf, A., 1996: \Reasoning in De-
scription Logics", in Foundation of Knowledge Representation, CSLI-Publications.

6. Fern�andez-Chamizo, C., Gonz�alez-Calero, P., G�omez-Albarr�an, M. & Hern�andez-
Y�a~nez, L., 1996: \Supporting Object Reuse through Case-Based Reasoning",
Procs. EWCBR '96.

7. G�omez-Albarr�an, M., Gonz�alez-Calero, P. & Fern�andez-Chamizo, C., 1998:
\Framework Understanding through Explicit Knowledge Representation", Procs.
IBERAMIA '98.

8. Heinsohn, J., Kudenko, D., Nebel, B., and Pro�tlich, H., 1994: \An empirical
analysis of terminological representation systems". Arti�cial Intelligence, vol. 68,
pp. 367-398

9. Koehler, J., 1994: \An Application of Terminological Logics to Case-based Rea-
soning", Procs. KR '94.

10. Koehler, J., 1996: \Planning from Second Principles", Arti�cial Intelligence, vol.
87, pp. 145-186.

11. Kolodner, J., 1993: Case-Based Reasoning, Morgan Kaufmann.
12. Leake, D. B., Kinley, A., & Wilson, D., 1996: \Acquiring Case Adaptation Knowl-

edge: A Hybrid Approach", Procs. AAAI '96.
13. Mac Gregor, R., 1991: \The evolving technology of classi�cation-based knowledge

representation systems", in Principles of Semantic Networks: Explorations in the

Representation of Knowledge (J. Sowa, ed.), Morgan Kaufmann.
14. Napoli, A., Lieber, J., & Courien, R., 1996: \Classi�cation-Based Problem Solving

in Case-Based Reasoning", Procs. EWCBR '96.
15. Napoli, A., Lieber, J. & Simon, A., 1997: \A Classi�cation-Based Approach to

Case-Based Reasoning", Procs. DL '97.
16. Plaza, E., 1995: \Cases as Terms: A feature term approach to the structured rep-

resentation of cases", Procs. ICCBR '95.
17. Richter, M., 1995: \The knowledge contained in Similarity Measures". In-

vited talk given at ICCBR'95. October, 25. http://wwwagr.informatik.uni-
kl.de/ lsa/CBR/Richtericcbr95remarks.html

18. Salotti, S. & Ventos, V., 1998: \Study and Formalization of a Case-Based Reasoning
System using a Description Logic", in Procs. EWCBR '98.

19. Salton, G. & McGill, M. J., 1983: Introduction to Modern Information Retrieval,
McGraw-Hill.

20. Tautz, C., & Altho�, K., 1997: \Using Case-Based Reasoning for Reusing Software
Knowledge", Procs. ICCBR '97.

21. Yen, J., Teh, H.,& Liu X., 1994: \Using Description Logics for Software Reuse and
Case-Based Reasoning", Procs. DL '94.

161Modelling the CBR Life Cycle Using Description Logics

althoff@iis.uni-hildesheim.de

An Evolutionary Approach to Case Adaptation

Andrés Gómez de Silva Garza and Mary Lou Maher

Key Centre of Design Computing
Department of Architectural and Design Science

University of Sydney NSW 2006
Australia

FAX: (+61-2) 9351-3031
Phone: (+61-2) 9351-2053

E-mail: {andres,mary}@arch.usyd.edu.au

Abstract. We present a case adaptation method that employs ideas from the field of
genetic algorithms. Two types of adaptations, case combination and case mutation, are
used to evolve variations on the contents of retrieved cases until a satisfactory solution is
found for a new specified problem. A solution is satisfactory if it matches the specified
requirements and does not violate any constraints imposed by the domain of
applicability. We have implemented our ideas in a computational system called
GENCAD, applied to the layout design of residences such that they conform to the
principles of feng shui, the Chinese art of placement. This implementation allows us to
evaluate the use of GA’s for case adaptation in CBR. Experimental results show the role
of representation and constraints.

1 Introduction

Many different methods have been proposed for performing the task of case adaptation in
CBR. They have been surveyed in several publications, including [1], [2], and [3]. Different
approaches may be better for different domains, different knowledge representation schemes,
different reasoning tasks, or other reasons. Approaches may differ on the types of adaptation
they support, the amount of change in a case they permit an adaptation to make, the number of
cases they can rely on to generate solutions to new problems, and other factors. The
adaptation method we present here is flexible, in that it allows for a wide variety of options
along all of these dimensions. In our approach, several types of adaptation are available, cases
may end up being completely transformed or just slightly tweaked, and final solutions may
contain features from one or many cases.

In this paper we present a case adaptation method based on genetic algorithms. In this
method, cases are adapted incrementally and in parallel, until a satisfactory solution is found
for a given problem. We have employed this approach for design, though it can be used for

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 162-173, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

other reasoning tasks. Within design, we have tried it out on several domains, though in this
paper we focus on just one, introduced below. The main concern of this paper is to describe
our process model for case adaptation, not to discuss the quality of the designs produced by
the application.

Our case adaptation method supports two broad types of adaptation: parametric and
structural. Parametric adaptation of cases is achieved through mutation. Structural adaptation
of cases is achieved through crossover. Depending on the specifics of a given domain and the
richness of the representation chosen for it, several mutation and crossover operators, with
different nuances in the effects they produce, can potentially be made available.

The method assumes that the requirements of a new problem will partially match, and
therefore result in retrieving, more than one case in memory. These retrieved cases are used to
seed an evolutionary process, i.e., they form its initial population. The adaptations produced
by the crossover and mutation operators of the evolutionary process are evaluated, and the
best ones selected to participate in the next round of genetic adaptations, until a satisfactory
solution is found. Evaluation requires domain knowledge in order to recognise whether
proposed solutions are acceptable for a given domain or not; crossover, mutation, and
selection can operate independently of the domain.

Depending on which randomly evolved variations on the originally retrieved cases are
selected to remain in the population after being evaluated, final solutions may have evolved
from just one of the cases, or from all of them. They may differ greatly in structure and/or in
parameter values from all of the originally retrieved cases, or may be similar to one or several
of them. Thus, the method is useful in a wide variety of problem situations and domains
requiring different types and degrees of adaptation.

In the following sections we discuss our evolutionary case adaptation method in more
detail, we present an implementation for a specific domain and the knowledge representations
we have adopted for this domain, and we give some experimental results.

2 Case Adaptation Method

We have developed a process model of design that combines the precedent-centered reasoning
capabilities of case-based reasoning (CBR) (see for example [1]) with the incremental
evolution of multiple potential solutions, an idea taken from the paradigm of genetic
algorithms (GA’s) (see for example [4]). The process model involves the use of CBR as the
overall reasoning strategy and the use of a GA to perform the case adaptation subtask.
Because a general-purpose, knowledge-independent GA is used, case adaptation is
knowledge-lean. It is only in the evaluation module of the GA that domain knowledge is
required so that proper decisions are made about which potential solutions generated by the
GA are useful to keep in future GA cycles.

Our process model is shown in Fig. 1. In this model we assume the existence of a case
memory in which descriptions of previously existing solutions are stored. Each case is
represented as a set of attribute-value pairs. The cases that are retrieved from memory given a
new problem specification are adapted by repeatedly combining and modifying their
descriptive features. After each cycle of combination and modification, solutions are
evaluated and the best are selected, to be adapted in the next cycle. Through this incremental,
evolutionary process, the case adaptation method converges to a satisfactory solution to the
new problem. The solution will contain features and/or modifications of features from several
of the cases that were initially retrieved from memory. Thus, our process model adapts past

163An Evolutionary Approach to Case Adaptation

althoff@iis.uni-hildesheim.de

solutions by evolving different combinations of their features in parallel and continuously,
until a satisfactory combination is found.

POPULATION
OF

POTENTIAL
DESIGNS

New Design
Specification

New Design
Solution

Case
Retrieval

Selection

Evaluation

Combination

Modification

Satisfactory
Design?

CASE
BASE

No Yes

Case
Adaptation

Fig. 1. Evolutionary case adaptation method.

The main emphasis of our process model is on proposing new solutions based on the
knowledge contained in previously known solutions, i.e., it is a precedent-based approach.
But a major component is the evolutionary approach to adapting the known solutions in order
to generate solutions to new problems. The two strategies of CBR and GA’s complement
each other. The cases retrieved from memory serve as the initial population for a genetic
algorithm, while the genetic algorithm adapts the cases until it finds an acceptable solution.

The combination subtask of case adaptation performs several cut-and-paste crossover
operations. Each crossover is done on two randomly-chosen “parents” from the population of
potential solutions, at randomly-chosen crossover points, and produces two “offspring”
suggested solutions. The modification subtask performs several mutation operations. Each
mutation produces a new “offspring” suggested solution by:

• randomly choosing a “parent” from the population of potential solutions,
• randomly selecting an element to mutate in the description of the parent,
• randomly choosing an attribute of that element to mutate, and
• randomly selecting a new value for that attribute.
Knowledge of which values are valid for which attributes can be used so that mutation

does not suggest completely nonsensical solutions. If the process model were to be used to
design buildings, for instance, it would be a waste of time for mutation to change the value of
the number-of-stories attribute from 25 to 834 or –15, for instance.

The evaluation subtask of case adaptation analyses a suggested solution according to
domain constraints. Depending on the domain, different constraints may have to be satisfied

164 A. Gomez de Silva Garza and M.L. Maher

althoff@iis.uni-hildesheim.de

in order for a solution to be considered acceptable or satisfactory. A fitness value is assigned
during evaluation to each suggested solution. The total fitness F of a given solution, given N
constraints (C1 through CN) and M problem requirements (R1 through RM), is calculated with
the following equation:

N M

F = Σ C
i
 + Σ R

j

 i=1 j=1

where C
i
 = 0 if constraint C

i
 is not violated by the solution or

 C
i
 = 1 if constraint C

i
 is violated by the solution, and

 R
j
 = 0 if requirement R

j
 is met by the solution or

 R
j
 = 1 if requirement R

j
 is not met by the solution.

Convergence to an acceptable solution occurs if an individual in the population has a
total fitness of 0, meaning that none of the constraints has been violated and all of the problem
requirements have been met.

The selection subtask of case adaptation takes all of the evaluated individuals in a
population of suggested solutions, including those inherited from previous adaptive cycles and
those generated in the current one, and keeps the k best ones to serve as the initial population
of the next cycle. The value of k, as well as the number of offspring produced at each cycle by
crossover and mutation, is chosen so that the size of the population does not change from one
cycle to the next. Thus, the value of k depends on the number of cases initially retrieved from
memory.

In this method of case adaptation, the synthesis of potential solutions is done in a task-
and domain-independent fashion. The power of mutation can be enhanced by providing
access to some simple domain knowledge, namely the values that are valid for the attributes
that describe objects in the domain, as mentioned above. But on the whole, domain
knowledge is needed only for evaluating the generated solutions to determine their quality. In
other words, recognition (analytical) knowledge, rather than generative knowledge, is needed
to apply our method to a given domain.

3 Implementation and Domain

We have implemented our ideas in a computational system named GENCAD written in
Common LISP. Our method of case adaptation has been applied to the structural engineering
design of high-rise buildings [5] and to the layout design of residences such that they conform
to the principles of feng shui (pronounced “fong sway”), the Chinese art of placement. Here
we describe the feng shui application.

Feng shui, also known as Chinese geomancy, is an ancient technique that, among other
things, determines the quality of proposed or existing layouts of residences according to
several rules of thumb. Some of these heuristics seem to have a basis in common sense, or in
a psychological or sociological appreciation of the human beings that inhabit (or intend to
inhabit) the residence. Other heuristics seem to be of a more superstitious nature.

There are several different feng shui sects that may contradict each other or place
different priorities on different aspects of residential layouts. Despite this variety, of prime
importance to performing any feng shui analysis is information on the relative positions of
objects. In addition, other attributes of objects are usually also taken into account, such as

165An Evolutionary Approach to Case Adaptation

althoff@iis.uni-hildesheim.de

their orientations, shapes, and relative sizes. In our work we have used the knowledge of feng
shui presented in [6], which corresponds to the Tibetan black-hat sect of feng shui.

Feng shui analyses different aspects of a residential layout to determine its
auspiciousness or lack thereof. Some classes of inauspicious layouts can be “cured” by the
proper placement of an acceptable curing object. Thus, feng shui knowledge is complex, in
that some potentially bad layouts can actually be acceptable if the proper cure is present. It is
not just a matter of determining whether a layout is “good” or “bad,” but even if it would
normally be considered bad, one has to determine whether it has been cured or not before
rejecting it outright.

The feng shui knowledge contained in [6] applies to three different levels of description
of a residence:

• The landscape level (the location of a residence with respect to other objects in its
environment such as mountains, rivers, roads, etc.),

• The house level (the relative placement of the rooms and functional spaces within a
residence, such as bedrooms and bathrooms, as well as the connections between
them, such as doors and windows), and

• The room level (the location of furniture, decorations, and other objects within
each room or functional space in a residence).

GENCAD applies its case adaptation GA to one of the three levels of description of a
residence at a time. This is because there are very few feng shui constraints that relate objects
belonging to different levels of description; the constraints involve relations between objects
within the same level. Thus, potential solutions to the new problem at the landscape level can
be evolved (and evaluated) independently from potential solutions to the same new problem at
the house level, etc. For other domains, GENCAD’s GA might have to operate on and evolve
hierarchical solutions containing several levels of description at once. This will have
implications for the speed of convergence as well as the complexity of the implementation of
the crossover and mutation operators.

4 Knowledge Representation

Feng shui analysis assumes knowledge of spatial relationships among the objects at the
different levels. Absolute locations and exact measures of distances and other geometric
quantities are not as important. Because of this, a qualitative spatial representation has been
chosen to describe the locations of objects within each of the three levels. We locate objects
on each level in a 3x3 spatial grid, with each sector within the grid assigned a unique number
between 1 and 9 to identify it. The grid is shown as follows, with north assumed to be at the
top of the page:

1 2 3

4 5 6

7 8 9

Objects can occupy more than one grid sector, and grid sectors can contain more than
one object, making the representation flexible. The resolution of this representation is not
high, but considering the qualitative nature of a typical feng shui analysis and the number of
objects that typically need to be represented at each of the three levels, it is adequate in most
cases.

166 A. Gomez de Silva Garza and M.L. Maher

althoff@iis.uni-hildesheim.de

4.1 Case Representation

GENCAD’s case library currently contains 12 cases, each of which describes one of Frank
Lloyd Wright’s prairie houses, obtained from [7]. Note that the designs of these houses do not
necessarily conform to the principles of feng shui. However, designs that are acceptable to
feng shui practitioners can still be generated by evolving combinations and mutations of the
features of the design cases. If the original cases did conform to feng shui practice, given a
new problem, convergence to a solution acceptable to feng shui practitioners might be faster,
but this is not a requirement of our case adaptation method.

Each of GENCAD’s design cases is a residence described at the landscape, house, and
room levels. Within each level, objects are represented using attribute-value pairs to describe
features that are relevant to feng shui analysis. Some attributes such as locations and types of
objects are required for all objects, whereas others such as shapes and steepness are optional,
and don’t even make sense for some objects. A diagrammatic example of a residence at the
landscape level is shown in Fig. 2. This is followed by an abbreviated version of the symbolic
case representation of the same residence.

N

64

1 2 3

7 8 9

5

Landscape Level:

Dragon Mountain

My House Fish Pond

Driveway

Figure 2. A residence and its place in the landscape.

(((level landscape)
 (elements (((type mountain) (name dragon-mountain)
 (location (1 2 4)) (steepness high) ...)
 ((type pond) (name fish-pond) (location (6))
 (clarity murky) ...)
 ((type house) (name my-house) (location (5)))
 ...)))
 ...)

167An Evolutionary Approach to Case Adaptation

althoff@iis.uni-hildesheim.de

When running GENCAD at the landscape level, this is the fragment of a case that
would form part of the population of the GA. The fragments describing the house and room
levels would be dealt with separately. The list of attribute-value pairs is modified through
mutation and combined with that of other cases through crossover as the GA proceeds.

4.2 Representation of Feng Shui Analysis Knowledge

Feng shui analysis knowledge is used in the evaluation function of the GA. We have taken the
text description of the analysis knowledge and converted it to a set of constraints; each
constraint is implemented as a procedure. There are several constraints at each of the three
levels of feng shui description.

An example of a feng shui constraint at the landscape level, quoted directly from [6], is:

A house facing a hill will be bad...CURE: If a house faces
a mountain and the backyard is a garden, place a spotlight
in the back of the garden and shine it toward the top of
the house, or install a flagpole at the rear of the garden
to balance ch’i. [Page 35]

This constraint is implemented by first finding the description of all the houses and
mountains/hills at the landscape level, particularly their locations and the orientations of the
houses (if known). A predicate facing has been written that, given the location and orientation
of an object, and the location of a second object (within the 3x3 grid), determines whether or
not the first object faces the second (even partially). If any of the houses is located and
oriented such that it faces any of the mountains/hills in the landscape, then the constraint has
been violated. However, first we must check whether or not a cure is present for the
constraint violation, i.e., if there is a garden behind the violating house, and if so whether there
is a flagpole in it, or a spotlight oriented towards the house. A predicate behind has been
written that, given the location of an object, and the location and orientation of a second
object, determines whether or not the first object is behind the second. The pseudocode that
performs this analysis, i.e., the procedural representation of the constraint, given a proposed
solution at the landscape level S, is shown as follows:

Get the list H of all houses in S;
Get the list M of all mountains/hills in S;
Get the list C of all potential cures for this constraint
 in S;
For each house h in H or until a bad omen has been found:
 Get the location lh of h;
 Get the orientation oh of h;
 For each mountain/hill m in M or until a bad omen has
 been found:
 Get the location lm of m;
 If facing(lh,oh,lm) Then:
 Get the list G of all gardens in S;
 Set flag g-behind? to False;
 Repeat
 Get the next unprocessed garden g in G;
 Get the location lg of g;
 If behind(lg,lh,oh) Then
 Set flag g-behind? to True;

168 A. Gomez de Silva Garza and M.L. Maher

althoff@iis.uni-hildesheim.de

 Until g-behind?=True or all gardens in G have
 Been processed;

 If g-behind?=True Then
 For each potential cure c in C or until a bad

 omen has been found:
 Get the location lc of c;
 Get the type tc of c;
 If tc=spotlight Then:
 Get the orientation oc of c;
 If facing(lc,oc,lh) and subset(lc,lg)
 Then signal a bad omen situation;
 Else
 If subset(lc,lg)
 Then signal a bad omen situation;

5 Evaluation and Experimental Results

In this section we evaluate our evolutionary case adaptation method according to three issues:
the coverage of the method, its efficiency, and the quality of the solutions it produces.

5.1 Coverage

Often, CBR is criticised because even large case bases are not guaranteed to cover the entire
search space, thus making some problems unsolvable using “pure” CBR. In our framework,
even small case bases can provide sufficient information on typical structures and contents of
solutions to problems in the domain for the method to eventually converge to a solution. Of
course, the larger the case base, the more cases are likely to be retrieved given a new set of
problem requirements, and the faster the GA is likely to find a satisfactory adaptation of their
features and converge.

If N cases are initially contained in the population of the GA, then after 1 cycle of the
GA the proposed solutions in its population will combine features from at most 2 cases (due to
crossover). Thus, after N-1 cycles some of the proposed solutions in the population can
combine features from all of the N retrieved cases. The selection operator in the GA ensures
that only those combinations that seem to be leading towards an acceptable solution are kept
for future GA cycles, i.e., it helps to prune the search.

But even an exhaustive search of all the possible combinations of the features of all
retrieved cases is not guaranteed to find satisfactory solutions to the new problem. The
inclusion of a mutation operator in the GA, in addition to combination, ensures that all points
in the search space can potentially be reached. Of course, whether a certain point will be
reached or not depends on the particular sequence of mutations and combinations followed
during a given application of the GA to the retrieved cases. The mutation operator introduces
into the proposed solutions features that weren’t present in any of the originally retrieved
cases, or different values for those features that were present. Thus, our method can
potentially cover the entire search space, even if a large case base is not available.

5.2 Efficiency

We have explored the efficiency of combining GA’s with CBR by comparing our method with
a GA that is exactly the same except for the lack of cases. In the alternative method, instead
of initiating the GA search with a population consisting of cases retrieved from memory, we

169An Evolutionary Approach to Case Adaptation

althoff@iis.uni-hildesheim.de

initiated it with randomly generated “cases” (i.e., random starting points in the search space).
In this way, any differences in efficiency will be attributable to the use of CBR as the guiding
framework, and we can evaluate our decision to combine the two AI paradigms of CBR and
GA’s.

In order to perform this efficiency experiment, GENCAD was run 20 times using 12
cases retrieved from a case base of floor plans of Frank Lloyd Wright prairie houses, and 20
times using 12 randomly-generated cases, on the same problem. The problem specification
for this test problem (at the landscape level) is:

(((level landscape)
 (requirements ((house 1) (river 1) (trees 2)))))

This problem specification can be interpreted as “we want to build a house on a
property in which there is a river, and we’re thinking of planting two clumps of trees around
the house.” The problem is now to use GENCAD to generate a configuration containing these
four elements, specifying their relative positions within the landscape, such that the
configuration is auspicious according to the principles of feng shui.

GENCAD was given a limit of 500 GA cycles in which to find an acceptable solution,
i.e., if convergence did not occur by cycle 500, the search was ended without a solution being
given. Some of the cases in the randomly generated case base, as well as the Frank Lloyd
Wright cases, do contain two clumps of trees, and/or a house, and/or a river in the landscape.
In addition, there are configurations of these four types of element that are valid according to
feng shui practice. Therefore, achieving a solution through the cyclical combination and/or
mutation of the cases retrieved from either case base is theoretically possible.

In the experiment, 5 of the 20 trials using the random starting points converged.
Similarly, 5 of the 20 trials using the Frank Lloyd Wright cases converged. Thus, whether
cases or random starting points are used to initiate the search doesn’t seem to make a
difference as far as the frequency of convergence. However, a clear difference can be seen
when we analyse the number of GA cycles required before convergence occurred (in those
trials in which it did occur), as seen in Table 1.

Table 1. GA cycles required before convergence:

Trial # Random Trial # FLW cases

1 114 25 54

9 333 31 34

11 357 36 32

14 274 37 406

17 160 39 90

Avg.: 241.6 Avg.: 123.2

As can be seen from the results, when cases are used to guide (i.e., provide starting
points for) the search, convergence occurs on average twice as fast as when the search is
initiated from random starting points. This demonstrates the efficiency of combining the ideas
of CBR with those from GA’s. Convergence does not always occur, as can also be seen (or

170 A. Gomez de Silva Garza and M.L. Maher

althoff@iis.uni-hildesheim.de

does not occur within a reasonable number of iterations). Whether it will converge or not, or
how rapidly it will converge, can vary greatly due to the random nature of the genetic
operators of crossover and mutation. However, the process can be applied again and again to
the same problem, using the same initial set of retrieved cases, and it is possible that it will
converge in future attempts.

5.3 Quality

The use of CBR as the overall framework helps ensure that the solutions proposed by our
method are of high quality. For example, a typical problem specification for a floor plan
layout at the house level is that the house should have 3 bedrooms and 2 bathrooms. A
residence of this size typically also has, as a minimum, a kitchen, a living room, and a dining
room. These are not normally given as requirements, but it is an implicit assumption that any
solution will have these additional rooms.

Now let us assume that we used the problem specification mentioned in the last
paragraph to perform a GA search using randomly generated initial solutions, or to perform an
exhaustive search of the solution space, for instance. Such searches would most probably
eventually find a solution that has 3 bedrooms and 2 bathrooms, and that satisfies any domain
constraints (such as relationships among the rooms acceptable to feng shui practitioners). But
it would be likely that these would be the only components that would be present in the
solution. Unless further knowledge and heuristics were used to guide the search, solutions
would be minimalistic.

Instead, by using cases that include kitchens, living rooms, and dining rooms (and
perhaps additional rooms that might be considered to be useful post facto such as pantries) to
initiate the search, the solutions to which our method will converge will most likely also
include these important but unspecified rooms. Thus, the quality of solutions proposed by our
method is equal or greater than if CBR were not used as the guiding framework. Cases
provide complete scenarios that serve to guide both the structure and contents of proposed
solutions.

6 Discussion

We have presented a case adaptation method that is based on ideas from genetic algorithms.
Variations on retrieved cases are evolved incrementally, and at each cycle their quality is
verified and the best variants from amongst the initial population plus the new variants
generated at the current cycle are kept. This evolutionary method of case adaptation combines
the benefits of case-based reasoning and other knowledge-based approaches with those of
general-purpose problem solvers such as genetic algorithms.

For instance, being able to use starting points for problem solving search based on
similar past experiences, and being able to apply the process model to highly-specialised
problem solving domains are two advantages of CBR. On the other hand, having a large
number of operators with greatly differing effects available, and being able to apply the
process model to a wide variety of problem solving domains are two advantages of GA’s. Our
evolutionary method of case adaptation benefits from having all of these characteristics.

Domain knowledge is required and represented in the form of constraints used for the
evaluation of proposed solutions; this is recognition knowledge, not generative knowledge.
This difference with other approaches is especially important in applying our method to tasks
such as design. In design it is relatively easy to recognise whether a proposed design is an

171An Evolutionary Approach to Case Adaptation

althoff@iis.uni-hildesheim.de

acceptable solution for a given problem or not, whereas it is quite difficult to come up with a
set of reasoning steps or heuristics to follow that will lead to the generation of acceptable
designs. The knowledge engineer’s task of knowledge elicitation and knowledge acquisition
is thus simplified when using our evolutionary approach to case adaptation.

This use of constraints for evaluation rather than generation is one of the differences
between our work and that of others that have used constraint-satisfation techniques in the
context of CBR, for instance [8], [9], [10], or [11]. In these projects, constraints with
potentially complex interactions guide the generation of solutions to new problems by
adapting past cases. This generation of solutions uses domain knowledge or heuristics to
make what is generally an NP-complete problem tractable. In our method, the constraints are
independent of each other, and they help in a cumulative fashion to eliminate bad solutions,
rather than in a mutually interacting way to generate good ones.

There has been other work in the past that has combined concepts from GA’s with
CBR. [12] presents a GA that is initialised based on the information held in cases. However,
in [12] cases contain descriptions of past executions of a GA (e.g., the values of the GA
parameters, the task environment in which those parameter values were used successfully,
etc.), irrespective of the type of problem being solved with the GA. Thus, cases help the GA
dynamically adapt to changing problem situations; the authors use concepts from CBR in aid
of GA’s. In our work, on the other hand, cases contain descriptions of known solutions for the
type of problem being solved, and these cases provide guidance for the search that our case
adaptation GA will perform; thus, we use concepts from GA’s in aid of CBR.

The research presented in [13] is more similar to ours, in that cases contain descriptions
of solutions to the type of problem being solved, and a GA is used to adapt the cases to solve
the problem. However, [13] is not a pure CBR approach, as only a small fraction (10%-15%)
of the initial population in the GA comes from cases in memory; most of the initial population
is generated at random, as in a classical GA. The authors do this for valid reasons of
balancing exploration and exploitation in their GA search, but it provides a different flavour to
their research. Again, their work places more of an emphasis on the GA, and on making it
efficient and effective, than on contributing to CBR research. In contrast, we have examined
the possibilities of using a GA for case adaptation from the perspective of CBR.

References

1. Kolodner, J.L.: Case-Based Reasoning, Morgan Kaufmann Publishers (1993)
2. Leake, D.B.: Case-Based Reasoning: Experiences, Lessons, & Future Directions, AAAI Press/The

MIT Press, Boston (1996)
3. Maher, M.L. and Pu, P. (eds.): Issues and Applications of Case-Based Reasoning in Design,

Lawrence Erlbaum Associates, Mahwah, New Jersey (1997)
4. Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems Series), MIT

Press, Boston (1998)
5. Gómez de Silva Garza, A. and Maher, M.L.: A Knowledge-Lean Structural Engineering Design

Expert System, Proceedings of the Fourth World Congress on Expert Systems, Mexico City,
Mexico (1998)

6. Rossbach, S.: Interior Design with Feng Shui, Rider Books, London (1987)
7. Hildebrand, G.: The Wright Space: Pattern & Meaning in Frank Lloyd Wright’s Houses, University

of Washington Press, Seattle (1991)
8. Zhang, D.M.: A Hybrid Design Process Model Using Case-Based Reasoning, Ph.D. dissertation,

Department of Architectural and Design Science, University of Sydney, Australia (1994)

172 A. Gomez de Silva Garza and M.L. Maher

althoff@iis.uni-hildesheim.de

9. Hinrichs, T.R.: Plausible Design Advice Through Case-Based Reasoning, in Maher, M.L. and Pu,
P. (eds.), Issues and Applications of Case-Based Reasoning in Design, 133-159, Lawrence Erlbaum
Associates, Mahwah, New Jersey (1997)

10. Faltings, B.: Case Reuse by Model-Based Interpretation, in Maher, M.L. and Pu, P. (eds.), Issues
and Applications of Case-Based Reasoning in Design, 39-60, Lawrence Erlbaum Associates,
Mahwah, New Jersey (1997)

11. Pu, P. and Purvis, L.: Formalizing the Adaptation Process for Case-Based Design, in Maher, M.L.
and Pu, P. (eds.), Issues and Applications of Case-Based Reasoning in Design, 221-240, Lawrence
Erlbaum Associates, Mahwah, New Jersey (1997)

12. Ramsey, C.L. and Grefenstette, J.J.: Case-Based Initialization of Genetic Algorithms, Proceedings
of the Fifth International Conference on Genetic Algorithms, 84-91, Morgan Kaufmann Publishers
(1993)

13. Louis, S.J. and Johnson, J.: Robustness of Case-Initialized Genetic Algorithms, Proceedings of
FLAIRS (Florida Artificial Intelligence Conference) ’99. To appear (1999)

173An Evolutionary Approach to Case Adaptation

althoff@iis.uni-hildesheim.de

REMEX - A Case-Based Approach for
Reusing Software Measurement Experienceware

Christiane Gresse von Wangenheim

Federal University of Santa Catarina - Production Engineering
Florianópolis, Brazil

gresse@eps.ufsc.br

Abstract. For the improvement of software quality and productivity, organiza-
tions need to systematically build up and reuse software engineering know-how,
promoting organizational learning in software development. Therefore, an inte-
grated support platform has to be developed for capturing, storing and retrieving
software engineering knowledge. Technical support is complicated through spe-
cific characteristics of the software engineering domain, such as the lack of
explicit domain models in practice and the diversity of environments. Applying
Case-Based Reasoning, we propose an approach for the representation of rele-
vant software engineering experiences, the goal-oriented and similarity-based
retrieval tailorable to organization-specific characteristics and the continuous
acquisition of new experiences. The approach is applied and validated in the
context of the Goal/Question/Metric (GQM) approach, an innovative technology
for software measurement.

Keywords. reuse, experience factory, case-based reasoning, software engineer-
ing, software measurement, GQM

1 Introduction

Today almost any business involves the development or use of software. However,
state-of-the-practice is that software systems often lack quality and many software
projects are behind schedule and out of budget [17]. In order to successfully plan, con-
trol and improve software projects, organizations need to continuously evolve software
engineering (SE) know-how tailored to their specific characteristics and needs [8,10].
Experiences from their software projects have to systematically captured and reused
across the organization. This enables the consolidation of organization wide SE know-
how into competencies that empower the company to achieve considerable improve-
ments and benefits [32]. Currently, reuse of SE knowledge is done in an ad-hoc, infor-
mal manner, usually limited to personal experiences. For the systematic acquisition and
organization-wide communication of these experiences, corporate memories
[2,8,18,20] have to be built (see Figure 1). In the software domain, the Experience Fac-
tory (EF) approach [8] proposes an organizational infrastructure for the analysis and
synthesis of all kinds of software life cycle experiences or products. It acts as a reposi-
tory for those and supplies these experiences to various software projects. However, for
the operationalization of an EF in practice, we need a clever assistant that supplies the
right experiences from the Experience Base (EB) to the user on demand.

K.-D. Althoff, R. Bergman, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 173-187, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

In order to comprehensively sup-
port the software development
process, various types of experi-
enceware (EW) [18], including
expertise and lessons learned
(e.g., how to apply design in-
spections), quality models (e.g.,
distribution of rework effort per
fault type), and deliverables
(e.g. , software measurement
plans, requirement documents)
related to several processes (e.g.,
design inspection , measure-
ment) in different environments
have to be retrieved addressing various purposes: facilitation of the planning or execu-
tion of software projects, prevention of past failures by anticipating problems, and
guidance for the solution of occurring problems. And, since each software project is
different, it is very unlikely to find an artifact fulfilling the needs of the actual project
completely. Thus, experiences have to be retrieved from projects with “similar” char-
acteristics, assuming that similar situations (or problems) require similar solutions. In
the SE domain, for example, we assume, that measurement programs with similar goals
use similar quality models or that similar problems occurring during design inspections
have corresponding solutions. Due to the lack of general SE models in practice, organi-
zational software know-how has to evolve in an incremental manner by learning from
each new software project. Thus, the EF has to support continuous learning by captur-
ing and integrating new experiences when software projects are planned and executed.
In this context, Case-Based Reasoning (CBR) [5] plays a key role [10,18,20,27], as it
provides a broad support for similarity-based retrieval for all kinds of EW and contin-
uous incremental learning. However, the operationalization of the EF is not trivial, as
relevant SE knowledge has to be identified, modeled and represented in the EB. Meth-
ods for goal-oriented retrieval providing support for different processes, objectives, and
environments in the SE domain and for the continuous acquisition and integration of
new experiences have to be developed. In this paper, we propose a case-based approach
for an integrated support platform enabling organizational learning from SE experienc-
es tailorable to organization specific characteristics. The approach is based on our ex-
periences on reusing GQM-based measurement know-how (e.g., in the context of the
industrial transfer and research projects [11,26]).

2 Reuse of GQM Measurement Plans

In this section, we give a short overview on software measurement, the application do-
main of our approach, and provide scenarios illustrating the reuse of measurement EW.
Software measurement is an essential infrastructure technology for the planning, con-
trol and improvement of software projects. Organizations have to collect quantitative
and qualitative data concerning their software products and processes, to build an em-

software project n
software project 1

Planning

project team

experience
factoryknowledge engineer

SE experienceware feedback, lessons
learned, deliverables,..

experience base

Fig. 1. Experience factory organization

Execution

Control

Project plan

174 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

pirical justified body of knowledge. A specific technology for goal-oriented measure-
ment is the Goal/Question/Metric approach (GQM) [9], which supports the definition
and implementation of operationalizable software improvement goals. Based on a pre-
cisely specified measurement goal, relevant measures are derived in a top-down fash-
ion via a set of questions and models. This refinement is documented in a GQM plan,
providing a rationale for the selection of the underlying measures. Data is collected wrt.
the measures and interpreted in a bottom-up fashion in the context of the models, ques-
tion and goals, considering the limitations and assumptions underlying each measure.
The establishment of measurement programs, which in practice requires a significant
planning effort, can be substantially facilitated by reusing measurement EW [16], as il-
lustrated in the following scenario.

Suppose a company, IntelliCar, which produces embedded software for automobiles
has two main departments: FI which develops software for fuel injection devices and
ABS which develops software for ABS brake control devices. As the company produc-
es embedded software, one of its most important goals is to produce zero-defect soft-
ware. Therefore, department FI established successfully a quality improvement pro-
gram based on measurement two years ago. Now, also department ABS wants to start
measurement-based improvement. As the contexts of both departments are similar and
the improvement goal is the same, experiences available in department FI can be reused
at ABS in order to reduce the planning effort and to improve the quality of the measure-
ment program. Based on the measurement goal «Analyze the software development
process in order to improve the reliability from the viewpoint of the software developer
at ABS/IntelliCar», relevant quality aspects and influence factors have been acquired
during interviews with the developers of department ABS. These are represented as a
set of questions in the GQM plan, as shown in Figure 2. Now, in order to operationalize
the questions of the GQM plan, quality models have to be developed. Assume, for ex-
ample, that the question «Q3. Does the type of inspection have an impact on the effec-

Fig. 2. Excerpt of simplified example of GQM plan

Measurement Program at ABS/IntelliCar

 GQM Goal
 Analyze the software development process in order to improve the reliability from the viewpoint of the
software developer at ABS/IntelliCar
GQM Questions
Q1. What is the total number of defects detected before delivery?
Q2. What is the distribution of defects?
Q3. Does the type of inspections have an impact on their effectiveness?
Q4. Does the experience of developers have an impact on number of faults introduced in the system?
 ...
 Quality Models
Effectiveness of inspections
Context: company IntelliCar, automobile domain
Assumptions: The defect density is comparable across documents.
Computation: effectiveness = (number of defects detected in inspection)/(size of document * training
duration)
Attributes: number of defects detected in inspections; size of document; duration of training

175REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

tiveness of inspections?», has also been evaluated in a similar measurement program in
department FI. Then, the respective model can be reused, assessing its applicability
based on its underlying assumptions. If necessary, the model is adapted to the specific
characteristics of ABS. For example, assuming that inspector capabilities vary exten-
sively between departments, the effectiveness of inspections is expected to depend not
only on the size of the inspected document (as stated in the reused model), but also on
the training of inspectors, then the new factor is included in the model.
While defining a model
for question Q2, it turned
out that an operational re-
finement of the question
is impossible due to miss-
ing information concern-
ing defect classification.
The solution of this prob-
lem can be guided by ex-
periences describing how
a similar problem has
been successfully solved
at department FI (see Figure 3) by suggesting follow-up interviews in order to acquire
the required information completely. In addition, reusing organizational glossaries can
support the consistent usage of terms (e.g. defect) and reusing taxonomies representing
generalization relations can help the refinement of abstract concepts (e.g. «distribution
of defects» in Q2). Other phases of the measurement planning process can be supported
accordingly through the reuse of measurement EW [16].

3 Representation of GQM Experienceware

In order to facilitate and improve the planning of GQM-based measurement programs
through reuse of EW, an Experience Base is developed, modeling and representing rel-
evant measurement EW.

3.1 GQM Experienceware Cases

As today wrt. most SE technologies no formal knowledge exists, the principal source
are individual project experiences. Thus, SE EW is primarily captured in form of cases
in the GQM-Experience Base (GQM-EB)1, representing context-specific experiences
gained in a particular software project in a specific organization. In order to provide
comprehensive support, different types of EW cases are modeled by using a flexible,
object-oriented frame-like representation formalism based on [24,28] and are stored in
the GQM-EB [15,19]:
• GQM Product Experienceware Case (GQM-PEC). These cases include GQM prod-

ucts developed during the planning of a GQM-based measurement program. GQM-
PECs are reused in similar software projects as a basis for the development of respec-

1.Here, we consider a specific instantiation of the experience base focusing on EW on the
planning of GQM-based measurement programs.

 Context company IntelliCar; department FI
 Problem Question of the GQM plan cannot be refined into an

operational quality model due to missing information.
 Cause of
Problem

During the interviews the necessary knowledge has not been
acquired completely from the project personnel.

 Solution A follow-up interview was performed with the person(s) who
mentioned the respective quality aspects during the first inter-
views in order to clarify the formulation of the GQM question.

Outcome The required knowledge was acquired completely and the
respective quality model was defined.

Fig. 3. Example of problem experience

176 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

tive products, resulting in a reduction of planning effort and improved quality of the
GQM products.

• GQM Problem-Solution Experienceware Case (GQM-PSEC). GQM-PSECs explicit-
ly capture problem solution strategies that have been adopted in past measurement
programs (see Figure 3). Reusing GQM-PSECs can warn for potential failures in ad-
vance and guide a solution fitting the application context. Due to the specific nature
of experiential knowledge, GQM-PSECs are represented as cases describing a specif-
ic problem, its cause, the solution applied and the outcome achieved.

Experienceware Cases are represented by a set of relevant attributes and interdependen-
cies based on domain models (see Section 3.2) [29]. To enable the retrieval of EW cas-
es from similar software projects, the environment from which the case has been ob-
tained is characterized. This is done through a minimal set of characteristics (e.g., busi-
ness sector, improvement goals, development process used), which allows to identify
similar cases and to discriminate different ones. In order to assess the reuse potential of
the case, cases are enhanced by basic information (e.g., viewpoint, representativeness).
Information about past reuses of a case, such as preconditions for reuse, required adap-
tations, cost and frequency of reuse, are explicitly captured [19] in order to facilitate the
reuse of experiences and their adaptation to specific project characteristics.

3.2 General Domain Knowledge

In order to model relevant EW and facilitate the consistent representation and acquisi-
tion of new experiences across software projects, general domain knowledge on GQM
EW is represented in the GQM-EB [16,19].
GQM EW Models. Entities related to GQM EW are explicitly modeled in a hierarchy
of classes [16,28] (see Figure 4). Each class is structured by a set of attributes represent-

ing basic values or relationships to other entities. Attributes are defined through an
identifier, description, cardinality, its type or kind of relationship, a default value and
explicitly stating if the attribute has to be specified (mandatory) when a new instance of
this class is acquired [15].

Fig. 4. GQM EW Classes (is_a relation)

GQM Product

GQM Plan

GQM Measure

GQM Goal

GQM Model

Measurement Plan

Data Collection Instrument
Data Collection Procedure

GQM Question

Abstraction Sheet

Measurement Tool
Questionnaire

InterviewQuestionnaire Question

 Item
Quality Item
Variation Item

OBJECT

Context Characterization
Organization Characterization
Project Characterization
Measurement Characterization
Data Collection Event
Software Object

Process Event
Periodic Event

Artifact Event

Experienceware

Measurement EW
Inspection EW

GQM Product EW Case
GQM Problem Solution EW Case

Problem
Problem Cause
Solution
Outcome

177REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

Type Definitions. Type definitions model qualities of SE entities, such as, developer
experience, or categorize concepts, e.g., programming languages as Unordered Symbol
with the possible values «Delphi, C++, etc.». Type definitions are used to type class at-
tributes. They facilitate the situation assessment and support the manual adaptation of
retrieved EW cases by explicitly indicating alternatives, as well, as the consistent ac-
quisition of experiences across projects. For each type, its related supertype, range and
the local similarity measure are specified. For example, the experience level of devel-
opers might be classified through the Ordered Symbols: none, low, medium, high, us-
ing the standard local similarity measure for ordered symbols. For symbol types, the
meaning of each value is explicitly defined through range definitions, e.g., «high» ex-
perience may be defined as worked for more than 2 years in the application domain. In
addition, for numerical types, the unit is explicitly stated, e.g., person-hours.
Glossaries. Glossaries define terminology and basic concepts related to software mea-
surement [16,19]. For example, «Failure: is the inability of the software to perform a re-
quired function wrt. its specifications». A glossary supports the adequate use of terms,
their consistency across an organization, and ensures that the reuse of GQM products is
based on sound assumptions.
Taxonomies. Taxonomies represent ordered arrangements of entities according to their
presumed relationships, e.g., organization hierarchy [16,19]. They guide the appropri-
ate refinement of objects of interest during the situation assessment and acquisition of
new experiences.

3.3 Knowledge Levels

Software products, processes, resources as well as characteristics and terminology vary
between different organizations. Therefore, the domain model has to be tailored to the
specific environment. Generally, we can identify different levels of knowledge valid in
different scopes of domains:
• Software measurement domain. Here, general knowledge on GQM-based measure-

ment is represented, which is transferrable between organizations. This level includes

Class GQM Measure

Description defines data to be collected

Attributes Identifier Description Cardinality Type or Kind Default Mandatory

id identifies the GQM measure 1 Identifier - yes
assumptions about the applicability of the measure 0..1 Text none no
description describes data to be collected 0..1 Text - yes
scale defines scale of the measure 0..1 Scale - yes
unit declares unit of the measure 0..1 Unit - no
range declares range of the values of the measures 0..1 Text - no
model references the corresponding model 0..* defined-by

[GQM-
Model])

- yes

...

A GQM measure defines which data has to be collected. It includes the explicit definition of assumptions concerning the
application of the measure. Regarding the expected values, scale, unit (only in case of numerical values) and range have to
be defined.As GQM measures are derived from models which determine the attributes to be measured, this is represented
as a defined-by relation. Based on the GQM measure the collection procedure defining when, how, and by whom the data
has to be collected is defined.

Fig. 5. Simplified example of the class GQM Measure

178 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

GQM EW models, general valid types and range definitions (e.g., on measurement
scale), and general valid terms in the glossary (e.g., software process).

• Organization domain. Here, organization specific knowledge related to software
measurement is represented. If the GQM technology is modified in a particular organ-
ization, the respective knowledge from the upper level is adapted accordingly. Type
and range definitions are enhanced by organization specific definitions. For example,
one organization could classify «experience of the developers» into the categories
(expert-participated in system development; medium-participated in training; none),
whereas another organization might classify experience into (high-working for more
than 2 years, medium-worked once, low-never worked in application domain). The
glossary and taxonomies are completed by organization specific terms.

• Project domain. At this level, instantiations of GQM EW cases are represented gath-
ered from particular software projects. For example, a GQM-PEC including a GQM
plan from a measurement program of the project HYPER at the department ABS/In-
telliCar.

4 Experience-Based Support of GQM Planning

4.1 Determination of Retrieval Goals

During the planning of GQM measurement programs the GQM-EB can be inquired to
find useful EW to guide, support and improve various SE tasks in a specific environ-
ment. In order to provide comprehensive support for several SE tasks, various types of
experiences have to be retrieved, from different viewpoints in different environments
addressing various purposes: support of software projects by reusing similar products
developed in the past, prevention of failures by anticipating problems, guidance for the
solution of problems by reusing solution strategies adopted in past similar problems,
and the identification of patterns of experiences for the maintenance and evolution of
the EB. Thus, a goal-oriented retrieval method [14] is developed that retrieves a set of
relevant experiences wrt. a specific reuse goal. Based on reuse scenarios, retrieval goals
are determined explicitly specifying the following dimensions:

Retrieve <object>
to <purpose>
concerning <process>
from the <viewpoint>
in the context of <environment>

For example, «retrieve lessons learned to guide problem solution concerning software
measurement from the viewpoint of quality assurance personnel at IntelliCar».
Based on the retrieval goals, reusability factors are determined. This includes the spec-
ification of relevant indexes1 and their importance and the parametrization of the simi-
larity measure. For example, for the retrieval of a solution strategy, relevant indexes
might be the problem description and the task when the problem occurred, whereas po-
tential problems wrt. a specific task might be identified based on the task only.

1.As index we denote attributes of the case, which predict the usefulness of the case concern-
ing the given situation description, and which are used for retrieval and determination of the
similarity value.

179REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

4.2 Retrieval Process

Considering different retrieval goals, a goal-oriented method for similarity based re-
trieval is defined, including the following steps [14]:
Step 1. Situation assessment. The current situation is described by the user specifying

the retrieval goal and a set of indexes related to the specific retrieval goal based on a
predefined indexing scheme. The importance of each index wrt. the specific retrieval
goal is stated through a relevance factor assigned to each index. Relevance factors are
stored in the EB and can be manually adapted by the user. To facilitate the assign-
ment, relevance factors are classified into «essential, important, less important, irrel-
evant». Indexes marked as essential are perfectly matched to the ones in the situation
assessment, the ones marked as important or less important are partially matched and
the ones marked as irrelevant are not further considered. Unknown indexes are ex-
plicitly marked. Table 1 illustrates a situation assessment with an exemplary set of in-
dexes. The situation assessment is further supported by general domain knowledge
[19]: glossaries can be used for a consistent usage of terminology across projects and
taxonomies guide and direct the appropriate definition of indexes. Type and range
definitions facilitate the identification of the present values and guarantee a consistent
description across projects.

Step 2. Exact matching of indexes marked as essential. In a first step, the cases of the
EB are perfectly matched with the situation assessment wrt. the indexes marked as
essential, determining a set of potential reuse candidates. Table 1 shows a simplified
example: while comparing the cases of the EB with the situation assessment, case
PSEC_03 and PSEC_11 are considered as potential reuse candidates, because the val-
ues of the indexes marked as essential («application domain» and «task») are equal
to the present ones. PSEC_07, which describes an experience regarding the develop-
ment of the measurement plan, is not further considered, as the value of the index
«task» is different to the one of interest.

Reuse goal GQM Experience Base (excerpt)
object lesson learned (PSEC) CASE

PSEC_003
CASE
PSEC_007

CASE
PSEC_011purpose guide problem solution

process sw measurement

viewpoint quality assurance personnel

environment IntelliCar

Indexes
department irrelevant ABS Fuel Injection Fuel Injection Fuel Injection

staff size less important 10 15 100 50

application
domain

essential automobile automobile automobile automobile

improvement goal important improvement of sw
system reliability

improvement of sw
system reliability

improvement of sw
system reliability

cost reduction in sw
development

programming language irrelevant Ada Fortran Ada C

dev. experience less important high medium low low

sw system size less important unknown 15 KLOC 80 KLOC 60 KLOC

measurement maturity important initial -- -- --

 task essential measurement goal
definition

measurement goal
definition

development of
measurement plan

measurement goal
definition

Table 1. Simplified retrieval example

180 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

Step 3. Partial matching of similar cases. For all potential reuse candidates a similar-
ity value is computed by partially matching the indexes (except the ones marked as
essential) using a specific similarity measure wrt. the retrieval goal (see Section 4.3).
Cases with a higher similarity value than a given threshold are considered as suffi-
ciently similar and proposed to the user as reuse candidates ranked by their similarity
values. Continuing the example shown in Table 1, case PSEC_03 is considered more
similar to the given situation than PSEC_11, because the values of the indexes of
PSEC_03 marked as important or less important are more similar to the current ones
(especially regarding «staff size», «improvement goal»).

Step 4. Selection of reuse candidate(s). Based on the proposed reuse candidates the
user can select the most appropriate case(s) and, if necessary, manually adapt them to
fit the current needs. Informed decisions are further supported by experiences explic-
itly captured in the EB about the reuses of a particular case in the past [19] (see
Section 3.1). If the system fails to propose reuse candidates, general domain knowl-
edge, e.g., GQM product models, is available to support the SE tasks.

4.3 Similarity Measure for the Retrieval of Experienceware

For the identification of «similar» EW cases concerning various retrieval goals (see
step 3/Section 4.2), we define a generic similarity measure sim(Sit´,Ek´) [14] that can

be parameterized for a specific goal. Taking into account specific characteristics of the
SE domain, such as the lack of explicit domain models in practice, diversity of environ-
ments, incompleteness of data, and the consideration of «similarity» of experiences, the
similarity measure is based on the following assumptions (see [14] for details):
• Depending on the retrieval goal, a particular set of indexes is defined for situation as-

sessment and matching. A set of indexes C is represented as a list of features
Cg={Cg1, Cg2,...} wrt. the particular retrieval goal g. The range of the value ci of the

feature Cgi is defined by the respective range definition Wi (see Figure 6).

• The present situation is assessed based on the set of indexes wrt. the retrieval goal,
represented as a list of feature-value pairs Sit´={(Cgi, si) ∈ Sit | relevance factor (Si)
≠ essential} including the features Cgi ∈ Cg and their values si ∈ Wi.

• In the EB, an EW casek = (Ek,εk) represents an experience by feature-value1 pairs (ex-

perience Ek={(Ek1, ek1), (Ek2, ek2),...} with the features Eki and their values eki ∈ Wi

1.Here, values represent atomic values or relations to other entities.

Example Index Set Type/Range Relevance Vector
R g

Pre se nt Si tuat i on
Sit´={(Cgi, si)

 Case Ek FS

C1 staff size Interval of numbers
[0,50]

le s s i mpor ta n t
(0.15)

s1 10 15 W

C2 improvement
goal

String important (0.35) s2 “improvement of
system reliability ”

“improvement of
system reliability ”

E

C3 measurement
maturity

Ordered Symbol:
{initial, low, routine}

important (0.35) s3 initial unknown U

C4 sw system size Number [0,100] le s s i mpor ta n t
(0.15)

s4 unknown 15KLOC R

Fig. 6. Example

181REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

(and with Ek´ ⊆ Ek and Eki´ ∈ Cg and their respective values eki´), describing the

know-how gathered in a software project, the context from which its originates, and
its relationships (see Figure 6). In addition, a threshold εk ∈ [0,1] is stated for each
case that determines, if the case is sufficiently similar to the situation assessment to
be proposed as a reuse candidate.

• In the SE domain, many cases may have a low similarity value, due to few identical
values, although they might be quite similar (e.g. programming languages C and
C++). Thus, local similarity measures are introduced. Generic local similarity meas-
ures υ´(si,eki´) ∈ [0,1] for basic value types W(v) are defined in [19,28]. Local simi-

larity thresholds θi ∈ [0,1] are introduced for each index Cgi determining if the values

are considered as (sufficiently) similar.
• Relevance factors are defined, which reflect the importance of a feature concerning

the similarity of cases wrt. a specific retrieval goal (see Figure 6). Here, for each re-
trieval goal g a specific index set Cg is used. Thus, for each index Cgi ∈ index set Cg,
a relevance factor ωgi ∈ [0,1] is defined in dependence on the specific retrieval goal

g. For each retrieval goal, those relevance factors are represented by a relevance vec-
tor Rg= {ωg1, ωg2,...} with ∑ ωgi=1 normalized in the EB.

• In order to explicitly deal with incomplete knowledge, the similarity of two objects is
expressed through a linear contrast of weighted differences between their common
and different features [6,30]. The following Feature Sets (FS) are distinguished:
• E: Set of corresponding features of the given situation and the stored case (E = {Cgi

| (Cgi ∈ Sit´∩ Eki´) and (υ´(si,eki´)≥θi)}). For example, if both, the situation assess-

ment and the stored case state the feature «experience of developer» as high.
• W: Set of contradicting features of the given situation and the stored case (W = {Cgi

| (Cgi ∈ Sit´∩ Eki´) and (υ´(si,eki´)<θi)}). For example, if in the past no effort report-

ing tools were available, but now in the given situation the feature «effort reporting
tools» is stated as available.

• U: Set of unknown features in the actual situation description (U = {Cgi | (Cgi ∈ Eki´

- Sit´)}). For example, when initiating a software project certain information, such
as «software system size» may be stated as unknown in the situation description.

• R: Set of redundant features not contained in the stored case (R = {Cgi | (Cgi ∈ Sit´

- Eki´)}). For example, the feature «developer experience» may not have been con-

sidered initially, but later become important for the identification of relevant cases.
For each set, a specific weight α, β, γ, δ ∈ [0,1] is defined.

The global similarity measure is defined as:
sim(Sit´,Ek´)=(α ∑si∈ E ωikυ´(si,eki´)) / ((α ∑si∈ E ωik υ´(si,eki´)) + (β ∑si∈ W ωik(1-
υ´(si,eki´))) + (γ ∑si∈ U ωik(1-υ´(si,eki´))) + (δ ∑si∈ R ωik(1-υ´(si,eki´))))

Based on the similarity value calculated, a casek is considered as reuse candidate, if all

features marked as essential in the given situation exactly match the respective features
of the case, and if sim(Sit´,Ek´) ≥ global similarity threshold εk of casek.

 ∀

182 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

5 Continuous Acquisition and Integration of Experienceware

The incremental evolution based on feedback from industrial applications is essential
for continuously building and improving SE know-how. Consequently, the knowledge
in the GQM-EB has to be enhanced and updated each time a new measurement pro-
gram is run in the organization. This means that we have to continuously capture new
experiences from the quality assurance personnel. In order to keep the effort related to
the knowledge acquisition minimal, this process is intertwined in the retrieval/reuse
process (see Figure 7): Information provided by the user as input to the retrieval pro-
cess, such as a context characterization, and reused experienceware from the GQM-EB
are in parallel used for the creation of new EW cases.
For example, while reusing EW in
order to support the solution of a
problem encountered (see Section
2) concerning the definition of a
quality model, the user provides the
following situation assessment:
«organization: IntelliCar; applica-
tion domain: automobile; problem:
Question of GQM plan cannot be
refined into model». This informa-
tion is used for the retrieval process,
and in parallel for the description of
a new case documenting experienc-
es regarding the present situation.
Information contained in a similar
case retrieved and reused in order to
solve the current problem, is used to supplement the new case description (see Figure
8). The generated new case is reviewed by the user before storage in the EB. Additional
information (e.g. basic information) is added, and if necessary, deviations from the re-
used case are adjusted, e.g., if a solution different to the one stated in the reused case
was applied. The acquisition of new experiences is further guided through GQM EW
models, which explicitly address relevant dimensions to be captured. Glossaries and
taxonomies facilitate the consistent description of experiences across software projects.
The new acquired experiences are integrated into the existing EB to be available for fu-
ture reuse. This implies that EW cases have to be stored, domain models enhanced and,
if necessary, generic patterns of cases have to be created or modified.
Project-specific cases (GQM-PECs or GQM-PSECs) acquired in parallel to the retriev-
al process are stored as instances of GQM EW cases in the GQM-EB. Based on proto-
cols on the retrieval/reuse process and comparisons of the reused and new case, reuse
information is added to the reused case. For example, the date of reuse is added, the fre-
quency of reuse is increased, and attributes which have been adapted to fit the new sit-
uation are explicitly listed.
In addition, project-specific cases are evaluated wrt. their similarity to other cases of the
GQM-EB. If the new case differs only in small details from a case reused, an abstract

Retrieval of
similar cases

Revise/reuse of
reuse candidate

Capturing of
reused case

Situation description

Review of new case

Reuse
candidates

Capturing of
situation description

New case V0.1

New case V0.2

New case V1.0

 EKB

Fig. 7. Integration of acquisition process

183REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

case subsuming the project-specific cases is created through case generalization. The
development of generic patterns through the knowledge engineer can be guided by tax-
onomies which provide a basis for the derivation of abstractions.
Based on an evaluation of
new terms defined in the
specific GQM EW case
through the knowledge
engineer, the organiza-
tional glossary and taxon-
omies are enhanced.
The continuous evolution
and customizing of the EF
to a specific environment
may also require the mod-
ification of the representa-
tion of EW cases, the in-
dexing scheme and simi-
larity measure based on
user feedback from the application. Due to the fact, that indexes depend on the specific
environment and may change over time, the continuous tailoring of the indexing
scheme needs to be supported during the whole life cycle of a GQM-EB through the
knowledge engineer. For example, supplemental context characteristics of software
projects may become relevant for the discrimination of cases. As shown in Figure 8, the
attribute «measurement maturity» had not been considered as a relevant characteristic
for the context description of a case in the past, because all experiences were related to
projects without variations concerning the maturity. Since a new measurement program
is established in a project with a different level of maturity, this attribute has become
relevant for the distinction of cases and is added to the context characterization.
Continuous learning has also to take place wrt. the similarity measure and its parame-
trization for specific retrieval goals in order to improve and optimize its performance.
Therefore, the retrieval and reuse process is supervised and, based on the feedback, ap-
propriately tailored to the specific environment through the knowledge engineer. Here,
protocols documenting the user´s (re-)actions and user-provided critics and suggestions
can serve as a basis for the maintenance through the knowledge engineer (see Table 2).

Feedback Implication for update
Index manually added

for retrieval
•Addition of index to the indexing scheme

Relevance factor
manually modified

•Modification of weight assigned to the index
•Index frequently marked as irrelevant might be removed from the index
scheme

Increasing number of
retrieved reuse candidates

•Changing optimistic strategy for similarity measure into a more pessimistic
•Increase of tresholds

Frequent rejection of
cases suggested as

reuse candidates

•If a specific case is affected: increase of global treshold of the case
•If different cases are affected: review of indexing scheme and similarity
measure under consideration of additional critics and suggestions of the user

Table 2. Examples of retrieval feedback and its implications

 Context organization: IntelliCar; application do-
main: automobile; measurement maturity:
low

 Problem Question of the GQM plan cannot be re-
fined into operational quality model.

 Cause of
Problem

During the interviews the necessary knowl-
edge has not been acquired completely from
the project personnel.

 Solution A follow-up interview was performed with
the person(s) who mentioned the respective
quality aspects during the first interviews in
order to clarify the formulation of the GQM
question and organizational taxonomies on
software entities were consulted.

 Outcome The required knowledge was acquired com-
pletely and the respective quality model was
defined.

Fig. 8. Simplified example of acquisition

input for
retrieval
process

added
during
review

update of
reused
case
during
review

reused
case used
as a basis
for the
description
of the
new case

184 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

Based on a careful analysis of the causes, the selection of indexes and/or the similarity
measure have to be adapted accordingly in order to improve retrieval results in the fu-
ture.

6 Discussion

In the software domain, various approaches exist for reuse primarily focusing on soft-
ware code, e.g, based on library and information science, knowledge-based systems, or
database management technologies [12]. However, the majority of those approaches
fails to recognize the complexity of SE experience in general, often requires a thorough
classification of the domain, or does not provide any means for similarity-based retriev-
al.
Recently, CBR has been recognized as a promising approach for the operationalization
of learning organizations in the SE domain [2,3,18,22,27]. Applications are developed
in different SE areas, like capturing and formalizing best practices (e.g., [20]), effort
prediction (e.g., [13]), change management [23], and requirements acquisition (e.g.,
[25]). However, so far there does not exist an approach on reusing software measure-
ment EW. Only few approaches offer flexible similarity-based retrieval methods, for
example, through a context concept as a “similarity environment for the retrieval”
[1,31], dynamic ranking of importance ratings of indexes [21], or partitioning the case
base through the use of prototypes [7]. However, if multiple retrieval goals have to be
supported by a case base, this is not sufficient. The creation of distinct case bases for
test selection and diagnosis in PATDEX [6,31], can be seen in analogy to different re-
trieval goals, although inefficient due to administration and maintenance reasons. In
contrast, our approach, systematizes the concept of goal-oriented retrieval through a
flexible and tailorable retrieval method and similarity measure based on the advanced
similarity model of PATDEX which explicitly deals with unknown information, filter
attributes, and local similarity measures.
Besides integrating experiential knowledge (in form of cases) and general domain
knowledge as in several CBR systems, our approach explicitly models different levels
of knowledge focusing on different scopes.
Concerning the tailoring and continuous evolution of the EF to organization specific
characteristics, only a few systems offer mechanisms for the systematic and integrated
acquisition of user feedback and learning possibilities regarding the similarity measure
as, e.g., the tailoring of relevance factors (see [4] for an overview), which represent the
basis for the continuous evolution of our approach.

7 Conclusion

For the successful planning and improvement of software measurement, EW has to be
captured in corporate memories and reused across the organization. Based on our expe-
riences on the application of the GQM approach in practice, we develop a case-based
approach for the operationalization of organizational learning in software measurement
focusing on the technical aspects. Relevant measurement EW is modeled, a goal-orient-
ed method for similarity-based retrieval tailorable to specific environments is devel-
oped, and an acquisition process intertwined into the retrieval/reuse process described.

185REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

Currently, we are implementing the approach. Further empirical research will have to
be carried out in experiments and industrial transfer projects to assess strengths and
weaknesses of the approach.

References

1. Althoff, K.-D., et al.: Case-Based Reasoning for Decision Support and Diagnostic
Problem Solving: The INRECA Approach. Proc. 3rd German Workshop on Case-
Based Reasoning, Germany (1995)

2. Althoff, K.-D., Bomarius, F., Tautz, C.: Using Case-Based Reasoning Technology to
Build Learning Software Organizations. Proc. of Workshop on Building, Maintaining,
and Using Organizational Memories at the 13th European Conference on AI (1998)

3. Althoff, K.-D., et al.: CBR for Experimental Software Engineering. In M. Lenz et al.
(eds.), Case-Based Reasoning Technology - From Foundations to Applications, LNAI
1400, Springer Verlag (1998)

4. Althoff, K.-D.: Evaluating Case-Based Reasoning Systems: The Inreca Case Study.
Postdoctoral Thesis, University of Kaiserslautern, Germany (1997)

5. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications, 17(1) (1994)

6. Althoff, K.-D., Wess, S.: Case-based Knowledge Acquisition, Learning and Problem
Solving in Diagnostic Real World Tasks. Proc. of the 5th European Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, Scotland/UK (1991)

7. Barletta, R.: A Hybrid Indexing and Retrieval Strategy for Advisory CBR Systems
Built with ReMind. Proc. of the 2nd European Workshop on Case-Based Reasoning
(1994)

8. Basili, V. R., Caldiera, G., Rombach, H. D.: Experience Factory. In J. J. Marciniak
(ed.), Encyclopedia of Software Engineering, John Wiley & Sons (1994)

9. Basili, V. R., Caldiera, G., Rombach, H. D.: Goal Question Metric Paradigm. In J. J.
Marciniak (ed.), Encyclopedia of Software Engineering, John Wiley & Sons (1994)

10.Barr, J.M., Magaldi, R.V.: Corporate Knowledge Management for the Millennium. In
I. Smith, B. Faltings (eds.), Advances in Case-Based Reasoning, Springer Verlag
(1996)

11.CEMP Consortium. Customized Establishment of Measurement Programs. Final Re-
port, ESSI Project Nr.10358 (1996)

12.Frakes, W. B., Gandel, P. B.: Representing Reusable Software. Information and Soft-
ware Technology, 32(10) (1990)

13.Finnie, G. R., Wittig, G. W., Desharnais, J.-M.: Estimating Software Development Ef-
fort with Case-Based Reasoning. Proc. of the 2nd Int. Conf. on Case-Based Reasoning,
RI (1997)

14.Gresse von Wangenheim, C., Althoff, K.-D., Barcia, R.M.: Intelligent Retrieval of
Software Engineering Experienceware. Proc. of the 11th Int. Conf. on Software En-
gineering and Knowledge Engineering, Germany (1999)

15.Gresse von Wangenheim, C.: REMEX - A Case-Based Approach for Reuse of Soft-
ware Measurement Experienceware. Technical Report PPGEP-C3002.99E, Graduate
Program in Production Engineering, Federal University of Santa Catarina, Brazil

186 C. Gresse von Wangenheim

althoff@iis.uni-hildesheim.de

(1999)
16.Gresse, C., Briand, L. C.: Requirements for the Knowledge-Based Support of Soft-

ware Engineering Measurement Plans. Journal of Knowledge-Based Systems, 11
(1998)

17.Gibbs, W.W.: Software´s Chronic Crisis. Scientific American (1994)
18.Gresse von Wangenheim, C.: Knowledge Management in Experimental Software En-

gineering - Create, Renew, Build and Organize Knowledge Assets. Proc. of the 10th
Int. Conf. on Software Engineering and Knowledge Engineering, San Francisco, Cal-
ifornia (1998)

19.Gresse von Wangenheim, C., von Wangenheim, A., Barcia, R. M.: Case-Based Reuse
of Software Engineering Measurement Plans. Proc. of the 10th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, California (1998)

20.Henninger, S.: Capturing and Formalizing Best Practices in a Software Development
Organization. Proc. of the 9th Int. Conf. on Software Engineering and Knowledge En-
gineering, Spain (1997)

21.Kolodner, J. L.: Case-Based Reasoning. Morgan Kaufmann, San Francisco, Califor-
nia (1993)

22.Kitano, H., Shimazu, H.: The Experience-Sharing Architecture. In D. Leake (ed.),
Case-Based Reasoning Experiences: Lessons Learned & Future Directions (1996)

23.Lam, W., Shankararaman, V.: Managing Change During Software Development: An
Incremental, Knowledge-Based Approach. Proc. of the 10th Int. Conf. on Software
Engineering and Knowledge Engineering, San Francisco, California (1998)

24.Manago, M. et al.: Casuel: A Common Case Representation Language. Technical Re-
port Deliverable D1, Esprit Project Inreca P6322 (1994)

25.Maiden, N.A., Sutcliffe, A. G.: Exploiting Reusable Specifications Through Analogy.
Communications of the ACM, 35(4) (1992)

26.Kempter, H., Leippert, F.: Systematische Software-Qualitätsverbesserung durch
zielorientiertes Messen und Bewerten sowie explizite Wiederverwendung des Soft-
ware-Entwicklungs-Know-how. Proc. of the BMBF-Seminar Software Technology,
Germany (1996)

27.Tautz, C., Althoff, K.-D.: Using Case-based Reasoning for Reusing Software Knowl-
edge. Proc. of the 2nd Int. Conference on Case-Based Reasoning, Springer Verlag
(1997)

28.Tautz, C., Gresse von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. Proc. 5th German Conf. on Knowledge-Based Sys-
tems, Germany (1999).

29.Tautz, C., Gresse von Wangenheim, C.: REFSENO: A Representation Formalism for
Software Engineering Ontologies. Technical IESE-Report 015.98/E, Fraunhofer In-
stitute for Experimental Software Engineering, Kaiserslautern, Germany (1998).

30. Tversky, A.: Features of Similarity. Psychological Review, 84 (1977)
31. Wess, S.: Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entsc-

heidungsunterstützung und Diagnostik. Ph.D. Thesis, University of Kaiserslautern,
Germany, infix Verlag (1995)

32. Zand, M., Samadzadeh, M.: Software Reuse: Current Status and Trends. Journal of
Systems and Software, 30 (3) (1995)

187REMEX - Reusing Software Masurement Experienceware

althoff@iis.uni-hildesheim.de

A Unified Long-Term Memory System*

James H. Lawton Roy M. Turner & Elise H. Turner

Air Force Research Laboratory Department of Computer Science
Rome Research Site University of Maine
Rome, NY 13441 Orono, ME 04469
lawton@ai.rl.af.mil {rmt,eht}@umcs.maine.edu

Abstract. Memory-based reasoning systems are a class of reasoners that derive
solutions to new problems based on past experiences. Such reasoners use a
long-term memory (LTM) to act as a knowledge base of these past experiences,
which may be represented by such things as specific events (i.e. cases), plans,
scripts, etc. This paper describes a Unified Long-Term Memory (ULTM)
system, which is a dynamic, conceptual memory that was designed to be a
general LTM capable of simultaneously supporting multiple intentional
reasoning systems. Through a unique mixture of content-independent and
domain-specific mechanisms, the ULTM is able to flexibly provide reasoners
accurate and timely storage and recall of episodic memory structures. In
addition, the ULTM provides support for recognizing opportunities to satisfy
suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage
of unexpected events.

1.0 Introduction

Memory-based reasoning systems are a class of reasoners that derive solutions to new
problems based on past experiences. Included in this class are case-based [7,2] and
schema-based [15] reasoners. The purpose of a long-term memory (LTM) in a
memory-based reasoning system is to act as a knowledge base of the past experiences,
which may be represented by such things as specific events (i.e. cases), plans, scripts,
etc. The key functions of an LTM are the storage and retrieval of such
representational structures. The proper performance of both of these functions is based
directly on how the structures are organized in the LTM’s knowledge base, and to
what extent the LTM can match new experiences to existing structures.

The Unified Long-Term Memory (ULTM) system is a dynamic, conceptual
memory [9,5,7] that was designed to be a general LTM capable of simultaneously
supporting multiple intentional reasoning systems. Through a unique mixture of
content-independent and domain-specific mechanisms, the ULTM is able to flexibly
provide reasoners accurate and timely storage and recall of episodic memory
structures. In addition, the ULTM provides support for recognizing opportunities to

* This material is based upon work supported by the National Science Foundateion under Grant No.

BES—9696004.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 188-202, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

satisfy suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage of
unexpected events.

As shown in Fig. 1 both reasoning systems and the people who develop them (i.e.
"users") access the ULTM’s knowledge base through its interface functions. The
knowledge base is divided into two parts: the domain-specific knowledge, which the
ULTM uses to control its behavior and interaction with the reasoning system(s) using
it, and the memory items themselves. The memory items stored in the ULTM’s
knowledge base represent the various reasoners’ experiences. As with many such
memory systems, the basic structure for storing and organizing items in the memory is
a Memory Organization Packet (MOP) [9]. Unlike most conceptual memories, the
MOPs in the ULTM are generic in nature, meant to be the building blocks that
reasoning systems will use to create their own structures to be stored in and retrieved
from memory. These are the structures the reasoners actually work with, and,
although they will be called different names in the various reasoning systems, we
generically refer to these representations as either a case, if it represents a specific
experience, or a MOP, if it represents a generalization of several cases or other MOPs.
These MOPs and cases are organized into a hierarchy, with more general MOPs
pointing to (loosely speaking), or indexing, more specialized MOPs or cases.

The ULTM has been tested with two particular memory-based reasoners: Orca1

[16,17] and CoCo (a generalization of JUDIS [13]). Orca is a schema-based reasoning
(SBR) system currently being developed as an intelligent control system for
autonomous underwater vehicles (AUVs). SBR systems represent most or all
problem-solving knowledge explicitly as MOP-like declarative knowledge structures
called schemas, which are used to guide all facets of behavior. CoCo is a
conversational controller that is to be part of a natural language interface to a system
of multiple AUVs. CoCo uses knowledge about intentions and conventions in
discourse, represented as Conversation MOPs (or C-MOPs) [4], to organize the
conversation goals of a distributed system.

1 In fact, much of the core functionality of the ULTM is based on Orca’s schema memory.

ULTM

Reasoner Access Func t ions

Reasoner

Support Routines

Knowledge Base

User Acce ss Func tions

User

D o m ain-
Sp ecif ic

K n o w led ge

Reasoner Reasoner

User

Fig. 1 – ULTM Overview

189A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

This paper describes the unique capabilities of the ULTM. These include the
ability to support multiple reasoning systems simultaneously, the various mechanisms
for providing domain-specific knowledge to the ULTM that is used to “fine-tune” the
retrieval and storage processes for each reasoner, and the support for recognizing
potential opportunities to satisfy suspended goals. It is assumed that the reader is
familiar with conceptual memory and memory-based reasoning. Background
information on these topics can be found in [9,5,7].

2.0 Memory Structures

A key contribution of the ULTM is that it is capable of supporting multiple memory-
based reasoning systems simultaneously. The foundation for this capability lies in the
core memory structures used: the MOPs. The ULTM's MOPs are an extension of
traditional MOPs. They are generic in nature, providing basic support for knowledge
representation, along with extensive support for memory functions. It is expected that
the reasoning systems using the ULTM will base their memory structures (i.e. their
plans, scripts, etc.) on the ULTM structure MOP2, inheriting these core capabilities.

As with other conceptual memories, the memory items in the ULTM's knowledge-
base are organized as a network in which each node is either a MOP or a specific
experience (i.e. a case). Each MOP contains generalized information characterizing
the episodes it indexes, called its norms or content frame, and a set of indices for
those episodes based on their differences. Indices point from an indexing MOP to
either an individual case or another, more specialized MOP (the indexed MOP), thus
forming a MOP/sub-MOP hierarchy [5].

In addition to the actual memory items, the ULTM’s knowledge base contains the
domain-specific knowledge needed for correct memory operation. Much of this
knowledge is in the form of reasoner-specific heuristic functions, which are used to
tailor the ULTM's retrieval and storage mechanisms to fit the particular domain. This
knowledge is associated with the corresponding memory items through slots in the

2 The knowledge representation system used by the ULTM is the frame system FrameWork [14], which is

itself implemented using the Common Lisp Object System (CLOS) [11].

Slot Description
predictive A list of those features expected (by the user) to uniquely

identify items in memory.
elaboration-heuristics MOP-specific heuristic functions for index elaboration.
preference-heuristics MOP-specific preference heuristics for MOP selection.
index-generation- MOP-specific heuristic functions for generating indices.
heuristics
suspended-goals Place to attach goals in the hope they will be recalled

opportunistically.
bookkeeping A placeholder for bookkeeping information, such as

recency and frequency statistics, generalization
information, and predictive feature tracking.

exemplars Place to store cases and MOPs that, while they fit the
current MOP, could not be immediately indexed.

Fig. 2 - MOP Slots

190 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

MOP structure, which are listed in Fig. 2. The meaning of each of these slots is
explained throughout the remainder of this paper.

An index (see Fig. 3) in a conceptual memory is a two-tiered structure of features
and values, which are taken from an indexing vocabulary [7]. An indexing
vocabulary is a set of feature names and associated values that are used to construct
the indices in the MOPs. The ULTM’s indexing vocabulary (shown in the example in
Section 4.3) requires the feature names to be slots in the MOPs being used by the
reasoning system. The implementer of the reasoning system (i.e. the “user”) must
specify which slots of the system’s frames should be considered predictive features,
those that will be used to search and generate indices, by listing those slots in each
MOP’s predictive slot. The ULTM’s indexing vocabulary also requires that the
index values be described as properly formatted predicated functions, as used in
[16,17].3

3.0 Memory Retrieval

Memory retrieval occurs when a reasoning system requests the LTM to recall any
memory items matching a given probe, which is a description of a situation made up
of features and associated values. The LTM searches its collection of stored
experiences, recalling those that most closely resemble the probe.

The ULTM uses the standard retrieval process for MOP-based conceptual
memories: directed search [5,7]. Memory retrieval is initiated by a reasoning system
by calling the retrieve function. This function performs a search starting from the
appropriate starting points, or contexts, looking for items in memory that most closely
match the given probe, guided by the predictive features.

Determining which (if any) of the MOPs or cases indexed from a given MOP
match a probe proceeds as follows: for each feature listed in predictive, one or
more values are found either in the probe, working memory (if appropriate), or

3 Using a more principled approach to indexing vocabularies, such as the Universal Index Frame (UIF) for

intentional systems [10], is being considered for future work. But, since the UIF is too general to be used
directly, customizing it was beyond the scope of this project.

MOP-1

feature-1 feature-2

MOP-2

value-1 value-2 value-3

MOP-3 MOP-4

Fig. 3 – Index Structure

191A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

through index transformation. These values are then matched against the MOP’s
indices, by determining if they can make index value’s predicate functions true. If
there is a match, the MOP or case pointed to by the matching index is added to a set to
be searched further or (possibly) returned.

3.1 Index Transformation

When a value for a feature cannot be found in the given probe or in working memory,
or when the value does not match any of the known index values, it may be necessary
to infer a value for that feature. Sycara and Navinchandra [12] identify three general
methods to perform this process of index transformation: elaboration, mutation and
abstraction.

Both index elaboration and mutation use heuristics to infer values for features
when none can be found in the given probe or in working memory. Elaboration
heuristics provide more detail, while mutation heuristics make key changes to known
values (e.g. changing sizes, substituting ingredients, etc.) [12]. In the ULTM, we
lump both of these transformation methods together and refer to them simply as
transformation heuristics.

Since index transformation relies heavily on domain-specific knowledge, it is
impossible for any LTM to infer values for every feature. Instead, the ULTM
provides a mechanism for the user to provide this domain-specific knowledge in the
form of heuristic functions associated with MOPs. While the ULTM does provide a
few generic index transformation functions, it is expected that the user will provide
the majority of these heuristics.

Because specifying transformation heuristics may be complicated, the ULTM
actually provides two mechanisms to add them: as rules of a rule-based system or as
regular functions. The rule-based system provides a simple, expressive mechanism
for adding elaboration knowledge that may be generally applicable, especially in
cross-domain applications. However, there may be times when expressing the desired
heuristic information is too difficult using the somewhat restrictive rule syntax, or
when the heuristic knowledge may only be applicable to a given set of MOPs or cases
(those used by a particular reasoner). In these situation the user would use the more
general heuristic function mechanism.

Adding a new transformation rule requires first defining the new rule and then
adding the rule to the ULTM’s index rule-based system (index-RBS). For example, in
the SMART simulator [17] where Orca is tested, it is possible to get values for the
depth and altitude of an AUV directly from working memory. Suppose, however, one
needed to determine how deep the water is at the AUV’s current location, which we
will call the bottom-depth. This value, the sum of the AUV’s depth and altitude, is
not directly available, and thus must be computed. The rule that computes this is4:

Rule index-bottom-depth-rule
If feature is bottom-depth
 and ?d = current depth from WM
 and ?a = current altitude from WM

4 For the sake of readability, this rule is not given in the actual index-RBS rule syntax.

192 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

Then
 Conclude bottom-depth = (?d + ?a)

Similarly, this heuristic could be described in a function, (e.g. index-bottom-
depth-fcn). Once this function is defined, the ULTM would be told when to apply it
by associating the function (through the elaboration-heuristics slot) with the
MOP (or MOPs) for which elaborating the bottom-depth feature may be needed.
What is important is that in either case (rule or function), if the ULTM cannot find a
value for a given predictive feature in the probe or working memory, it will employ
any relevant elaboration heuristics to infer a value. In this way a user can tailor and
augment the ULTM's general directed search mechanism to insure correct behavior.

Index abstraction is another, somewhat more general, form of index
transformation. Instead of using heuristic rules or functions, index abstraction
exploits the structure of knowledge represented in a hierarchical frame system. If a
direct match for a feature value cannot be found, abstraction attempts to find a match
on a similar value (where similar refers to how closely connected the two values are
in the knowledge hierarchy) by traversing up generalization and down specialization
links.

The ULTM does not do retrieval-time index abstraction, however. Rather, when
indices are created, their values are abstracted as much as possible (with respect to the
indexing MOP). This method is more efficient, since abstraction need only be done
once, and it uses the execution context in effect at storage time, which more
accurately describes the situation under which the MOP or case is being stored. This
storage-time index abstraction is discussed in more detail in Section 4.1.

3.2 Preference Heuristics

The search of memory described above will produce a set of MOPs and/or cases
(which we will collectively refer to as MOPs) that have matched the various features
in the given probe. However, the retrieval should only return a limited number of
MOPs: those that match “best.” The problem of choosing the best matching MOPs,
known as the selection problem [6], is handled by the ULTM through the use of
preference heuristics [6]. These heuristics are functions that rank the set of MOPs
according to various criteria.

The ULTM provides several of the more common heuristic functions, which are
based on those used in PARADYME [6]. These functions rank the retrieved cases
based upon the following criteria: how well they (i.e. the retrieved cases) relate to the
reasoner's current goals, how salient and specific the features of the retrieved cases are
with respect to the given probe, and how frequently and recently the retrieved cases
were previously recalled. Each of the common heuristic functions provided by the
ULTM is given a particular case and a list of other cases to rank it against. It returns
a numeric score -- either a bonus (value > 0), penalty (value < 0), or neutral (0) value -
- which is added to the cases’ composite score. The cases are ranked by highest
composite score after applying all of the relevant preference heuristics.

While the set of preference heuristic functions provided in the ULTM should be
generally applicable to many intentional reasoning systems, it is likely that the
reasoners using the ULTM will also need to apply some domain-specific knowledge

193A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

to the ranking of retrieved cases. To support this, a mechanism is provided to allow
the user to specify their own MOP-specific heuristics, by associating new preference
heuristic functions with relevant MOPs through their preference-heuristics slot.
The ULTM automatically applies these additional functions whenever it retrieves
MOPs or cases that have such functions associated with them, adding their returned
values to the composite score.

3.3 Predictive Feature Tracking

The ULTM provides limited support for predictive feature tracking, which refers to
the recording of how often each predictive feature leads to a reminding. This is done
by keeping a record of feature references, which are how often each of a MOP’s
predictive features is used, as well as MOP references, which are how often a MOP
has been searched. This information is automatically associated with the MOPs
(through their bookkeeping slot), and is retrieved with a set of accessor functions.

One should note that this form of feature tracking is very limited. It does not keep
track of which features actually contributed to determining which MOPs were
actually returned by a memory search. Rather, it merely tracks which features led to
possible choices, at the individual MOP level. To truly track the predictiveness of a
given feature, the ULTM’s mechanism would need to be extended with more
sophisticated machine learning techniques.

Also, the ULTM does not currently do anything with this tracking information.
Rather, it is provided for use by reasoning systems in such things as preference
heuristics and perhaps feature “forgetting.” For example, one could create a
preference heuristic that gives a bonus to MOPs or cases that were arrived at through
features with a high feature-reference to mop-reference ratio. Similarly, one could
remove (forget) features from a MOP’s predictive list if that ratio drops below a
certain threshold.

4.0 Memory Storage

As new events are experienced, the reasoning process may want to store them in
memory so that they may be later retrieved. The same search process is used to find a
place to store a new MOP or case in memory as would be used to retrieve it. That is,
using the case as a probe, its features are used to first select an initial context, and
then to traverse indices matching those features. At each MOP encountered during the
search, there are four possibilities that may occur for each of the MOP’s predictive
features that the probe has a value for (modified from [5]):

1) Nothing else is indexed in the MOP by that feature.
2) One or more other MOPs are indexed in the MOP by that feature,
but with values that differ from the probe’s.
3) One or more other MOPs are indexed by that feature/value pair.
4) The feature/value pair is one of the MOP’s norms.

194 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

For the first of these possibilities, we know that the probe (the MOP or case being
stored) contains a value for a predictive feature that is not currently being used in an
index. As such, we could just generate an index using that feature/value pair. But in
the ULTM, to be consistent with the retrieval process, as well as to keep the number
of indices from growing out of control, we do not. Instead, we collect all of these
"leaf" MOPs found during the search of the knowledge base and, after the search has
completed, pass them through the preference heuristics. For each MOP selected by the
preference heuristics, a set of indices is generated by determining the differences
between it and the probe. MOP differences are determined by comparing the values
for each predictive feature in the indexing MOP against values for those features in
the probe (the indexed MOP). Values that differ are used to generate indices. The
index generation process is discussed in Section 4.1. It may also be necessary to
update the norms of any MOP we add indices to, which is done through the process of
MOP generalization, described in Section 4.2.

For the second possibility, we could treat the MOP currently being searched
similarly to how it is treated in the first possibility: as a leaf node. But, since it is
actually an internal node, we know that it would be unlikely to be selected by the
preference heuristics (because of the specificity preference). Thus, in the ULTM we
have decided to directly index the probe under the current MOP when this situation
occurs. We know the probe has a value for a predictive feature that is not currently
being used in an index, so we can simply generate an index using this feature/value
pair (using the index generation process described in Section 4.1). As before, it may
be necessary to update the indexing MOP’s norm (Section 4.2). It should be noted
that for this possibility indices are generated during the search process.

In the third possibility, there are two situations we need to contend with. First, if
the probe is more specialized than the sub-MOP that was found indexed under the
current MOP, then the search simply continues from the indexed sub-MOP.
Otherwise, the probe is indexed under the current MOP, using the same difference
method described for possibility 1 above. Unlike possibility 1, however, these indices
are generated during the search.

Finally, for the fourth possibility, no indices are generated for the given
feature/value pair. So that it won’t be lost, however, if the probe cannot be indexed
by any predictive feature, it is added to the MOP’s exemplars list. The MOPs in
this list, along with any indexed MOPs, are used to update a MOP’s norms through
the generalization process (Section 4.2).

4.1 Index Generation

Once a location for the MOP or case being stored is found, one or more indices must
be generated for it. The ULTM uses the same mechanism for generating new indices,
regardless of which possibility from Section 4.0 applies. The index generation
process, shown in
Fig. 4, is given a feature and a value, which we will call the probe filler, that was
found for that feature either in the probe, in working memory, or through
transformation. The job of the index generation mechanism is to first abstract the
probe filler as much as possible (with respect to the corresponding filler in the

195A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

indexing MOP, called the MOP filler) and then convert it into a properly formatted
index value (predicate function). In keeping with its overall philosophy, the ULTM
provides a set of general mechanisms which can be augmented with domain-specific
knowledge to accomplish this task.

The probe filler is first minimally abstracted, which converts certain “raw” values
(e.g. numbers and instance objects) into more standard values used by the ULTM.
Next, any slot-specific abstraction heuristics are applied to the probe filler. These
functions allow the user to abstract any value in non-standard (i.e. domain-specific)
ways, thus extending the abstraction mechanism. By using such functions, indices
can be generated that match less specific probes. The ULTM first looks for slot-
specific abstraction heuristics associated with the probe, and then with the indexing
MOP.

For example, suppose we are indexing new-MOP under old-MOP, the feature we are
indexing on is depth, and we are given a probe filler of 50. Minimal abstraction
would convert 50 into the range: (range (low 50) (high 50)). Suppose further that
the depth slot of new-MOP has a slot-specific abstraction heuristic function associated
with it that abstracts a range representing a depth by subtracting 10 from the low
value and adding 10 to the high value, thus “widening” the range. The new value for
depth would thus be the range: (range (low 40) (high 60)).

After applying any slot-specific abstraction heuristics, the highest abstraction of the
probe filler (with respect to the corresponding MOP filler) is found. This primarily
applies to values for which an abstraction hierarchy can be used (e.g. frames). If the
probe filler is a descendent of the MOP filler, it is abstracted as far as possible up the
hierarchy such that it is still a descendent of the MOP filler. If the probe filler is not a
descendent of the MOP filler, but they do have a common ancestor, then the probe
filler is abstracted up to the common ancestor. The MOP filler will be updated later
during MOP generalization (Section 4.2). If the fillers are unrelated, no further
abstraction is performed.

After the probe filler has been abstracted as much as possible, it is used to generate
index values (i.e. properly formed predicate functions). While a default predicate
form is provided by the ULTM (a general pattern matching predicate), the ULTM
provides a mechanism to apply MOP-specific heuristic functions to the abstracted

minimally abstract
probe filler

apply slot-specific
abstraction heuristics

fully abstract filler

verify index-value
predicate functions

discard index-value
predicate function

check for number of
collisions > threshhold

add index

create new
generalized MOP

index colliding MOPs
under new MOP

fail

pass

no

yes

generate index-value
predicate functions

Fig. 4 - Index Generation Process

196 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

filler to produce index values. These heuristics are associated with MOPs through the
index-generation-functions slot.

It is possible to generate an index that is too abstract, especially using the default
mechanisms. To detect this, we verify the generated index functions by seeing if they
match the indexing MOP. If they do, the index function is discarded. If not, the
index function next must be tested to see if it causes a collision with any of the
indexing MOP’s existing indices. Two indices collide if their index values match and
they point to different sub-MOPs. An index is simply added to the indexing MOP if it
does not cause a collision.

If the index does cause a collision, but the number of colliding indices is below a
certain threshold value, the index is also just added to the indexing MOP as usual.
When, however, the number of colliding indices exceeds the threshold, a new MOP is
created as a generalization of the colliding MOPs. The newly created MOP is
indexed under the current indexing MOP, while the colliding MOPs are indexed
under the new MOP by their differences.

4.2 MOP generalization

Generalization [5,7] is the process by which the memory system updates the content
frames of MOPs. Initial generalization occurs when a new MOP is formed because
of a collision. In this situation, the generalization mechanism is given a new MOP
and several sub-MOPs. It must fill the content frame of the new MOP with the
features common to the sub-MOPs. That is, for each feature the sub-MOPs have in
common, it must find the central tendency of the fillers for that feature in all of the
sub-MOPs. The central tendency is a sort of “average” value of the fillers taken
together, and may be defined differently for each type of filler.

goal

P-TAKE-SALINITY-SAMPLE
goal: a-take-salinity-sample
depth: 50

(isa ?feature a-take-sample) (isa ?feature a-take-sample)

P-SAMPLE
goal: a-sample
depth: number
resource-req: resources

resource-req: salinity-sensors

P-TAKE-TEMP-SAMPLE
goal: a-take-temp-sample
depth: 75
resource-req: temp-sensors

(indices from other MOPs)

Fig. 5 - Initial Memory Contents

197A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

Generalization updates are made after the number of new sub-MOPs (those
indexed under a given MOP since the last generalization) exceeds a threshold value.
The same central tendency mechanism is used to update a MOP’s feature values as
was used when it was initially generalized.

To compute the central tendency of a collection of input values, the ULTM first
determines the dominant (i.e. most commonly occurring) type of the values. Based on
the dominant type, it then calls the appropriate specialized procedure. Currently,
specialized procedures are defined for symbols, sets, numbers (including ranges), lists
and frames. Users may create other specialized central tendency procedures to
support domain-specific filler types.

4.3 Storage Example

This section presents an example of the storage process in detail. To start, suppose
our memory contains, among other things, plans for different ocean sampling
missions (see Fig. 5)5. We wish to add P-TAKE-SOIL-SAMPLE, a plan that describes
how to perform a soil sampling mission. For the sake of this example, we will assume
that P-SAMPLE’s only predictive feature is GOAL, that our knowledge base contains the
abstraction hierarchy (fragments) of goals and resources as shown in Fig. 6, and that
the ULTM’s index collision threshold is set to 3.

We will assume the search arrives at P-SAMPLE. Since the probe (P-TAKE-SOIL-
SAMPLE) is not a specialization of the MOPs already indexed under P-SAMPLE (P-
TAKE-SALINITY-SAMPLE and P-TAKE-TEMP-SAMPLE), it is determined that possibility 1
from Section 4.0 applies. P-TAKE-SOIL-SAMPLE is thus indexed under P-SAMPLE using
the difference procedure from Section 4.0, which determines that the two plans do
differ on the predictive feature GOAL.

The probe has a filler of A-TAKE-SALINITY-SAMPLE for the feature GOAL. Minimal
abstraction does not change this value, and we will assume that there are no slot-
specific heuristics associated with the GOAL slots of either P-TAKE-SALINITY-SAMPLE
or P-SAMPLE. We next abstract A-TAKE-SALINITY-SAMPLE up the abstraction hierarchy
(Fig. 6) to A-TAKE-SAMPLE. The ULTM’s default index-generation heuristic is used to
generate the index value function (isa ?feature A-TAKE-SAMPLE). While this
function will verify, it causes collisions with the existing indices for both P-TAKE-
SALINITY-SAMPLE and P-TAKE-TEMP-SAMPLE. Since the collision threshold (3) has

5 We omit many of the details of the various MOPs, focusing on only those features and values that are

relevant to indexing in this specific example.

a-sample

a-take-sample

a-take-salinity-sample a-take-temp-samplea-take-soil-sample

sensors

salinity-sensor temp-sensorsoil-sensor

resources

(other resources)(other goals)

Fig. 6 - Abstraction Hierarchy

198 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

been met, we must use our collision handling procedure, which causes a new MOP
(which we’ll call P-TAKE-SAMPLE) to be generated and initially generalized. Initial
generalization fills P-TAKE-SAMPLE’s GOAL slot with A-TAKE-SAMPLE, its DEPTH slot
with (range (low 64) (high 86))6, and its RESOURCE-REQ slot with sensors. The
final structure of memory is shown in Fig. 7.

5.0 Support for Opportunism

When using reasoning systems that utilize a conceptual memory, goals that cannot be
immediately satisfied can be suspended and stored in memory, indexed by the
blocked goals along with the features that are blocking their progress, but which are
not currently available. This process is referred to as predictive encoding [8]. These
suspended goals can then presumably be found by the regular search mechanism the
memory system uses whenever a reasoning system requests a retrieval with an
appropriate probe. This approach is referred to as opportunistic memory [3], and is
supported by the ULTM.

6 Computed as the mean of 50, 75, and 100 ± (0.5 * standard deviation), which is 75 ± 11.

P-TAKE-SALINITY-SAMPLE
goal: a-take-salinity-sample
depth: 50

(isa ?feature a-take-salinity-sample)

(isa ?feature a-take-temp-sample)

resource-req: salinity-sensors

P-TAKE-TEMP-SAMPLE
goal: a-take-temp-sample
depth: 75
resource-req: temp-sensors

P-TAKE-SAMPLE
goal: a-take-sample
depth: (range (low 64) (high 86))
resource-req: sensors

goal

P-TAKE-SOIL-SAMPLE
goal: a-take-soil-sample
depth: 100
resource-req: soil-sensors

(matches ?feature a-take-soil-sample)

(isa ?feature a-take-sample)

goal

P-SAMPLE
goal: a-sample
depth: number
resource-req: resources

(indices from other MOPs)

Fig. 7 - Final Memory Contents

199A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

5.1 ULTM Opportunism Support

There are two sides to the opportunity recognition problem: the reasoning system’s
and the memory system’s. First, the reasoning system must be able to identify what
circumstances are blocking a goal’s progress. Then, using the goal and the
circumstances impeding it to form a probe, the memory system can use its regular
search mechanisms to find places to attach the suspended goal. Any time in the future
the memory system retrieves a MOP or case with a suspended goal attached to it, it
needs to notify the reasoner, which must then determine what to do with that goal.

To provide support for opportunism, the ULTM’s MOP structures have a slot called
suspended-goals, which is used by the memory system to associate suspended goals
with the MOPs. Further, two functions are provided to allow reasoning systems to
suspend and remove goals in memory: suspend-goal-in-ltm and unsuspend-goal-
in-ltm.

The function suspend-goal-in-ltm searches all memory contexts (i.e. all starting
points), retrieving any MOP the goal could be associated with. All contexts are
searched to increase the chances that a cross-domain opportunity will be recognized.
The goal, along with a descriptor of the reasoning system suspending the goal, is
associated with each MOP’s suspended-goals slot, while the goal maintains a list of
MOPs it is suspended on. The latter list is used by the unsuspend-goal-in-ltm
function to simplify finding everywhere the goal was attached.

Any time the ULTM finds a suspended goal, it must notify one or more reasoning
systems. It uses both an asynchronous and a synchronous mechanism for this task.
The synchronous method is simple: in addition to the list of MOPs that were found to
match the probe, the retrieve function also returns a list of suspended goals that are
attached to those MOPs.

The synchronous mechanism allows the reasoning system making a retrieval
request to detect when a suspended goal has been found. However, that reasoning
system may not be the one that originally suspended the goal. The asynchronous
notification mechanism is able to notify the reasoner that suspended the goal by
calling a handler function registered by the reasoner. These handlers are user-defined,
and are expected to send a message to the registered reasoner, allowing it to deal with
the suspended goal asynchronously.

5.2 Beyond Suspended Goals

We, along with almost all other researchers working in the field of opportunistic
reasoning, have focused almost exclusively on the recognition of opportunities to
satisfy suspended goals. This is for a good reason: goals are fundamental to
intentional reasoning systems. In fact, Francis [1] claims that opportunities must be
relevant to some goal held by the reasoning system. In spite of this contention, in this
section we consider predictively encoding in memory things other than goals that
would lead to opportunity recognition.

Stepping back for a moment, we note that the key functionality of the predictive
encoding mechanism is not that it can support the recall of suspended goals, but rather
that it allows the reasoning system to be reminded of something, anything, that has

200 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

been previously considered (reasoned about). Thus we can conceivably store
anything in memory that will cause the reasoner to interrupt its current activity and
reconsider whatever it was reasoning about when the item was stored.

For example, in the near future we will be undertaking a study into utilizing
opportunistic memory to recognize when a group of AUVs should restructure their
organization (the re-organization problem). Using such an approach, a reasoner
would select an initial organization for a group of AUVs based upon the given
mission and the currently available resources (e.g. the number of AUVs and the
equipment they carry). Suppose, however, that during the process of deciding on the
initial organization, another organization (represented by some structure which we
will call Org-1) is considered that would be superior, but cannot be selected because
some resources are missing. Org-1 could be predictively encoded in memory, using
the missing resources as recall cues. Should those resources later become available,
Org-1 would presumably be recalled by the memory system, which would notify the
reasoner.

The problem is that the reasoner must then determine what to do with this
reminding. When the item suspended in memory was a goal, this was fairly easy: just
recheck the conditions that caused the goal to be suspended, and reactivate it if they
are now met. We can do this because our reasoning systems already have the
infrastructure for dealing with goals. Reasoners would have to be modified to handle
remindings of other types. At this point, the extent of those modifications is a
research issue to be dealt with in the near future. It should be noted, though, that there
is nothing in the ULTM’s support for opportunism, as described in Section 5.1, that
precludes using it for suspending things other than goals.

6.0 Summary

The ULTM is a dynamic conceptual memory system that is capable of supporting
multiple reasoning systems simultaneously. It uses established structures and
procedures for all primary memory functions. Through a unique mixture of content
independent and domain specific mechanisms, it is able to provide reasoners accurate
and timely storage and recall of episodic memory structures in a flexible and robust
manner. Additionally, the ULTM provides support for recognizing opportunities to
satisfy suspended goals, allowing reasoning systems to better cope with the
unpredictability of dynamic real-world domains by helping them take advantage of
unexpected events.

References

1. Francis, A.G. Jr. (1997). “Memory-Based Opportunistic Reasoning”, Ph.D. Thesis
proposal, Georgia Institute of Technology.

2 . Hammond, K. (1990). "Case-Based Planning: A Framework for Planning from
Experience", The Journal of Cognitive Science, 14(3).

201A Unified Long-Term Memory System

althoff@iis.uni-hildesheim.de

3. Hammond, K. (1993). “Opportunistic Memory”, The Journal of Machine Learning,
10(3).

4. Kellermann, K., Broetzmann, S., Lim, T.-S., and Kitao, K. (1989). “The conversation
mop: Scenes in the steam of discourse”, Discourse Processes, 12(1):27-61.

5. Kolodner, J. (1981). “Organization and Retrieval in a Conceptual Memory for Events",
Proceedings of the Seventh International Joint Conference on Artificial Intelligence.

6. Kolodner, J. (1989). “Selecting the Best Case for a Case-Based Reasoner”, Proceedings of
the Eleventh Conference of the Cognitive Science Society.

7. Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufman, San Mateo.
8. Patalano, A., Seifert, C., and Hammond, K. (1991). “Predictive Encodings: Planning for

Opportunities”, Proceedings of the Fifteenth Conference of the Cognitive Science Society.
9. Schank, R. (1982). Dynamic Memory, Cambridge University Press, New York.
10. Schank, R. and Osgood, R. (1990). “A content theory of memory indexing”,

Northwestern University, Institute for Learning Sciences Technical Report no. 2.
11. Steele, G. (1990). Common Lisp: The Language (Second Edition), Digital Press, Bedford,

MA.
12. Sycara, K. and Navinchandra, D. (1991). “Index Transformation and Generation for Case

Retrieval”, In Proceedings of the 1991 Case-Based Reasoning Workshop (DARPA),
Bareiss, E. (ed.), Morgan Kaufman, San Mateo, CA.

13. Turner, E. (1990). “Integrating Intention and Convention To Organize Problem Solving
Dialogues”, Ph.D. Dissertation, Georgia Institute of Technology technical report GIT-ICS-
90/02.

14. Turner, R. (1987). “Issues in the design of advisory systems: The consumer-advisor
system”, in Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, Detroit, MI.

15. Turner, R. (1994). Adaptive Reasoning for Real-World Problems: A Schema-Based
Approach, Lawrence Erlbaum Associates, Hillsdale, NJ.

16. Turner, R. (1995a). “Context-Sensitive, Adaptive Reasoning for Intelligent AUV Control:
Orca Project Update”, In Proceedings of the 9th International Symposium on Unmanned
Untethered Submersible Technology (AUV'95), Durham, New Hampshire.

17. Turner, R. (1995b). “Intelligent Control of Autonomous Underwater Vehicles: The Orca
Project”, Roy M. Turner. In Proceedings of the 1995 IEEE Conference on Systems, Man,
and Cybernetics, Vancouver, BC, Canada.

18. Turner, R. (1997). “Orca Documentation (for Version 2.1)”, CDPS Research Group in-
house report, University of Maine. http://cdps.umcs.maine.edu/Docs/orca-2.0/

202 J.H. Lawton, R.M. Turner and E.H. Turner

althoff@iis.uni-hildesheim.de

Combining CBR with Interactive Knowledge

Acquisition, Manipulation and Reuse?

David B. Leake and David C. Wilson

Computer Science Department

Indiana University, Lindley Hall

150 S. Woodlawn Ave

Bloomington, IN 47405, U.S.A.

fleake,davwilsg@cs.indiana.edu

Abstract. Because of the complexity of aerospace design, intelligent

systems to support and amplify the abilities of aerospace designers have

the potential for profound impact on the speed and reliability of de-

sign generation. This article describes a framework for supporting the

interactive capture of design cases and their application to new prob-

lems, illustrating the approach with a discussion of its use in a support

system for aircraft design. The project integrates case-based reasoning

with interactive tools for capturing expert design knowledge through

\concept mapping." Concept mapping tools provide crucial functions

for interactively generating and examining design cases and navigating

their hierarchical structure, while CBR techniques provide capabilities

to facilitate retrieval and to aid interactive adaptation of designs. The

project aims simultaneously to develop a useful design aid and more gen-

erally to develop practical interactive approaches to fundamental issues

of case acquisition and representation, context-sensitive retrieval, and

case adaptation.

1 Overview

Aerospace design is a complex process that requires designers to address compli-
cated issues involving numerous specialized areas of expertise. No single designer
can be an expert in every relevant area, and becoming pro�cient may require
years of experience. Consequently, intelligent systems to support and amplify
the abilities of human designers have the potential for profound impact on the
speed and reliability of design generation. An appealing approach, which has
been applied in systems such as (Domeshek et al., 1994), is to augment the de-
signers' own design experiences with relevant information from prior designs: to
provide support with case-based reasoning.

Ideally, case-based design support tools will include three related capabilities
to aid design reuse: capture of and access to speci�c design experiences, support

? This research is supported in part by NASA under award No NCC 2-1035. The

authors gratefully acknowledge support from Northwestern University while on leave

and many contributions by Alberto Ca~nas, Mary Livingston, and James Newkirk.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 203-217, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

for new designers as they try to understand the lessons of those prior experiences;
and support for adapting prior designs to �t new design goals. For practical ap-
plication, the tools must not depend on extensive domain knowledge; for designer
acceptance, they must leave the designer in control. This article describes prin-
ciples for addressing these goals and their application in the case-based design
aid DRAMA (Design Retrieval and Adaptation Mechanisms for Aerospace).

The DRAMA project integrates case-based reasoning with interactive tools
for capturing expert design knowledge through concept mapping (Novak and
Gowin, 1984), with the goal of leveraging o� the strengths of both approaches.
We are applying concept mapping tools from the Concept Mapping group at
the University of West Florida, led by Dr. Alberto Ca~nas, to provide an interac-
tive interface and crucial functions for generating and examining design cases,
as well as navigating their hierarchical structure. CBR techniques provide the
capabilities to facilitate retrieval and to aid interactive adaptation of designs.
The implemented DRAMA system supports browsing of prior design knowledge
and proactively provides designers with concrete examples of designs and design
adaptations from similar prior problems. At the same time, it unobtrusively
acquires new examples from the user's interactive design process.

The project develops \knowledge-light" (Wilke et al., 1997) interactive ap-
proaches to addressing fundamental CBR issues of case acquisition, case adap-
tation, and context-sensitive retrieval. The system demonstrates that fully inte-
grating a CBR system into the design environment enables the system to dynam-
ically adjust the relevance criteria used to retrieve prior experiences, exploiting
task-based information without requiring the user to provide it explicitly. In
addition, the system illustrates the bene�ts of interactively capturing and ma-
nipulating cases at a \middle level" between traditional highly structured cases
with �xed representations, and unstructured textual cases.

The system di�ers from previous approaches in allowing multiple case rep-
resentations that users themselves can develop and revise. In interactive CBR
systems, a user's ability to understand and apply a prior case may depend not
only on its content, but on how its representation matches the user's conceptual-
ization of the domain: A seemingly more distant case may be more useful to the
user if it is more understandable. This raises interesting research questions about
supporting user-de�ned representations and reconciling the divergent bene�ts of

exibility, customization, and case standardization as the case library grows.

2 The Task Domain

A signi�cant concern at NASA is \knowledge loss:" that critical aerospace de-
sign expertise is the domain of a few experts and will be lost when they retire.
This has given rise to knowledge preservation e�orts, a number of which have
employed CBR. For example, the RECALL tool at the NASA Goddard Space
Flight Center was developed to store and access textual reports of important
lessons (Bagg, 1997). However, di�erent experts may conceptualize designs very
di�erently, making it hard for others to interpret descriptions of prior designs.

204 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

To make records more comprehensible, new projects have investigated the
use of concept mapping. The goal of concept mapping for design is to capture
not only important features of the designs themselves, but also the designers'
conceptualizations of those designs|the relationships and rationale underlying
their components. This raises the question of how to organize and access the
knowledge that concept maps capture, and how to facilitate its reuse. Our frame-
work uses interactive CBR techniques to support retrieval and reuse of designs
represented as concept maps.

3 Tenets of the Approach

Our tenets shaping the DRAMA framework are:

{ The system should leverage a designer's knowledge, rather than

attempting to replace it.

This requires interactivity and support rather than autonomous design gen-
eration. All parts of the process must accept user control.

{ The system should support multiple conceptualizations of the de-

sign space.

The system must both allow multiple (potentially idiosyncratic) representa-
tions and support standardization when that does not impose a burden.

{ Support information should automatically be focused on the cur-

rent task.

This requires that the system monitor the task context in order to anticipate
information needs and to determine how to ful�ll them.

{ Learning must play a central role, both at the design level and at

the level of design manipulation.

This requires the capability to capture and reuse cases both for designs and
design processes.

All the examples in this paper focus on cases containing designs, but the frame-
work could be applied to representations of processes as well. Core system meth-
ods provide a domain-independent framework for interactive capture, graphical
manipulation, and experience-supported reuse of design knowledge.

4 Background

Case-based Design Support: Case-based reasoning is widely used in design-
aiding systems. The Clavier system (Hinkle and Toomey, 1995), for example, is
a case-based advisory system put into production use to suggest and critique
designs of autoclave layouts at Lockheed. Research systems address support for
tasks such as architectural design (Goel et al., 1991; Hua and Faltings, 1993;
Gebhardt et al., 1997; de Silva Garza and Maher, 1996; Smith et al., 1995),
circuit design (Vollrath, 1998), and conceptual design of aircraft subsystems
(Domeshek et al., 1994). Many of these systems display impressive capabilities,

205Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

but at the expense of considerable development e�ort to tailor them to domain-
speci�c needs. We instead provide a framework for building up case knowledge
and indexing criteria. Speci�c case representations, rather than being prede�ned,
are developed incrementally through interactions with users as the system is
applied. Users can easily augment and adjust the case representation as needed,
with simple analogical mapping processes allowing disparate types of cases to
be retrieved.

Concept Mapping: Concept mapping is a process to reveal an individual's
internal cognitive structures by developing external representations of concepts
and propositions. A concept map (CMap) is a two-dimensional representation of
a set of concepts constructed so that the interrelationships among them are evi-
dent. Individual concepts are linked to related concepts through one or two-way
links, each link associated with a label/proposition describing the relationship.
The vertical axis generally expresses a hierarchical framework for the concepts;
for example, a concept map of design problems might represent a hierarchy of
abstract and more speci�c problems. However, we stress that there is no require-
ment that they represent particular relationships; they are compatible with any

structured representation.

Semantic networks are a form of concept map, but concept maps are not con-
strained by syntactic rules and have no associated semantics; they are normally
seen as a medium for informally \sketching out" conceptual structures. The vi-
sual presentation of information in concept maps provides a natural starting
point for organizing and accessing information in multiple forms (e.g., images
or video clips), which also are contained in the CMap. For example, Figure 1
shows a sample CMap describing the basic structure of the Boeing 777 aircraft,
annotated with an associated image and diagram. This CMap is displayed by
the CMap tools described in a later section.

Concept mapping has been used in educational contexts to help students clar-
ify and compare their understanding. A recent e�ort integrated concept mapping
into a set of knowledge construction and sharing tools linking over a thousand
schools in Latin America (Ca~nas et al., 1995). It is currently being used to
capture a NASA Mars expert's knowledge in CMaps organizing multimedia re-
sources, to be made available to the public on the World Wide Web, and for
knowledge construction and sharing among astrobiologists. The application of
concept mapping to design is intended both to help an expert clarify his or her
own conceptualizations and to make those conceptualizations available for ex-
amination by the expert or others (e.g., members of a design team seeking to
understand the expert's design to evaluate or modify it, or novices seeking to
increase their own understanding). Through di�erences in maps that di�erent
designers generate for the same concepts (whether in the features and relation-
ships they include, or in the level of granularity they use), concept mapping can
illuminate their di�erent perspectives. For example, a designer specializing in
air
ow might include features such as wing or surface shapes and operational

206 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

constraints that dictate them (e.g., the need for short-�eld landings), while an
avionics designer would focus on aspects such as aircraft control systems.

Fig. 1. Sample screen images from the CMap Editor.

Manual procedures have been developed to aid the initial generation of
CMaps (e.g., Jonassen et al., 1993, pp. 138{139; Novak and Gowin, 1984, pp. 24{
36), and computerized tools have been developed to facilitate this process and
to capture its results. The CMap tools, developed at the Institute for Human
and Machine Cognition of the University of West Florida, support interactive
de�nition and arrangement of initial maps, and manual browsing through con-
cept map-based multimedia environments and case libraries.1 The system also
allows concept maps to be de�ned hierarchically, so that the nodes of any map
can be associated with complete maps describing them at a �ner-grained level.

Motivations for Integrating CMaps and CBR: The integration of CBR
methods with interactive CMap tools provides bene�ts for both. Existing CMap
tools provide an interactive medium for representing and examining designs,
but their framework does not provide facilities for retrieval of relevant CMaps.
Likewise, although the tools provide capabilities for interactively de�ning new

1 The CMap tools are publicly available from http://cmap.coginst.uwf.edu/.

207Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

CMaps and manipulating their structure by adding, deleting, or substituting
components, they provide no support for the decision-making required by that
adaptation process. Consequently, their usefulness can be extended by the addi-
tion of automatic aids for retrieving relevant CMaps, for navigating CMaps and
locating relevant information, and for reusing prior CMaps.

Conversely, case-based reasoning can leverage o� the interactive case de�-
nition and revision capabilities of the CMap tools. The CMap tools provide a
convenient method for entering case information in an intermediate form be-
tween textual descriptions (which are easy to generate but hard for systems to
reason about) and rich structured representations (which are hard to generate
but support complex reasoning). In our domain, the push to use concept map-
ping to understand the design process means that CMap cases will be available
at low cost as \seed cases" for the CBR system. In addition, the CMap tools al-
ready provide crucial functions for interactively generating and examining these
cases and navigating their hierarchical structure.

5 The DRAMA System

In the DRAMA system, concept maps are used to organize acquired aerospace
design cases in a form that can be browsed by other designers in order to lever-
age their own expertise by pro�ting from stored prior experiences. The system
uses concept mapping tools as a method for initial capture, manual browsing,
and manual modi�cation of design cases represented as concept maps. It uses
interactive CBR techniques to retrieve relevant prior cases and to retrieve alter-
natives to support adaptation. In addition, it uses CBR to manage and present
cases that record the rationale for particular decisions and cases that suggest
adaptations of designs. The following sections discuss the main features of the
system.

5.1 Using CMaps to organize and represent design information

In DRAMA, CMaps represent two types of information. First, they represent
user-de�nable/modi�able hierarchies of aircraft and part types. This information
is used to organize speci�c design cases and to guide similarity assessment during
case retrieval. Such organization provides the designer with browsable hierarchies
of aircraft (e.g. dividing military and commercial aircraft), aircraft components
(e.g. speci�c wings, engines, fuel tanks), and component con�gurations (e.g. fuel
tanks inside or outside the aircraft) for reference during the design process.

Second, CMaps represent speci�c information about particular designs such
as their components and component relationships. Each component is repre-
sented as a CMap, enabling interactive viewing and manipulation of hierarchical
designs at di�erent levels of granularity.

208 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

5.2 How the system supports design

To illustrate the design process, the following sections present a simple example
involving the coarse-grained con�guration of an airliner after an initial set of
\seed case" designs has been provided to the system, along with hierarchies of
aircraft types organizing those designs. The steps described include retrieval of
a similar prior design as a starting point, retrieval support for adaptation and
re�nement of system suggestions, and the capture of a new adaptation for future
use. The concept maps used in the following �gures are simple examples; those
used by expert designers would include �ner-grained technical details at lower
levels of the hierarchy. NASA domain experts are currently developing richer
concept maps to explore the framework as applied to a design initiative for
reusable spacecraft.

Retrieving a relevant prior design: The case-based design process begins by
selecting a similar example as a starting point. In addition, or if no su�ciently
similar prior example exists, the designer is free at any point to develop designs
from scratch and add them to the CMap library for future use.

The designer may choose either of two interfaces for the initial search pro-
cess, one non-interactive and the other interactive. The �rst (non-interactive)
option, the \Design Finder," is a simple and traditional CBR retrieval inter-
face. The interface presents selection boxes for choosing the desired features of
a design from a pre-de�ned set of standard attribute types (e.g., aircraft type,
manufacturer, model number, etc.). Currently the system uses a standard pre-
de�ned feature set, but features could also be derived automatically from the
set of designs. Given the list of features, the system performs nearest-neighbor
retrieval, according to a prede�ned feature weighting scheme, to retrieve refer-
ences to potentially-relevant CMaps. These are presented to the designer along
with a match score. The designer can browse and select from the alternatives to
bring up the CMap for a particular design.

The second interface allows the designer to interactively navigate the hi-
erarchy of concept maps, exploring alternative \views" of aircraft and aircraft
component types. In our sample scenario, the designer is considering alternatives
for increasing the fuel e�ciency of a large airliner. The �rst step is to establish a
context for the design by locating the CMap node for an aircraft similar to the
one envisioned; the designer then chooses to consider possible engine types. The
designer could also simply navigate to and browse speci�c engines, but in that
case less contextual information would be available to aid in adaptations.

The designer �rst navigates through the types of aircraft to select an aircraft,
and pulls up the top-level concept map for its design. The designer then selects
(by clicking on the concept map) the particular part to adapt. In this example,
the selection is the engine. If no CMap is already present for the component
selected (e.g., the designer wishes to �ll in a sketchy design by specifying its
engine), the designer can use the interactive CMap tools to create a new CMap
from scratch, or can browse the CMaps for designs, import a design, and then
adapt as desired. If a CMap is already present for the part and it has been

209Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

de�ned at a su�cient level of detail, the designer may also decompose the part
representation into its component CMaps and make the revisions in the sub-
components (with CBR support). Alternatively, the designer may de�ne new
component substructures, making the representation more detailed.

When the previous case has been retrieved, the designer has four choices,
as shown in Figure 2: to adapt it (changing the representation in memory, e.g.,
when continuing work on a design begun in a previous session); to derive a new
design, by having the system make a copy to adapt; to ask the system to use its
hierarchy of aircraft parts to form an abstraction of the current design's structure
as a template to �ll in; or to ignore the proposed design and begin a new design
from scratch.

Fig. 2. Beginning derivation of a new design from a prior case.

Adapting designs: Once the designer has navigated, for example, to the engine
of a particular aircraft, the system supports three ways of examining why the
engine was used and the alternatives that may exist. First, the designer may
simply interactively browse stored information, following links in the CMap to
examine associated information such as �ner-grained concept maps, video clips
of explanations from previous designers, photographs, or speci�cations for the
engine. Second, the designer may request information about similar designs. The
designer may request to have this retrieval targeted to either:

210 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

{ Focus on designs with components similar to the one that is currently of
interest (e.g., CMaps that show aircraft using similar engines)

{ Focus on designs that provide similar contexts for the current type of com-
ponent (e.g., CMaps that show the engines of similar aircraft)

The algorithms underlying this retrieval are described in Section 6.3.
Retrieved alternatives are listed in order of goodness of match according to

the chosen focus. The designer may also enter additional criteria to be matched
against any textual annotations of rationale recorded by previous designers. For
example, the designer may request that fuel-e�cient engines be weighted more
heavily. This prompts a re-sorting of options, using simple text matching tech-
niques from information retrieval to decide which prior rationale to consider
most relevant.

Suggesting prior adaptations: When the designer selects a component of an air-
craft to adapt, the system has access to the following information: the component
a�ected, any designer input of additional retrieval criteria, and the design itself.
This information is used to index into stored records of prior adaptations to
suggest adaptations that have been previously performed in similar contexts to
address similar issues. Note that this adaptation process does not assume knowl-
edge of complex constraints. DRAMA's method reduces the amount of knowl-
edge that must be encoded, requiring the designer to evaluate the possibilities
suggested.

Performing adaptations: The designer may select any of the suggested engines
to browse further or to substitute for the engine in the design. The designer may
also simply delete or add a component to the representation using the CMap
tools. Adaptations of concept maps can be thought of as falling into three general
categories corresponding to the support that they require: additions, deletions,
and substitutions. DRAMA's framework supports the designer's performance of
these operations as follows:

{ Additions: The designer may use the hierarchical browser or plain-text re-
trieval capability to retrieve potentially-relevant components to be linked
into the design.

{ Deletions: The system can warn of potential deletion issues by proactively
retrieving similar deletions, checking them for problems, and presenting those
problems to the designer.

{ Substitutions: The system can support substitution by retrieving and sug-
gesting candidate substitutions, using both the explicitly-stated criteria and
contextual information from the current map to guide the retrieval. It re-
trieves these from two sources: From stored adaptation cases encapsulating
prior substitutions, and from analogous nodes in similar designs.

When the designer states a goal and �nds a suitable substitution, the system
learns adaptation cases, following research on case-based adaptation learning
(Leake et al., 1997; Sycara, 1988). These package the query, information about
the CMap that was used as context for the search, and the selected result.

211Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

Storing rationale and design cases: After the designer performs a substitu-
tion, the designer is prompted to enter an optional textual annotation of why the
new alternative is preferable to the old. This question focuses rationale capture:
The designer does not record a rationale for the component as a whole (which
could involve countless factors), but simply for why it is the better component in
the current context. Focusing the explanation process in this way is related to the
common idea in CBR of aiming explanations at expectation failures (Hammond,
1989; Leake, 1992; Schank, 1982). During future adaptations, this rationale will
be provided with other information about the component, and it can also be used
as an additional index when retrieving possible substitutions. Adapted cases are
placed into the system's hierarchies of cases at the point where the designer
found the most similar previous case.

This approach to rationale capture di�ers strongly from traditional rule-
based or model-based approaches. The information in CMaps and additional
learned features corresponds to the \weak explanations" advocated by Gruber
and Russell (1992), providing just enough information to guide a designer's own
reasoning process towards inferring important aspects of the design.

6 Perspective on issues and methods

DRAMA's approach is relevant to a number of fundamental issues for developing
practical case-based applications. This section highlights its contributions on
addressing these issues.

6.1 Interactive case acquisition

Experience deploying CBR has shown that CBR may require signi�cant \case
engineering" e�ort (Aha and Breslow, 1997; Kitano and Shimazu, 1996; Mark et

al., 1996; Vo�, 1994). Research CBR systems often use carefully-structured case
representations, which enable powerful reasoning at a high knowledge acquisition
cost (Kolodner, 1993). At the other end of the spectrum, current projects in
textual case-based reasoning (Lenz and Ashley, 1998) address how to exploit case
information already stored in textual form. For such systems, case acquisition
cost is negligible, but exploiting case context is much more di�cult.

CMaps provide a middle ground. CMap representations include structural
information and are intended to concisely represent key concept properties, fa-
cilitating their use by AI systems. However, concept maps do not necessarily use
any standard syntax or standard set of attributes. This places them at a middle
point between classic structured case representations and purely textual cases.
It makes them more di�cult to manipulate autonomously within an AI system,
but also makes them more
exible if experts use distinctions that were not antic-
ipated, and \forgiving" when non-experts in AI are called upon to encode their
knowledge. Domain experts who use the CMap tools seem to have few problems
adapting to the concept mapping process.

212 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

6.2 Guiding the user towards useful representations

Although users of DRAMA are free to change existing representations or devise
new representations if needed, the system uses two methods to help standardize
representations. First, when a user draws a CMap and is about to �ll in a new
link or node, it presents the user with menu of alternatives from previous maps.
If one of these is suitable, the user may select it. This builds up a set of standard
link types and concept types over time. The second is that the baseline process
for generating new design CMaps is modi�cation of previous designs. The sys-
tem is intended to begin with a set of CMaps that re
ect the conceptualizations
of a particular expert designer, re
ecting that designer's coherent view of the
factors important in a design. When new designs are generated by adaptation,
signi�cant portions of old representations are reused for new tasks, resulting in
representations with similar structure and content. The two approaches facilitate
the case engineering task while guiding accumulated design knowledge towards a
coherent representation scheme that includes structural information. We intend
to perform empirical tests to determine the additional value of the CMap struc-
ture, compared to, for example, applying pure information retrieval techniques
on the concept map's textual content alone.

6.3 Similarity assessment for semi-structured information

Retrieving candidate design components for making suggestions requires com-
paring the current concept map to those in memory. Concept maps a�ord both
structural and content information. Link structures can be viewed with or with-
out consideration of their labels (because not all corresponding labels are guar-
anteed to have been assigned the same names, requiring all names to match
may be too strong a constraint). Their structural properties may be compared
by, e.g., applying structure-mapping approaches from analogical reasoning (e.g.,
(Falkenhainer et al., 1989)). The DRAMA system is beginning to address these
issues by considering a simple model of structure and content in retrieval.

The current system retrieves candidate design components in a two-stage
process: retrieving relevant designs (e.g., designs for similar aircraft) and choos-
ing relevant concepts (e.g., the engines) from those designs. The second step is
required because the corresponding roles of concept map designs may not pro-
vide direct indications of how the components should be mapped (e.g., whether
a link designated \tail engine" in one concept map should correspond with one
designated simply \engine" in another).

Given a user-selected component (e.g. a particular engine) to be adapted and
the goal of �nding other engines from similar designs, DRAMA �rst retrieves
similar designs, using a matching procedure that compares map structure and
content (based on the distance of corresponding concepts in hierarchical con-
cept memory), when they are included in the set of concepts. Second, DRAMA
chooses the closest matching concept from each of the retrieved maps. Because
concept maps lack a rigid semantic structure, the concept is selected both by
matching available role structure (an abstraction of the component in question,

213Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

if available, represents a type of slot to be �lled) and by distance in concept
memory (where the closest-matching concepts are successively paired). The re-
sults are ranked by the inverse of each map's summed distance. This gives an
indication of the relative goodness of each design suggestion within the overall
pool of suggestions.

Once candidate concepts have been retrieved and displayed, the user can
adjust the relative ranking by entering textual descriptions of desired properties.
The system compares these with the properties annotating the candidates using
simple IR methods. Suggestions for candidates that are supported by similar
textual rationale are given added weight in the ranking.

6.4 Interactive indexing and retrieval

Ideally, the CBR retrieval process takes into account both high-level goals and
concrete design features. Applied CBR systems tend to rely on the user to explic-
itly provide this information (whether all at once or incrementally). Conversa-
tional case-based reasoning (CCBR) systems guide the retrieval process through
an interactive dialogue of questions (Aha and Breslow, 1997). However, because
poor questions or question organization may prevent retrieval or slow identi�ca-
tion of the right cases, a substantial case engineering e�ort may be required to
craft the set of questions.

DRAMA's alternative approach is to attempt to integrate the CBR process
tightly enough into the user's task process that it can infer a substantial part
of the needed contextual features directly from monitoring the user's task. The
system has access not only to the user's retrieval request (e.g., to �nd a sub-
stitute engine), but also to a signi�cant part of the context surrounding the
request that will determine the relevance of the retrieval (e.g., the aircraft for
which the engine is needed). The designer may also augment this context with
additional information (e.g., that the goal is to �nd a more fuel-e�cient engine
that could substitute), but is not required to do so. When the designer does
provide information, the system learns new rationale-based indices, by storing
the information that the selected substitution is believed to satisfy the designer's
constraint. We note that in itself, a feature such as \high fuel e�ciency" is not
enough to fully specify a retrieval|an airliner designer seeking a high e�ciency
engine would not consider the high-e�ciency engine from a Cessna. In DRAMA,
the features stored from designer queries are used only to �lter candidates that
are already believed to �t the task context.

DRAMA also di�ers from existing CCBR systems in what it retrieves. Ini-
tially, both DRAMA and CCBR systems are aimed at retrieving the most ap-
propriate complete solution from previous cases. However, in its retrieval to
support adaptation, DRAMA provides the ability to perform retrievals focused
on subparts of the problem for the user to compose. As the user adapts part of
the design, the retrieval context changes automatically, loosely corresponding to
CCBR systems' adjusted rankings as more information becomes available.

214 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

7 Future Directions

The DRAMA system is an ongoing project. The CMap tools are already in use
for concept mapping at NASA, and the goal of the project is to test the system
in the context of a design project for the next generation of reusable spacecraft.
The concrete experience from this test will provide feedback and data to adjust
details of the interface, functionality, and indexing algorithms. It will also provide
data for conducting controlled tests of the quality of recommendations provided
by the system. Because the system lacks the knowledge to evaluate the quality
of the designs produced, the designer using the system bears the responsibility
of assuring that adaptations are reasonable; the key question is how well the
system aids designers in their work. However, knowledge-based tools could be
developed to provide some veri�cation, and this would be highly desirable.

Because the CMap tools provide the capability to share CMaps across the
World Wide Web, designs from multiple designers and sites can be imported
into the system's design process. Work is under way at the University of West
Florida to develop CMap facilities for managing concurrent CMap generation
and modi�cation. Ideally, the design context for a particular engine, for example,
could be updated as other designers make other changes in the speci�cations.

The system's capability to deal with non-uniform representations is being
enhanced by the use of IR methods such as thesaurii to aid matching. In addition
to re�ning the system as an aid to recording and reusing design information, we
see a long-term opportunity to apply it to reuse of information about design

processes. A CMap-style interface could be used to capture traces of the steps
used in generating a design (e.g., conceptual design, speci�cation, numerical
simulations, etc.), to capture how a design was formulated and to guide reasoning
throughout the design process.

8 Conclusions

Our experience with the DRAMA system provides a case study of some central
issues for interactive CBR systems. Our integration of CBR with CMaps was
motivated by the complexity of aerospace design, for which autonomous intel-
ligent design tools are currently infeasible. However, the framework applies to
other design tasks as well. It provides a general \knowledge-light" model for

exible graphically-based case acquisition, manipulation, and reuse.

The DRAMA project has identi�ed a number of principles that we expect to
have broad implications for integrations between CBR components and interac-
tive systems:

{ Representations should be easily comprehensible and interactively adaptable
by end users; visually-based representations may be especially useful.

{ Support for representation generation should help assure consistent repre-
sentations, but must not prevent the users of interactive systems from de-
veloping new representations or representational elements when needed.

215Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

{ CBR's \retrieve and adapt" process to build new cases can facilitate stan-

dardization by reusing prior representational components. This can naturally

build up the case library and the representational vocabulary in parallel.

{ The same types of similarity considerations used to guide retrieval can be

used to suggest representational vocabulary as cases are built.

{ Retrieval should tolerate representational discrepancies.

{ Interactive support systems should be su�ciently integrated into the pro-

cesses they support to be able to unobtrusively monitor and exploit infor-

mation about the task context.

The overall conclusion is that interaction must be across all parts of the CBR

system|initial knowledge capture, representation, retrieval, and adaptation|

and across the larger task. Frameworks that allow the user and system to support

each other in a shared task context, building up and using shared knowledge,

have the potential to leverage o� the strengths and alleviate the weaknesses of

both system and user.

References

[Aha and Breslow, 1997] D. Aha and L. Breslow. Re�ning conversational case libraries.
In Proceedings of the Second International Conference on Case-Based Reasoning,
pages 267{278, Berlin, 1997. Springer Verlag.

[Bagg, 1997] T. Bagg. RECALL: Reusable experience
with case-based reasoning for automating lessons learned.
http://hope.gsfc.nasa.gov/RECALL/homepg/recall.htm, 1997.

[Ca~nas et al., 1995] A Ca~nas, K. Ford, J. Brennan, T. Reichherzer, and P. Hayes.
Knowledge construction and sharing in quorum. In World Conference on Arti�cial

Intelligence in Education, 1995.
[de Silva Garza and Maher, 1996] A. G�omez de Silva Garza and M. Maher. Design by
interactive exploration using memory-based techniques. Knowledge-Based Systems,
9(1), 1996.

[Domeshek et al., 1994] E. Domeshek, M. Herndon, A. Bennett, and J. Kolodner. A
case-based design aid for conceptual design of aircraft subsystems. In Proceedings of

the Tenth IEEE Conference on Arti�cial Intelligence for Applications, pages 63{69,
Washington, 1994. IEEE Computer Society Press.

[Falkenhainer et al., 1989] B. Falkenhainer, K. Forbus, and D. Gentner. The structure-
mapping engine: Algorithm and examples. Arti�cial Intelligence, 41:1{63, 1989.

[Gebhardt et al., 1997] Friedrich Gebhardt, Angi Vo�, Wolfgang Gr�ather, and Barbara
Schmidt-Belz. Reasoning with complex cases. Kluwer, Boston, 1997.

[Goel et al., 1991] A. Goel, J. Kolodner, M. Pearce, and R. Billington. Towards a
case-based tool for aiding conceptual design problem solving. In R. Bareiss, editor,
Proceedings of the DARPA Case-Based Reasoning Workshop, pages 109{120, San
Mateo, 1991. DARPA, Morgan Kaufmann.

[Gruber and Russell, 1992] Thomas Gruber and Daniel Russell. Generative design
rationale: Beyond the record and replay paradigm. Knowledge Systems Laboratory
KSL 92-59, Computer Science Department, Stanford University, 1992.

[Hammond, 1989] K. Hammond. Case-Based Planning: Viewing Planning as a Mem-

ory Task. Academic Press, San Diego, 1989.

216 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

[Hinkle and Toomey, 1995] D. Hinkle and C. Toomey. Applying case-based reasoning
to manufacturing. AI Magazine, 16(1):65{73, Spring 1995.

[Hua and Faltings, 1993] K. Hua and B. Faltings. Exploring case-based design -
CADRE. Arti�cial Intelligence in Engineering Design, Analysis and Manufactur-

ing, 7(2):135{144, 1993.
[Jonassen et al., 1993] David Jonassen, Katherine Beissner, and Michael Yacci. Ex-

plicit methods for conveying structural knowledge through concept maps, chapter 15,
page 155. Erlbaum, Hillsdale, NJ, 1993.

[Kitano and Shimazu, 1996] H. Kitano and H. Shimazu. The experience sharing ar-
chitecture: A case study in corporate-wide case-based software quality control. In
D. Leake, editor, Case-Based Reasoning: Experiences, Lessons, and Future Directions,
pages 235{268. AAAI Press, Menlo Park, CA, 1996.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo,
CA, 1993.

[Leake et al., 1997] David Leake, Andrew Kinley, and David Wilson. A case study of
case-based CBR. In Proceedings of the Second International Conference on Case-

Based Reasoning, pages 371{382, Berlin, 1997. Springer Verlag.
[Leake, 1992] D. Leake. Evaluating Explanations: A Content Theory. Lawrence Erl-
baum, Hillsdale, NJ, 1992.

[Lenz and Ashley, 1998] M. Lenz and K. Ashley, editors. Proceedings of the AAAI-98

workshop on textual case-based reasoning. AAAI Press, Menlo Park, CA, 1998.
[Mark et al., 1996] William Mark, Evangelos Simoudis, and David Hinkle. Case-based
reasoning: Expectations and results. In D. Leake, editor, Case-Based Reasoning:

Experiences, Lessons, and Future Directions, pages 269{294. AAAI Press, Menlo
Park, CA, 1996.

[Novak and Gowin, 1984] J.D. Novak and D.B. Gowin. Learning How to Learn. Cam-
bridge University Press, New York, 1984.

[Schank, 1982] R.C. Schank. Dynamic Memory: A Theory of Learning in Computers

and People. Cambridge University Press, Cambridge, England, 1982.
[Smith et al., 1995] I. Smith, C. Lottaz, and B. Faltings. Spatial composition using
cases: IDIOM. In Proceedings of First International Conference on Case-Based Rea-

soning, pages 88{97, Berlin, October 1995. Springer Verlag.
[Sycara, 1988] K. Sycara. Using case-based reasoning for plan adaptation and repair.
In J. Kolodner, editor, Proceedings of the DARPA Case-Based Reasoning Workshop,
pages 425{434, San Mateo, CA, 1988. Morgan Kaufmann.

[Vollrath, 1998] I. Vollrath. Reuse of complex electronic designs: Requirements anal-
ysis for a CBR application. In P. Cunningham, B. Smyth, and M. Keane, editors,
Proceedings of the Fourth European Workshop on Case-Based Reasoning, pages 136{
147, Berlin, 1998. Springer Verlag.

[Vo�, 1994] A. Vo�. The need for knowledge acquisition in case-based reasoning { some
experiences from an architectural domain. In Proceedings of the Eleventh European

Conference on Arti�cial Intelligence, pages 463{467. John Wiley, 1994.
[Wilke et al., 1997] W. Wilke, I. Vollrath, K.-D. Altho�, and R. Bergmann. A frame-
work for learning adaptation knowedge based on knowledge light approaches. In
Proceedings of the Fifth German Workshop on Case-Based Reasoning, 1997.

217Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse

althoff@iis.uni-hildesheim.de

When Experience is Wrong:

Examining CBR for Changing Tasks and

Environments?

David B. Leake and David C. Wilson

Computer Science Department
Indiana University, Lindley Hall

150 S. Woodlawn Ave
Bloomington, IN 47405, U.S.A.

fleake,davwilsg@cs.indiana.edu

Abstract. Case-based problem-solving systems reason and learn from
experiences, building up case libraries of problems and solutions to guide
future reasoning. The expected bene�ts of this learning process depend
on two types of regularity: (1) problem-solution regularity, the relation-
ship between problem-to-problem and solution-to-solution similarity mea-
sures that assures that solutions to similar prior problems are a useful
starting point for solving similar current problems, and (2) problem-

distribution regularity, the relationship between old and new problems
that assures that the case library will contain cases similar to the new
problems it encounters. Unfortunately, these types of regularity are not
assured. Even in contexts for which initial regularity is su�cient, prob-
lems may arise if a system's users, tasks, or external environment change
over time. This paper de�nes criteria for assessing the two types of reg-
ularity, discusses how the de�nitions may be used to assess the need
for case-base maintenance, and suggests maintenance approaches for re-
sponding to those needs. In particular, it discusses the role of analysis of
performance over time in responding to environmental changes.

1 Introduction

Case-based reasoning (CBR) solves new problems by retrieving stored cases en-
capsulating records of similar problems, and adapting their lessons to �t the
new circumstances. Case-based problem-solving is based on two central premises
about the regularity of the problem-solver's world (e.g., Kolodner, p. 8). The
�rst, which we call problem-solution regularity, describes the relationship be-
tween problem descriptions and solutions that assures that similar problems
have similar solutions. This regularity is needed to guarantee that cases for

? The authors' research is supported in part by NASA under award No NCC 2-1035.
The authors are currently on leave at the Computer Science Department of North-
western University and gratefully acknowledge its support. The authors also thank
the anonymous reviewers for their helpful comments.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp.218-232, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

similar prior problems are likely to be useful starting points for new reasoning.
The second, which we call problem-distribution regularity, describes the relation-
ship between new problems and those previously encountered. This regularity is
needed to assure that the system will have the cases it needs for the problems
it is called upon to solve.

The successes of numerous CBR systems bear out that for many tasks and
domains, appropriate similarity metrics can be devised to provide su�cient
problem-solution regularity, and that problem-distribution regularity is often
su�cient to enable e�ective CBR. Unfortunately, no matter how good initial
similarity metrics might be for a given task and domain, and no matter how
complete a case library a system may build up, changes in task and domain
characteristics may render obsolete prior similarity criteria or cases. Developers
have cited the problem of dealing with changing task characteristics as the reason
for rejecting CBR for some tasks (Talebzadeh et al., 1995), and the long-term
use of CBR systems makes such changes increasingly likely during a system's
lifetime. In order to perform as well as possible despite changing circumstances,
a CBR system must be able to evaluate how well the regularity assumptions
apply and to signal the need for maintenance or to invoke its own maintenance
strategies as needed.

This paper presents initial steps towards understanding and responding to
deviations from desired regularities. First, it de�nes measures that can be used
to calculate the amount of problem-solution regularity and problem-distribution
regularity that exist for the problem sequences that a system encounters. Second,
the paper discusses methods that may be used to respond to, and (ideally) to
exploit changing characteristics of the problems the CBR system solves and of
the environment in which its solutions must be applied.

In particular, the paper describes opportunities for maintenance strategies
that perform their changes based on analysis of problem-solving and case-base
characteristics over time|diachronic case-base maintenance strategies as de-
scribed in (Leake and Wilson, 1998). In general, determining the right response
to shifting context requires knowledge that is unlikely to be available from a
single snapshot of the CBR system's state. However, by examining trends in re-
trieval performance, system errors, and presented problems, the system may be
able to respond more e�ectively.

2 De�ning Regularities for Case-Based Reasoning

It is well-known in the CBR community that case-based reasoning depends on
two relationships: the relationship between similarity of problems and similarity

of solutions, and the relationship between prior problems (solved by the system
or provided as seed cases) and new problems. However, to our knowledge, there
are not yet precise de�nitions of what these relationships mean. Such de�nitions
would be useful to quantify and compare the relationships in order to understand
the e�ects of di�erent similarity metrics, case bases, and problem sequences on
the performance of di�erent CBR systems. Equally important, such de�nitions

219When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

give criteria for monitoring the appropriateness of a system's similarity criteria
and case library for dealing with current problems, in order to identify the need
for system maintenance. This section proposes working de�nitions as a basis for
future discussion and study.

2.1 Basic assumptions and de�nitions

Throughout our de�nitions, we will make some standard assumptions. First, we
assume that there is a �xed CBR system that processes problems in a problem
space P and that the solutions for these problems are elements of a solution
space S. Cases are pairs (p; s) 2 C = P � S, the set of all possible cases. The
system begins with a �nite \seed" case base B1 � C. As the system is used, it
processes a sequence of problems Q = pi, pi+1, ... , pj , where each pk 2 P for
k = i; :::; j. We de�ne the sequence to start with an arbitrary index because, as
we discuss in section 8.2, it is sometimes useful to consider the subsequence that
starts after some initial set of problems has been processed.

Adding to the case base: We assume that after each problem is processed and
the resulting solution has been evaluated, a new case with the problem and its
correct solution are added to the case base. This means that each problem pk is
processed using an updated case base Bk that includes the results of previous
processing. Note that this does not imply that the system can solve all problems
presented to it: The correct stored solution may be based on external feedback
if the system generates an incorrect solution or fails to generate a solution.

How problem distance guides retrieval: The CBR system uses a \problem dis-
tance" function PDist : P � C ! [0;1) to measure the distance between a
new problem and the problem description of a stored case. PDist(p; c) is zero
if p is the same problem solved by c. Given a new problem, the CBR system
retrieves the case closest to that problem according to PDist. However, there
is no guarantee that the case considered closest by this function will actually
be \close" to the problem in any useful way. This function simply re
ects the
similarity metric built into the system, whether or not it is useful.

How usefulness of retrievals is judged: The evaluator of the system uses a \real
distance" function RDist : P � C ! [0;1) to measure how far the solution in
a case is from the solution for a given problem. This function measures the use-
fulness of retrieved solutions according to the evaluator's goals for the retrieval
process, which may not be classic \similarity." For example, if the evaluator's
primary goal is to minimize the adaptation time required to generate a new so-
lution, \real distance" could be measured in adaptation time: RDist(p; c) could
be the time to adapt the solution from case c to solve problem p, with some up-
per limit on the amount of time allowed. RDist could also be de�ned to re
ect
other retrieval goals. For example, if reliability of adaptation is an issue, it could
consider cases \closer" to a problem if they can be adapted to solve the problem
using more reliable adaptations (regardless of adaptation time).

220 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

We stress that RDist does not necessarily correspond to any function within
the CBR system; it is an external criterion. For example, RDist might be cal-
culated o�-line to determine the retrievals the CBR system should have made.
Thus e�ciency of calculating the RDist function is comparatively unimportant.
It might be possible, for example, to calculate RDist for adaptability by simply
adapting all stored cases to the new problem and seeing which adaptation was
fastest.

In an ideal CBR system, the cases with the closest problems (according to
PDist) would also have the closest solutions (according to RDist). In prac-
tice, of course, the actual similarity metric is likely to di�er from the ideal (see
Smyth and Keane, 1996, for an empirical demonstration). In some situations the
deviations may be substantial enough to impair system performance.

2.2 De�ning problem-solution regularity

The goal of our de�nition of problem-solution regularity is to capture how well
PDist approximates RDist in practice. Because this depends on the speci�c
context in which the CBR system is solving problems, our de�nition explicitly
depends on:

{ the goals for retrieval (as captured by RDist),
{ the set of seed cases available to the system, and
{ the problem sequence that the system is called upon to solve.

As background for our de�nition, for any input problem, we can calculate two
sets of cases according to the formulas below. The �rst set of cases, which we
designate by CCP for Closest Cases to Problem, contains all the cases within a
case base B whose problem descriptions are closest to the input problem. The
second, which we designate by RCC for Real Closest Cases, contains the cases
whose solutions are within a user-speci�ed neighborhood of the optimal solution.
The size of the neighborhood is determined by a user-speci�ed non-negative pa-
rameter �.

CCP (PDist; p; B) = fc 2 BjPDist(p; c) = minc02BPDist(p; c0)g (1)

RCC(RDist; p; B; �) = fc 2 BjRDist(p; c) � minc02BRDist(p; c0) + �g (2)

If � = 0, RCC returns the optimal cases for solving the problem according to
the \real" distance metric.

We let Bk designate the case library used when processing problem pk. This
case library contains the initial seed cases and all the new cases added to the
case base processing problems before pk. Following the notion of precision in
information retrieval, we then de�ne:

SimPrecision(PDist; RDist; pk; Bk; �) = (3)

CCP (PDist; pk; Bk) \ RCC(RDist; pk; Bk; �)

CCP (PDist; pk; Bk)

221When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

This function measures the probability that a case returned as optimal by the
similarity function will actually be within � of an optimal case.1

Given these de�nitions, we de�ne the problem-solution regularity as the av-
erage SimPrecision over the problem sequence Q, starting with case base Bi,
as follows:

ProbSolnReg(PDist; RDist;Q;Bi; �) = (4)

�k=i;:::;jSimPrecision(PDist; RDist; pk; Bk; �)

j � i+ 1

When � is set to 0, this function calculates the average probability that a case
for a maximally-similar problem will actually be optimal. With non-zero values
for �, this function provides information about the average probability that a
maximally-similar problem (according to the system's similarity metric) will be
acceptably close to a maximally useful case, which determines the quality of the
similarity metric.

We note that when ProbSolnReg is used to compare the problem-solution
regularity of di�erent systems, RDist must be same for both systems. If di�erent
systems have di�erent \real" costs (e.g., because of di�erences in adaptation
capabilities), di�erences in the values of ProbSolnReg for the two systems may
not predict their relative performances.

2.3 De�ning problem-distribution regularity

The second regularity assumption of CBR is that new problems will tend to
resemble the problems addressed in previous cases (either in the seed case base,
or in cases learned during prior processing). We call this problem-distribution

regularity. It determines the likelihood that, as new problems are processed (and
new cases with their solutions are added to the seed case base), the case base
will contain cases for similar problems. When the case base does contain similar
problems, and when (in addition) there is su�cient problem-solution regular-
ity, this will result in retrieval of cases whose solutions are close to the actual
solutions according to RDist.

ProbDistReg calculates the percentage of cases in a problem sequence Q =
pi; :::; pj for which there are su�ciently close cases in the current case bases Bk

built up from the seed case base Bi, according to a user-speci�ed distance limit
� � 0.

ProbDistReg(Q;Bi; �) = (5)

1

j � i+ 1
��k=i;:::;j

�
1; If minc2Bk

PDist(pk; c) < �

0; Otherwise

1 Because we assume that the system will reason from a single most similar case,

the IR notion of recall is not relevant here. It would be relevant if, e.g., the system

attempted to increase reliability by generating and comparing solutions starting from

multiple cases.

222 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

Together, ProbSolnReg and ProbDistReg provide measures that describe
the performance of a CBR system. Individually, each one identi�es problems that
can be addressed by either re�ning the similarity metric or the solutions stored
in cases (for ProbSolnReg) or by adding to the case library (for ProbDistReg).

3 Perspective on Regularity-Related Research

In this section we consider the importance of the regularities and compare our
perspective to related research; in the following sections we look at its practical
application.

Work on Problem-Solution Regularity: The importance of problem-solution
regularity underlies the considerable attention to similarity criteria in CBR re-
search. Faltings (1997) uses probability theory to prove that for prediction tasks,
the assumption that a problem with similar features to an earlier one is likely
to have a similar solution is guaranteed to be true on average. The issue of how
to de�ne practical similarity metrics for particular tasks remains a central re-
search focus of the �eld, making it useful to have criteria for comparing di�erent
similarity metrics.

Recent CBR work has developed methods for making retrieval criteria explic-
itly re
ect the underlying \true" retrieval criterion that we have called RDist. A
primary example is adaptation-guided retrieval (Smyth and Keane, 1996), which
replaces the traditional similarity criterion with estimated cost of adaptation, in
order to retrieve cases that satisfy the goal of easy adaptation.

Work on Problem-Distribution Regularity: The key question of problem-
distribution regularity is whether the case library will contain the cases a sys-
tem needs to solve the problems it encounters. The importance of problem-
distribution regularity is recognized by developers of CBR applications, who
attempt to gather representative and well-distributed sets of cases for their sys-
tems (e.g., (Kriegsman and Barletta, 1993; Watson, 1997)).

Recent work on case-base competence (Smyth and McKenna, 1998; Zhu and
Yang, 1998) has developed methods for estimating the range of problems that
can be solved by a system with a given case-base. The purpose of this work is to
assure that problem-solution regularity is su�cient, to give an indication of the
likely system success rate, and to help identify regions of the case base in which
additional cases may be needed.

Problem-distribution regularity is closely related to case-base competence,
but our work di�ers from that work in two ways. The �rst di�erence concerns
the role of problem distribution. Analysis of case-base competence assumes a
uniform distribution of problems in order to make analysis more tractable.
Likewise, it is customary for empirical evaluations of CBR systems to use a
randomly-generated set of problems uniformly distributed in the problem space
(e.g., (Veloso, 1994)). However, our de�nition explicitly references the particular

223When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

problem sequence on which the behavior is measured. While we agree with Smyth
and McKenna (1998) that assuming a uniform distribution can provide a very
useful overall view, considering speci�c details of problem presentation order and
distribution can be useful as well. For example, the quality of a CBR system's
performance can depend strongly on the order of case presentation (Fox, 1995;
Redmond, 1992), making it desirable for the formulas to be usable for exploring
the e�ects of di�erent orderings. Likewise, as we discuss later in this paper, if
the system can identify \hot spots" in case-base accesses, examining problem
distribution regularity may make it possible to reorganize the case base to speed
likely retrievals, or to delete (or deactivate, e.g., by placing in secondary storage)
cases that are not being used.

Second, our de�nition of problem-distribution regularity depends on a user-
de�ned threshold for what constitute su�ciently similar stored cases, rather
than considering only whether the problem can or cannot be solved. Using a
user-de�ned criterion for whether a stored case is \close enough," rather than
simply whether some solution can be generated, is important when the quality
of solutions depends on the amount of adaptation performed, or when there are
changeable limits on the amount of e�ort that can be expended on adaptations.
For example, in some domains, available domain theories are strong enough for
local adaptations but are not su�ciently reliable for more substantial changes
(e.g., Cheetham and Graf, 1997).

Work on Case-Base Maintenance: Many researchers are examining issues
in case-base maintenance (CBM) for improving the performance of CBR systems
(for an overview, see Leake and Wilson, 1998). CBM research addresses issues
such as assuring that the cases in the case base cover the space of possible prob-
lems (Smyth and McKenna, 1998; Zhu and Yang, 1998) and deleting super
uous
cases to improve space e�ciency or utility of retrieval (Smyth and Keane, 1995).
These do not address, however, how to maintain the case-base in response to
speci�c task needs|for example, to build coverage in precisely those areas that
tend to arise in current problems|or how to predict the need for future mainte-
nance from current problems, in order to proactively revise the case base before
problems occur. Salganico� (1997) has studied the problem of learning time-
varying functions in instance-based learning, and proposes a method based on
de-activating old instances when similar new ones are available, and selectively
re-activating those that are consistent with new data. Ideally, augmenting CBR
systems with the ability to detect regularity problems and respond to problem
trends will improve their ability to avoid future failures and organize their case
bases for e�cient access.

4 Calculating the Regularity Values

In order to apply the formulas to trigger maintenance, practical means are needed
to calculate their values. Because ProbDistReg depends only on the levels of sim-
ilarity between new problems and the cases retrieved to deal with them (which

224 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

are available as a byproduct of normal processing), ProbDistReg can be calcu-
lated easily.

On the other hand, calculating ProbSolnReg is problematic, because cal-
culating RDist requires complete information about the \right" retrievals. (If
this information could be calculated inexpensively at retrieval time, the system
could always make perfect retrievals.) Nevertheless, it is sometimes possible to
take advantage of information available after a problem is solved to estimate
whether the right case was retrieved. The ROBBIE system (Fox and Leake,
1995), for example, detects problems in its similarity criteria by �rst solving the
current problem, and then using the solution as the index for another retrieval,
to determine if the solution from another case is more similar to the �nal result.
If so, perfect similarity criteria would have favored that case, so the failure to
retrieve it shows a
aw in problem-solution regularity.2

Alternatively, ProbSolnReg calculations could be done o�-line at times when
high processing cost is acceptable, to trigger o�-line maintenance to improve
future on-line performance.

5 Using the Formulas as Maintenance Triggers

The previous de�nitions provide a basis for judging the levels of regularity for
particular systems, case bases, and problem sequences. By monitoring the levels
of regularity and their changes, it is possible to identify needs for maintenance.
For example,

{ When problem-solution similarity falls below acceptable levels, it may signal:

� Failure of the similarity metric to capture features that have become im-
portant in predicting RDist for current problems (e.g, if a route planner
does not consider the direction of old paths when doing retrieval, and is
called upon to plan paths in a new area with many one-way streets).

� Changes in the problem-solving environment that require adjusting the
solutions that would have applied to the same problems in the past,
so that RDist itself has changed and PDist must be adjusted to be
consistent (e.g, if roads have been closed, blocking paths that would
previously have been successful).

{ When problem-distribution regularity falls below acceptable levels, it may
signal:

� Insu�cient case coverage of the current problems (additional cases would
increase the chance of having one available within the acceptable neigh-
borhood).

2 This approach does not apply to all domains, however. For example, if solutions are

a single numeric value, the fact that a case in memory happens to have the correct

value may be coincidental. If a CBR system estimates the price of a bunch of carrots

based on the price of a bunch bought the week before, even if its estimate is wrong

it is probably not appropriate to adjust its similarity to consider the carrots more

similar to a light bulb that happens to cost precisely the correct amount.

225When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

� Flawed or insu�cient adaptation knowledge (improving adaptation knowl-
edge would increase the size of the neighborhood of cases that is usable).

{ When problem-distribution regularity is high for a subset of the case base,
it may signal:
� A \hot spot" in the case base (which enables reorganizing the case base
to facilitate access to active regions, or deactivating cases from less fre-
quently used regions.)

6 Determining How to Respond: The Role of Diachronic

Analysis

Once a regularity problem has been found, it is necessary to select strategies
for responding. Normally, CBR systems consider only the current problem and
state of the case base when responding to processing failures (e.g., by revising
the indices for a case or storing a new case with the correct solution). However,
considering trends in problems may enable better response strategies. For ex-
ample, knowing that problem-solution regularity has dropped from acceptable
levels to a current unacceptable level is more informative than simply knowing
that the level is unacceptable, because a change in performance must be caused
by changes in either the problem distribution or the environment. For example,
if a system for estimating building costs consistently generates estimates that
are too low, that trend suggests that a general change is needed to prevent that
class of failures in the future.

One response strategy is to simply update the cases in the case base (e.g.,
increasing the recorded prices), but this may lose useful historical information.
It may also require monitoring the update history and ages of cases, in order to
make sure that all cases are updated properly. Another alternative is to keep the
values of cases unchanged, but to add a \lazy" maintenance rule to adjust case
solutions after they have been retrieved (Leake and Wilson, 1998)).

Leake and Wilson (1998) describe a class of maintenance strategies that col-
lect data over time, over a sequence of snapshots of system processing, in order
to identify trends in how case-base contents and usage are changing. They call
policies based on analyzing the performance of the case-base over time diachronic
maintenance policies. Diachronic analysis is useful, for example, for determin-
ing whether coverage problems|shown by low problem-distribution regularity|
should prompt the search for additional cases. If problem-distribution regularity
shows an increasing trend, showing that the cases being processed are �lling the
important regions of the case base, it may su�ce to simply let the normal case
learning process �ll the case base. However, if the level of problem-distribution
regularity is low and stable, or even decreasing, steps must be taken to increase
the coverage of the case library.

Diachronic analysis is also useful to �nd and exploit trends in problems pre-
sented to the case base. If the problems that the system must solve consistently
fall within a small neighborhood, it may suggest that the system should exploit
the locality of the \hot spot" by reorganizing the case base to make cases in that

226 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

region easier to access. In a distributed case base, cases in the hot spot are can-
didates for pre-fetching. If space limitations require that some cases be deleted,
for e�ciency reasons the system should also focus competence-preserving dele-
tion (Smyth and Keane, 1995) on regions other than the hot spot, in order to
minimize adaptation cost on likely problems by keeping the active regions more
densely populated with nearby cases.

Finally, diachronic analysis is useful for monitoring and guiding the mainte-
nance process itself: The history of maintenance operations applied will a�ect
choices of which operations should be applied. For example, if maintenance has
just added a large set of cases to the case base to improve problem-distribution
regularity, the choice of whether to search for still more cases should be deter-
mined by observing the e�ects of the new cases over some period of time, rather
than simply based on the value of ProbDistReg as soon as the next input prob-
lem is processed.

7 Tools for Trend Detection

Performing diachronic maintenance requires methods for detecting underlying
trends in sequences of values over time. Trend detection for numeric values can be
done by a number of statistical techniques. These include simple methods such as
linear regressionmodels that attempt to �nd the equation of the line that best �ts
the data as well as time series analysis techniques such as autoregressive moving
averages (ARMA) and autoregressive integrated moving averages (ARIMA). Re-
search in machine learning has studied \concept drift," in which hidden changes
in context over time cause learned experiences to become inaccurate (e.g., Sal-
ganico�, 1997). A number of techniques have been applied to concept drift prob-
lems in time ordered domains for learning hidden context (Harries et al., 1998;
Lane and Brodley, 1998), and could be applied to adjusting similarity criteria
when problem-solution regularity becomes insu�cient due to concept drift.

8 Two Examples: Error Trends and Hot Spots

In this section we illustrate the usefulness of trend-based reasoning for respond-
ing to drops in problem-solution regularity and to patterns in problem distribu-
tion.

8.1 Addressing Solution Error Trends:

As a simple example of the use of trend detection, we show how regression tech-
niques can augment a case-based price estimating system, in order to make its
predictions more robust despite in
ation. Trend-based corrections are triggered
by drops in problem-solution regularity: When the solutions predicted based on
similar prior problems are no longer close to the real solutions determined by
feedback to the program, maintenance is performed. The method we describe is

227When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

still primarily case-based, rather than regression-based: Detected trends in
u-
ence case adaptation, but the primary information source is still cases.

As our case data changing over time, we selected a college summary from the
magazine U.S. News and World Report.3 The data we used included information
on 1302 colleges, with 28 features for each one (e.g., enrollment, student test
scores, etc.). The task was to predict tuition costs. Because multi-year data was
not available, we simulated the increase as a normal distribution of increases
around an annual in
ation rate.

We used the following simple strategy for detecting and responding to error
trends. The system records and monitors the percent errors between retrieved
cases and evaluations. A cumulative error level is maintained by summing suc-
cessive error percentages, with the expectation that accumulated percent errors
due to random
uctuations (both positive and negative) will remain below a rea-
sonable threshold magnitude. If the activation level persists above the threshold
value for a speci�ed amount of time, the system triggers a statistical analysis
for possible underlying error trends. In the current system, the percentage error
trend is approximated by performing a simple linear regression analysis on the
sequence of error data. A maintenance rule is then installed that uses the com-
puted regression line to forecast the percentage error for the current year and
modi�es cases according to the predicted error value as they are retrieved.

Experiments used query samples of 5 to 20 probes from the case set for
each year over a 10 to 20 year span, selecting queries by two methods. The �rst
method constructed a random problem distribution by selecting query cases at
random. The second method constructed a highly regular problem distribution
by restricting the query population to a set of similar instances, according to
the system's similarity metric. The samples were used as probes in their respec-
tive years, over the varying year spans. The underlying annual in
ation rate was
varied in separate experiments between 2 and 5 percent for each year, which
uc-
tuated according to a random normal distribution to represent yearly variations.
Average error rates were measured for the baseline (no learning), case learning
alone, maintenance alone, and combined case learning/maintenance. Each exper-
iment was repeated 10 times, each time re-selecting the query sample, to obtain
results on average.

While the results did not give a clear picture of how adjustments in individual
parameters a�ected the outcomes, a general picture did emerge. With a random
problem distribution, case learning performed better than the baseline, trend-
based maintenance performed better than case learning, and the combination
gave equivalent or better results. With the regularized problem distribution, the
combination performed best, followed by case learning, then maintenance, and
�nally the baseline. A representative trial with an in
ation rate of 2 percent
over 15 years and sample size of 5 queries/year gave the following results. The
randomized distribution showed average errors of 18 percent in the baseline,
17 percent in case learning, and 14 percent in both maintenance and combined
trials. The regularized distribution showed average errors of 18 percent in the

3 Available from http://lib.stat.cmu.edu/datasets/.

228 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

baseline, 14 percent with maintenance, 13 percent with case learning, and 12
percent in the combined trials.

The experiments point to some interesting observations. First, they suggest
that maintaining existing cases can be as e�ective as learning new cases, and that
augmenting case learning with diachronic maintenance can be bene�cial. Second,
it is worth noting that the individual trials of maintenance alone produced highly
consistent results, while the individual trials involving case learning
uctuated
a great deal in producing the average. This may indicate that detecting general
trends is a more stable method of dealing with change over time than case learn-
ing. Third, we note that typical problem distributions will likely fall somewhere
between the extremes of uniform sampling (where maintenance strategies alone
were better than case learning) and highly focused sampling (where case learning
worked better). Consequently, more experiments will be required to determine
the interplay of the two along varying levels of problem-distribution regularity.

8.2 Addressing Hot Spots

A second potential use of trend detection is to respond to \hot spots" in the
case base. In practice, case accesses are often non-uniform. For example, a pri-
mary motivation for the development of the GizmoTapper CBR support system
for Broderbund computer games was to aid the Broderbund help desk in han-
dling the increased queries it received soon after Christmas (Watson, 1997). The
problem patterns for any domain are likely to be strongly domain-speci�c, but if
those patterns can be detected automatically the system may be able to optimize
access to information that is likely to be in demand.

To observe query distribution patterns in a real-world information source,
we gathered data on accesses to Indiana University web pages for various on-
line information repositories. These pages provide academic information (e.g.,
requirements for the BA degree) as well as homework assignments, etc. A sam-
pling of access results for a year of logs are shown in Figure 1, with each band
re
ecting the total accesses to �les within the directory. (Numbers of accesses are
normalized to show the percent of maximum accesses per month from January
1998 to February, 1999. Patterns that might not have been expected (but that
are easily explainable) emerge. For example, department academics pages are
heavily accessed in the Fall (presumably by new students), but less frequently
accessed in the Spring, as students become familiar with policies, and seldom
in the summer. Pages for classes o�ered in Spring and Fall re
ect that in their
accesses. Temporal patterns are not always present|no pattern is apparent in
the \Types Forum" accesses at the front of the graph|but there appears to be
considerable regularity.

Various methods could be used to detect or predict hot spots, such as clus-
tering on the problems processed, predicting problem distributions from a model
of the task the CBR system serves (if available), or collecting user pro�les that
associate users with particular access patterns. Once a hot spot has been hypoth-
esized, the problem-distribution regularity formula can be applied to measure the
adequacy of its coverage. Insu�cient coverage is a sign to examine the current

229When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

Fig. 1. Web page accesses by month.

problem sequence for new hot spots. We are preparing an experiment to compare
di�erent hot spot detection strategies for di�erent input problem sequences.

9 Considerations for costs and bene�ts

The processes described here depend on processing steps that increase the over-
head of the CBR system, such as processes for trend detection and for reorganiz-
ing the case base in response to hot spots. More study must be done on the costs
involved, but there may be important mitigating factors. First, trend analysis
can be done o�-line, when the system is otherwise idle. Second, in interactive
CBR systems, cost and bene�t analysis must weigh not only the costs incurred
by the system, but also those avoided by the user. If trend analysis can, for ex-
ample, warn the user of environmental changes that render prior cases obsolete,
the real-world bene�ts may be substantial (e.g., for a realtor setting the price of
a house). This may counterbalance increased computation costs.

10 Conclusions

The de�nitions presented here are useful for three reasons. First, they delineate
the factors that a�ect regularity assumptions for CBR and their relationships|
that regularity is not a property of the system or world individually but of
the relationship between task, system, and the external world. Second, they
provide a quantitative criterion for comparing the performance of particular CBR
systems. Third, and most important for this paper, is that by giving standards
for measuring regularity, they also give standards for detecting changes that
require maintenance.

230 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

As CBR systems are more widely �elded for long-term use, it will become

necessary to monitor both problem-solution regularity and problem-distribution

regularity assumptions and to respond intelligently when they fail. This paper

provides a practical starting point for how to detect and respond to situations

in which the reuse of experiences goes wrong.

References

[Cheetham and Graf, 1997] W. Cheetham and J. Graf. Case-based reasoning in color
matching. In Proceedings of the Second International Conference on Case-Based

Reasoning, pages 1{12, Berlin, 1997. Springer Verlag.

[Faltings, 1997] Boi Faltings. Probabilistic indexing for case-based prediction. In Pro-

ceedings of the Second International Conference on Case-Based Reasoning, pages
611{622, Berlin, 1997. Springer Verlag.

[Fox and Leake, 1995] S. Fox and D. Leake. Using introspective reasoning to re�ne in-
dexing. In Proceedings of the Thirteenth International Joint Conference on Arti�cial

Intelligence, pages 391{397, San Francisco, CA, August 1995. Morgan Kaufmann.

[Fox, 1995] S. Fox. Introspective Reasoning for Case-based Planning. PhD thesis,
Indiana University, 1995. Computer Science Department.

[Harries et al., 1998] M. Harries, K. Horn, and C. Sammut. Learning in time ordered
domains with hidden changes in context. In Papers from the AAAI 1998 Workshop on

Predicting the Future: AI Approaches to Time-Series Problems, pages 29{33. AAAI,
1998.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo,
CA, 1993.

[Kriegsman and Barletta, 1993] M. Kriegsman and R. Barletta. Building a case-based
help desk application. IEEE Expert, 8(6):18{26, December 1993.

[Lane and Brodley, 1998] T. Lane and C. Brodley. Approaches to online learning and
concept drift for user identi�cation in computer security. In Papers from the AAAI

1998 Workshop on Predicting the Future: AI Approaches to Time-Series Problems,
pages 64{70. AAAI, 1998.

[Leake and Wilson, 1998] D. Leake and D. Wilson. Case-base maintenance: Dimen-
sions and directions. In P. Cunningham, B. Smyth, and M. Keane, editors, Proceed-
ings of the Fourth European Workshop on Case-Based Reasoning, pages 196{207,
Berlin, 1998. Springer Verlag.

[Redmond, 1992] M. Redmond. Learning by Observing and Understanding Expert

Problem Solving. PhD thesis, College of Computing, Georgia Institute of Technology,
1992. Technical report GIT-CC-92/43.

[Salganico�, 1997] M. Salganico�. Tolerating concept and sampling shift in lazy learn-
ing using prediction error context switching. Arti�cial Intelligence Review, 11(1-
5):133{155, 1997.

[Smyth and Keane, 1995] B. Smyth and M. Keane. Remembering to forget: A
competence-preserving case deletion policy for case-based reasoning systems. In Pro-

ceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence,
pages 377{382, Montreal, August 1995. IJCAI.

[Smyth and Keane, 1996] B. Smyth and M. Keane. Design �a la D�ej�a Vu: Reducing
the adaptation overhead. In D. Leake, editor, Case-Based Reasoning: Experiences,

Lessons, and Future Directions. AAAI Press, Menlo Park, CA, 1996.

231When Experience is Wrong: Examining CBR for Changing Tasks and Environments

althoff@iis.uni-hildesheim.de

[Smyth and McKenna, 1998] B. Smyth and E. McKenna. Modelling the competence
of case-bases. In P. Cunningham, B. Smyth, and M. Keane, editors, Proceedings
of the Fourth European Workshop on Case-Based Reasoning, pages 208{220, Berlin,
1998. Springer Verlag.

[Talebzadeh et al., 1995] Houman Talebzadeh, Sanda Mandutianu, and Christian
Winner. Countrywide loan-underwriting expert system. AI Magazine, 16(1):51{64,
1995.

[Veloso, 1994] M. Veloso. Planning and Learning by Analogical Reasoning. Springer
Verlag, Berlin, 1994.

[Watson, 1997] Ian Watson. Applying Case-Based Reasoning: Techniques for Enter-

prise Systems. Morgan Kaufmann, San Francisco, 1997.
[Zhu and Yang, 1998] J. Zhu and Q. Yang. Remembering to add: Competence-
preserving case-addition policies for case based reasoning. 1998.

232 D.B. Leake and D.C. Wilson

althoff@iis.uni-hildesheim.de

Case Library Reduction Applied to Pile Foundations

Celestino Lei1, Otakar Babka1, and Laurinda A. G. Garanito2

1 Faculty of Science and Technology, University of Macau
P.O. Box 3001, Macau (via Hong Kong)
Ph.: +853 3974 471, Fax: +853 838 314

babka@umac.mo, m986218@sftw.umac.mo

2 Laboratório de Engenharia Civil de Macau
Rua da Sé, 30, Macau

Ph.: +853 343 372
laurin48@macau.ctm.net

Abstract. The case-based reasoning paradigm is applied in support of decision
making processes related to pile foundations. Based on this paradigm, the
system accumulates experience from previously realized pile foundations. This
experience can be drawn when new situations with similar attributes of
geotechnical situation of the site and geometric characteristics of the piles are
encountered. Two case libraries were created based on previously realized sites.
The representativeness of the case libraries and the efficiency of the search
process are facilitated by the use of a genetic algorithm reduction.

1 Introduction

The Case-Based Reasoning (CBR) paradigm facilitates the effective reuse of
previously accepted results [1], [2], [3], [4].

In the presented research, this paradigm is applied to support any decision
concerning the structure of pile foundations of construction sites. Objectives of case
library representativeness are discussed in the next paragraph, followed by discussion
about weight-setting and reduction methods. The reduction method chosen for the
application is based on Genetic Algorithms (GA) [5], [6], [7], [8], briefly discussed in
a subsequent part of the paper. The application of this paradigm to pile foundations is
studied afterwards, together with the results of the reduction.

2 Representativeness of Case Libraries

Case-based reasoning relies on past case history. For a new problem, case-based
reasoning strives to locate a similar previous solution.

When solving a new problem, the most similar old case is retrieved from the case
library. Retrieval methods are based mainly on some modification of the nearest
neighbor algorithm [9], [10], [11], [12], [13]; or induction [14], [15], [16]. As the case

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 233-247, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

library gets larger in size, the retrieval process becomes more time-consuming,
especially for nearest neighbor methods, where time complexity is generally linear.

A case-based reasoning system can only be as good as its case library [9], and the
quality of case libraries can be judged in two aspects:

� Representativeness of the library – The quality of the decision, and especially its
accuracy, can be improved by employing a more appropriate representation of the
case and with a cautious selection of cases.

� Effectiveness of the retrieval – Effectiveness is mainly based on (i) the complexity
of retrieval algorithms, and (ii) the size and organization of the library.

There is a mutual relationship between these two aspects: the case library size and
organization are strongly related with its representativeness. Therefore, the majority
of the approaches striving to improve case libraries affects both aspects.

2.1 Case authoring

With the progress of case-based reasoning, more complex case libraries have been
constructed. Researches have begun addressing more practical problems assisting
case authors [17], [18]. The former claims that case-based reasoning can eliminate the
need for knowledge engineering, required for expert systems, have been questioned.
Case authoring, sometimes referred as case engineering [19], has emerged,
developing principles and guidelines for case library design. Authoring cases is a
difficult process. It can be expensive in time (e.g. long learning curves) or money (e.g.
for training fees, consulting fees, or for purchasing case libraries). Novice case
authors tend to build rather poorly designed case libraries, causing problems and
dissatisfaction to users, with possible commercial consequences for the case-based
reasoning product market. Therefore, case-based reasoning product vendors provide
library design guidelines for their products.

Supporting the case authoring process, such guidelines are usually essential for
library design. However, working with an extensive list of rules – in a written form –
can be tedious and not very effective. Aha [19] suggests a software tool revising the
library according to the guidelines. He focuses on Conversational Case-based
Reasoning engines conducting an interactive end-user conversation to incrementally
extract a query. The CLIRE (Case LIbrary REvisor) system, described in [17], is a
realization of the software revising tool. The system assists case authors by revising
case libraries, improving the conformance with the design guidelines.

2.2 Competence Model

McKenna and Smyth have proposed a Competence Model [20] to judge the
coverage of a case-base. This model is based on the concepts of retrieval space and
adaptation space of some target problem. The retrieval space for a certain target
problem is the set of cases which is retrieved for solving that problem. The adaptation
space is the set of cases in the library which can be adapted to solve a certain target
problem.

234 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

With these sets, the coverage of a case can be calculated as the set of target
problems which that case can solve. This concept of coverage, combined with the
calculation of similarity between cases and case density, is further extended to a
group of cases and to the whole case-base.

The coverage of a case-base can then be used to judge the competence of that
case-base, as shown in [20].

3 Feature reduction

The retrieval method used in the presented research was based mainly on nearest
neighbor. This approach has many advantages compared with other methods [21],
[11]. It supports incremental learning from new cases. Another advantage is the
relatively easy implementation of the method. However, there are some negative
points that limit its applicability. Besides poor generalization performance of the
classical nearest neighbor method, this method suffers from noisy features.

The similarity function plays a crucial role in nearest neighbor retrieval. This
function is sensitive to imperfect features, some of them being noisy, irrelevant,
redundant, or interacting [13]. A cautious selection of features can reduce
dimensionality, improving efficiency and accuracy.

This general problem has been studied by researchers for long time ([22], [23],
[24], [25], and others). Feature selection algorithms usually consist of three parts [25]:
(i) Search algorithm, (ii) Evaluation function, and (iii) Performance function itself.
Search algorithms can be grouped into three categories [23]: exponential, randomized,
and sequential. The first one is rather problematic because of its exponential time
complexity in number of features. Genetic and simulated annealing search method is
used in the randomize algorithm, achieving high accuracies [23], [24]. Sequential
algorithms can add and subtract features using a hill climbing method, with a
quadratic complexity [25].

A group of weight-setting methods faces this problem by parameterizing the
similarity function with feature weights [13]. One of the weight-setting approaches
adopts the hill climbing method. Weights are changed iteratively in an effort (i) to
increase the similarity function for adjacent cases of the same class, and (ii) to
decrease the function for adjacent cases of the other classes. This method was applied
by Salzberg [26] to EACH (Exemplar-Aided Constructor of Hyperectangles).

Feature weights can alternatively be assigned using mutual information [27]
between the class of the training cases and the value of the feature. The mutual
information can positively influence accuracy. Wettschereck and Dietrich [12]
describe an improvement of accuracy of EACH.

Feature weights were also modified iteratively with the help of genetic algorithm
[28]. The fitness function worked with recency and training accuracy.

Selected weight-setting methods are analyzed from the perspective of k-nearest
neighbor similarity function in [13]. A five-dimensional framework was introduced,
categorizing and comparing the selected methods.

Binary weights of features were used in the presented research. This means that
either a feature is used in the similarity function with a weight of 1 or it is ignored
completely (i.e. with a weight of 0). The problem with possible imperfect features
was solved by the reduction of the features. Motivated by Skalak [8], [24], we decided

235Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

to use genetic algorithms as a core of our reduction method. This method is flexible,
not too complex for realization, and no domain-specific knowledge is needed. It is
true that the search for the acceptable reduction can be long. However, this reduction
is done basically only once. Guarded by the fitness function, the process does not
require much human operator intervention. In addition, the reduction can have a
substantial impact on analysis of features and their representativeness. Besides that,
we had a positive experience with a similar reduction used for the handwritten digit
recognition system (HWDR) [29], [30].

For this system, a handwritten digits database with 6116 bitmaps was obtained
from the Elsevier Science FTP site. Within these bitmaps, 2030 were selected as the
unseen test cases and the remaining 4086 were considered to be the case library.
Several feature extraction methods were used, so that each digit bitmap is converted
into a case with numerical features.

Several recognition engines were devised in that system, in which one of them uses
the case-based reasoning approach. This recognizer uses the nearest neighbor method
to retrieve the case in the case library which has the smallest Euclidean distance with
respect to the test case.

Due to the size of the case library, the recognition process was time consuming.
Therefore, the case library was reduced using genetic algorithms and the original case
library with 4086 cases was reduced to 300 cases. After this reduction, the recognition
accuracy of the system was changed from 95.96% to 94.63%. Although with a slight
decrease in recognition accuracy, the time required for case retrieval was reduced
dramatically, to less than 1% of the original time required.

Similar experiments were done for reducing the number of features of the case
library, with very positive results. The number of features was reduced from 342 to
50, with a slight decrease in recognition accuracy from 95.96% to 95.47%.

Features were selected using several alternative ways [29], [30]. This selection
uses no domain-specific knowledge, selecting numerous features. The method, based
on genetic algorithms, showed capability to select representative features from that
wide range of features, still maintaining accuracy after this massive reduction for both
features and cases. Motivated by this good result, we decided to test the ability of this
methodology also on the pile foundation application.

The presented research is focusing on features reduction, since the particular case
libraries used for testing possibly contain redundant or irrelevant features. On the
other hand, the number of cases is rather limited in this stage of the research. The
reduction of cases will be reconsidered after extension of the case libraries.

4 Genetic Algorithms

Genetic algorithms [5], [6], [7], [8] share many concepts and rules of the living
world, working with individuals in a population. Each individual contains some
genetic information encoded in the form of genes — numeric values that are
characteristic to each individual. Another characteristic of each individual is its
quality measure. The way how this quality is calculated depends on the particular
scenario in which the genetic algorithm is applied. A generation is a particular state of
the population. Fig. 1 illustrates the relationships between all these entities and
concepts:

236 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

... quality

Population

genes

... quality

individual

... quality

Fig. 1. The structure of a population

For the first generation, the population is filled with individuals created by
assigning random values to their genes. For the subsequent generations, new
individuals are generated and their genes are obtained through the crossover process.
At the end of each generation, the two individuals with the highest quality values are
selected for crossover. When a new individual is generated, the individual in the
population with the least quality will be excluded from the population, so that the
population size is kept constant.

During the crossover process used in our experiments, the first half of the genes of
the descendant are randomly selected among the genes of the ancestor with the higher
quality value. If a repeated value is selected, this is rejected and that gene will be re-
selected. Each of the remaining genes of the descendant is randomly selected from
those of the other ancestor. If the selected gene is already present among the
previously selected ones, this gene will be randomly selected from all the possible
gene values, until there are no repeated genes.

In the approach presented in this research, each gene corresponds to a feature
number (i.e. 1 for the first feature, 2 for the second, etc.). Each individual then
corresponds to a candidate set of reduced features. The quality of each individual is
calculated according to whether this candidate of the reduced library could produce
good results for the particular application considered.

For the majority of the reduction experiments, there is no significant decrease of
the quality of results. On the other hand, the speed is increased substantially.

Despite of the practical use of the genetic algorithm for case library reduction, it
has the drawback of being dependent on random events. This implies that the test
results can hardly be regenerated exactly as it was done before and that a large
number of tests should be done to obtain an average of the results. The difference
between the best-case and worst-case behavior can be very significant.

5 Brief Description about Pile Foundations

Different types of foundations are used for civil engineering construction purposes,
depending on the geological composition of the site and the type of construction.

237Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

Pile foundations are used when the upper soil layers cannot sustain the load of the
structure. Piles transfer the load of that structure to the lower and more resistant
layers, avoiding detrimental settlement to the structure that they support.

The system here referred considers purely pre-fabricated concrete piles (PHC –
pile, high-strength concrete), driven at different locations under the action of a
hammer. Fig. 2 shows an example of the different steps gone through during a civil
construction work, in terms of geotechnical foundations.

Real Set
C1+C2+C3

 Pile bearing resistance

Max. Set
Acceptable

Drive
piles

Foundation
Service Load

Pile
Specification

(Factory)

Borehole
log

SLT DLT

Piles Characteristics

Hiley
Formula

TESTS

Ultimate
resistance

Settlements
for different

loads

Ultimate
resistance

Settlements
for different

loads

Empirical
Formulas

Fig. 2. Workflow during pile foundation decisions

The site investigation allows the collection of the necessary soil information, thus
giving an idea of the appropriate foundation type to be chosen. Normally, site
investigation includes drilling boreholes in the construction area, from the ground
surface to the bedrock or strong soil layer, and performing standard penetration tests
(SPT) at 1.5m to 2m intervals.

238 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

Basically, the standard penetration test consists of driving a standard sampler by
dropping a 63.5kg hammer onto a drive head from a height of 76cm. The number of
blows required for a penetration of 300mm after an initial setting drive of 150mm is
called standard penetration test value (N-value). The SPT values yield information on
engineering characteristics of the soil, and on the nature and sequence of soil layers.

Considering the type of construction, pile service load, and site investigation
results, the designer chooses appropriate geotechnical structures. If piles are chosen as
the structure, related calculations need to be performed to define pile characteristics,
its bearing resistance, the total number of piles needed and their distribution on the
site.

The design of a pile foundation depends on the pile working load and on the depth
of the strong layer given by the standard penetration test. The diameter of a pre-cast
driven pile should be chosen in accordance with the structural design of the pile,
which is recommended by the manufacturer.

The construction phase generally starts with pile driving. After this phase, some
piles are statically or dynamically tested in order to estimate the piles’ behavior.

The Hiley formula [31], [32] has been widely used for the design of driven piles.
The formula defines the maximum pile penetration (average penetration under the last
few blows) accepted during pile driving operations. The calculation is based on the
designed pile load, the geometry of the pile, hammer’s characteristics, and the soil
parameters that can be obtained by the pile load test results.

After this description of some of the steps performed while developing decisions
related to pile foundations, the next paragraph focuses on the issues involved when
applying the case-based reasoning paradigm in this application area.

6 Application of CBR to Pile Foundations

Several case-based reasoning systems have been developed in the field of civil
engineering by other researchers (e.g. CASECAD, CASESYN, etc.) [33], [34]. In the
presented research, the case-based reasoning paradigm was applied to support the
decisions in pile foundations [32], [35]. Cases are organized to define a particular
scenario consisting of soil information, pile geometric characteristics, and pile test
results. The case library consists of pieces of information related to piles driven and
tested in different construction sites and their corresponding geotechnical data.

The knowledge contained in the case library is used as a reference for a new
construction site, whenever the new situation can be compared to an existing one in
the library. Using the system here described, it is possible to evaluate the bearing
resistance of a pile, from a similar stored case where piles were tested statically or
dynamically and the soil information is known. Moreover, the parameters used in the
Hiley formula [31], [32] previously calibrated by pile load tests, can be reused in a
similar situation.

The features related to soil information are considered as the input features.
Another set of features that describe the pile characteristics and the pile test results are
the output features. These output features are only present in the cases which were
successfully solved.

239Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

Fig. 3. Distribution of boreholes and piles in one site

In general, the number of boreholes is less than the number of piles (Fig. 3). There
is a one-to-many relation between boreholes and piles. This was the reason why it was
decided to maintain two case libraries for the application: one for the boreholes’ data
(the borehole library) and another for the piles’ data (the pile library).

During the operation of the system, when a new site is encountered, the borehole’s
characteristics are structured in the form of a new borehole case. The system will then
look through the borehole library for the most similar case. After that, the pile library
is browsed for the associated piles related to the borehole case just retrieved. Then a
solution is proposed for the new case and the new solution is retained in the case
libraries. The workflow of the system is presented in Fig. 4:

Design load
Pile characteristics
Pile tests results

Retrieved
Borehole

RETRIEVENew
 Borehole

Learned
Case

 Tests Results
+

PHU

R
E

T
A

IN

Calculate PHU

New Site

Piles
Library

Previous
Cases

Piles
associated

SE
A

RCH

Borehole
Library

Previous
Cases

Previous
Cases

Fig. 4. Case-based reasoning scheme applied to pile foundation decisions

In the above figure, PHU refers to the ultimate load given by Hiley Formula [31],
[32].

240 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

Each point in a construction site could be considered as a new case to the
case-based reasoning system. When considering this new case, the library case which
is most similar to the new case is retrieved from the case library. After retrieving the
most similar case, in order to fit it closer to the new situation, the retrieved case can
be adapted according to the new case’s features. Tasks and systems are analyzed from
the viewpoint of adaptation in [36], concluding that identification tasks can be
achieved also without adaptation. On the other hand, rather wider adaptation is
expected for design tasks. In consonance with this conclusion, only limited role of
adaptation was found in the present scope of our CBR application. However, it should
grow with more design oriented development of the application.

In order to model the scheme shown in Fig. 4, the ReMind case-based reasoning
tool by Cognitive Systems was used. This tool provides case input, retrieval,
adaptation and retention capabilities suitable for this application. However, since
ReMind does not provide any case library reduction capability, another system has
been developed to perform the task of case library reduction using genetic algorithms.
The experiments described in section 8 and the associated results refer to this, our
system for case library reduction.

7 Case Library Structure

In order to support the test application, two case libraries are used: the borehole
library and the pile library.

Primary attention was paid to the borehole library in the presented stage of the
research. The borehole library stores information about each borehole, including the
following the following features:

� Identification of the borehole
� Depth of the borehole
� 2 features corresponding to the geographical coordinates of the borehole
� 8 features corresponding to calculations related to N-values
� 8 features which are 4 pairs of fields describing the material and depth of each soil

layer

This gives a total of 20 features for the borehole library.
Regarding the pile library, the geometric characteristics, the load test results, as

well as the parameters used in the Hiley Formula are defined for each pile. The details
for each feature [32] are related to civil engineering and fall outside the scope of the
presented research.

8 Reduction Procedure

In order to test the efficiency of the process of reduction of the number of features
in the boreholes case library, 10 cases were randomly selected from the total of 61
cases to form the test library. The remaining 51 cases constitute the case library.

241Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

Initially, the case library contains 20 features and all features are used in the
nearest neighbor search. Each case in the test library is applied to the nearest neighbor
search to look for the most similar case in the case library. This result is stored as a
reference result for the subsequent searches using a reduced number of features.

The genetic algorithm is then applied to the features, reducing them to a specified
number. During the experiments, the features were reduced to 15, 13, 10, 9, 7, 6, 5,
and 3. The quality of each reduction is calculated in terms of the number of test cases
that had the same nearest case as that obtained from the initial results when all the
features were used. In this way, a quality of 10 means that all 10 test cases had the
same results as using all features and a quality of 0 means that none of the test cases
were classified as if all features were used.

At the beginning of each experiment, 5 individuals are created in the population
using the random generation method. After this first generation, the subsequent
generations are created using the half and half crossover method. As the generations
evolve, there might be a case when all 5 individuals in the population have the same
quality. When this situation occurs, only the best individual is kept and the remaining
ones are replaced by new randomly generated individuals, regardless of their quality.
This method is used to avoid the possibility of entering a deadlock in which the
individuals no longer evolve, since all of them have the same quality.

The next paragraph describes the results obtained during the experiments
conducted for the presented research.

9 Reduction Results

As stated previously, the experiments were conducted in order to reduce the
original borehole library to a different number of features. Due to space constraints,
the graphical results are only shown for the situations of reducing to 10, 8 and 7
features. The graph below (Fig. 5) shows the evolution of generations when reducing
the original borehole library with 20 features to 10 features.

Quality evolution for individuals with 10 genes
(averages for 72 experiments)

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

1 51 101 151 201 251

Generations

Q
u

al
it

y

Fig. 5. Graph showing the evolution of the individuals’ quality when reducing to 10 features

242 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

The values shown on the graph are averages for 72 experiments. In the worst case
of the experiments, 267 generations were needed in order to find a subset of features
that gives the same level of classification as using all features. On average, 59.75
generations are needed to achieve that level of accuracy.

The following graph (Fig. 6) shows the results for the reduction to 8 features:

Quality evolution for individuals with 8 genes
(averages for 27 experiments)

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

1 101 201 301 401 501 601

Generations

Q
u

al
it

y

Fig. 6. Graph showing the evolution of individuals’ quality when reducing to 8 features

As one might expect, when reducing to 8 features, the number of generations
required for producing a reduced library which could have the same accuracy as the
original library is greater than that for reducing to 10 features. In the worst case, 606
generations were needed and 205.37 generations are needed on average.

The next graph (Fig. 7) shows the results for the reduction to 7 features:

Quality evolution for individuals with 7 genes
(averages for 28 experiments)

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

1 501 1001 1501 2001 2501 3001 3501

Generations

Q
u

al
it

y

Fig. 7. Graph showing the evolution of individuals’ quality when reducing to 7 features

There is a significant difference between the results for reduction from to 8 and 7
features. For the case of reducing to 7 features, in the worst case, 3527 generations
were needed to obtain the same level of classification as using all the 20 features. On
average 951.25 generations are needed for that level of accuracy.

243Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

The following table (Table 1) summarizes the experimental results for successful
experiments.

Table 1. Statistical information regarding each set of experiments

Number of reduced features
7 8 9 10 13 15

No. of experiments 28 27 21 72 85 13
Generations in the
worst situation

3527 606 802 267 37 3

Generations in the
average situation

951.25 205.37 114.05 59.75 10.96 1.31

Standard deviation 933.28 151.05 163.89 45.81 10.15 0.75

From Table 1, it can be found that the less the number of reduced features, the
more the number of generations required and the standard deviation related to the
number of generations gets higher as well. This table further shows that the number of
generations required to reduce the number of features varies greatly between
experiments.

The next graph (Fig. 8) shows the exponential growth of the number of generations
required to obtain a reduced library which is at least as accurate as the full library.

Average number of generations required to obtain the same quality
as using all features in nearest neighbor search

0
100
200
300
400
500
600
700
800
900

1000

7891011121314151617181920

Number of features

G
en

er
at

io
n

s
re

q
u

ir
ed

Fig. 8. Graph showing the number of generations required when reducing to different numbers
of features. The line was generated from the 7 sample points using an exponential interpolation.

From these experiments, one can notice that there is a trade-off between the degree
of reduction of the case library and the time required for that reduction.

After conducting the many tests of reducing the number of features to different
values, it was found that the features that are finally discovered by the system do not
differ very much. This shows that, although the initial situation of each experiment is
different (since the initial population is randomly generated), the final collection do

244 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

converge to some similar subset of features. This is one of the very positive results
found.

Trying to find limits, experiments were also conducted for reducing to 6, 5, and 3
features. However, as expected, this is obviously an excessive reduction. For instance,
when reducing to 3 features, after 5461 generations, only 60% of the test cases were
classified according to the reference classification done with all features considered.

From the experiments, it was found that features could be substantially reduced in
this application. On the other hand, with the help of this method, limits of the
reduction for the given date are recognizable. For the presented library, the number of
features should not be less then eight (see Fig. 6, 7, 8).

10 Conclusion

The presented application was developed on a research level. Generally, borehole
and pile library were provided with limited number of cases in present time. Data is
not complete for all sites. However, despite this limited source of data, the general
results are promising. CBR facilitates incremental learning. The environment can be
deployed with a limited set of “seed cases” to be augmented progressively. According
to experts in the geotechnical area, this application can be very useful for future
foundation designs, helping them predict the behavior of piles without the need of so
many piles tests.

Selection of representative features of the borehole library was studied in this
research. Imperfect features were reduced with the help of genetic algorithms.
Adopting this methodology, that we have originally developed for pattern recognition
application, feature reduction of the borehole library was also positive, although the
nature of the application, and the source, characteristics and size of data differ
significantly. Although a possible generalization of this conclusion is limited by two
experiments, results suggest a positive evaluation for the presented approach.

The feature reduction of the pile library is logically the next step of the research.
After these libraries are supplied with more cases, we will again employ case
reduction, using the same approach.

As another direction for further research, during the application of the genetic
algorithm for case library reduction, the method itself could decide for the appropriate
number of features. This might be accomplished by giving higher quality values to
those individuals with a lesser number of features. In this way, the genetic algorithm
might be influenced towards generating individuals with less number of features.

Furthermore, the genetic algorithm could also decide on the suitable population
size according to needs.

References

1. A. Aamodt, E. Plaza, Case-Based Reasoning: Foundational Issues, Methodological, and
System Approaches, IOS Press, 1994.

2. B. W. Davis, Global Similarity Visualization and Searches in Case-Based Reasoning,
http://cimic.rutgers.edu/~badavis/research/cbr_vis.html

245Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

3. B. Smyth, Case Adaptation & Reuse in Déjà Vu, in Proceedings of ECAI-96 Workshop on
Adaptation in Case-Based Reasoning, 1996, ftp://ftpagr.informatik.uni-kl.de/pub/
ECAI96-ADAPT-WS/smyth.ps

4. W. Wilke, R. Bergmann, Adaptation with the INRECA - System, in Proceedings of ECAI-
96 Workshop on Adaptation in Case-Based Reasoning, 1996, ftp://ftpagr.informatik.uni-kl.
de/pub/ECAI96-ADAPT-WS/wilke.ps

5. H. Chen, J. Kim, GANNET: Information Retrieval using Genetic Algorithms and Neural
Nets, 1994, http://ai.bpa.arizona.edu/papers/gannet93.html

6. H. Chen, L. She, A. Iyer, G. Shankaranarayanan, A Machine Learning Approach to
Inductive Query by Examples: An Experiment using Relevance Feedback, ID3, Genetic
Algorithms, and Simulated Annealing, 1995, http://ai.bpa.arizona.edu/papers/expert94.html

7. D. A. Muresan, Genetic Algorithms for Nearest Neighbor: Final Report, 1997,
http://www.cs.caltech.edu/~muresan/GANN/report.html

8. D. B. Skalak, Using a genetic algorithm to learn prototypes for case retrieval and
classification, in Proceedings of the AAAI-93 Case-based Reasoning Workshop, 1993.

9. J. Kolodner, Case-based Reasoning, Morgan Kaufmann Publ., U.S.A., 1993.
10. S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, T. Seidl, Fast Nearest Neighbor Search in

High-dimensional Space, in ICDE’98, 1998.
11. B. V. Dasarathy, Nearest neighbor (NN) norms: NN patterns classification techniques.

IEEE Computer Society Press, Los Alamitos, CA, USA, 1991.
12. D. Wettschereck, T. G. Dietrich, An experimental comparison of the nearest neighbor and

nearest hyperectangle algorithms, in Machine Learning, 19, 5-28, 1995.
13. D. Wettschereck, D. W. Aha, Weighting features, in Proceedings of the First International

Conference on Case-Based Reasoning, Lisbon, Portugal, Springer-Verlag, 1995.
14. G. P. Ingargiola, Building Classification Models: ID3 and C4.5, Temple University, 1994,

http://yoda.cis.temple.edu:8080/UGAIWWW/lectures/C45
15. H. Chen, Machine Learning for Information Retrieval: Neural Networks, Symbolic

Learning, and Genetic Algorithms, in Journal of the American Society for Information
Science, 1994, http://ai.bpa.arizona.edu/papers/PS/mlir93.ps.Z

16. H. G. Solheim, Building Classification Models, http://yoda.cis.temple.edu:8080/
UGAIWWW/C45

17. D. W. Aha, L. A. Breslow, Refining conversational case libraries, in Proceedings of the
Second International Conference on Case-Based Reasoning, pp. 267-278, Providence, RI,
Springer-Verlag, 1997.

18. R. Heider, E. Auriol, E. Tartarin, M. Manago, Improving quality of case bases for building
of better decision support system. in R. Bergmann and W. Wilke (Eds.) Fifth German
Workshop on CBR: Foundation, Systems, and Application (Technical Report LSA-97-01E),
University of Kaiserlautern, Department of Computer Science, 1997.

19. D. W. Aha, A proposal for refining case libraries, in R. Bergmann & W. Wilke (Eds.), Fifth
German Workshop on Case-Based Reasoning: Foundations, Systems, and Applications
(Technical Report LSA-97-01E), University of Kaiserslautern, Department of Computer
Science, 1997.

20. E. McKenna, B. Smyth, A Competence Model for Case-Based Reasoning, in 9th Irish
Conference on Artificial Intelligence and Cognitive Science, Ireland, 1998,
http://ww.cs.ucd.ie/staff/bsmyth/papers/Cascade%20Submit.doc

21. P. Ricci, P. Avesani, Learning a local similarity metric for case-based reasoning, in Case-
based reasoning research and development, M. Veloso and A. Aamondt, (Eds.),
Proceedings of the First International on Case-based Reasoning, ICCBR-95, Sesimbra,
Portugal, October 23-26, 1995, Springer, pp. 301-312.

22. K. S. Fu, Sequential methods in pattern recognition and machine learning, New York,
Academic Press, 1968.

23. J. Doak, An evaluation of feature selection methods and their application to computer
security, Technical Report CSE-92-18. University of California, Department of Computer
Science, Davis, CA, USA, 1992.

246 C. Lei, O. Babka, and L.A.G. Garanito

althoff@iis.uni-hildesheim.de

24. D. Skalak, Prototype of feature selection by sampling and random mutation hill algorithms,
in Proceedings of the Eleventh International Machine Learning Conference, Morgan
Kaufmann Publ., U.S.A., pp. 293-301, 1994.

25. D. W. Aha, R. L. Bankert, A comparative evaluation of sequential feature selection
algorithms, in Proceedings of the Fifth International Workshop on Artificial Intelligence
and Statistics (pp 1-7). Ft. Lauderdale, FL: Unpublished. (NCARAI TR: AIC-94-026),
1995.

26. S. L. Salzberg, A nearest hyperrectangle learning method, in Machine Learning, 6, 251-
276, 1991.

27. C. E. Shannon, A mathematical theory of communication, in Bell System Technology
Journal, 27, 379-423, 1948.

28. J. D. Kelly Jr., L. Davis, A hybrid genetic algorithm for classification, in Proceedings of the
Twelve International Conference on Artificial Intelligence, Sydney, Australia, Morgan
Kaufmann, pp. 249-256, 1991.

29. O. Babka, S. I. Leong, C. Lei, M. W. Pang, Reusing Data Mining Methods for Handwritten
Digit Recognition, in Proceedings of World Multiconference on Systems, Cybernetics and
Informatics (SCI’98), 1998.

30. S. I. Leong, C. Lei, M. W. Pang, HWDR – Handwritten Digit Recognition – Final Report,
Bachelor degree graduation project report, University of Macau, 1998.

31. H. N. Ferreira, L. N. Lamas, L. Hong Sai, S. Qiang, Guia de Fundações LECM, Macau,
1997.

32. L. A. G. Garanito, Case-based Reasoning and Piles Foundations, Master’s Thesis,
University of Macau, 1997.

33. M. L. Maher, A. G. de S. Garza, Developing Case-Based Reasoning for Structural Design,
in IEEE Expert, Volume 11, Number 3, 1996, http://www.arch.su.edu.au/%7Eandres/
ieee-expert96.ps

34. M. L. Maher, A. G. de S. Garza, The Adaptation of Structural System Designs Using
Genetic Algorithms, in Proceedings of the International Conference on Information
Technology in Civil and Structural Engineering Design – Taking Stock and Future
Directions, Scotland, 1996, http://www.arch.su.edu.au/%7Eandres/glasgow96.ps

35. O. Babka, L. A. G. Garanito, Case-based Reasoning for Pile Foundation, in Proceedings of
Symposium on Science & Technology and Development of Macau, Dec. 1-4, 1998, Macau,
pp. 295-300.

36. K. Hanney, M. Keane, B. Smyth, P.Cunningham, Systems, tasks, and adaptation
knowledge: revealing some revealing dependencies, in Case-based reasoning research and
development, M. Veloso and A. Aamondt (Eds.), Proceedings of the First International on
Case-based Reasoning, ICCBR-95, Sesimbra, Portugal, October 23-26, 1995, Springer, pp.
461-470.

247Case Library Reduction Applied to Pile Foundations

althoff@iis.uni-hildesheim.de

Case Representation, Acquisition, and Retrieval
in SIROCCO

Bruce McLaren and Kevin Ashley

University of Pittsburgh
Intelligent Systems Program

3939 O'Hara Street
Pittsburgh, PA 15260

bmclaren+@pitt.edu, ashley+@pitt.edu

Abstract. As part of our investigation of how abstract principles are
operationalized to facilitate their application to specific fact situations, we
have begun to develop and experiment with SIROCCO (S ystem for
 I ntelligent R etrieval of O perationalized C ases and CO des), a CBR retrieval
and analysis system applied to the domain of engineering ethics. SIROCCO
is intended to retrieve decided engineering ethics cases and previously
applied ethics codes to assist engineers and students in analyzing new cases.
Here we describe a limited but expressive language designed to represent a
wide range of ethics cases in SIROCCO, a world-wide web tool developed to
perform case acquisition and support a measure of consistency in
representation, and an experiment to validate the initial phase of
SIROCCO's retrieval algorithm and test its sensitivity to small variations in
case description.

Introduction.

Developing methods for representing cases and problems is still a serious challenge
for CBR. On the one hand, a case representation must be expressive enough for users
to accurately describe a problem or case. On the other hand, CBR systems must reason
with cases in a computationally tractable fashion. We have been directly confronted
with this problem in our attempts to represent cases in engineering ethics.

Professional engineers face a wide range of factual scenarios that raise ethical
issues. The National Society of Professional Engineer’s Board of Ethical Review
(NSPE BER) has analyzed and published over 400 ethics cases. A review of the titles
of just some of the 64 cases we have already represented suggests the enormous scope
of the scenarios: Gifts, Responsibility for Public Safety, Political Contributions,
Supplanting Another Engineer, Plagiarism, Criticism of Another Engineer, Engineer's
Disclosure of Potential Conflict Of Interest, Declining Employment After Acceptance,
and Misrepresentation of Firm's Staff.

In addition, the ethics code provisions that the NSPE BER employ to analyze the
cases and rationalize its recommendations are very abstract. The NSPE code of ethics

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 248-262, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

comprises 74 provisions involving issues such as public safety, conflicts of interest,
confidentiality, and more. Most of these provide only very general guidance. Often,
code provisions provide guidance which conflicts with that of other provisions.

Given the wide range of specific scenarios and code provisions, it is interesting to
observe how principles, typically too abstract to apply deductively, are nevertheless
applied systematically to the scenarios. Our study of the NSPE BER cases revealed
that the Board employed a variety of operationalization techniques to bridge the gap
between abstract principles and specific fact situations (McLaren and Ashley, 1998).
(Mostow, 1983) first introduced the notion of operationalization in the comparatively
well-defined domain of card playing. However, the NSPE BER’s operationalization
techniques are applied in a far less structured and more complex problem domain.

Our goal is to make these operationalization techniques explicit in a computational
model and leverage them for the retrieval of past cases and analysis of new ethical
problems. We have been developing SIROCCO (S ystem for I ntelligent R etrieval of
 O perationalized C ases and CO des), a computational model intended to retrieve decided
cases and previously applied principles in order to frame analyses of new engineering
ethics cases. SIROCCO is not intended to reach conclusions for the new cases but,
rather, to identify relevant information for the analysis of the cases. Ultimately, our
goal is to deliver SIROCCO to engineers and engineering students as a tool for
improving access to an on-line resource of ethics experience. We also intend to
incorporate SIROCCO into an intelligent tutoring environment for engineering
students.

We are not the first to address how cases can be used to enrich the meaning of
abstract rules. To some extent, researchers in case-based legal reasoning all must
address this issue. (Branting, 1994), for instance, sketches a computational model to
bridge the gap between legal theories (similar in some respects to principles) and
specific case facts focusing on how to determine a precedent's controlling effect.
CATO (Aleven, 1997) employs a Factor Hierarchy that relates specific factors to more
abstract factors and ultimately to legal issues. BankXX (Rissland et al, 1996) searches
a legal network including legal theories for information benefiting a side in a dispute.

In our own earlier work on ethics, we attempted to model components of case-based
or casuistic ethical argument (Ashley and McLaren, 1995). Casuistry is a form of
ethical reasoning in which decisions are made by comparing a problem to paradigmatic
case examples of high level principles (Jonsen and Toulmin, 1988). As compared to
legal reasoning, the domain of engineering ethics appears to involve a less well-
defined and explicit model of argumentation. In addition, ethical problems are not
constrained to only two solutions (e.g., plaintiff won or lost).

A limitation of our earlier work, however, was its impoverished scheme for
representing cases. We represented cases at a more abstract, or issue, level. In the
current work, we wanted to let case enterers describe, in a somewhat specific manner,
what actually occurred in a problem scenario and when. None of the case
representations in the above work supported the representation of a range of cases as
wide as those presented in our domain nor dealt with as wide a range of abstract rules.
None enables users to specify event time ordering, information which often appears to

249Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

be important in analyzing moral obligations. Nor has the AI & Law research focused
on operationalization of abstract rules, as we have.

Although natural language is the ideal medium for describing a scenario, especially
in domains like ethics and law where cases typically are communicated textually, CBR
systems cannot yet process complex textual case descriptions. Recent work in textual
CBR approaches the problem through improved methods of processing case texts. To
the extent that the work has focused on interpreting or adapting complex case texts, it
is promising but still limited (Daniels and Rissland, 1997; Bruninghaus and Ashley,
1997). As a result, there is still a need for developing alternative means of
representing cases. Indeed, even textual CBR methods often assume that an underlying
representation has been developed and will ultimately support case-based reasoning.

Like others before us (e.g., Branting 1990), we have opted for defining a limited,
yet expressive, language for representing a case. As with any limited language, there
are trade-offs: Do the limitations constrain case enterer's descriptions enough so that a
program can identify similarity between cases? On the other hand, do the limitations
constrain users so much that they can no longer adequately describe what happened?
For instance, while GREBE’s relational representation allowed users to describe
scenarios flexibly, variations in the way users described similar scenarios threatened to
foil its structure mapping algorithm. Our use of a case acquisition tool supports
representational consistency (by, for instance, presenting case examples, guidance, and
definitions), and our language allows us to address a wider range of cases than, for
example, GREBE's workman's compensation domain.

Here we report on our development of a language for representing ethics case
scenarios. The language supports users in describing case events and their time
ordering. The web-based case acquisition tool has various features to help ensure that
different users describe similar cases and problems consistently enough for SIROCCO
to match similar cases. In addition, SIROCCO employs a two-stage retrieval
algorithm intended to match similar cases flexibly enough despite inevitable small
variations in the way cases are described. While our two-stage approach is based on
that of several researchers in analogy (e.g., Thagard et al, 1990; Forbus et al, 1994),
we focus more specifically on coverage of time-dependent scenarios and leveraging of
goal-specific knowledge. To date, we have implemented the first stage and report the
results of an experiment designed to evaluate it.

Case Acquisition and Representation in SIROCCO

As noted above, in some ethics cases multiple principles apply with conflicting
results. In these cases, the BER needs to determine not only whether and what code
principles apply and what conclusions follow from the applicable principles, but also
which principles are paramount in the given circumstances. For instance, Case 92-6,
figure 1, pits an obligation to one's client against an obligation to public safety.

As previously discussed, the NSPE board employs operationalization techniques to
resolve such ethical dilemmas. For instance, in Case 92-6 the board employed a
technique we call "Define Code Superiority" to determine that codes related to

250 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

Engineer B's obligation to the public override codes related to his obligation to the
client. In this circumstance, the board decided that Engineer B should have been more
forthright and reported the potential hazard of the drums to the client or appropriate
authorities.

Technician A is a field technician employed by a consulting environmental engineering
firm. At the direction of his supervisor Engineer B, Technician A samples the contents of drums
located on the property of a client. Based on Technician A's past experience, it is his opinion that
analysis of the sample would most likely determine that the drum contents would be classified as
hazardous waste. If the material is hazardous waste, Technician A knows that certain steps
would legally have to be taken to transport and properly dispose of the drum including notifying
the proper federal and state authorities.

Technician A asks his supervisor Engineer B what to do with the samples. Engineer B tells
Technician A only to document the existence of the samples. Technician A is then told by
Engineer B that since the client does other business with the firm, Engineer B will tell the client
where the drums are located but do nothing else. Thereafter, Engineer B informs the client of the
presence of drums containing "questionable material" and suggests that they be removed. The
client contacts another firm and has the material removed. (NSPE, 1958-1997)

Fig. 1. Facts of Case 92-6

We have devised a web site (www.pitt.edu/~bmclaren/ethics) to facilitate users in
transcribing cases like this into the Ethics Transcription Language (ETL), a standard
format that SIROCCO can process. The web site contains a Participant's Guide with
instructions on how to transcribe ethics cases into ETL. It has a Reference Shelf
including a standard vocabulary and an example set of 47 transcribed cases.

ETL’s standard vocabulary comprises: (1) Actor & Object Types, a list of the types
of actors and objects which may appear in the engineering ethics scenarios, (2) Fact
Primitives, a list of the actions and events in which the actors and objects may
participate, and (3) Time Qualifiers, a list of temporal relations which specify how the
actions and events relate to each other in time. Currently, ETL has 70 Actor &
Object Types, 190 Fact Primitives, and 11 Time Qualifiers.

In ETL a case is described as an ordered list (i.e., the Fact Chronology) of short
sentences. Each is a Fact and satisfies the grammar of a <Fact> as shown in figure 2.

In essence, each Fact Phrase’s Fact Primitive is a verb phrase that indicates a
specific action or event involving actors, objects, or similarly constituted Fact-
Phrases. It is treated, in effect, like a function with up to three arguments (Fact-
Primitive arg1 [arg2] [arg3]), where arg1 is the Actor-Or-Object serving as the subject
of the verb phrase. In the Fact Chronologies, human case enterers put arg1 before the
Fact Primitive as they would the subject of a verb. Each Fact is listed in a table in
approximate chronological order as indicated by its Fact-#. Time Qualifiers specify
more specific information about the chronological ordering.

While it is by no means easy or quick to transcribe a new case into ETL, the web
site offers some amenities to ease the task. First, the Participant's Guide offers a step-
by-step tutorial. It instructs the case enterer on how to (1) identify the actors (e.g.
engineers, client firms) and objects (e.g., test samples) involved in each scenario, (2)
transcribe the scenario into a set of chronological facts, and (3) identify the questioned
facts, and the actor or actors whose ethical behavior is questioned. Second, the
Reference Shelf makes it easy to browse through and select from the lists of possible
Actor & Object Types, Fact Primitives and Time Qualifiers. To make the former two
lists easier to search, they are organized hierarchically by categories. Third, each term

251Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

in the above lists comes complete with helpful information (e.g., a description of
usage, cross references to other related terms, standard variations in form such as
inverse, plural, negative) and hyper-linked examples of its use in representing other
cases. Fourth, when the transcribed case is submitted, a computer program scans the
ETL transcript, identifying any errors in structure and syntax and translating the
transcript into the internal representation used by SIROCCO.

<Fact> := <Fact-#> <Fact-Phrase> [(Questioned Fact <X>)]
<Time-Qualifier> [,<Time-Qualifier>, ...]

<Fact-Phrase> := <Fact-Primitive> [<Fact-Modifier>] <Actor-Or-Object>
[<Actor-Or-Object> | (<Fact-Phrase>)]
[<Actor-Or-Object> | (<Fact-Phrase>)]

<Fact-#> := <Positive-Integer>
<Fact-Primitive> := An instance of a Fact-Primitive
<Actor-Or-Object> := An instance of an Actor or an Object
<Fact-Modifier> := partially | substantially | limited | extensive
<Time-Qualifier> := Pre-existing fact |

After the start of <Fact-#> [, <Fact-#>, ...] |
Starts at the same time as <Fact-#> [, <Fact-#>, ...] |
<Time-Period> after the start of <Fact-#> [, <Fact-#>, ...] |
After the conclusion of <Fact-#> [, <Fact-#>, ...] |
Immediately after the conclusion of <Fact-#> [, <Fact-#>, ...] |
<Time-Period> after the conclusion of <Fact-#> [, <Fact-#>, ...] |
Ends <Fact-#> [, <Fact-#>, ...] |
Occurs during <Fact-#> [, <Fact-#>, ...] |
Occurs as part of <Fact-#> [, <Fact-#>, ...] |
Occurs concurrently with <Fact-#> [, <Fact-#>, ...] |

<Time -Period> := <Y> Days | <Y> Weeks | <Y> Months | <Y> Years
<X> := Empty | <Positive-Integer>
<Y> := Many | Several | <Positive-Integer>
<Positive-Integer> := 1 ... N

Key: | = Alternative; [] = Optional; < > = Grammar element
Regular font indicates literal placement of language (e.g., "Pre-existing fact ")
Italicized font indicates a general description (i.e., "An instance of a Fact-Primitive ")

Fig. 2. The Grammar for the Ethics Transcription Language (ETL)

Submitting a new problem situation to SIROCCO involves the steps described
above. Submitting a case to the case base, complete with outcome and analysis,
requires an additional step. As led by the Participant's Guide, the case enterer notes the
board’s conclusions as well as the codes and cases the board cites to justify their
conclusions. While the web site supports this task, we will not further describe it
here. Figure 3 shows a Fact Chronology for Case 92-6. The table of actors and objects
is shown in figure 4. The case enterer has designated Facts 11 and 12 as the
Questioned Facts; these facts correspond most closely to the questions stated by the
board.

The Fact Primitives are categorized into three types to ensure that Time Qualifiers
are used consistently: Events, States, and Terminating Events. Events have relatively
short duration, States have relatively long duration, and Terminating Events are
special events that typically end a State. In selecting Fact Primitives, Case Enterers

252 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

are instructed to take the primitive’s type into consideration. For example, <is
employed by> in Fact 3 in figure 3 is a State primitive. It represents a relatively long
time period during which some of the other events of this case occur. If the case facts
had focused on the events of being offered and accepting employment, then certain
Event Fact primitives would have been more appropriate (e.g., <is offered
employment by>, <accepts an offer of employment from>).

1. Client Y <owns facility> Client Y Site. Pre-existing fact

2. Client Y <hires the services of> Consulting Environmental Firm X. After the start of 1

3. Technician A <is employed by> Consulting Environmental Firm X. Pre-existing fact

4. Technician A <has supervisor> Engineer B. Occurs during 3

5. Technician A <collects test samples> Collected Samples X
<from> Client Y Site.

Occurs during 2, 4

6. Technician A <believes> (Collected Samples X <may be
hazardous material>).

After the conclusion of 5

7. Technician A <knows> (Client Y Site <may be hazardous to
safety>).

After the conclusion of 5,

Occurs concurrently with
6

8. Technician A <knows> (Government Authority <should be
informed about the hazard or potential hazard>).

Occurs concurrently with
7

9. Technician A <informs> Engineer B <that> (Technician A
<believes> (Collected Samples X <may be hazardous material>)).

After the conclusion of 6

10. Engineer B <instructs> Technician A <to> (Technician A
<records the existence of> Collected Samples X.)

After the conclusion of 9

11. Engineer B <provides limited information to> Client Y
<regarding> Client Y Site. [Questioned Fact 1]

After the conclusion of 10

12. Engineer B <does not inform> Client Y <that> (Technician A
<believes> Collected Samples <may be hazardous material>).
[Questioned Fact 2]

Occurs as part of 11

13. Client Y <hires the services of> Engineering Firm Y. After the conclusion of 11

14. Engineering Firm Y <removes material from> Client Y Site. Occurs during 13

Fig. 3. Fact Chronology of Case 92-6

1. Technician A --> Engineering Technician.
2. Consulting Environmental Firm X --> Engineering Firm.
3. Engineer B --> Engineering Manager.
4. Client Y --> Client Firm.
5. Client Y Site --> Facility or Site.
6. Collected Samples --> Test Samples.
7. Government Authority --> Government Authority.
8. Engineering Firm Y --> Engineering Firm.

Fig. 4. Actors and Objects in Case 92-6

After the case enterer has identified the Facts and marked the Questioned Facts, he
or she (she henceforth) assigns Time Qualifiers to clarify the chronological
relationships among Facts. Each Time Qualifier has information to guide the choice
(e.g., its intended use, what one needs to know to apply it, links to other possible
Qualifiers and to examples from other cases.) Each fact in the chronology must have
at least one Time Qualifier. The Fact Chronology of Case 92-6, figure 3, shows a

253Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

number of examples of Time Qualifiers. The most critical temporal relationships are
that Facts 11 and 12, in which Engineer B fails to fully inform Client Y of the
hazardous materials, occur after Fact 9, in which Technician A informs Engineer B of
the existence of the materials. The Time Qualifiers “After the conclusion of” and
“Occurs as part of” in Facts 11 and 12 capture this temporal information.

The goal is for the case enterer to represent the important events in the case as
accurately as possible, given the limited set of Fact Primitives, Actors, and Objects.
The case enterer is asked to do her best despite the limitations. Occasionally, case
enterers identify important missing Fact Primitives or Actor or Object Types. They
apprise us and we add the new terms into the vocabulary as appropriate. However, at
this stage, the size of the vocabulary seems to have leveled off.

The Fact Chronology of figure 3 is only one interpretation of the facts of Case 92-
6. For a variety of reasons, different case enterers may produce different interpretations.
Despite the guidance provided in the Participant's Guide, a case enterer must still make
judgments such as: (1) Deciding which facts are relevant. For instance, Facts 13 and
14 in figure 3 could have been considered irrelevant and deleted from the Fact
Chronology. (2) Adding facts implied but not explicitly stated in the text. (3)
Deciding whether a sentence should be multiple facts. The optional arguments of a
Fact Primitive may be filled by other <Fact-Phrase>s as in Facts 6-10 and 12 in
figure 3. This flexibility may lead to alternative formulations. (4) Selecting terms.
The Fact Primitives contain a number of synonyms and related terms.

It is an empirical question whether ETL is expressive enough, and the similarity
metrics flexible enough, to support SIROCCO in effective case retrieval despite the
limitations discussed above. We provide empirical evidence in this paper that at least
Stage 1 of SIROCCO's retrieval algorithm works reasonably well1.

SIROCCO situates all primitives within an abstraction hierarchy known as the
Fact Hierarchy. For instance, the primitives <hires the services of> (steps 2 and 13 of
figure 3) and <employs> (step 3 of figure 3) are both sub-types of the more abstract
fact <Work as an Employed or Contract Professional Engineer>. The Fact Hierarchy,
developed through an analysis of the NSPE corpus of cases, is a characterization and
abstraction of the most important actions and events that typically occur in
engineering ethics scenarios. The Fact Hierarchy is an important component of
SIROCCO's retrieval algorithm. Cases potentially may be retrieved and matched based
on similarity at higher levels of the hierarchy. This will help with the problem of
multiple interpretations of the facts, discussed above.

The provisions of the NSPE code of ethics are also cast in an abstraction hierarchy,
the Code Hierarchy. For instance, Code I.1. ("Engineers ... shall: Hold paramount the
safety, health, and welfare of the public in the performance of their professional
duties."), highly relevant to Case 92-6, is one of 8 codes in the code abstraction group
"Duty to the Public." The Code Hierarchy is adapted from a subject reference list

1 By the way, we do not consider the current web site the last word in supporting case entry. With some

additional Java or Java Script programming, the web site could automate more of the case entry
processes. But the current web site does make case entry feasible via the WWW and at least six case
enterers across the U.S. have used it to add 35 cases to the case base.

254 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

found in (NSPE, 1958-1997) and is an important component of the benchmark
function used in the experiment discussed in this paper.

SIROCCO's Retrieval Algorithm

Given its case base of engineering ethics dilemmas transcribed into ETL, SIROCCO:
1. Accepts a new fact situation, also transcribed into ETL;
2. Retrieves and matches existing cases using a two-stage algorithm; and
3. Frames an analysis of the new fact situation using operationalizations of past cases

and codes.
We have fully implemented a version of ETL and SIROCCO's Stage 1 retrieval

algorithm. Stage 1 is a fast and efficient, but somewhat coarse, retrieval based on
matching Fact Primitives. Stage 2 is a more expensive structural mapping that
focuses on the most critical facts, on the chronology of facts, and on the types of
actors and objects in the scenario. We have begun implementing Stage 2 and have
designed, but not yet implemented, the analysis portion of the program. In this paper
we report on an evaluation of SIROCCO's Stage 1 algorithm and, thus, focus our
description on that aspect of the program. For a more complete description of the
phases and ultimate output of SIROCCO see (McLaren and Ashley, 1998).

Stage 1 retrieves a preliminary set of matching cases using content vectors (Forbus,
et al. 1994), data structures associated with each case that summarize the Fact
Chronologies. A content vector represents a count of each Fact Primitive that appears
in a chronology. For instance, the content vector of Case 92-6, the example discussed
in the previous section, associates the value 2 with Hires-the-Services-Of because the
primitive <hires the services of> appears twice in the Fact Chronology (see steps 2
and 13 in figure 3). Figure 5 depicts the content vector of 92-6, as well as the content
vector of Case 89-7, a case that is relevant to 92-62.

To perform retrieval, SIROCCO takes the content vector of the input case and
computes the dot product of that vector against all of the other cases’ content vectors.
Since all content vectors are pre-computed and stored in a hash table, computation is
fast. Figure 5 shows the dot product between Cases 92-6 and 89-7. 89-7 is highly
relevant to 92-6, and the dot product calculation bears this out. With a dot product of
10, 89-7 is ranked as the 4th highest case in our corpus of 63 cases (excluding 92-6).

From an architectural viewpoint, given the two-stage retrieval, it is more important
for Stage 1 to retrieve as many relevant cases as possible than it is to avoid retrieving
irrelevant cases. Stage 2 will not be able to seek additional relevant cases beyond those
Stage 1 finds. Stage 2, on the other hand, will be capable of making finer distinctions
between cases, such as comparing the temporal relations between steps. Of course, too
many irrelevant cases retrieved by Stage 1 would flood the computationally more
expensive Stage 2. The right number of cases to retrieve in Stage 1 and pass to Stage
2 is an empirical question; we currently estimate 10.

2 Note that content vectors are also defined for higher level facts in the fact hierarchy for each case.

This facilitates computation of similarity at more abstract fact levels.

255Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

Content Vector of Case 92-6:
((Owns-Facility . 1) (Hires-the-Services-Of . 2) (Employs . 1) (Supervises . 1)
(Collects-Test-Samples-From . 1) (Believes . 1) (Knows . 2) (Informs-That . 2)
(Instructs-To . 1) (Provides-Limited-Information-To-Regarding . 1) (Removes-
Materials-From . 1)))

Content Vector of Case 89-7:
 ((Hires-the-Services-Of. 1) (May-Be-Hazardous-To-Safety . 1) (Instructs-To . 1)

(Inspects . 1) (Discovers-That . 1) (Knows . 1) (Informs-That . 2) (Writes Paper/Article
. 1) (Provides-Limited-Information-To-Regarding . 1)))

Dot Product of Cases 92-6 and 89-7:
+ 2 [2 (92-6) * 1 (89-7)] Hires-the-Services-Of
+ 2 [2 (92-6) * 1 (89-7)] Knows
+ 4 [2 (92-6) * 2 (89-7)] Informs-That
+ 1 [1 (92-6) * 1 (89-7)] Instructs-To
+ 1 [1 (92-6) * 1 (89-7)] Provides-Limited-Information-To-Regarding

10

Fig. 5. Content Vectors of Cases 92-6 and 89-7 and the Resulting Dot Product

We also expect Code Instantiations to enhance the effectiveness of both retrieval
stages, but we have not evaluated their contribution here. A Code Instantiation relates
a questioned fact, certain critical facts, and the order of those facts to a code; the case
enterers identify them as they transcribe cases. Code Instantiations will help Stage 1
by offsetting the current default assumption, implemented in the dot product
computation, that all Fact Primitives are equal. Code Instantiations will increase the
dot product of those cases matching the most critical facts. In Stage 2, they will focus
the structural mapping routine on a smaller number of critical facts.

An Evaluation of SIROCCO's Stage 1 Retrieval Algorithm

We undertook a formative evaluation to assess how well SIROCCO's Stage 1
retrieval algorithm works. Because of the architectural assumption above, the
experiment focused on Stage 1's capability to retrieve relevant cases, as opposed to its
capability of avoiding the retrieval of irrelevant cases. In addition, we compared
SIROCCO's exact match retrieval algorithm with versions that match at higher levels
of the Fact Hierarchy. Intuitively we expect that relevant cases might be missed if
only exact fact matches were attempted.

The Benchmark Function: Citation Overlap

To evaluate SIROCCO we first needed a benchmark to objectively compute the
similarity between cases. Because to our knowledge no such function exists, either in
a comparable CBR system or within the domain of engineering ethics, it was
necessary to define our own. From an analysis of our corpus, it was clear that the
most objective and feasible similarity measure is citation overlap. When two cases
cite the same code, or codes from the same category (i.e., code citation overlap), there

256 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

is a strong indication that the cases are relevant to one another. Likewise, when one
case directly cites another, or when two cases share a citation to a third case (i.e., case
citation overlap), there is strong indication of relevance. Citation overlap has also
been used as a metric in other work (Cheng, Holsapple, and Lee, 1996).

Our benchmark function had to account for overlaps of both code and case citations
and their relative contributions to relevance. For code citation overlap, we used the
information retrieval metrics recall and precision, combined by the weighted F-
measure function (Lewis et al, 1996; van Rijsbergen, 1979, pp. 173-176) (See figure 6).

Case 1 Case 2

 Additional Overlap Missed

Case 1 = The code citations in Case 1
Case 2 = The code citations in Case 2
Overlap = The code citations shared by both Case 1 and Case 2
Additional = The extra code citations in Case 1 but not in Case 2
Missed = The set of code citations lacking in Case 1 but found in Case 2

Recall (R) = Overlap / (Overlap + Missed) Precision (P) = Overlap / (Overlap + Additional)

Code Citation Overlap3 (Case1, Case2) =
2b +1()PR

2b P + R
 (F-measure)

Fig. 6. Quantitative Measurement of Code Citation Overlap

Two codes can "overlap" abstractly by sharing a common ancestor in the Code
Hierarchy (below the root node). Overlap is calculated by taking 1 divided by the
number of levels between the codes and the level at which they share an ancestor.

Intuitively, the F-measure is a good choice for the code citation overlap because it
measures the degree with which "issues" are shared between cases. Shared codes
represent, roughly speaking, common issues between cases, while unshared codes
represent issues relevant to one case but not the other. The more issues two cases
share, proportionally speaking, the more likely they are to be relevant to one another.
The F-measure computes this through a form of intersection, also imposing a penalty
for lack of intersection (i.e., missing relevant codes, including irrelevant codes).

With respect to case citation overlap, we applied a shortest path algorithm between
the cases. Viewing the case base as a network, with cases as nodes and case citations
as edges, the shortest path between Case 1 and Case 2 is defined as the minimum
number of edges between Case 1 to Case 2. Case citation overlap is computed as:

Case Citation Overlap (Case1, Case2) =
1

1 2ShortestPath Case Case(,)
 or 0, if there is no path

Thus, for instance, a direct citation between two cases results in case citation
overlap = 1.0 (1/1) and a case citation shared by two cases (i.e., a case node exists
between the two cases) results in case citation overlap = 0.5 (1/2).4

3 ß < 1.0 gives greater weight to precision; ß = 1.0 gives equal weight to recall and precision; ß > 1.0

gives greater weight to recall. The code citation overlap ranges from 0.0 to 1.0.

257Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

The final step in computing citation overlap is combining the code citation overlap
and the case citation overlap into a single measure. We implemented citation overlap
as the weighted sum of the constituent overlap functions:

Citation Overlap (Case1, Case2) =
α

α

− +()1 1 2 1 2CodeCitationOverlap Case Case CaseCitationOverlap Case Case(,) (,)

To establish the benchmark it was necessary to fix the a and ß values of the
citation overlap. We set ß = 2.0 to favor the recall component of the F-measure.
Informal analysis of the corpus indicated that overlapping code citations are much
stronger indicators of relevance than non-overlapping codes are of irrelevance.
Although we have no rigorous empirical evidence, we calculated that 77.2% of the
direct case citations in our corpus, those with the most obvious relevance to one
another, also share at least one code citation. For the measures depicted in figure 6, ß
= 2.0 establishes that Overlaps > Missed >> Additional in terms of importance.

We fixed a = 3.0, favoring the code citation overlap over the case citation overlap
by a 2-1 ratio in our weighted function. This reflects the fact that while the presence
of case citation overlap is a strong indicator of relevance, the absence of case citation
overlap is not a strong indicator of irrelevance.

The Experimental Procedure

Our experimental procedure is summarized in figure 7. For each Case X in our corpus
of 64 cases we first calculated the citation overlap against all other cases (excluding
the case itself). We then sorted the resultant list of citation overlap values, keeping
only the top N cases or those above a specified threshold, whichever resulted in a
shorter list. We then applied SIROCCO's Stage 1 retrieval algorithm to Case X,
retrieving the top N cases according to the dot product calculation. Next, we compared
SIROCCO's list of retrieved cases with the citation overlap list by computing recall
between the two lists. After performing these calculations for all cases in the corpus,
we calculated the mean recall value across all cases.

For the experiments reported in this paper, N was set to 10. This value strikes a
balance between retrieving too few and too many cases. Because of the relative
crudeness of the dot product calculation, we believed that setting N too low would
allow too many relevant cases to go unretrieved. On the other hand, setting N too
high would result in SIROCCO's Stage 2 algorithm being flooded with too many
cases to process.

We ran the experiment varying threshold values from 0.0 to 1.0. Lower threshold
values allow lower rated cases, according to the citation overlap metric, to be

4 The F-measure is not appropriate for case citation overlap because direct case citations, while rare, are

"overriding" indicators of relevance. That is, if Case X cites Case Y, either directly or indirectly, we
can conclude that Cases X and Y are relevant to one another. Whether Cases X and Y share
additional case citations is far less important to the relevance assessment. The shortest path algorithm
models this overriding importance of the citation path. (Note, however, that the shortest path algorithm
completely ignores additional shared citations. On the other hand, this has negligible effect on the
overlap calculation, since case citations are relatively sparse in the corpus.)

258 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

compared to SIROCCO's retrieval. Higher threshold values, on the other hand, filter
out the lower rated cases, comparing SIROCCO's retrieval only to the best possible
cases. We hypothesize (and hope) that SIROCCO would perform better at higher
threshold levels, since in this condition we are more likely to be comparing
SIROCCO to the most relevant cases in the case base.

Run-SIROCCO-Experiment (N, Citation-Overlap-Threshold)
1. For Case X of All-Cases
2. For Case Y of All-Cases (Excluding Case-X)
3. Citation-Overlap-Results = Apply Citation-Overlap (Case X, Case Y)
4. Add Citation-Overlap-Results to Citation-Overlap-List
5. End For
6. Citation-Overlap-List = Sort (Citation-Overlap-List, N, Citation-Overlap-Threshold)
7. SIROCCO-Retrieval-List = Apply SIROCCO-Stage1-Retrieval (Case X, N)
8. If (Citation-Overlap-List is not empty) then
9. Comparison-Value [X] = Recall (SIROCCO-Retrieval-List, Citation-Overlap-List)
10. End For
11. Mean-Recall = Calculate-Mean (Comparison-Value [1 ... Length (All-Cases)])

Fig. 7. Pseudo-code Description of SIROCCO's Experimental Procedure

We experimented with four different versions of SIROCCO's Stage 1 retrieval
algorithm. The versions varied by level of abstraction at which facts were matched.
The different versions were:
• Primitive: Exact matches between Fact Primitives.
• Immediate Group: Matches between Fact Primitives 1 level up the Fact Hierarchy.
• Sibling Group: Matches between Fact Primitives 2 levels up the Fact Hierarchy.
• Root Group: Matches between Fact Primitives at the "root group" level, i.e., one

level beneath the root of the Fact Hierarchy.
As a baseline, we also compared a randomly selected set of cases against the

citation overlap at each threshold value.
We chose recall as the metric to compare SIROCCO's retrieval with the citation

overlap because of the architectural assumption discussed earlier. It is more important
that Stage 1 retrieve a high percentage of relevant cases than filter out irrelevant cases.

Experimental Results and Analysis

Figure 8 depicts the results of our experiment, comparing SIROCCO's Stage 1
retrieval algorithm (4 different versions) against the citation overlap at threshold levels
ranging from 0.0 to 1.0.

Notice, first of all, that Primitive, the exact matching algorithm, performed as well
as or better than the other 3 versions of the algorithm, and much better than the
random comparison, at every threshold level. In fact, in a paired difference t-test,
comparing Primitive's recall to the random recall, we found that Primitive performed
significantly better than random at every threshold level using a significance level of

259Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

0.001. Further, Primitive performed consistently, if marginally, better than the other
versions of the algorithm at higher threshold levels. Notice also that SIROCCO's
retrieval gradually, but consistently, improved up to approximately the 0.8 threshold
level.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

Citation Overlap Threshold

M
ea

n

R
ec

al
l

Primitive Immediate Group Sibling Group Root Group Random

Fig. 8. Results of Comparing SIROCCO's Stage 1 retrieval against the Citation Overlap
Benchmark

The results and differences between the various approaches were less impressive at
the lower threshold levels. Here, however, SIROCCO's retrieval was compared to less
selective sets of citation overlap cases, since the threshold was so low. Many of the
cases rated in the top N by the citation overlap in this region are marginally relevant
cases. Thus, we did not expect SIROCCO to perform particularly well against the
benchmark under this condition. Still, as compared to random selection, the algorithm
arguably performed reasonably well even in this region.

How does one assess the relative merits of the different versions of SIROCCO's
retrieval algorithm? Clearly, the methods Primitive, Immediate Group, and Sibling
Group performed almost identically up to the 0.55 threshold level, at which point the
Primitive method performed only slightly better than the other two approaches at the
remaining threshold levels. This was not altogether surprising. There are clearly
situations in which an exact match is preferred, such as the matching of the most
critical facts of two scenarios. On the other hand, there are also situations in which an
abstract match may ultimately yield a more relevant case, for instance, in matching
highly similar primitives such as <is employed by> and <is hired to provide services
for> between cases which exhibit other similarities.

To study this issue in more detail, we examined how several cases fared using the
different retrieval algorithms at the 0.6 threshold level. In particular, we were
interested in why certain cases yielded low recall (<= 0.5) using the exact match
retrieval method (i.e., Primitive), but then improved to 1.0 using one of the more
abstract retrieval methods. Two cases, 70-4 and 89-2, led to a clearer understanding of

260 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

this behavior. In Case 70-4, the fact chronology is moderately short (7 steps) but,
more telling, the 2 most critical facts of the scenario were not matched exactly in any
other cases. However, moving up the Fact Hierarchy led to matches with abstractly
similar, yet specifically different, cases, and recall improved from 0.0 for the Primitive
method to 1.0 for the Sibling Group method. Case 89-2 is a similar situation: a
chronology of only 7 steps in which 5 key steps were unmatched at the Fact Primitive
level. Again, moving up the Fact Hierarchy led to improved matching, this time at
the Immediate Group level.

These anecdotal findings suggest that it may be fruitful to heuristically combine the
different retrieval methods. For instance, cases yielding low dot product matches at the
Fact Primitive level (such as 70-4 and 89-2 did) may be improved by combining the
retrieval scores from the Fact Primitive and the Immediate Group levels (and so on).
We will experiment with such heuristics as we further develop SIROCCO.

We noted that retrieval may fail when Fact Chronologies were excessively long.
For instance, SIROCCO did not retrieve a single overlapping case at threshold = 0.6
for Case 77-11, an unusually long 17-step chronology. Upon examining the detailed
matching data, it was clear that 77-11's long chronology led to dot product
"swamping" with many cases, undervaluing the few highly critical steps of the
chronology. Our plan to extend Stage 1 through the use of Code Instantiations will be
advantageous in these situations. Code Instantiations will focus more attention (and
value) on the critical steps of a fact situation, rather than treating all steps equally.

Finally, it should be noted that in the experiment cases were dropped from
consideration when there were no other cases with citation overlap >= threshold (See
step 8 in figure 7). While this was reasonable as part of the experimental procedure, it
begs the question: How would SIROCCO perform when there are no reasonably
relevant cases to retrieve? Given our intent to represent a wide range of cases, such a
situation is not unlikely. We believe, again, that the Code Instantiations will assist
the program in performing sufficiently well when retrieval matches are weak. The
Code Instantiations will allow the program to find other cases that, while not relevant
at the overall case-level, may share relevance at the level of key facts

Conclusions

In this paper, we have described SIROCCO, a case-based retrieval system designed and
developed as part of our exploration into how abstract principles are applied to specific
fact situations. We have devised a limited but expressive case representation language
that models the actors, objects, facts, and chronology of facts in a wide range of
engineering ethics scenarios. A web site acts as the case acquisition tool for the
system and supports a measure of consistency in the representation. Finally, we
described an experiment in which we tested an initial stage of SIROCCO's retrieval
algorithm. Our results indicate that SIROCCO retrieves cases at an acceptable
performance level and is not overly sensitive to small variations in case description.
We also uncovered ways in which we could extend and improve SIROCCO's retrieval
algorithm.

261Case Representation, Acquisition, and Retrieval in SIROCCO

althoff@iis.uni-hildesheim.de

References

Aleven, V. (1997). Teaching Case-Based Argumentation Through a Model and Examples.
Ph.D. Dissertation, University of Pittsburgh.

Ashley, K. D. and McLaren, B. M. (1995). Reasoning with Reasons in Case-Based
Comparisons. In the Proceedings of the First International Conference on Case-Based
Reasoning (ICCBR-95). Pp, 133-144. Lecture Notes in Artificial Intelligence 1010.
Springer Verlag. Heidelberg, Germany.

Branting, L. K. (1990) Integrating Rules and Precedents for Classification and
Explanation: Automating Legal Analysis. Ph.D. Dissertation. U. Texas at Austin AI
Lab. AI 90-146.

Branting, L. K. (1994). A Computational Model of Ratio Decidendi. Artificial Intelligence
and Law 2: 1-31. Kluwer Academic Publishers. Printed in the Netherlands.

Bruninghaus, S., and Ashley, K. D. (1997) Using Machine Learning to Assign Indices to
Legal Cases. In the Proceedings of the Second International Conference on Case-Based
Reasoning (ICCBR-97). Pp. 303-314. Lecture Notes in Artificial Intelligence 1266.
Springer Verlag. Heidelberg, Germany.

Cheng, C. H., Holsapple, C. W. and Lee, A. (1996). Citation-Based Journal Rankings for
AI Research: A Business Perspective.. AI Magazine, Vol. 17, No. 2.

Daniels, J. and E. Rissland. (1997) Finding Legally Relevant Passages in Case Opinions.
In the Proceedings of the Sixth International Conference on AI and Law (ICAIL-97). Pp.
39-46. ACM Press: New York.

Forbus, K. D., Gentner, D. and Law, K. (1994). MAC/FAC: A Model of Similarity-based
Retrieval. Cognitive Science 19, Pp. 141-205.

Jonsen A. R. and Toulmin S. (1988). The Abuse of Casuistry: A History of Moral
Reasoning. University of CA Press, Berkeley.

Lewis, D. D., Schapire, R. E., Callan, J. P., and Papka, R. (1996). Training Algorithms for
Linear Text Classifiers. In the Proceedings of the 19th Annual International ACM-SIGIR
Conference on Research and Development in Information Retrieval. Zurich.

McLaren, B. M. and Ashley, K. D. (1998). Exploring the Dialectic Between Abstract Rules
and Concrete Facts: Operationalizing Principles and Cases in Engineering Ethics. In the
Proceedings From the Fourth European Workshop on Case-Based Reasoning. Pp, 37-51.
Lecture Notes in Artificial Intelligence 1488. Springer Verlag. Heidelberg, Germany.

Mostow, J. (1983). Machine transformation of advice into a heuristic search procedure. In
Machine Learning, vol. 1.

NSPE (1958-1997). Opinions of the Board of Ethical Review, Vol. I - VII and NSPE Ethics
Reference Guide. Published by National Society of Professional Engineers, Alexandria,
Virginia.

Rissland, E. L., Skalak, D. B., and Friedman, M. T. (1996). BankXX: Supporting Legal
Arguments through Heuristic Retrieval. AI and Law 4: 1-71. Kluwer, Dordrecht.

Thagard, P., Holyoak, K., Nelson, G., and Gochfeld, (1990). Analog Retrieval by
Constraint Satisfaction, Artificial Intelligence 46, Pp. 259-310.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworths, London, second edition

262 B. McLaren and K. Ashley

althoff@iis.uni-hildesheim.de

Flexibly Interleaving Processes

Erica Melis? Carsten Ullrich

Universit�at des Saarlandes, FB Informatik

D-66041 Saarbr�ucken, Germany

melis@cs.uni-sb.de

Abstract. We discuss several problems of analogy-driven proof plan

construction which prevent a solution for more di�cult target problems

or make a solution very expensive. Some of these problems are due to the

previously assumed �xed order of matching, reformulation, and replay in

case-based reasoning and from a too restricted combination of planning

from �rst principles with the analogy process. In order to overcome these

problems we suggest to interleave matching and replay as well as case-

based planning with planning from �rst principles.

Secondly, the restricted mixture of case-based planning and planning

from �rst principles in previous systems is generalised to intelligently

employing di�erent planning strategies with the objective to solve more

problems at all and to solve problems more e�ciently.

1 Introduction

The common CBR cycle [1] consists of a sequence of the subprocesses matching
+ reformulation/ retrieval, replay, adaptation, and storage. However, empirical
psychological results, e.g. in [6], question this �xed sequence of subprocesses of
analogical reasoning.

Secondly, previous CBR systems focus on a single problem solving strategy
only. This might be justi�ed if no domain knowledge is available that could be
used to solve a problem from �rst principles. In case-based planning (CBP),
however, knowledge such as planning operators is available while control knowl-
edge may not. In several computational case-based planning systems (including
analogy-driven proof plan construction) one kind of combining case-based plan-
ning with planning from �rst principles is realized in which planning from �rst
principles is employed to close open subgoals remaining after the derivational
replay of a source plan or to close subgoals remaining after the transfer of ab-
stract steps, see [3]. That is, these systems use planning from �rst principles for
the adaptation of retrieved and replayed source plans.

Empirical evidence shows, however, that analogical reasoning can more gen-
erally be combined with standard problem solving. Psychologically this fact has
been experimentally veri�ed, e.g., in physics problem solving [18]. In physics
problem solving VanLehn and Jones found that poor problem human solvers

? This work was supported by the Deutsche Forschungsgemeinschaft, SFB 378

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 263-275, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

use analogy instead of problem solving from �rst principles even when this is
not most e�ective, whereas good problem solvers use analogy to learn control
knowledge that is missing and to �ll other knowledge gaps. Nelson, Thagard, and
Hardy [16] discuss the need for a uni�ed theory of analogy, rule-based reasoning,
and explanation.

For computational case-based planning we shall question both, the previous
�xed sequence of subprocesses of case-based reasoning and the restricted com-
bination of case-based planning with planning from �rst principles. In particu-
lar, we demonstrate how some problems that prevent analogy-driven proof plan
construction from replaying proofs that are considered analogous by mathemati-
cians or from being e�cient can be solved by interleaving several subprocesses of
analogy. Furthermore, we shall show that we need more
exibility in choosing be-
tween case-based planning and planning from �rst principles than that resulting
from closing remaining subgoals by sourceplanning from �rst principles.

In the remainder, we �rst brie
y review the original analogy-driven proof
plan construction. Then we discuss the problems of this and similar approaches
to case-based planning and then describe solutions to these problems. Finally,
we discuss a generalization to multi-strategy planning.

2 Analogy-Driven Proof Plan Construction

Analogy-driven proof plan construction was �rst introduced in [11] and realized
in the proof planner CLAM [14]. Compared with previous approaches to theorem
proving by analogy, its main novelties are the analogical transfer at the abstract
level of proof plans and the need for reformulations of proof plans that go beyond
symbol mapping. Often, these reformulations are a prerequisite for successfully
second-order1 matching a source with a target theorem that do not match in
the �rst place. The original analogy-driven proof plan construction, as realized
on top of the proof planner CLAM and in the
mega system [2], is outlined in
Table 1.

To start with, repair-matching tries to second-order match and when no
proper match is found, an appropriate reformulation is applied to the problem
and then matching is tried again. When a repair-match of the problems is ob-
tained, the found reformulations are realized.

That is, the reformulations do not only change the theorem and proof as-
sumptions but also the proof plan. For instance, Add-Argument may duplicate
whole subplans2 or adding an antecedent may introduce an additional subgoal
into the plan.

Some of the frequently needed reformulations are

{ symbol-to-symbol and symbol-to-term mapping,

1 As opposed to �rst-order matching, second-order matching may match function and

relation variables.
2 Actually, the routine of the original Add-Argument reformulation that checks and

changes operators and subgoals of the source plan is quite complicated, since it has

to traverse and analyse the whole plan and to predict local changes.

264 E. Melis and C. Ullrich

althoff@iis.uni-hildesheim.de

input: source plan, source theorem and assumptions, target theorem and assumptions
output: (partial) target plan

Repair-match: Attempt to second-order match source and target problems triggers
reformulations of the source plan.
Reformulation: source plan reformulated source plan.

Replay: until source plan exhausted do

Get next operator M from source plan.
Check M's justi�cations.
if justi�cations hold, then transfer M to target,
else choose suitable action.

Plan: Plan from �rst principles for remaining open goals.

Table 1. Outline of analogy-driven proof plan construction

{ swapping function arguments,
{ duplicating arguments of functions,
{ adding an antecedent to a formula,
{ freezing function arguments to constants,
{ abstractions, and more complex reformulations such as
{ adding/removing �nal or initial plan segments.

The �rst �ve reformulations have been realized in the implementations de-
scribed in [14] and [12]. For instance, in ABALONE [14] the reformulation Condt
is applied when a source theorem Ths is repair-matched with a target theorem
C ! Tht, where Ths and Tht match. Condt introduces C as a subgoal and
closes a certain plan branch, if C is disproved.

The last kind of reformulations correspond to Carbonell's T(ransformation)-
operators �nal-segment concatenation and initial-segment concatenation [5], where
a �nal plan segment reduces the theorem to a (set of) subgoals and an initial
segment transforms assumptions to other proof assumptions. Consider, for in-
stance, the source theorem Ths : : : :8x:x 2 setA ! x 2 setB and the target
theorem Tht : : : :! setA0 � setB0. Initially, Ths does not match with Tht. Only
when the operator ApplyDefinition applies the de�nition of � to Tht, then the
resulting subgoal matches Ths. Of course, the additional segments can be longer
than one step and more diverse than just the operator ApplyDefinition.

2.1 Problems with this Analogy

When experimenting with analogy-driven proof plan construction on increasingly
di�cult problems a mathematician would consider analogous, we discovered sev-
eral problems some of which are discussed below. Essentially, the discussed prob-
lems fall into four classes: (1) How to recognize the transfer of a source subplan,
(2) how to realize segment concatenations e�ciently, (3) when to execute plan
reformulations, and (4) on which goals to replay which operators?

265Flexibly Interleaving Processes

althoff@iis.uni-hildesheim.de

1. The �rst class includes the following problems
(a) Subplans. More often than not, a whole source plan cannot be trans-

ferred analogically but a subplan is transferable. For example, if the
source plan proves the theorem A^B and the target theorem B0 matches
with B, then only the subplan satisfying B should be transferred. There-
fore, it is desirable to replay a subplan only. How do we know which
subplan?

(b) Irrelevant matches. Matching proof assumptions that do not belong
to the replayed part of the source proof causes an unnecessary overhead.

2. Final- and initial segment concatenation. The search space for a se-
quence of reformulations that yields �nal- or initial-segment concatenation
is potentially in�nite, because potentially any sequence of plan operators has
to be considered (such as ApplyDefinition, Normalize, etc). An e�cient
choice of a sequence of reformulations would require a severe restriction of
the operators that can possibly be added and a restriction to short segments.
This is comparable with Kolbe and Walther's `matching modulo evaluation'
in [10] that allows to add one application of a de�nition in case a symbol
mapping reformulation does not yield a match between source and target
theorem. In domains with a limited choice of operators as equality proofs,
this approach may be adequate as the search space is small. In more complex
proofs as planned with the
mega system, this restriction is too strict.
An alternative way to realize certain segment concatenations is to prove the
implication (Ths ! Tht) { as Koehler proposed in [8] { and, if successful,
add the resulting proof as an initial segment of the target plan (and similarly
for the proof assumptions, add a subplan as a �nal segment). This alterna-
tive, however, excludes a combination with other reformulations, even with
symbol or term mapping because the implication to be proved is �xed and
therefore, a transfer of the plan is only possible when the source and target
problem share the same predicates.

3. The third class of problems concerns the decision as to when and how refor-
mulations should be applied.
(a) Reformulating before the replay?

When a reformulation is applied before the replay as realized previously,
it may become pretty di�cult to reformulate the source plan appropri-
ately, because many local situations have to be distinguished. For in-
stance, an additional conjunct C in a de�nition causes di�erent changes
depending on whether the de�nition is applied in forward planning or
in backward planning. In forward planning, an AndE operator is intro-
duced and the assumption C is added, whereas in backward planning
the operator AndI is introduced and the goal C is added. Moreover the
changes depend on the position at which C occurs in the target formula.
For instance, if C is an additional conjunct hidden in a subformula of a
de�nition as, e.g., in (F � A ^ C ! B), the reformulation should a�ect
those parts of the source plan that deal with establishing A.

(b) Inserting an operator or reformulating. It is di�cult to decide
in advance whether the same (source) operator should be applied in

266 E. Melis and C. Ullrich

althoff@iis.uni-hildesheim.de

the target again or whether the plan has to be reformulated �rst. For
instance, an operator might be applicable to a conjunctive goal as well
as to a goal that is not a conjunction and in this case we do not need to
apply the reformulation AddConjunct.

(c) Origins of symbols. In case a symbol- or term mapping is needed to
repair-match the source and the target theorem, the mapping cannot
generally be applied to subgoals and operators. For instance, the opera-
tor ComplexEstimate that is used for planning proofs of limit theorems
applies, among others, the Triangle Inequality jA+ Bj � jAj+ jBj that
contains the symbol +. Now if the source theorem is LIM+: lim

x!a
(f(x) +

g(x)) = L1 + L2 and the target theorem LIM* is lim
x!a

(f(x) � g(x)) =

L1 � L2, a mapping + 7! � would be triggered. How does this mapping
a�ect the occurrence, change, or replacement of + in a proof plan that
contains ComplexEstimate?

As a partial solution, function- and relation symbols could be indexed.
Running the source plan (again) with these indices would indicate, where
which occurrence of a symbol in subgoals originates from. This index-
ing is realized in [9] and [14]. It may be reasonable for small proofs but
produces a considerable overhead which often is unnecessary. Moreover,
such a discrimination of symbols does not tell anything about the sym-
bols occurring in operators.

(d) Plan reformulation. A reformulation that changes the content of op-
erators does not �t our general philosophy, not to act at the low level
of a logical calculus but at the plan-level in case-based proof planning.
Hence, in [14] reformulations of a proof plan introduce, delete, or replace
operators and subgoals (as opposed to the reformulations originally ex-
perimented with in the
mega system).

4. Corresponding goals. Since an operator speci�es a program that produces
a { not necessarily �xed { sequence of inference steps, more often than not
the target subgoals/assumptions to which the next operator should be ap-
plied, are not known in advance but only after the actual application of the
preceding operator. Even the number of subgoals that an operator produces
may depend on the planning context. Hence, one cannot decide in advance
(before any operator is replayed), on which goal to replay an operator. Sup-
pose, in the source the operator O1 is applied to the goal gs1 and O1 was
replayed on a target goal gt1 and produced the subgoals gt11 : : : gt1n. If the
next operator O2 was applied to one of the source subgoals produced by O1,
then { because of the goal-dependency justi�cation { it has to be replayed
on one of the gt1i. Hence, we have to �nd the corresponding subgoals. To
see that this really might be a problem, consider the following example. The
operator ModusPonensBackward is applicable to any goal. Hence, choosing
the wrong goal will most likely create a false analogical transfer.

267Flexibly Interleaving Processes

althoff@iis.uni-hildesheim.de

3 Solving the Problems

In this section we describe our solutions to the above mentioned problems. Table
2 gives an outline of the revised analogy-driven proof plan construction.

input: source plan, source theorem and assumptions, target theorem and assumptions
output: (partial) target plan

Repair-match or plan:
until

a cheap second-order repair-match between target theorem and a
source (sub)goal gs down to depth d is found

do plan from �rst principles for target goal.

M := operator satisfying gs

Interleaved match/replay:
until source plan exhausted do

Repair-Match:

Find target goal gt corresponding to gs by extending the repair-match.
ReplayRef:

if M applicable then apply M to gt and
advance source plan (M := next operator, gs := goal satis�ed by M)
else apply reformulation triggered by repair-match or by the failed application
conditions.

Plan: Plan from �rst principles for remaining open goals.

Table 2. Outline of the revised analogy-driven proof plan construction

In the repair-match or plan cycle, we establish a connection between the
target theorem and a source (sub)goal. First, we try to repair-match the target
theorem with the source theorem. In case no collection of simple reformulations3

of the source goal matches the target theorem, we try to match with subgoals
down to depth d (parameter) in the source plan until a simple repair-match with
a subgoal can be established. If no cheap repair-match is found, we plan one step
from �rst principles and restart the repair-match or plan cycle. The planning
step yields a step in a �nal plan segment.

In the match/replay cycle, we try to replay an operator M from the source
plan. In order to apply M in a correct way (problem 4), we �rst �nd the target
goal corresponding to the currently treated gs by repair-matching the gs against

3 Simple reformulations are: symbol mapping, term mapping, permutation of argu-
ments, freezing arguments, duplication of arguments, adding conjuncts, adding an-
tecedents.

268 E. Melis and C. Ullrich

althoff@iis.uni-hildesheim.de

those target goals that satisfy the same goal dependencies as gs. If M is appli-
cable, M is replayed in the target. Otherwise, a reformulation triggered by the
repair-match or by the failed application conditions of the operator to be re-
played is applied in a way corresponding to the local situation. For instance, the
reformulation AddConjunct triggered by repair-matching source and target goals
may result in additionally applying the operator AndIntro and in introducing a
new subgoal.

Eventually, when the source plan is exhausted, the remaining open goals are
tackled by planning from �rst principles.

More often than not { but depending on the generality of the operators { the
application conditions of an operator still hold when the repair-match consists of
swapping arguments, symbol mapping, or term mapping. Then, no proper plan
change is necessary at all and the repair-match is used only to specify the goal
correspondences.

Reformulations represent heuristics on how to resolve critical di�erences be-
tween goals or assumptionsof source and target and on how to change plans
when a replay is not possible in the �rst place. Since reformulations change
a plan by adding, removing, and replacing operators rather than by changing
the (code of the) operators directly (see problem 3d), an interesting conclusion
is that domain-dependent knowledge has to be used in order to determine by
which operator to replace a source operator in order to be applicable to the re-
formulated goal. For instance, in proving theorems for real numbers that involve
estimations, the correspondence between a source goal a < b and a target goal
a > b requires to replace a Solve< operator by a Solve> operator.

3.1 What do the Solutions look like?

How does this new analogy-procedure solve the above mentioned problems?
Problem 1a. Going down the source plan for repair-matching means to

restrict the potential replay to subplans. For example, let Tht : A ^ B ! C be
the target theorem, Ths : F the source theorem and gs1 : A

0
^B0

! C 0 a source
subgoal of depth one which results from applying the operator ApplyDefinition
on Ths. To �nd the (sub)plan to be transfered, we start by repair-matching Tht
and Ths. As no cheap repair-match is found, we continue by stepwise going down
the source plan to match the subgoal gs1 with Tht. Here, a cheap repair-match is
possible. As a result the subplan whose root node is gs1 is replayed analogically
as illustrated in Figure 1.

Problem 1b is solved by matching assumptions when needed only. It does
not make much sense to try to match every source assumption with a target as-
sumption before the replay of the proof plan because not every source assumption
belongs to the partial plan that is actually replayed. Therefore, this matching
takes place within the interleaved match/replay routine.

Problem 2 is solved by the planning part in the repair-match or plan cy-
cle which produces a plan segment as shown in Figure 2. Consider the following
example: let be Ths : A ^B ! C be the source theorem and Tht : F the target

269Flexibly Interleaving Processes

althoff@iis.uni-hildesheim.de

source plan

gs1

target plan

Ths

Tht

Fig. 1. Finding a subplan for the replay

gs1

target plan

ThT

g

source plan

Fig. 2. Planning produces segment concatenation

theorem. No cheap repair-match is found (even when looking at the subgoals),
so we plan from �rst principles in the target. This suggests the application of
the operator ApplyDefinition which has the subgoal gt1 : A0

^ B0
! C 0. Now,

repeating the cycle, we �nd a cheap repair-match between Ths and the newly
created gt1 . This yields a �nal-segment concatenation. An initial-segment con-
catenation is naturally produced by planning for remaining goals including those
suggested as new target lemmata by certain reformulations.

Problem 3. By delaying the application of a reformulation, we have exact
information about the locally needed reformulations (e.g., is an operator appli-
cable without any reformulation of the plan as asked in problem 3b) including
the (local) e�ects of a reformulation that are clearly understood (thus solving
problem 3a). For instance, let's assume that the last operator we replayed pro-
duced the target subgoals gt1 : A0

^B0 and gt2 : C 0
_D0. The next operator to be

replayed is ApplyDefinition, which was applied in the source plan on gs1 : A.
Repair-matching gs1 with gt1 and gt2 returns the cheapest match m : gs1 7! gt1
even though gt1 contains an additional conjunct. Now the application of the op-
erator ApplyDefinition is tried. If it is not applicable due to failing application
conditions, then the failure is analyzed. The failure analysis might �nd that the
cause is the additional conjunct B0. This would trigger a reformulation that lo-
cally introduces the additional planning step AndIntrowith the subgoals gt3 : A0

and gt4 : B0. On gt3 : A0 the replay of ApplyDefinition is �nally possible.

270 E. Melis and C. Ullrich

althoff@iis.uni-hildesheim.de

Problem 4 is solved by the interleave match/replay cycle because at
that point in the analogy procedure the set of target subgoals is known that
contains the goal that corresponds to a given source subgoal.
To summarize, interleaving matching and analogical replay with planning from
�rst principles can help to reduce prohibitively large search spaces when search-
ing for reformulations and their possible e�ects on a proof plan. Interleaving
processes in analogy-driven prof plan construction allows for simpler reformu-
lations at the plan-level and for a more tractable matching. The interleaving
results in a more
exible analogy that is easier to implement and more powerful.

An example for a proof plan produced by our case-based planning is a partial
plan for LIM*, i.e., the goal
lim
x!a

f(x) = L1 ^ lim
x!a

g(x) = L2 ! lim
x!a

f(x) � g(x) = L1 � L2, shown in Figure

3, where light circles represent nodes in the proof plan with closed subgoals and
operators, darker circles represent open goals, the triangles represent hypotheses
and proof assumptions and squares are coreferences). The source plan is one of

Fig. 3. Screenshot from planning LIM* by analogy to LIM+ in OMEGA (open goals
are darker)

LIM+ de�ned by the assumptions lim
x!a

f(x) = L1, lim
x!a

g(x) = L2 and the goal

lim
x!a

f(x) + g(x) = L1 + L2. For LIM*, �rst some planning from �rst principles

introduces Normalize operators and then case-based planning replays operators
of the plan of LIM+ as long as possible. Then planning from �rst principles
satis�es the remaining open goals.

271Flexibly Interleaving Processes

althoff@iis.uni-hildesheim.de

4 Flexibly Planning with Multiple Strategies

In the above procedure, the subprocesses of analogy, planning, match, reformula-
tion, and replay are interleaved when needed. Similarly, we may ask: Why should
we solve a planning problem only by analogy in the �rst place rather than calling
the analogy by need only? In particular, it is conceivable that di�erent planning
operations can be interleaved when necessary or when e�cient. For instance,
instead of encoding a �xed sequence of planning from �rst principle, expansion
of operators, and instantiation of meta-variables, an intelligent interleaving of
these planning operations is useful.

From a case-based reasoning perspective, we propose a
exible mixture of
case-based planning with planning from �rst principles. This is in accordance
with the psychological results cited in the introduction. Further psychologi-
cal evidence suggests that the unre
ected analogical transfer of all steps of a
plan, independent on how simple the subproblem is, is a rather novice-like be-
haviour [18].

In order to describe our multi-strategy approach, �rst we de�ne what a plan-
ning strategy is based on the re�nement operations de�ned in [7].

De�nition 1. Any re�nement or modi�cation operation on partial plans is
called a planning strategy. A re�nement operation re�nes a partial plan � by
adding steps and or constraints to � and thereby reduces the set of potential
solutions.

In fact, case-based planning can be considered a particular re�nement opera-
tion. It adds steps and order constraints to a partial plan. Similarly, plan-space
or state-space planning from �rst principles, the expansion of a complex op-
erators [17], di�erence-reduction planning [4], and the instantiation of meta-
variables can be considered planning (re�nement) strategies; they go, however,
beyond the scope of this paper.

The case-based planning strategy suggests the next planning operator rather
than searching for it. Thereby this strategy may reduce the search in planning.
However, it causes an additional overhead for matching, retrieval, and adapta-
tion. Hence, only intelligently chosing case-based planning or planning from �rst
principles can reduce the overall e�ort in planning.

Hence, if only one operator is applicable in a plan node after the control-rules
have been evaluated (i.e., no branching occurs), then it does not make sense to
choose case-based planning because it causes more overhead than planning from
�rst principles. Therefore, case-based planning pays and is chosen in particular,
when control knowledge is absent or rare.

We designed a meta-planner that has several strategies at its disposal [13] in
order to employ di�erent planning strategies in a
exible way. In the
mega sys-
tem [2], we just implemented a �rst prototype of the multi-strategy planner that
has an analogy strategy as one of several planning strategies. The meta-planner
decides which of several strategies to use in a particular situation. The meta-
planner does not cause much overhead other than evaluating control heuristics.

272 E. Melis and C. Ullrich

althoff@iis.uni-hildesheim.de

For instance, for planning LIM*, �rst some default planning from �rst prin-
ciples is performed. That is, the applications of operators such as Quantifier-
Elimination and Normalization are planned essentially without any search. A
branching of the search space occurs for the �rst time when the Focus operator
is to be applied. The reason is that Focus can be applied to any existing sub-
formula of the assumption. If no control knowledge supports the choice of the
subformula, the number of subformulae is the branching factor. Therefore, the
case-based planning strategy is called and it replays the Focus operator with
a similar instantiation of the subformula to be focused on in LIM+ and then
Unwraphyp and ComplexEstimate operators are replayed, etc. Certain subgoals
cannot be closed by analogical replay but are satis�ed by the strategy planning
from �rst principles. After completing the top-level plan of LIM*, the instan-
tiation strategy is applied for particular meta-variables. Then the (complex)
operators, indicated by the light circles in Figure 3, can be expanded to sub-
plans by the expansion strategy such that eventually the fully expanded plan
has about 420 steps. The remaining meta-variables are instantiated only when
certain operators are expanded.

Qualitatively, a
exible choice of strategies allows more problems to be solved
without changing the code of the planner or of strategies such as case-based
planning. Moreover, new strategies can be integrated more easily into planning.

Quantitatively, i.e., in order to yield a more e�cient planning process, the
decision which strategy to choose in a particular planning situation needs to ad-
dress the well known utility problem discussed, e.g., in [15]. So, the meta-planner
should decide to call case-based planning only when the analogy-drivenproof plan
construction is superior to planning from �rst principles in terms of estimated
costs. Currently, the meta-planner aims at reducing the costs only because other
measures such as the quality of proof plans are even more di�cult to evaluate.
In particular, the estimation costfp > costcbp, where fp means planning from
�rst principles and cbp means case-based planning, may be computed based on

costfp � n � (mc+ ac) � b(l�1); costcbp � (rmc+ rc+ ac) � l; (1)

where n is the number of alternatives in the current planning situation after

the evaluation of control knowledge, mc is the average match costs of a single
operator, ac is the average cost of an operator application, b is the average
branching factor, l is the expected length of the remaining plan, rmc is the
average cost of repair matching, and rc is the average cost of a reformulation.

If costfp > costcbp then case-based planning is preferred, oherwise plan-
ning from �rst principles. This means that if the saved search overweights the
overhead of the case-based planning strategy caused by the matching and re-
formulation, then choosing case-baed planning is superior to planning from �rst
principles.

The estimation of costfp is related to the number n of alternative operators
remaining after the evaluation of control-rules. That is, the available control
knowledge decreases the estimated costs for planning from �rst principles con-
siderably. Therefore, the better the control knowledge, the more likely will the
choice of standard planning be as opposed to case-based planning.

273Flexibly Interleaving Processes

althoff@iis.uni-hildesheim.de

A lesson for case-based reasoning in general is its controlled use, i.e. case-
based reasoning should be chosen only when it is superior to other problem
solving strategies, i.e., when other strategies cannot �nd a solution or when
analogy has lower estimated costs than other working strategies. Of course, con-
trol heuristics are necessary, e.g. heuristics that evaluate the complexity of the
plan reformulations and compare this with the branching of the search space.

5 Conclusion and Future Work

We presented a more
exible analogy procedure that can interleave planning
from �rst principles with repair-matching and that interleaves repair-matching
with replay in case-based proof planning. The greater
exibility leads to a better
performance and allows to solve more problems with our analogy-driven proof
plan construction.

The comparison with our previous procedure is explained in detail above.
Compared with Veloso's case-based planning [19] our procedure has reformula-
tions and the repair-match rather than a simple symbol match, Veloso's match
does not allow to match one symbol of the source to several symbols in the target,
and our analogy can plan from �rst principles not just for initial-segment but
also for �nal-segment concatenations. Furthermore, the proof planning domain
is more complicated than the typical planing domains.

We have just implemented an even more radical interplay of case-based plan-
ning with other planning strategies that allows to invoke case-based planning
or planning from �rst principles dependent on the planning situation. A meta-
planner chooses the strategies according to strategic control knowledge. Although
some strategic knowledge is encoded into the estimation (1), we expect it to be
a crude estimation. Therefore, we plan to rather learn the strategic control de-
cisions.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodolog-

ical variations, and system approaches. AI Communications, 7:39{59, 1994.

2. C. Benzmueller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,

M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann, and

V. Sorge. OMEGA: Towards a mathematical assistant. In W. McCune, editor,

Proceedings 14th International Conference on Automated Deduction (CADE-14),
pages 252{255, Townsville, 1997. Springer.

3. R. Bergmann, H. Munoz-Avila, M.M. Veloso, and E. Melis. Case-based reason-

ing applied to planning. In M. Lenz, B. Bartsch-Sp�orl, H.-D. Burkhard, and

S. Wess, editors, Case-Based Reasoning Technology from Foundations to Appli-
cations, volume 1400 of Lecture Notes on Arti�cial Intelligence (LNAI), pages
169{200. Springer, 1998.

4. A. Bundy, Stevens A, F. Van Harmelen, A. Ireland, and A. Smaill. A heuristic for

guiding inductive proofs. Arti�cial Intelligence, 63:185{253, 1993.

274 E. Melis and C. Ullrich

althoff@iis.uni-hildesheim.de

5. J.G. Carbonell. Learning by analogy: Formulating and generalizing plans from
past experience. In R.S. Michalsky, J.G. Carbonell, and T.M. Mitchell, editors,
Machine Learning: An Arti�cial Intelligence Approach, pages 137{162. Tioga, Palo
Alto, 1983.

6. K.J. Holyoak, L.R. Novick, and E.R. Melz. Component processes in analogical
transfer: Mapping, pattern completion, and adaptation. In K.J. Holyoak and J.A.
Barnden, editors, Advances in Connectionist and Neural Computation Theory, vol-
ume 2, pages 113{180. Ablex Publishing, 1994.

7. S. Kambhampati and B. Srivastava. Universal classical planner: An algorithm for
unifying state-space and plan-space planning. In M. Ghallab and A. Milani, editors,
New Directions in AI Planning, pages 61{78. IOS Press, Amsterdam, Oxford, 1996.

8. J. Koehler. Planning from second principles. Arti�cial Intelligence, 87, 1996.
9. Th. Kolbe and Ch. Walther. Reusing proofs. In Proceedings of 11th European

Conference on Arti�cial Intelligence (ECAI-94), Amsterdam, 1994.
10. Th. Kolbe and Ch. Walther. Second-order matching modulo evaluation { a tech-

nique for reusing proofs. In Proceedings of the 14th International Joint Conference
on Arti�cial Intelligence, Montreal, 1995. Morgan Kaufmann.

11. E. Melis. A model of analogy-driven proof-plan construction. In Proceedings of
the 14th International Joint Conference on Arti�cial Intelligence, pages 182{189,
Montreal, 1995.

12. E. Melis. The Heine-Borel challenge problem: In honor of Woody Bledsoe. Journal
of Automated Reasoning, 20(3):255{282, 1998.

13. E. Melis. Proof planning with multiple strategies. In CADE-15 workshop: Strategies
in Automated Deduction, 1998.

14. E. Melis and J. Whittle. Analogy in inductive theorem proving. Journal of Auto-
mated Reasoning, 22:2 117{147, 1999.

15. S. Minton. Quantitative results concerning the utility of explanation-based learn-
ing. Arti�cial Intelligence, 42:363{391, 1990.

16. G. Nelson, P. Thagard, and S. Hardy. Integrating analogy with rules and ex-
planations. In Advances in Connectionist and Neural Computation, Analogical
Connections, volume 2, pages 181{206. Ablex, 1994.

17. A. Tate. Generating project networks. In Proceedings of the Fifth International
Joint Conference on Arti�cial Intelligence, pages 888{893. Morgan Kaufmann,
1977.

18. K. VanLehn and R.M. Jones. Better learners use analogical problem solving spar-
ingly. In Proceedings of the Tenth International Conference on Machine Learning,
pages 338{345, Amherst, MA, 1993. Morgan Kaufmann.

19. M.M. Veloso. Planning and Learning by Analogical Reasoning. Springer Verlag,
Berlin, New York,x 1994.

275Flexibly Interleaving Processes

althoff@iis.uni-hildesheim.de

A Case Retention Policy based on Detrimental

Retrieval

H�ector Mu~noz-Avila

Department of Computer Science
University of Maryland

College Park, MD 20742-3255
munoz@cs.umd.edu

(301) 405-2684 j FAX: 405-6707

Abstract. This paper presents a policy to retain new cases based on
retrieval bene�ts for case-based planning (CBP). After each case-based
problem solving episode, an analysis of the adaptation e�ort is made to
evaluate the guidance provided by the retrieved cases. If the guidance is
determined to be detrimental, the obtained solution is retain as a new
case in the case base. Otherwise, if the retrieval is bene�cial, the case base
remains unchanged. We will observe that the notion of adaptable cases is
not adequate to address the competence of a case base in the context of
CBP. Instead, we claim that the notion of detrimental retrieval is more
adequate. We compare our retain policy against two policies in the CBP
literature and claim that our policy to retain cases based on the bene�ts
is more e�ective. Our claim is supported by empirical validation.

1 Introduction

With the increasing use of CBR technology in real-world applications, case bases
have become larger and the question of how to maintain them has become a
necessary issue to address (Leake & Wilson, 1998; Watson, 1997, Chapter 8). In
recent years researchers have turned their attention towards case base mainte-
nance. Policies have been studied for reducing the size of the case base without
sacri�cing competence (Racine & Yang, 1997; Kitano & Shimazu, 1996; Smyth
& Keane, 1998).

A complementary issue to overall policies to maintain a case base, is the policy
to retain new solutions obtained from case-based planning episodes. An ideal case
retention policy should add new cases in the case base only if the competence of
the case base is improved. However, establishing adequate case retention policies
can be very di�cult; if the case retention policy is too restrictive, opportunities to
increase the competence of the case base will be lost. If the case retention policy is
too permissive, the case base will grow too much making overall case maintenance
costly and may even loose competence. Increasing the bene�ts over the costs of
retaining knowledge is a common problem for learning systems (Markovich &
Scott, 1993). In the context of case-based planning (CBP), two case retention
policies have been proposed:

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 276-287, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

{ Eager Case Retention Policy. This is a \default policy"; every new solution
is retain as a new case in the case base. It is directly inherited from the CBR
problem solving cycle (Lenz et. al. 1998; Aamodt & Plaza, 1994).

{ Case Retention Policy based on Retrieval Failures. This is a more elaborate
policy (Ihrig & Kambhampati, 1996). During the adaptation process, the
retrieved cases can be either extended to a solution of the new problem or
parts of the cases must be revised to obtain the solution. In the �rst situation,
the retrieval is said to fail and the adapted solution is retain as a new case
in the case base.

Intuition suggest that the Eager Case Retention Policy is too permissive and
yield large case bases. The Case Retention Policy based on Retrieval Failures
requires a more careful analysis. The �rst problem we faced to make this anal-
ysis is that no appropriate conceptual tools have been developed to analyze the
competence in the context of CBR. Smyth and Keane (1998) observed that com-
petence is reduced if adaptable cases fail to be retrieved or if non-adaptable cases
are retrieved. We state that the notion of adaptable cases is not appropriate for
CBP. Instead we proposed measure competence based the notions of bene�cial
and detrimental retrieval.

Based on the notions of bene�cial and detrimental retrieval, we will observe
that the Case Retention Policy based on Retrieval Failures may decrease the
competence of the case bases and propose a new policy, Case Retention Policy

based on Detrimental Retrieval, to address this
aw. We claim that our policy will
result in more competent case bases. Our claim will be supported by empirical
evaluation.

The next sections introduce the adaptation method used for this study, anal-
ize the Case Retention Policy based on Retrieval Failures, introduce the Case
Retention Policy based on Detrimental Retrieval, present empirical studies, dis-
cuss related work, and make some �nal remarks.

2 Adaptation by Derivational Replay

The adaptation method that we use is Derivational Replay (Veloso & Carbonell,
1993). In this method, instead of storing the solution plan Sol in the case, the
derivational trace followed to obtain Sol is stored. The derivational trace is the
sequence of planning decisions that were taken to obtain Sol.

The notion of derivational trace can be illustrated with an example in the
logistics transportation domain (Veloso, 1994). A typical problem in the logis-
tics transportation domain is to place the objects at di�erent locations starting
from a con�guration from objects, locations and transportation means. There
are di�erents sorts of locations and means of transportation. The means of trans-
portation have certain operational restrictions. For example, a truck can only
be moved between two places located within the same city. Figure 1 illustrates
a typical situation in the logistics transportation domain. In this situation there
are three post o�ces A, B and C. In A there is a package p1 and a truck. In B

277A Case Retention Policy based on Detrimental Retrieval

althoff@iis.uni-hildesheim.de

p1

A B C

p2

1

2

3

Fig. 1. A situation in the logistics transportation domain.

there is a package p2. Suppose that two goals g1 and g2 are stated consisting of
relocating p1 and p2, respectively, in C. The arrows in Figure 1 depict a plan
followed by the truck. In this plan, p1 is loaded in the truck, the truck is moved
from A to C (arc 1), where p1 is dropped. Then, the truck is moved from C to
B (arc 2), where p2 is loaded. Finally, the truck is moved from B to C (arc 3),
where p2 is dropped. The derivational trace generating this plan has the form
\1: apply the action load to load p1 in the truck", \2: apply the action move to
drive the truck from A to C", and so on.

When adapting a case with derivational replay, the derivational trace is fol-
lowed by applying the planning decisions to the new problem. A planning deci-
sion in the derivational trace is only replayed if no inconsistency will occur as a
result of replaying it. For example if the decision says \order the action result-
ing from applying decision X before the action resulting from applying decision
Y " and in the current plan these actions are already in the opposite order, the
decision is not replayed because a cycle would be introduced in the plan.

Adaptation with derivational replay presupposes an interaction with the a
�rst-principles planner (Bergmann et. al., 1998). That is, part of the planning
process is performed by replaying decisions of one or more cases and the rest of
the planning is done by the �rst-principles planner. In the particular approach
we will follow replay is done �rst and, then, the partial solution obtained by
replay is completed by the �rst-principles planner. This strategy is particularly
suitable for partial-order planners such as the one that we use in this study,
CAPlan (Weberskirch, 1995), because of their capability to interleave actions
in the plan (Ihrig & Kambhampati, 1994).

Other aspects of derivational replay involve the construction and application
of justi�cations (Veloso, 1994; Mu~noz-Avila, 1998), however, we omit further
discussion of this issue for the sake of simplicity.

3 Case Retention based on Retrieval Failures

This policy states that the adapted solution is retained as a new case if a retrieval
failure occurs (Ihrig & Kambhampati, 1996):

278 Hector Munoz-Avila

althoff@iis.uni-hildesheim.de

p1

A B C

p2
1

2

Fig. 2. Distributing 2 packages with 2 trucks.

De�nition 1 (Retrieval Failure, Adequate Retrieval). Given a solution

plan Sol of a problem P obtained by adapting a case C, the retrieval of C is a

failure with respect to P and Sol if at least one decision replayed from C was

revised by the �rst-principles planner to obtain Sol. Otherwise the retrieval of C

is said to be adequate. The partial solution obtained after replay is called the

skeletal plan.

This de�nition says that the retrieval of a case is considered adequate if the
partial solution obtained after replay (i.e., the skeletal plan) can be extended
to a complete solution without having to revise any of the decisions that were
replayed from the case. Decisions replayed from the cases are only revised if no
extension of the skeletal plan is possible.

Example of a Retrieval Failure. Suppose that a case is stored in which the
following problem is solved: two packages are located in a post o�ce A, one of
them must be relocated to a post o�ce B and the other one to a location C.
Suppose that two trucks are available at A and the solution plan stored in the
case consists of two subplans: one uses one truck to relocate one package in B

and the other subplan uses the other truck to relocate the other package in C (see
Figure 2). If the problem is modi�ed such that only a single truck is available,
using the case results in a retrieval failure: initially, the skeletal plan obtained
after replay will replicate the two subplans in the case by using two trucks. A
condition of the form \di�erent trucks t1 and t2" will remain unsolved in the
skeletal plan (see Figure 3). When the �rst-principles planner tries to complete
the skeletal plan, it will �nd that the condition cannot be satis�ed. As a result
part of the skeletal plan will be removed. Speci�cally, one of the two subplans
will be removed by the �rst principles planner. The other subplan will remain,
and will be completed by driving back the truck to A, picking the other package
and moving it to the remaining post o�ce to drop it (see Figure 4).

This case retention policy was proposed as part of a framework for case-based
planning (Ihrig & Kambhampati, 1996). We avoid discussing the framework as
it is beyond the purpose of this paper and concentrate solely on the policy.

279A Case Retention Policy based on Detrimental Retrieval

althoff@iis.uni-hildesheim.de

load(p1,T1) move(T1,A,B) download(T1,p1)

load(p2,T2) move(T2,A,C) download(T2,p2)

different(T1,T2)

Fig. 3. Skeletal plan obtained after replay. The dashed box represents an unsolved

condition to be achieved by the �rst-principles planner.

load(p1,T1) move(T1,A,B) download(T1,p1) move(T1,B,A)

load(p2,T1) move(T1,A,C) download(T1,p2)

Fig. 4. Plan obtained after revising parts of the skeletal plan.

4 Case Retention based on Detrimental Retrieval

Loosely speaking a case is adaptable with respect to a new problem if it can
be modi�ed to obtain a solution of the new problem. In the context of CBP,
this notion is frequently not useful. For example, partial-order planners have
been shown to be complete (McAllester & Rosenblitt 1991). That is, all possible
solutions of any solvable problem can be generated. As a direct consequence
of this, derivational replay based on a partial-order planner is also complete
(Mu~noz-Avila, 1998). This means that any case is adaptable with respect to any
solvable problem. Thus, establishing the competence of a case base based on the
notion of adaptability is not useful.

An alternative is to use the notion of Retrieval Failure. According to this
notion, the retrieval of a case is adequate if the partial solution obtained after
replay can be extended to a complete solution without having to revise any of
the decisions that were replayed from the case (i.e., without revising any part of
the skeletal plan). However, we identi�ed the following problems:

1. Increase in Redundancy. There are situations where, even if the retrieval
is a failure, the e�ort to complete the solution might not be large. In this
situation retaining a new case is clearly unnecessary. An example of such a
situation is the following: Suppose that the case described at the end of the
previous section is actually a small part of a case involving the distribution
of several packages between and within several cities. Suppose that a new
problem is presented that is almost the same as this case except that only
one truck is available for one of the cities (i.e., the same mismatch as in
the example in the previous section). Clearly, the retrieval will be a fail-
ure, however, the extent of the revision is so small compared to the size of
the complete solution that retaining the new solution does not increase the
competence to the case base.

2. Decrease in Competence. There are situations in which the retrieval of
the case is adequate but the completion e�ort of the skeletal plan is large. As
an example, suppose that the case base contains a single case consisting of

280 Hector Munoz-Avila

althoff@iis.uni-hildesheim.de

a single action moving a truck from one location to another. If a problem is
given, requiring several packages to be distributed within the city, this case
would be retrieved several times and the retrieval will always be successful.
However, this particular case is not helpful to solve the problem and, even
worse, the adapted solution is not retained into the case base because no
retrieval failure occurs.

These problems relate to the bene�t of retrieving the case.

The fact that the retrieval of the case is not a failure does not necessarily
imply that retrieving it results in a bene�t to the case-based problem solving pro-
cess. One di�culty in assessing the bene�t is that there is no domain-independent
procedure for measuring it. To precisely measure the bene�t of solving the prob-
lem with the case-based planner it would be necessary to know the e�ort required
by the �rst-principles planner to solve the problem alone. This is, of course, not
feasible. Instead, we introduce a heuristic measure to determine the bene�t of
the retrieval:

De�nition 2 (Detrimental Retrieval). Given a solution plan Sol of a prob-
lem P obtained by adapting a case C, then the retrieval of C is detrimental
with respect to P and C if:

searchSpace(Sol)=searchSpace(SkC) > thrdet

where SkC indicates the skeletal plan obtained from replaying C, thrdet is
a prede�ned threshold and searchSpace(Sol) returns the size of the search space
explored to obtain the plan Sol. The threshold thrdet is called the detrimental
threshold. Nondetrimental retrievals are said to be bene�cial.

The function searchSpace(Psol) counts the number of decisions made to com-
pute the skeletal plan SkC . Thus, searchSpace(Sol) � searchSpace(SkC) always
holds. The detrimental threshold thrdet determines how eagerly cases will be
learned. If, for example, thrdet = 1, then any change made to �nd Sol causes the
retrieval to be considered detrimental. That is, the retrieval will only be consider
bene�cial if SkC is a solution of P . If the value of thrdet is set to 2, the retrieval
is detrimental if the size of the search space explored to complete the case is at
least as big as the number of replayed decisions.

We will now show that the concept of retrieval failure (resp. adequate re-
trieval) is independent of the concept of detrimental retrieval (resp. bene�cial
retrieval). That is, There are situations in which the retrieval fails but it is ben-
e�cial or the retrieval is adequate but detrimental. In the �rst situation, some
replayed decisions were revised to obtain a solution but the e�ort to complete
the solution was within acceptable limits. In the second situation, no replayed
decisions were revised but the e�ort to complete the solution was too large. The
examples discussed at the beginning of this section serve to illustrate these sit-
uations. We can now introduce the Case Retention Policy based on detrimental
Retrieval:

281A Case Retention Policy based on Detrimental Retrieval

althoff@iis.uni-hildesheim.de

The Case Retention Policy based on Detrimental Retrieval retains an
adapted solution as a new case if and only if the retrieval of the cases is
detrimental with respect to the problem and the solution.

5 Empirical Validation

The goal of the experiments is to compare the three policies for retaining cases
by examining the competence of the resulting case bases.

5.1 Problem Domains

We performed experiments in the domain of process planning and in an extension
of the logistics transportation domain. The domain of process planning is char-
acterized by the high number of interactions between subplans (Mu~noz-Avila &
Weberskirch, 1996a).1 The source of the interactions are ordering restrictions on
the use of manufacturing resources; namely, the cutting tools and the clamping
machine. For example, to machine two di�erent areas of a piece of raw material,
mounting di�erent cutting tools may be required. Thus, the machining subplans
of these areas interact, which means than one has to be executed before the
other one.

The logistics transportation domain was originally speci�ed in (Veloso, 1994).
In this domain, there are also resources; namely, trucks and airplanes. However,
in contrast to the domain of process planning, the more resources are made
available, the less likely it is that subplans will interact. For example, if two
packages must be relocated within the same city and two trucks are available,
each truck can be used to relocate one package. The extension of the logistics
transportation domain adds the following restrictions: trucks must not be moved
into the same post o�ce more than once and problem-speci�c restrictions such
as not allowing the truck to move from a certain post o�ce to another post
o�ce (Ihrig and Kambhampati, 1996). This restriction is added to create more
e�cient plans.

5.2 The CBP System

The case-based planner used for the experiments is CAPlan/CbC (Mu~noz-
Avila & Weberskirch, 1996b). CAPlan/CbC has an static and a dynamic mode
to compute similarity. In the static mode, similarity between a problem and a
case remains the same independent of previous case-based planning episodes.
In the dynamic mode, similarity is computed based on feature weighting, in
which the weights of the features are recomputed depending on whether the
retrieval was a failure or adequate (Mu~noz-Avila & H�ullen, 1996). In this way,
we will observe the e�ects of the three policies for static similarity metrics and
for dynamic similarity metrics, which are likely to improve the accuracy of the
retrieval over a period of several CBP episodes.

1 The domain speci�cation can be downloaded from wwwagr.informatik.uni-
kl.de/�caplan.

282 Hector Munoz-Avila

althoff@iis.uni-hildesheim.de

5.3 Experimental Setup

The experiment consisted of 5 runs. In each run, a problem, called the pivot
problem, was �rst introduced. A solution for the pivot problem was found; the
solution together with the problem were used to form a case, C. All feature
weights of C were set to 1. Then, some features of the pivot problem were
randomly selected. A new goal and new features that do not occur in the pivot
problem were also introduced. Taking as basis the pivot problem, new problems
were formed by changing the selected features, or/and by retaining the new goal
and the new features. Changing a selected feature means changing the relations
between the objects mentioned in the feature. For example, if a feature states
that a truck is in a certain location, the changed feature will state that the truck
is in another location. The problem collection met the following conditions:

1. For every problem in the collection, at least 75% of its features match features
in the new problem. Thus if the static similarity metric is used and the
retrieval threshold is less or equal then 75%, C is always retrieved.

2. The number of times that selected features were changed in the collection is
the same. For example, if a selected feature indicates the location of a truck
and another selected feature indicates that a post o�ce is in a certain city,
the number of problems in which the truck is changed of location is the same
as the number of problems in which the post o�ce is changed of city.

3. If n denotes the number of selected features, then problems were ordered in a
way that within a sequence of n problems, Problemmn+1; :::; P roblemmn+n,
the number of changes of a selected feature is the same (m = 0; 1; :::). For
this reason, the number of problems in the collection is a multiple of the
number of selected features.

In the experiments the multiple factor was 5. In addition, in the logistics
transportation domain 5 features were selected and in the domain of process
planning 6. Thus, the collections consisted of 25 problems in the �rst domain
and 30 in the second one. The total number of problems involved were 125 in
the logistics transportation domain and 150 in the domain of process planning.

Discussion about the Experimental Setup. The ideal experiment to show the
increase of reliability with feature weighting is to form all possible combinations
of collections of problems and show that the increase occurs in average. Because
such a process implies a combinatorial explosion, we stated conditions (2) and
(3) to equally distributing the e�ect of every change in the �xed features and of
capturing the average situation.

5.4 The Results

The detrimental threshold was set to 2 and the following items were measured:

1. Percentage of cases retrieved. This is a measure of how many cases are re-
tained with the Eager Case Retention policy. Because of Condition (1), 100%

283A Case Retention Policy based on Detrimental Retrieval

althoff@iis.uni-hildesheim.de

of the cases are retrieved with the static mode. However, with the dynamic

mode this percentage will be reduced.
2. Percentage of retrieval failures. This is a measure of how many cases are

retained with the Case Retention Policy based on Retrieval Failures.
3. Percentage of detrimental retrievals. This is a measure of how many cases

are retained with the Case Retention Policy based on detrimental retrieval.
4. Percentage of case-based, problem-solving episodes in which the retrieval is a

failure but bene�cial. This is a measure of how many cases are retained with

the Case Retention Policy based on retrieval failure but that shouldn't have

been because of the low adaptation e�ort. Thus, it measures the redundancy

resulting from this policy.
5. Percentage of case-based, problem-solving episodes in which the retrieval is

adequate but detrimental. This is a measure of how many cases are not re-

tained with the Case Retention Policy based on retrieval failure but that

should have been because of the signi�cant adaptation e�ort. Thus, it mea-

sures lost opportunities to gain competence with this policy.

Dynamic Static

Items 1 2 3 4 5

% Cases Retr. 82 71 63 51 49 100

% Retr. Failures 41 26 19 7 4 47

% Detrim. Retr. 15 12 17 11 15 24

% Fail. & Ben. 8 6 3 2 1 11

% Adeq. & Detrim. 5 3 8 2 7 16

Table 1. Comparison of policies to create cases in the domain of process planning.

Dynamic Static

Items 1 2 3 4 5

% Cases Retr. 94 84 73 65 57 100

% Retr. Failures 37 27 15 9 6 41

% Detrim. Retr. 33 24 20 21 19 37

% Fail. & Ben. 18 10 5 2 1 24

% Adeq. & Detrim.. 20 12 9 11 10 23

Table 2. Comparison of policies to create cases in the logistics transportation domain.

The results are summarized in tables 1 and 2. Each row shows each of the

�ve items in the order listed before. Each column i averages the results for the

i-th sequence of each run with the dynamic retrieval mode. The sixth column

shows the results for the whole collection with the static retrieval mode.

284 Hector Munoz-Avila

althoff@iis.uni-hildesheim.de

5.5 Discussion of the Experiment Results

These results con�rm the independence between the concepts of retrieval failure
and detrimental retrieval. First, consider the results with the dynamic retrieval
mode (i.e., �rst 5 columns). Even in the last sequences, when the percentage
of retrieval failures decreases (for example, 4% in the 5th sequence of the �rst
domain), detrimental retrieval episodes are still likely to occur (i.e., 15%). Thus,
the adaptation e�ort is signi�cant independent of the fact that the retrieval tends
to be adequate. Second, in the results of the static retrieval mode (i.e., the 6th
column), we observe that a signi�cant percentage of both retrieval failures (47%
and 41% for the two domains) and detrimental retrievals (24% and 24%) occur.

A second observation is that, as expected, the Eager Case Retention Policy
increases the redundancy of the case base dramatically. For example, with the
dynamic retrieval mode, at the 5th sequence, 49% and 57% of the cases for the
two domains are retained even though only 15% and 19% of the retrievals were
detrimental. In the static mode the situation is worst, with 100% of the cases
retained but only 24% and 37% being detrimental.

The Case Retention Policy based on Retrieval Failures reduces the redun-
dancy in a signi�cant way. In particular, in the 5th sequence with the dynamic
retrieval mode, only 1% of the retained cases for both domains is redundant (row
4th, column 5th). However, 7% and 10% of the cases for both domains should
have been retained but they were not because no retrieval failure occurs (row
5th, column 5th). With the static mode (column 6th), both redundancy and lost
opportunities to increase competence are signi�cant.

In summary, the Eager Case Retention Policy will result in increasing re-
dundant case bases. Case Retention Policy based on Retrieval Failures reduces
redundancy in a signi�cant way, particularly in the dynamic mode, but the price
to pay is a signi�cant lost in opportunities to gain competence.

6 Related Research

The Detrimental Retrieval Policy is complementary to overall case maintenance
as proposed in (Smyth & Keane, 1995). In our approach, new solutions are not
retained in the case base if they are covered by existing cases. Some of those
cases must be pivotal and as such the new solution would have been deleted
anyway. Thus, maintaining the case base must be less costly if cases are retained
by the Detrimental Retrieval Policy.

Another question is whether the Retention of cases by the Detrimental Re-
trieval Policy makes overall case maintenance unnecessary. The answer is no

because redundancy may still occur. For example, (Mu~noz-Avila, 1998) reports
a negative e�ect of feature weighting in CBP identi�ed as specialization of the
cases. This situation occurs when an existing case would have been retrieved to
solve the current problem if (1) the case feature weights would had not been
updated and (2) the retrieval of that case would had been bene�cial. However,
because of the updated feature weights, the case is not retrieved. Although in

285A Case Retention Policy based on Detrimental Retrieval

althoff@iis.uni-hildesheim.de

the experiments performed in (Mu~noz-Avila, 1998), the percentage of specialized
cases was small, it is possible that specialization occurs at a larger scale in some
domains. In such situations, overall case base maintenance is necessary.

7 Conclusion

We studied previous policies for case Retention in the context of CBP and con-
cluded that Eager Case Retention Policy is
awed because its too permissive
resulting in large case bases. More interestingly, we observed that the Case Re-
tention Policy based on Retrieval Failures may result in decreased competence
and increased redundancy. We proposed an alternative policy, Case Retention
Policy based on Detrimental Retrieval, and showed through experimental vali-
dation that it is more e�ective.

Acknowledgements

This research was supported in part by grants from the Naval Research Labora-
tory, the O�ce of Naval Research, and the Deutscher Akademischer Austauschdi-
enst (DAAD). We will also like to thank Len Breslow for reviewing early versions
of this paper and the ICCBR-99 reviewers for their thoughful suggestions.

References

Aamodt, A. & Plaza, E. (1994). Case-based reasoning: Foundation issues, method-
ological variations and system approaches. AI-Communications, 7(1):pp 39{
59.

Bergmann, R., Mu~noz-Avila, H., Veloso, M., Melis, E. (1998). Case-based rea-
soning applied to planning tasks. In M. Lenz, B. Bartsch-Spoerl, H.-D.
Burkhard, & S. Wess (Eds.) Case-Based Reasoning Technology: From Foun-

dations to Applications. Berlin: Springer.
Ihrig, L. & Kambhampati, S. (1996). Design and implementation of a replay

framework based on a partial order planner. In Weld, D., editor, Proceedings
of AAAI-96. IOS Press.

Ihrig, L., & Kambhampati, S. (1994). Derivational replay for partial-order plan-
ning. Proceedings of AAAI-94, AAAI Press.

Kitano, H. & Shimazu, H. (1996). The experience-sharing architecture: a case
study on corporate-wide case-based software quality control. In Case-Based

Reasoning: Experience, Lessons, & Future Directions, Leake, D. B. (Editor).
MA: AAAI Press / MIT Press.

Leake, D.B., & Wilson, D.C. (1998). Categorizing case-base maintenance: di-
mensions and directions. preprint.

M. Lenz, B., Bartsch-Spoerl, H.-D. Burkhard, & S. Wess (Eds.). (1998). Case-
Based Reasoning Technology: From Foundations to Applications. Berlin: Springer.

Markovitch, S., & Scott, P.D. (1993). Information Filtering: selection Mecha-
nisms in learning systems. Machine Learning, 10.

286 Hector Munoz-Avila

althoff@iis.uni-hildesheim.de

McAllester, D. & Rosenblitt, D. (1991). Systematic nonlinear planning. Pro-
ceedings of AAAI-91, AAAI Press.

Mu~noz-Avila, H. (1998). Integrating Twofold Case Retrieval and Complete De-
cision Replay in CAPlan/CbC. PhD Thesis. University of Kaiserslautern,
Germany.

Mu~noz-Avila, H. & H�ullen, J. (1995). Feature weighting by explaining case-
based planning episodes. In Third European Workshop (EWCBR-96), num-
ber 1168 in LNAI. Springer.

Mu~noz-Avila, H. & Weberskirch, F. (1996a). A speci�cation of the domain
of process planning: Properties, problems and solutions. Technical Report
LSA-96-10E, Center for Learning Systems and Applications, University of
Kaiserslautern, Germany.

Mu~noz-Avila, H. & Weberskirch, F. (1996b). Planning for manufacturing work-
pieces by storing, indexing and replaying planning decisions. In Proc. of the
3nd International Conference on AI Planning Systems (AIPS-96). AAAI-
Press.

Kirsti, R., & Qiang, Y., (1997). Maintaining Unstructured Case Bases, in Case-
Based Reasoning Research and Development, In Leake D., B., and Plaza E.,
(Eds). Proceedings of the International Conference on Case Based Reasoning,
Springer.

Smyth, B., & Keane, M.T., (1995). Remembering to forget: A competence-
preserving case deletion policy for case-based reasoning systems. In: Pro-
ceedings of the International Joint Conference on Arti�cial Intelligence.

Smyth, B., & Keane, M.T., (1998). Adaptation-guided retrieval: Questioning
the similarity assumption in Reasoning. Arti�cial Intelligence, 102.

Veloso, M. (1994). Planning and learning by analogical reasoning. Number 886
in Lecture Notes in Arti�cial Intelligence. Springer.

Veloso, M. & Carbonell, J. (1993). Derivational analogy in prodigy: Automating
case acquisition, storage, and utilization. Machine Learning, 10.

Watson, I., (1997). Applying Case-Based Reasoning: Techniques for Enterprise
Systems. Morgan Kaufmann Publishers.

Weberskirch, F. (1995). Combining SNLP-like planning and dependency-maintenance.
Technical Report LSA-95-10E, Centre for Learning Systems and Applica-
tions, University of Kaiserslautern, Germany.

287A Case Retention Policy based on Detrimental Retrieval

althoff@iis.uni-hildesheim.de

Using Guidelines to Constrain

Interactive Case-Based HTN Planning

H�ector Mu~noz-Avilayz, Daniel C. McFarlanez, David W. Ahaz,
Len Breslowz, James A. Ballasz, & Dana S. Nauy

y Department of Computer Science
University of Maryland

College Park, MD 20742-3255
lastname@cs.umd.edu

(301) 405-2684 j FAX: 405-6707
z Navy Center for Applied Research in AI

Naval Research Laboratory
Washington, DC 20375

lastname@aic.nrl.navy.mil
(202) 404-4940 j FAX: 767-3172

Abstract. This paper describes HICAP, a general-purpose, interactive
case-based plan authoring architecture that can be applied to decision
support tasks to yield a hierarchical course of action. It integrates a hi-
erarchical task editor with a conversational case-based planner. HICAP
maintains both a task hierarchy representing guidelines that constrain
the �nal plan and the hierarchical social organization responsible for
these tasks. It also supports bookkeeping, which is crucial for real-world
large-scale planning tasks. By selecting tasks corresponding to the hierar-
chy's leaf nodes, users can activate the conversational case-based planner
to interactively re�ne guideline tasks into a concrete plan. Thus, HICAP
can be used to generate context sensitive plans and should be useful for
assisting with planning complex tasks such as noncombatant evacuation
operations. We describe an experiment with a highly detailed military
simulator to investigate this claim. The results show that plans generated
by HICAP were superior to those generated by alternative approaches.

1 Introduction

Planning a course of action is di�cult, especially for large hierarchical orga-
nizations (e.g., the U.S. Navy) that assign tasks to elements (i.e., groups or
individuals) and constrain plans with guidelines (e.g., doctrine). In this context,
a concrete plan must adhere to guidelines but should also exploit organizational
knowledge where appropriate (e.g., standard procedures for solving tasks, previ-
ous experiences when reacting to unanticipated situations). Case-based reasoning
(CBR) can be used to capture and share this knowledge.

In large planning environments, automatic plan generation is neither feasible
nor desirable because users must observe and control plan generation. We argue

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 288-302, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

that, rather than relying on an automatic plan generator, users prefer and can
greatly bene�t from the assistance of an intelligent plan formulation tool with
the following characteristics:

{ Guidelines-driven: Uses guidelines to constrain plan generation.
{ Interactive: Allows users to edit any detail of the plan.
{ Provide Case Access: Indexes plan segments from previous problem-solving

experiences, and retrieves them for users if warranted by the current planning
scenario.

{ Perform Bookkeeping: Maintains information on the status of and relations
between task responsibilities and individuals in the organizational hierarchy.

This paper describes HICAP, a general-purpose plan formulation tool that
we designed to embody these characteristics.1 HICAP (Hierarchical Interactive
Case-Based Architecture for Planning) integrates a task decomposition editor,
HTE (Hierarchical Task Editor) (Mu~noz-Avila et al., 1998), with a conversa-
tional case-based planner, NaCoDAE/HTN. The former allows users to edit and
select guidelines for re�nement, while the latter allows users to interactively
re�ne plans encoded as hierarchical task networks (HTNs) (Erol et al., 1994).
Re�nements use knowledge of previous operations, represented as cases, to aug-
ment or replace standard procedures.

The following sections describe the application task, HICAP's knowledge rep-
resentation, its architecture, its empirical evaluation, and a discussion of related
work.

2 Planning Noncombatant Evacuation Operations

Noncombatant evacuation operations (NEOs) are conducted to assist the U.S.A.
Department of State (DoS) with evacuating noncombatants, nonessential mili-
tary personnel, selected host-nation citizens, and third country nationals whose
lives are in danger from locations in a host foreign nation to an appropriate safe
haven. They usually involve the swift insertion of a force, temporary occupation
of an objective (e.g., an embassy), and a planned withdrawal after mission com-
pletion. NEOs are often planned and executed by a Joint Task Force (JTF), a
hierarchical multi-service military organization, and conducted under an Ameri-
can Ambassador's authority. Force sizes can range into the hundreds and involve
all branches of the armed services, while the evacuees can number into the thou-
sands. More than ten NEOs were conducted within the past decade. Publications
describe NEO doctrine (DoD, 1994), case studies (Siegel, 1991; 1995), and more
general analyses (e.g., Lambert, 1992).2

The decision making process for a NEO is conducted at three increasingly-
speci�c levels: strategic, operational and tactical. The strategic level involves

1 Implemented in Java 2, the HICAP applet can be run from
www.aic.nrl.navy.mil/hicap. HICAP was introduced in (Mu~noz-Avila et al.,
1999), which did not include the evaluation described here.

2 See www.aic.nrl.navy.mil/�aha/neos for more information on NEOs.

289Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

global and political considerations such as whether to perform the NEO. The
operational level involves considerations such as determining the size and com-
position of its execution force. The tactical level is the concrete level, which
assigns speci�c resources to speci�c tasks.

JTF commanders plan NEOs in the context of doctrine (DoD, 1994), which
de�nes general guidelines (e.g., chain of command, task agenda) for designing
strategic and operational plans; tactical considerations are only partly addressed.
Doctrine is abstract; it cannot account for the detailed characteristics of speci�c
NEOs. Thus, JTF commanders must always adapt doctrine to a NEO's speci�c
needs, and do so in two ways. First, they dynamically modify doctrinal guid-
ance by eliminating irrelevant planning tasks and adding others, depending on
the operation's needs, resource availabilities, and relevant past experiences. For
example, although NEO doctrine states that a forward command element must
be inserted into the evacuation area with enough time to plan the insertion of
the JTF's main body, this is not always feasible (e.g., in Operation Eastern Exit,
combined elements of the JTF were inserted simultaneously due to the clear
and imminent danger posed to the targeted evacuees (Siegel, 1991)). Second,
they employ experiences from previous NEOs, which complement doctrine by
suggesting tactical re�nements suitable for the current NEO. For example, they
could draw upon their previous experiences to identify whether it is appropriate
to concentrate the evacuees in the embassy or to plan for multiple evacuation
sites.

3 Knowledge Representation

Because HTNs are expressive representations for plans, we used a variant of
them in HICAP. A HTN is a set of tasks and their ordering relations, denoted
as N = hfT1; : : : ; Tmg;�i (m�0). The relation � has the form Ti � Tj(i6=j),
and expresses temporal restrictions between tasks.

Problem solving with HTNs occurs by applying methods to decompose or
reduce tasks into subtasks. Each method has the form M = hl; T;N; P i, where l
is a label, T is a task, N is a HTN, and P = hp1; : : : ; pki is a set of preconditions
for applying M . When P is satis�ed, M can be applied to a task T to yield N .

HICAP's HTN consists of three task types. First, non-decomposable tasks
are concrete actions and can occur only at a network's leaves. Next, uniquely
decomposable tasks correspond to guideline tasks (e.g., doctrine), and are solved
by unconditional methods (k = 0). Finally, multi-decomposable tasks must be
solved in a speci�c problem-solving context.

There are two sources of knowledge for decomposing multi-decomposable
tasks: standard operating procedures (SOPs) and recorded episodes. SOPs de-
scribe how to reduce a task in a typical situation. Recorded episodes describe
how tasks were reduced in situations that are not covered by SOPs. In our rep-
resentation, SOPs and recorded episodes are both represented as methods and
we loosely refer to both as cases. However, there is an important di�erence in
the way SOPs and recorded episodes are applied. To apply a SOP to reduce a

290 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

task, all its preconditions must be matched because they are typically rigid in
their use. In contrast, recorded episodes can be applied to reduce a task even if
some of its preconditions are not satis�ed.

When reducing a task T , HICAP retrieves all cases (i.e., standard proce-
dures and recorded episodes) that can decompose T . If all the preconditions of
a SOP are met, then it should be used to decompose T . Otherwise, a case cor-
responding to the most similar episode should be used. For example, standard
NEO procedures state that the evacuees must be concentrated in the embassy
prior to troop deployment, but this is not always possible: in Operation Eastern
Exit, only some of the evacuees were concentrated in the embassy after the Joint
Task Force was deployed. This occurred because escorted transports were not
available to gather these evacuees, who were unable to reach the embassy due
to the dangerous conditions in the surrounding areas (Siegel, 1991). Likewise,
the evacuees of Operation Sharp Edge (Sachtleben, 1991) were concentrated in
several places, forcing multiple separate evacuations.

4 HICAP: An Interactive Case-Based Planner

Commander JTF

Questions
 Display

 Cases
 Display

NaCoDAE/HTN
Case-Based Planner

 Task
 Hierarchy
 Display

 Command
 Hierarchy
 Display

 HTE
 Task Editor

Neo
Subtask
Description

Task
Decomposition
Selection

 Case
Library

Selected
 Task

 Selected
 Case

Knowledge Base

 Edits,
 Task Selections,
 Bookkeeping

 NEO
Doctrine

Plan

Fig. 1. The HICAP architecture.

HICAP (Figure 1), which integrates HTE with NaCoDAE/HTN, inputs a
HTN describing the guidelines for an application along with a set of cases for
each multi-decomposable subtask. It displays all uniquely decomposable tasks
as expanded. Under user control, HICAP outputs an elaborated HTN whose
leaves are concrete actions as speci�ed by case applications and manual edits. In
this way, HICAP satis�es the requirements stated in Section 1. First, all plans
formulated using HICAP are in accordance with the guidelines or user modi�-
cations of them. Second, HICAP supports interactive task editing and triggers

291Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

conversations for tasks that can be decomposed by case application. Third, it
incorporates knowledge from previous problem solving episodes as cases, which
serve as task decomposition alternatives. Finally, it allows users to visually check
that all tasks are assigned to JTF elements, and to record/update their comple-
tion status.

4.1 Hierarchical Task Editor

In complex environments where dozens of tasks must be performed by many
people, tracking the completion status for each task can be challenging. For
example, during the NEO Operation Eastern Exit, the task to inspect evac-
uees prior to embarkation was not assigned (Siegel, 1991). One of the evacuees
produced a weapon during a helicopter evacuation
ight. Although it was imme-
diately con�scated, this oversight could have resulted in tragedy and illustrates
the di�culties with planning NEOs manually.

The Hierarchical Task Editor (HTE) (Mu~noz-Avila et al., 1998) serves HI-
CAP as a bookkeeping tool to track the status of each task. HTE inputs a
knowledge base consisting of a HTN task agenda, its ordering relations, the orga-
nization's command hierarchy, and an assignment of tasks to command elements.
It allows users to edit the knowledge base and select tasks to re�ne by invoking
NaCoDAE/HTN, thus tailoring the plan to the particular circumstances of the
current NEO.

For our NEO application, we encoded a HTN to capture critical planning
doctrine (DoD, 1994), yielding 200+ tasks and their ordering relations. Next, we
used this doctrine to elicit the JTF command hierarchy commonly used in NEO
operations. Finally, we elicited relations between tasks and the JTF elements
responsible for them. The mapping of tasks to command elements is many-to-
one. Figure 2 displays (left) the top level tasks that, according to doctrine, must
be performed during a NEO and (right) the elements in the JTF responsible for
them.

4.2 Conversational Task Decomposer

NaCoDAE/HTN, an extension of the NaCoDAE conversational case retrieval
tool (Aha & Breslow, 1997; Breslow & Aha, 1997), supports HTN planning by
allowing users to re�ne selected tasks into concrete actions. When given a task
T to re�ne by HTE, NaCoDAE/HTN uses T as an index for initial case retrieval
and conducts an interactive conversation, which ends when the user selects a
case C = hl; T;N; P i. Network N is then used to decompose T (i.e., into a set
of subtasks represented as T 's child nodes). Subtasks of N might themselves be
decomposable, but non-decomposable tasks corresponding to concrete actions
will eventually be reached. Task expansions are displayed by HTE.

During conversations, NaCoDAE/HTN displays the labels of the top-ranked
cases that can decompose the selected node and the top-ranked questions from
these cases whose answers are not yet known for the current situation. The user
can select and answer any displayed question; question-answer pairs are used

292 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

Prepare safe haven

Organize and process evacuees

Perform evacuation

Insert JTF main body

Insert forward command element

Prepare ISB

JTF Commander

Safe Haven Force

ISB Force

JTF Main Body

Forward Command Element

JTF Support Force

Perform preliminary evacuation tasks

(Partial) Task Hierarchy (Partial) JTF Hierarchy

Fig. 2. Top level NEO tasks and their assignment to JTF command elements (double
arrows denote assignments; arrows denote task orderings; ISB = intermediate stage
base).

to compute the similarity of the current task to its potential decomposition
methods (cases). Cases are ranked according to their similarity to the current
situation (Aha & Breslow, 1997), while questions are ranked according to their
frequency among the top-ranked cases. Answering a question modi�es the case
and question rankings. A conversation ends when the user selects a case for
decomposing the current task.

Some of the displayed cases are standard procedures; they can only be se-
lected to decompose a task after all of their questions have been answered and
match the current planning scenario. That is, preconditions of the standard
procedures must match before they can be applied. In contrast, cases based on
previous experiences can be selected even if some of their questions have not been
answered, or if the user's answers di�er. Thus, they support partial matching
between their preconditions and the current planning scenario.

5 Example: NEO Planning

During NEO planning, users are �rst shown the tasks corresponding to doctrine,
and revise them as needed. They can expand any task and view its decomposi-
tion. In Figure 3, the user has selected the Select assembly areas for evacuation

& Evacuation Control Center sites task, which is highlighted together with the
command element responsible for it.

Standard procedure dictates that the embassy is the ideal assembly area.
However, it is not always possible to concentrate the evacuees in the embassy.
Alternative methods can be considered for decomposing this task. When the

293Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

Fig. 3. HTE: Task agenda (left) and command hierarchy (right) displays (arrows de-
note ordering constraints).

military planner selects this task, HICAP displays the alternatives and initiates
a NaCoDAE/HTN conversation (see Figure 4 (top)).

If the user answers Are there any hostiles between the embassy and the evac-

uees? with uncertain, a perfect match occurs with the case labeled \Handle situ-
ation in which it is unknown whether hostiles are present," which now becomes
the top-ranked case (Figure 4 (bottom)). Figure 5 (left) shows the decomposition
when selecting this case to decompose this task in HTE; two new subtasks are
displayed, corresponding to this case's decomposition network. Send unmanned

air vehicle to : : : is a non-decomposable concrete action. If the user tells HI-
CAP to decompose Determine if hostiles are present, HICAP will initiate a new
NaCoDAE/HTN dialogue (Figure 5, right).

The user can again prompt a dialogue by selecting the The UAV detects hos-

tiles alternative and decomposing its subtasks. This cycle, in which HICAP dis-
plays alternatives and the user answers questions and selects an alternative, con-
tinues until non-decomposable tasks (i.e., concrete actions) are reached, which
form part of the �nal plan.

6 The Case-Based Planning Cycle in HICAP

The case-based planning component of HICAP, Nacodae/HTN, typically per-
forms three steps: retrieval, revise, and retain. As illustrated in Section 5, the
adaptation process can be viewed as embedded in the conversational retrieval
process.

6.1 Case Retrieval

We previously explained that, during a conversation, cases are ranked according
to the proportion of their question-answer pairs that match the current scenario.

294 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

Fig. 4. NaCoDAE/HTN: Before (top) and after (bottom) answering a question. The
top window lists possible answers to selected questions, while the lower windows display
the ranked questions and cases.

More speci�cally, a case c's similarity score is computed with a query q using

case score(q; c) =
num matches(q; c)� num mismatches(q; c)

size(c)
(1)

where num matches(q; c) (num mismatches(q; c)) is the number of matches (mis-
matches) between the states (i.e., hq; ai pairs) of q and c, and size(c) yields the
number of hq,ai pairs in c's state.3

6.2 Case Revision

The user can revise the current solution by editing the task hierarchy (in HTE)
and by selecting alternative cases during a NaCoDAE/HTN conversation. In

3 Matching for numeric-valued questions is implemented using a suitable partial
matching routine, but we focus on symbolic and boolean questions here.

295Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

Fig. 5. HICAP's interface after selecting the Determine hostile presence task.

addition, the user can revise their answers to previously selected questions, which
can modify case rankings. Although, revising an answer does not alter the plan
automatically, the new ranks may prompt the user to change their case selection,
which in turn may prompt additional edits to the task hierarchy.

This ability to explore alternatives (i.e., \what-if" analyses) is particularly
important in NEO planning for two reasons. First, military planners typically
plan for a main course of actions and for contingency alternatives should certain
key events occur. These events may trigger changes to answers and case rank-
ings, thus helping the user formulate these alternatives. Second, NEO planning
is dynamic in nature and the user must be able to replan due to unforeseen
contingencies.

6.3 Case Retention

NaCoDAE incorporates an approach introduced by Racine and Yang (1997) for
maintaining case libraries. It evaluates whether any case \subsumes" another
case (i.e., whether its question-answer pairs are a proper subset of the question-
answer pairs of another case). If so, the subsuming case will block the subsumed
case from being retrieved. A case library evaluation function alerts the user to
all such pairs of cases in the case library. The user can then decide which of the
two cases to revise and/or delete.

7 Empirical Validation

An experiment was run to test HICAP's e�ectiveness in choosing successful
plans for an example NEO subtask. In particular, we showed the importance
of considering episodic records over standard procedures. A larger experiment,
demonstrating the capability of HICAP to generate a complete NEO plan, is
currently under development.

296 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

Two researchers performed the experiment: one operated a military simula-
tor while the other operated HICAP. A strict blind was imposed to ensure that
the HICAP user had no advance knowledge concerning the simulated hostile
forces, and had to take appropriate, realistic ations to acquire this knowledge.
This tests HICAP's utility for planning under realistic situations where decision
makers have uncertain information about the state of the world. We hypothe-
sized that HICAP would allow users to choose a relatively successful plan from
among known tactical options. HICAP's strategy was evaluated versus three
other planning strategies: random choice, heuristic choice, the most frequently

used plan used in previous NEOs. Because their de�nitions require explaining
the scenario, we de�ne them in Section 7.3.

7.1 The ModSAF Simulation System

We used Marine Corps SAF (MCSF), a variant of ModSAF (Modular Semi-
Automated Forces), to evaluate the quality of NEO plans elicited using HICAP.
ModSAF, developed by the U.S.A. Army to inject simulated auxiliary forces into
training exercises, has been deployed to simulate real-world military scenarios
(Ceranowicz, 1994). It is a �nite state simulation with modular components that
represent individual entities and parts of entities. For example, a simulated tank
would have physical components such as a turret. It would also have behavioral
components that represent its nominal tasks such as move, attack, target, and
react to �re. Certain 3D aspects are also represented (e.g., terrain elevation, trees
and vegetation, rivers, oceans, atmospheric conditions) that can a�ect sensory
and movement behavior. The realism of ModSAF/MCSF simulations is su�cient
for training exercises.

Figure 6's MCSF snapshot displays a simulated American embassy, a host
country government compound, and some simulated objects. For example, a
simulated transport helicopter is positioned at the heliport within the embassy
site.

MCSF is a non-deterministic simulator that models several sources of stochas-
tic variation. Some events are determined by a random number generator; others
are highly sensitive to the initial startup conditions. MCSF simulates the behav-
ior of military units in context as they follow given tactical orders. Therefore,
MCSF can simulate simpli�ed NEO subtasks in which a single planning decision
determines tactical orders.

7.2 Experimental Setup

We created a NEO subtask scenario for this evaluation concerning how to move
64 evacuees from a meeting site to an embassy. The meeting site was at a cross-
roads in an uninhabited area outside but nearby the embassy's city. Evacuees
had to be transported (8 per vehicle) through this undeveloped area, which had
heavy tree cover, and out through the city to the embassy. Evacuees had to
pass near a local government complex to enter the embassy grounds. This NEO
context requires only a single tactical plan decision with four distinct choices:

297Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

Fig. 6. A MCSF snapshot.

1. Land evacuation using 8 armored trucks

2. Land evacuation using 8 armored trucks with an escort of 8 tanks

3. Air evacuation using 8 transport helicopters

4. Air evacuation using 8 transport helicopters with an escort of 8 attack heli-
copters

The kind of military units used in the simulation are typical of those available to
the Marine Expeditionary Units that frequently perform NEO's. A detailed ter-
rain database of the Camp Lejeune (North Carolina, U.S.A.) area was chosen to
simulate the environment. We chose this location because Marine Expeditionary
Units train there for NEOs.

Two scenarios were de�ned that were identical except for the type of hostile
forces. All hostiles were two-person dismounted infantry teams. Hostile teams
in both scenarios were armed with two automatic ri
es and a portable missile
launcher. Each scenario included only one type of missile for hostile teams (i.e.,
either anti-tank missiles or anti-air missiles, but not both). These types of in-
fantry teams, positioned in an urban environment, are typical of the kinds of
hostile forces encountered in real NEO's. The positions of the hostile teams were
the same for both scenarios and selected to ensure that the opposing forces will
meet.

All four plan options were simulated ten times for each of the two scenarios.
This resulted in 80 (2 scenarios � 4 plan choices � 10 simulations) total MCSF
runs. Each of the eight plan-and-scenario combinations was repeated ten times
because MCSF is non-deterministic. For example, slight di�erences produced

298 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

Table 1. Summaries of casualties, to individual evacuees and military teams (mean &
standard deviation), averaged over 80 MCSF simulations.

Scenario 1 (anti-tank) Scenario 2 (anti-air)

Tactical Plans Evacuees Friends Hostiles Evacuees Friends Hostiles

Land 6.4 5.1 0.8 0.6 5.5 1.3 0 0 4.2 0.8
Land/Escort 3.2 10.1 7.4 1.5 6.5 1.8 0 0 7.6 0.6
Air 56.0 9.2 7.0 1.2 0 64.0 0.0 8.0 0.0 0
Air/Escort 0 0.8 1.5 8.0 0.0 20.0 18.6 6.3 4.4 5.7 2.9

by MCSF's stochastic movement models yield strikingly di�erent formations of
friendly units when they �rst encountered the hostile teams. These di�erences
can often yield drastically di�erent simulated battle outcomes.

The HICAP user had no knowledge of the scenarios being tested; scenario
information was gradually extracted through the questions prompted by NaCo-
DAE/HTN. That is, case-based planning was done with incomplete information
about the world. Furthermore, the e�ects of actions were uncertain; the only
way to learn the e�ects of an action was to actually execute it. This contrasts
with traditional planning approaches that assume an action's e�ects are known
a priori (Fikes and Nilsson, 1971).

7.3 Alternative Planning Strategies

HICAP's decision-making performance was compared with three baseline strate-
gies. First, random choice simply averaged the results of all four planning choices.
Second, heuristic choice always sent an escort, and its results were the average of
the choices that include escorts. Finally, the most frequently used plan strategy
for this subtask in recent NEOs (i.e., conducted during the past decade) was to
move evacuees using escorted land vehicles.

7.4 Results

Table 7.4 summarizes the casualty results for the 80 total simulations, which each
required approximately 15 minutes to run. The success measures were taken
from the U.S.A. Navy's Measures of E�ectiveness (MOE's) published in the
Universal Naval Task List. Recommended MOEs are speci�ed for evaluating each
kind of military operation. There are several MOE's for the tactical aspects of
NEO's, but only three were chosen as most important for evaluating the results
of this experiment: (1) the number of evacuees safely moved, (2) the number of
casualties to friendly forces, and (3) the number of casualties to hostile forces.

HICAP did not choose the same tactical plan for both scenarios. For the �rst
(anti-tank) scenario, it chose to move the evacuees by helicopter with an attack
helicopter escort. For the second (anti-air) scenario, it chose to move evacuees
by armored truck with a tank escort.

HICAP's conversational case-based planning method was evaluated by com-
paring the success of its chosen plans to plans chosen by the other three plan

299Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

39

44

49

54

59

64

E
v

ac
u

ee
s

S
av

ed
 (

A
v

g
.)

1 2

0
1
2
3
4
5
6
7
8
9

F
ri

en
d

ly
 U

n
it

 C
as

u
al

ti
es

 (
A

v
g

.)

0
1
2
3
4
5
6
7
8
9

H
o

st
il

e
U

n
it

 C
as

u
al

ti
es

 (
A

v
g

.)

CCBP

Random

Heuristic

Frequent

1 2 1 2
Scenario: 1 = hostiles armed with anti-tank weapons, 2 = hostiles armed with anti-air weapons.

Fig. 7. Comparison of plan selection strategies using Navy MOEs for NEOs.

selection strategies. Figure 7 compares the e�ectiveness of these four strategies.
Overall, HICAP selected plans of higher quality than the other strategies because
its plan selection decisions are tailored to the characteristics of each scenario.

8 Related Research

Case-based planning (CBP) has been extensively researched (Bergmann et al.,
1998). Our research is closely related to studies on hierarchical CBP (e.g., Kamb-
hampati, 1993; Bergmann &Wilke, 1995; Branting & Aha, 1995). HICAP di�ers
from these other approaches in that it includes the user in its problem solving
loop. This is particularly important for applications like NEO planning, where
completely automated tools are unacceptable. MI-CBP (Veloso et al., 1997) uses
rationale-directed CBP to suggest plan modi�cations in a mixed-initiative set-
ting, but does not perform doctrine-driven task decomposition.

Some researchers have used CBP with HTNs for military tasks. For example,
Mitchell (1997) used integrated CBP to select tasks for a tactical response plan-
ner. NEO planning requires that each task be addressed - no choice is involved -
and we use CBP to instead choose how to perform a task. HICAP's interactions
instead focus on retrieval rather than plan adaptation and learning.

9 Conclusion and Future Work

The HICAP case-based planner helps users to formulate a course of action for
hierarchical tasks. It is the �rst tool to combine a task guideline decomposition
process with CBR to support interactive plan formulation. It yields plans that
bene�t from previous experiences and conform to prede�ned guidelines. HICAP
also supports experience sharing, thus allowing planners to exploit knowledge
from other planning experts. These design characteristics enhance HICAP's ac-
ceptance by military planning personnel.

We are currently integrating HICAP with a generative HTN planner that can
evaluate numeric expressions (Nau et. al., 1999), which is particularly important
for NEOs because decisions often depend on resource capability and availability
(i.e., determining whether a helicopter requires in-
ight refueling for a given

300 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

mission). HICAP will serve as the plan formulation component for the Space and
Naval Warfare Systems Command's Interactive Decision Support (IDS) system.
When completed, IDS will perform distributed NEO plan formulation, execution,
monitoring, and replanning.

Our collaborative research with IDS partners will focus on associating tem-
poral durations with tasks, developing a resource tracking module (i.e., to solve
resource con
icts), implementing a strategy for justifying case rankings, inte-
grating HICAP with a powerful dynamic planner (i.e., SIPE-2 (Wilkins, 1998)),
and integrating existing GUIs for plan authoring. We will also investigate meth-
ods for performing information gathering in HICAP using a planning approach
(e.g., Carrick et al., 1999).

Acknowledgements

Thanks to ONR Program Managers Michael Shneier and Paul Quinn, and Pro-
gram O�cer Lt. Cdr. Dave Jakubek, for their encouragement throughout this
project. This research was supported by grants from the O�ce of Naval Re-
search, the Naval Research Laboratory, and the Army Research Laboratory.
Many thanks to members of the Center for Naval Analyses and ONR's Naval
Science Assistance Program for their guidance and support. And thanks to our
ICCBR-99 reviewers for their thoughtful suggestions, which improved this paper.

References

Aha, D. W., & Breslow, L. A. (1997). Re�ning conversational case libraries.
Proceedings of the Second International Conference on CBR (pp. 267{278).
Providence, RI: Springer.

Bergmann, R., Mu~noz-Avila, H., Veloso, M., Melis, E. (1998). Case-based rea-
soning applied to planning tasks. In M. Lenz, B. Bartsch-Spoerl, H.-D.
Burkhard, & S. Wess (Eds.) CBR Technology: From Foundations to Ap-

plications. Berlin: Springer.
Bergmann, R. & Wilke, W. (1995). Building and re�ning abstract planning

cases by change of representation language. Journal of AI Research, 3, 53{
118.

Branting, L. K., & Aha, D. W. (1995). Strati�ed case-based reasoning: Reusing
hierarchical problem solving episodes. Proceedings of the Fourteenth Inter-

national Joint Conference on AI (pp. 384{390). Montreal, Canada: Morgan
Kaufmann.

Breslow, L., & Aha, D. W. (1997). NaCoDAE: Navy Conversational Decision

Aids Environment (TR AIC-97-018). Washington, DC: Naval Research Lab-
oratory, Navy Center for Applied Research in Arti�cial Intelligence.

Carrick, C., Yang, Q., Abi-Zeid, I., & Lamontagne, L. (1999). Activating CBR
systems through autonomous information gathering. To appear in Proceed-

ings of the Third International Conference on Case-Based Reasoning. Mu-
nich, Germany: Springer.

301Using Guidelines to Constrain Interactive Case-Based HTN Planning

althoff@iis.uni-hildesheim.de

Ceranowicz, A. (1994). Modular Semi-Automated Forces. Proceedings of the
Winter Simulation Conference of the ACM (pp. 755{761). New York, NY:
IEEE.

DoD (1994). Joint tactics, techniques and procedures for noncombat evacuation
operations (Joint Report 3-07.51, Second Draft). Washington, DC: Depart-
ment of Defense.

Erol, K., Nau, D., & Hendler, J. (1994). HTN planning: Complexity and ex-
pressivity. Proceedings of the Twelfth National Conference on Arti�cial In-
telligence (pp. 1123{1128). Seattle, WA: AAAI Press.

Fikes, R.E., & Nilsson, N.J. (1971). Strips: A new approach to the application
of theorem proving in problem solving. Arti�cial Intelligence, 2, 189{208.

Kambhampati, S. (1994). Exploiting causal structure to control retrieval and
re�tting during plan reuse. Computational Intelligence, 10, 213{244.

Lambert, Kirk S. (1992). Noncombatant evacuation operations: Plan now or
pay later (Technical Report). Newport, RI: Naval War College.

Mitchell, S.W. (1997). A hybrid architecture for real-time mixed-initiative plan-
ning and control. Proceedings of the Ninth Conference on Innovative Appli-
cations of AI (pp. 1032{1037). Providence, RI: AAAI Press.

Mu~noz-Avila, H., Breslow, L.A., Aha, D.W., & Nau, D. (1998). Description and
functionality of HTE (TR AIC-98-022). Washington, DC: NRL, NCARAI.

Mu~noz-Avila, H., Aha, D.W., Breslow, L. & Nau, D. (1999). HICAP: An inter-
active case-based planning architecture and its application to noncombatant
evacuation operations. To appear in Proceedings of the Ninth National Con-
ference on Innovative Applications of Arti�cial Intelligence. Orlando, FL:
AAAI Press.

Nau, D. S., Cao, Y., Lotem, A., & Mu~noz-Avila, H. (1999). SHOP: Simple
Hierarchical Ordered Planner. To appear in Proceedings of the Sixteenth
National Conference on Arti�cial Intelligence. Stockholm, Sweden: Morgan
Kaufmann.

Racine, K., & Yang, Q. (1997). Maintaining unstructured case bases. Proceed-
ings of the Second International Conference on CBR (pp. 553{564). Provi-
dence, RI: Springer.

Sachtleben, G.R. (1991). Operation Sharp Edge: The Corps MEU (SOC) pro-
gram in action. Marine Corps Gazette, 11, 76{86.

Siegel, A.B. (1991). Eastern Exit: The noncombatant evacuation operation
(NEO) from Mogadishu, Somalia, in January 1991 (TR CRM 91-221). Ar-
lington, VA: Center for Naval Analyses.

Siegel, A.B. (1995). Requirements for humanitarian assistance and peace oper-
ations: Insights from seven case studies (TR CRM 94-74). Arlington, VA:
CNA.

Veloso, M., Mulvehill, A.M., & Cox, M.T. (1997). Rationale-supported mixed-
initiative case-based planning. Proceedings of the Ninth Conference on In-
novative Applications of Arti�cial Intelligence (pp. 1072{1077). Providence,
RI: AAAI Press.

Wilkins, D.E. (1998). Using the SIPE-2 planning system: A manual for Version
5.0 (Working Document). Menlo Park, CA: Stanford Research International,
Arti�cial Intelligence Center.

302 H. Munoz-Avila et al.

althoff@iis.uni-hildesheim.de

Speed-up, Quality and Competence

in Multi-Modal Case-Based Reasoning

Luigi Portinale1, Pietro Torasso2, Paolo Tavano2

1 Dipartimento di Scienze e Tecnologie Avanzate
Universita' del Piemonte Orientale "A. Avogadro" - Alessandria (ITALY)

2 Dipartimento di Informatica
Universita' di Torino - Torino (ITALY)

Abstract. The paper discusses the di�erent aspects concerning perfor-
mance arising in multi-modal systems combining Case-Based Reasoning
and Model-Based Reasoning for diagnostic problem solving. In particu-
lar, we examine the relation among speed-up of problems solving, com-
petence of the system and quality of produced solutions. Because of the
well-know utility problem, there is no general strategy for improving all
these parameters at the same time, so the trade-o� among such param-
eters must be carefully analyzed. We have developed a case memory
management strategy which allows the interleaving of learning of new
cases with forgetting phases, where useless and potentially dangerous
cases are identi�ed and removed. This strategy, combined with a suit-
able tuning on the precision required for the retrieval of cases (in terms
of estimated adaptation cost), provides an e�ective mechanism for taking
under control the utility problem. Experimental analysis performed on a
real-world domain shows in fact that improvements over both speed-up
and competence can be obtained, without compromising in a signi�cant
way the quality of solutions.

1 Introduction

Multi-modal reasoning systems are problem solving architectures relying on the
integration of di�erent forms of reasoning to solve a given task. Case-Based Rea-
soning (CBR) is often considered a fundamental \modality" of such systems (see
[1,4]). The reason is twofold: on the one hand, CBR can be pro�tably adopted
in a variety of di�erent problem solving tasks like diagnosis, planning or design;
on the other hand, the integration of CBR with other forms of reasoning may
alleviate some basic problems of any CBR system like the competence on a given
problem space or the quality of the obtained solutions. One of the main reasons
for adopting such kinds of hybrid architectures is then related to the possibility of
improving the \performance" of a problem solver based on �rst-principles (i.e.
a problem solver which solves problems from scratch without exploiting past
experience or heuristics). The term performance is very general and di�erent
speci�c issues related to this aspect can be identi�ed: usually the integration is
pursued in order to speed-up problem solving, so performance is identi�ed with

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 303-317, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

the resolution time; in other cases, di�erent modalities may exhibit di�erent
competence in the problem space, so performance is measured as the percent-
age of problems that can be solved with respect to the whole problem space;
�nally, in some situations di�erent methods may provide solutions of di�erent
quality, because for instance, di�erent approximations or heuristics are used, so
in this case performance is measured as a suitable metric with respect to optimal
solutions.

Unfortunately, it is well-known that an improvement obtained with respect
to a given parameter can be paid as a worsening with respect to a di�erent pa-
rameter: this is the utility problem. First identi�ed in the context of Explanation-
Based Learning [6], the utility problem has a strong impact on CBR [5, 12] and
on multi-modal architectures involving CBR [9, 15].

In the present paper, we will present a formal and experimental analysis of
the di�erent aspects involved in the utility problem for a multi-modal diagnostic
architecture combining CBR and Model-Based Reasoning (MBR): the system
ADAPtER [7]. We will discuss inter-relationships among speed-up of problem
solving, competence of the problem solver and quality of produced solutions. As
expected, the presence of the utility problem makes quite problematic to devise
a suitable treatment of the above issues, having the goal of keeping the global
performance of the system to an acceptable level. Even if there is no general
solution that may guarantee an improvement over all the parameters, we will
show that a good policy of management of the case library can produce pro�table
results in this direction. We will discuss a learning strategy called Learning by

Failure with Forgetting (LFF) and its impact on the overall performance of the
system, measured over both speed-up and competence as well as quality. The
term learning has to be intended in a very general meaning, as such a strategy
involves not only addition of cases to the case memory(learning), but also case
deletion (forgetting).

We will show the impact of LFF on performance by means of an experi-
mental comparative analysis performed on a real-world problem concerning the
diagnosis of failures in an industrial plant. Even if such analysis is relative to the
ADAPtER architecture, we argue that several results generalize to multi-modal
CBR systems.

2 Multi-Modal Diagnostic Reasoning: An Overview

The system ADAPtER [7] is a diagnostic problem solving architecture combin-
ing CBR and MBR. In particular, the MBR component makes use of behavioral
models which represent the faulty behavior of the system to be diagnosed and
adopts a formal notion of diagnosis [3]. The architecture of ADAPtER was mo-
tivated by two main reasons:

{ to improve the performance, in terms of computation time of a pure model-
based reasoning system, by providing it with capabilities of learning by ex-
perience;

304 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

{ to de�ne a formal approach to the problem of adapting retrieved solutions,
by exploiting model-based reasoning focussed on the relevant part of the
model.

Previous works [8, 9] have shown that such goals can be actually obtained, even if
theoretical results on worst-case complexity seem to challenge the �rst point: in
fact, adapting a retrieved solution of an already solved problem to be a solution
of a new problem is in general of the same order of complexity than solving the
problem from scratch (see [8]). Fortunately, in practice the worst case results are
too pessimistic and experimental data show that considerable speed-up may be
obtained by resorting to adaptation with respect to resolution from scratch.

Because of these considerations, the control strategy of ADAPtER is based on
viewing CBR as the the problem solving method most frequently used, relying
on MBR just in case of CBR failure. This means that the MBR component
should only be invoked to deal with situations that are not suitably covered by
the case base1. At a very high level of abstraction, the problem solving strategy
of ADAPtER can then be summarized as follows:

IF CBR(new-case) succeeds

THEN return(cbr-solution)

ELSE BEGIN

MBR(new-case);

LEARN(new-case);

return(mbr-solution)

END

However, considering only improvements on computational time may have some
drawbacks, because of a negative impact on other performance aspects, resulting
in a utility problem. In the next sections we will analyze in details such issues.

3 Performance Issues

Despite the fact that, in the adaptation step, CBR uses essentially the same
reasoning mechanisms of MBR, the CBR component has sometimes to sacri�ce
some aspects, in order to obtain speed-up. In particular, the MBR component
is able to produce all the \minimal diagnoses" for the input problem, i.e. all the
solutions involving the minimal (with respect to set inclusion) number of faults.
If we restrict our attention to fault models (i.e. to models describing the faulty
behavior of the system to be diagnosed), minimal diagnoses are the most concise
representation for the whole set of diagnoses; for this reason a minimal diagnosis
is in this case preferred over a non minimal one.

1 Notice that the integration between the two components is tighter than it may ap-

pear, since the adaptation step of the CBR component makes use of the same rea-

soning mechanisms involved during MBR; the main di�erence concerns the fact that

the adaptation step uses these mechanisms in a focussed way, driven by the retrieved

solution.

305Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

On the other hand, the CBR component in not always able to get this re-
sult, since it adopts a "local" strategy for searching a solution starting from
the ones that have been retrieved. Part of the problem is intrinsic to the CBR
approach, since the input problem is solved by �rst retrieving and then adapt-
ing a solution of another problem. If the input problem has a large number of
possible alternative solutions, it is clear that just adapting a single solution of
a similar problem has limited chances of getting all the solutions to the input
problem2. For this reason the set of diagnoses obtained by the CBR component
on a given problem may not cover all the possible solutions. A second problem
concerns the "minimality" issue: because of the local search strategy adopted in
adaptation, the CBR component may obtain non-minimal diagnoses. In other
words, in ADAPtER, while the MBR component is correct and complete, the
CBR one is only correct; moreover, if we measure the optimality of a solution
in terms of minimality, while MBR is always producing optimal solutions, CBR
may not. So, improving the speed-up may negatively impact on the quality of
the produced solutions.

To actually measure the impact of the multi-modal architecture on the quality
parameter, we should compare the two set of solutions produced by the whole
integrated system and the MBR component respectively. The assumption is of
course that MBR is producing optimal solutions. A possibility is then to consider
the percentage of cases for which ADAPtER produces exactly the set of solutions
produced by the MBR module. The above requirement is very restrictive, since
no comparison on the actual di�erence between a solution produced by the
integrated system and the minimal ones is considered3. Even if the quality metric
can be relaxed in a more favorable way for ADAPtER, we have adopted the above
criterion in the experiments we have performed; this has allowed us to consider
results in the most pessimistic hypothesis.

Apart from speed-up and quality, there is another parameter which is worth
considering: competence. The CBR module has a reduced competence with re-
spect to MBR: while the MBR component is in principle able to solve any diag-
nostic problem in the modeled domain, this is not true for the CBR component
whose competence strictly depend on the content of the case base. The control
strategy of ADAPtER addresses this problem by invokingMBR every time there
is a lack of competence in the CBR component. As we will see in detail in the
next sections, this also triggers the learning of the solution(s) of the input case
provided by the MBR component, in order to �ll the competence gap.

However, in practice the evaluation of competence can be trickier: in real-
word applications, diagnostic problem solving has to be performed under limited

2 Some CBR systems may address this problem by combining multiple cases (and
multiple solutions) to solve the input problem, however if the given task or domain
is not modular, very complex adaptation strategies will be needed to get all possible
solutions.

3 For example, in ADAPtER, diagnostic solutions may contain logical symbols, called
assumptions, that are used to model incompleteness in the model (see [2] for details);
since assumptions are not informative about faults, it could be reasonable to consider
as equivalent solutions di�ering only for assumption symbols.

306 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

resources and computation time is a critical resource (especially when consid-
ering diagnosis of real-time systems). In case the diagnostic system is asked to
provide a solution within a prede�ned time constraint, the practical competence

may be di�erent from theoretical competence. In such situations, the practical
competence of the MBR module may be quite far from the theoretical one, as
there may be diagnostic problems that are not solvable within the speci�ed time
limit. This problem is unavoidable, since there are diagnostic problems whose
actual complexity coincides with the prediction of theoretical complexity (NP-
complete problem [8]). It turns out that a principled integration between CBR
and MBR could also produce bene�ts in terms of practical competence.

Next section will discuss how speed-up, quality and competence should be
traded-o� for tackling the utility problem.

4 Trading-o� Speed-up, Quality and Competence

Since performance can be measured over di�erent parameters, and since an im-
provement on performance on a given parameter may degrade the performance
over another parameter, we also need to determine to what extent we have to
improve a single parameter, in order to obtain a globally e�cient system. The
aim of this section is to analyze in detail speed-up, quality and competence, by
identifying their relationship to the utility problem. In particular, in the follow-
ing we make the following assumptions: we can tune retrieval strategies, by being
more or less demanding on the \goodness" of retrieved cases4 ; we assume adap-
tation is a �xed strategy that cannot be tuned; �nally, we assume a dynamic case
library, where cases may be added or deleted depending on the circumstances.
This mean that we may act on two di�erent parameters:

{ the precision of retrieval;
{ the content and dimension of the case library.

The term precision refers in this context to the \goodness" of retrieved cases:
more precise is the retrieval, higher has to be the match between retrieved cases
and the current one. Actually ADAPtER does not use surface similarity for
retrieving cases from the case memory, since it adopts an adaptation-guided
retrieval strategy [10]. For this reason, an increase in the precision level has
the e�ect that the retrieved cases have a lower estimated adaptation cost. More
precisely, the retrieval module of ADAPtER returns the most promising cases
according to the estimated adaptation cost, just in case this cost is below a
given threshold. An increase in the precision level can be obtained simply by
decreasing the threshold used. This means that with a more demanding precision
level, retrieval may fail, because it is unable to �nd a case with a estimated
adaptation cost below the more restrictive threshold.

The goal is then to identify a level of retrieval precision and a suitable case
library, such that the overall performance of the system, measured in terms of

4 We measure the goodness of a case as the expected cost of adapting its solutions to
the current problem (see [10] for more details).

307Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

computation time, quality and competence, could justify the multi-modal choice.
Let us consider two di�erent scenarios characterized by two extreme strategies
with respect to the above parameters (i.e. level of precision and case memory
size): S1, characterized by a low precision of retrieval and a small size case mem-

ory and S2 involving a high precision of retrieval and a large case memory size.
Let us now consider how such scenarios could in
uence the system performance
and, in particular, how they impact on the single performance parameters (i.e.
speed-up, competence and quality). Such a kind of a-priori analysis could be
useful to identify situations where the e�ect of a given strategy is not obvious
and experimental analysis has to be carried on, in order to determine the actual
performance of the system.

In order to speed-up computation, the ADAPtER choice is to avoid as much
as possible the use of MBR because of its computational cost5. However, to pur-
sue this goal, the CBR component should have a quite high probability of solving
the input diagnostic problem; this implies that it has a signi�cant amount of work
to perform (searching for an adaptable case in a quite large case memory and
using complex reasoning mechanisms during adaptation) with the consequence
of increasing computation time.
Scenario S1. By considering the scenario S1, its e�ect is a potential increase of
the speed-up, since given a �xed adaptation strategy, retrieval and matching (in
our case the estimation of the adaptation cost) can be reasonably fast, because
of the limited size of the case memory. However, by adopting S1 the quality of
solution is in general not very high, because low precision in retrieval and few
cases in memory imply in general fair adaptation results. Moreover, we cannot
rely too much on MBR for quality, since if the strategy works with respect to its
goal, the number of calls to MBR has to be kept limited. With respect to com-
petence, it is not obvious what in
uence S1 may have. Indeed, competence may
be fair because retrieval has a larg probability of failure (a small case library)
and adaptation is also more prone to failure (the retrieved cased are not very
good for adaptation). This is certainly a reduction of competence for a pure CBR
system, but in a multi-modal architecture like ADAPtER, such failures trigger
the MBR component that may be able to solve the problem. However, because
of possible time constraint, even in this case there may be a failure in solving the
problem, producing a reduction of competence. On the other hand, the in
uence
on competence of a low retrieval precision may also be positive; indeed, in this
situation S1 may be able to retrieve and adapt cases that, if a higher precision
was required, would not have been considered for adaptation (i.e. they would
not have been retrieved). This aspect points out the importance of performing
an experimental evaluation (see section 6).
Scenario S2. By considering now quality and competence, a natural way for
improving both is to adopt scenario S2. Naturally, S2 will in general have a neg-
ative impact on speed-up, by augmenting the overall computation time. While
in general the quality of solutions seems to bene�t from a more precise retrieval

5 This is in agreement both with the experimental data (see [9, 15]) and with compu-
tational complexity results [8].

308 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

and from a larger number of stored cases, the in
uence on competence is also in
this case trickier. In fact, it may happen that by requiring a high precision in
retrieval, some problems will not be solved, because no suitable case is retrieved
at that precision level. This is in fact the dual aspect of the issue discussed above
(i.e. competence improvement with lower precision retrieval).

As the above discussion suggests, there seems to be no way of improving all
the parameters at the same time. A real possibility that may be pursued is to
exploit multi-modal reasoning to speed-up computation and to improve compe-
tence; this has to be done by keeping under control the unavoidable degradation
of the quality of solutions.

5 Learning by Failure with Forgetting

Essential to the case memory management task is the possibility of devising a
strategy able to keep stored only useful cases. Some approaches to case memory
management in pure CBR systems address this point by trying to estimate the
\coverage" of each case in memory and by using this estimate to guide the case
memory revision process [13]. This may also have the advantage of providing the
basis for interactive tools of case base visualization [14]. We have experienced
such a kind of approach in the context of ADAPtER, by de�ning automatic
case replacement strategies using information about adaptability among cases
[11]. The general idea is that, when a case represents a candidate for learning
(i.e. when a case is going to be added in memory), stored cases that cover the
same portion of the problem space are considered for replacement (see [11] for a
strategy involving the replacement of a single stored case against the new learned
case).

Even if this kind of approach may be quite e�ective in controlling the growth
of the case library, the results obtained have not been completely satisfactory;
some analysis we have performed showed in fact that a signi�cant number of
cases stored in the library were never been used to solve a new problem. They
were stored in memory when presented to the system for resolution, because
of a failure of the CBR component; after that, no other case presented to the
system was able to replace them, but no input problemwas solved by using them.
This kind of \useless cases" has the only e�ect of augmenting the retrieval time,
without providing any actual advantage in terms of competence or quality. For
this reason we have decided to investigate an alternative strategy based on an
idea similar to the garbage collection process adopted by some programming
languages; we called this strategy Learning by Failure with Forgetting (LFF).

From the conceptual point of view, the approach is based on an on-line

learning process where cases are learnt in case of failure of the CBR component;
this may occur either during retrieval (no case with the desired level of matching
is retrieved) or during adaptation (the adaptation heuristics fail in constructing a
solution from the retrieved one). In this situation, the case is solved by MBR and
stored into the library. However, since uncontrolled case addition may produce an

309Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

over-sized case memory [11], this process is interleaved with periodical forgetting,
where stored cases are tested for their utility and possibly eliminated.

Given this kind of strategy, it becomes fundamental to suitably de�ne the
usefulness of a stored case and the triggering process of the forgetting. Informally
a case is useless when it has either never been retrieved or never been adapted
with success, despite the fact it has been in memory for a signi�cant period
of time. In particular, the fact that a case has been retrieved by exhibiting a
subsequent failure in adaptation is more important and critical than the situation
in which a case has never been retrieved. The former situation represents a
potentially dangerous situation: the presence of false positives in the library (i.e.
the presence of cases that may appear useful for solving a problem but that
are actually not) . This may \fool" the multi-modal system, with a possibly
signi�cant slow-down during problem solving and with potential problems also
for competence. While for never retrieved cases the memory permanence time
is obviously important (less time the case has spent in memory, less probable
is in general its retrieval), for cases generating adaptation failure it should be
important to detect them as soon as possible, without considering how much
time they have spent in memory. We propose then to classify stored cases into
two categories informally de�ned as follows: a stored case is useless when it is
an \old" case and it has never been retrieved; a stored case is a false positive

when both the following conditions hold:

{ it has been retrieved at least once with adaptation failure;
{ the number of adaptation failures involving such a case is greater than the

number of adaptation successes.

To make operative the above de�nition we need to formalize the notion of \old
case". We de�ne a time window with respect to which we evaluate the utility
of a case. In particular, given a time window of width � , we consider as \old
cases" those cases that have been stored before ti +

�

2
, being ti the last time

point considered for case memory revision.
To summarize, the system starts at time t0 with an empty case memory and

learn a new case every time a failure in the CBR component occurs. A time stamp

is incremented when a new case is presented to the system for resolution6. Every
� time instants (i.e. at time ti+1 = ti + �), a forgetting process is triggered and
all cases stored at time t0 < (ti+

�

2
) are considered as \old cases". By considering

suitable statistics, useless and false positive cases are identi�ed and eliminated
from memory.
More formally, the following parameters are stored together with a case C:

hentered; C; tEi
hadaptation success; C; nSi
hadaptation failure; C; nF i

where tE is either the time of storage of case C or the last time point where a
forgetting has occurred; nS is the number of adaptation successes for case C and
nF the number of adaptation failures of C.

6 In the LFF strategy time is assumed to be discrete, with time points identi�ed by

the sequence of cases submitted to the system.

310 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

When C is stored in memory at time t0, we set tE = t0 and nS = nF = 0. If
C is retrieved and the adaptation of one of its solutions is successful, parameter
nS is incremented; on the contrary, if a failure in adaptation occurs when using
C, parameter nF is incremented. If the case C is not deleted at forgetting time
t, then we set tE = t; in fact, at time t only useful cases will remain in memory
and they will now be considered as they would have been learnt all at time t.

Given these parameters, we can de�ne more formally the classi�cation of
stored cases.

De�nition 1. A stored case C is useless at forgetting time t if there exist items

hentered; C; tEi with tE < t+ �

2
and hadaptation success; C; 0i.

A stored case C is a false positive if there exist items hadaptation failure; C; nF i
with nF > 0 and hadaptation success; C; nSi with nF > nS .

Notice that the above classi�cation is not mutually exclusive, since an \old case"
that has been retrieved at least once with failure and never with success is both
useless and false positive.
Another point that deserves discussion concerns the determination of the time
window; in fact, to consider a �xed dimension � for the time window might
not be suitable, since the need for forgetting does not depend only from time.
In particular, a parameter that has to be taken into account for forgetting is
the size of the case memory. The aim of our approach is to take under control
the growth of the case memory, in order to tune performance parameters like
computation time, quality and competence; for this reason it appears reasonable
to link the occurrence of the forgetting process to the size of the case memory. In
particular, it seems reasonable to restructure the library only when the system
exhibits a stable behavior. This means that a minimum number of cases has to
be examined from the last forgetting and that the failure rate, de�ned as the
percentage of cases that have not been solved by the CBR component in a given
time window, must not be too high. ADAPtER obtains this goal by triggering
forgetting when the current time stamp TS satis�es the following condition:

TS > max(�; kjCM j)

where � and k are positive constants and jCM j is the size (cardinality) of the
case memory. The parameter � is used to assure that, even if the case memory
has a rapid growth (as is the case in the initial phase of the life of the system,
in particular if an empty initial memory is assumed), forgetting does not take
place for a suitable time interval (i.e. at least � cases have to be examined from
the last forgetting). Every time a forgetting occurs, the time-stamp TS is reset.

Since the LFF strategy learns a new case when the MBR component is in-
voked, the width � of the current time window resulting from the above criterion
is related to the failure rate exhibited in such a window by the CBR component.
Given a period of observation of N cases, if the CBR component exhibits M

failures in such a period, we de�ne the failure rate as fr =
M

N
.

The relationship between fr and � can be formally stated by means of the
following theorem.

311Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

Theorem 1. Given an observation period of N cases with M failures (i.e. fr =
M

N
), then N > kjCMN j if and only if fr <

1

k
� �, where jCMN j is the size of

the case memory at time N and � is a positive constant depending on the size
of the initial case memory.

Proof. Since after N cases, M failures have occurred we have that jCMN j =
M + jCM0j being jCM0j the size of the initial (possibly empty) case memory.
By substitution in the relation N > kjCMN j we get

N > kjCM0j+ kM ; by considering M = frN we get
N > kjCM0j+ kfrN and then

fr <
1

k
� � with � = jCM0j

N

The above theorem states that a forgetting will occur in a given time window
if and only if the failure rate is less than a quantity that is less of the inverse
of k. It formally proves that the constant k is inversely related to the failure
rate; this means that if a low failure rate is expected, we can set a large value
for k, by letting the system working without forgetting for a signi�cant amount
of time and with a limited growth of the case memory size. Of course, if we set
a value of k that is too large for the exhibited failure rate, the above theorem
implies that an overgrowing of the case memory will occur, since the satisfaction
of the condition for triggering the forgetting will tend to be postponed. On the
contrary, setting a value of k too small with respect to the actual fault rate
will have the e�ect of an excessive occurrence of forgetting, by producing the
equivalent of thrashing in paged operating systems.

In the experiments we will describe in the next section, we have considered
a value of k = 3 and of � = 300.

6 Experimental Results and Discussion

In this section we will report on the experimental results we have performed
by implementing the LFF case management strategy in ADAPtER. We have
considered a real-world domain concerning the diagnosis of faults in an industrial
plant and we have generated a batch of 2500 cases7. The batch of cases has been
automatically generated by means of a simulator we have developed, working
on the faulty model of the domain at hand (see [11] for more details about the
parameters of the simulator.).We are then guaranteed to deal with cases that are
signi�cant for the given domain. We have considered cases with multiple faults
and in particular, the number of faulty components was at most 3. We have
performed several experiments for evaluating the impact of the LFF strategy
on performance aspects of ADAPtER; in particular, we have evaluated how the
growth of the case memory is kept under control by LFF, depending on di�erent
thresholds on retrieval precision, and its relationship with computation time,
competence and quality of produced solutions. We performed these experiments

7 We have also performed a slightly reduced analysis on a batch of 5000 cases, with

comparable results.

312 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

by starting the system with an empty case memory and by setting a time out of
100 seconds of CPU-time on resolution time (both for MBR and ADAPtER).

Table 1 compares the average computation time (given in msec. on a Pentium
II). for solving a problem with pure MBR with the average computation time of
ADAPtER using di�erent thresholds on retrieval: �1 = 12; �2 = 24 and �3 = 30.
Retrieval and adaptation times are also shown. For each mean value, we also
show (in brackets) the width of a 95% con�dence interval on that value. Given a

MBR �1 = 12 �2 = 24 �3 = 30

AVG Resol. Time 6014.86 (823.70) 4613.13 (733.12) 2962.60 (595.43) 2090.44 (483.03)
AVG Retr. Time 194.67 (3.79) 163.72 (2.99) 151.82 (2.64)
AVG Adapt. Time 48.32 (1.32) 77.25 (3.60) 88.85 (6.02)
Unsolved cases 107 84 55 35

Table 1. Computation Time Results

threshold �i, retrieval is successful if and only if the estimated adaptation cost
of the retrieved solution is less than �i; smaller is the threshold, higher is the
required precision for retrieval. In particular, for the given domain, �1 is a very
restrictive threshold (i.e. it corresponds to a very high precision). We can notice
from table 1 that a signi�cant speed-up is obtained by reducing precision of
retrieval. This produces a slight decrease of retrieval time and a slight increase
of adaptation time. However, as one can expect, augmenting precision has the
e�ect of increasing the number of cases where CBR fails in providing a solution
and therefore the expensive step of MBR has to be performed (unsolved cases
in table 1). This can also be observed by considering the number of failures of
the CBR component with respect to the number of examined cases and with
respect to the given threshold (�gure 1). More precise is the retrieval, higher
is the number of failures, since higher is the probability of not retrieving a
suitable case: data seem to suggest that the increase in probability of adapting
the retrieved solution does not compensate the larger failure rate of retrieval.

Figure 2 reports the temporal evolution of the size of the case memory, de-
pending on the number of cases examined by ADAPtER. We can notice the
particular pattern produced by LFF, with a drastic lowering of case memory
size in correspondence of each forgetting. Again, more demanding in term of
precision is the retrieval strategy, larger is the case memory, even if the number
of stored cases is actually kept under control (370 cases after 2500 resolutions
for �1, 115 for �2 and 99 for �3). Notice also, that higher is the precision, lower
is the number of activations of the forgetting phase; this is due to the higher
failure rate that causes the system to take more time to reach a stable phase.

The second parameter we have measured has been competence. In �gure 3
we have plotted the number of cases which ADAPtER as a multi-modal system
(CBR+MBR) was unable to solve within the time-out of 100 seconds of CPU-
time, with respect to the number of cases examined by the system. We can

313Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500

N
um

be
r

of
 F

ai
lu

re
s

Number of Cases

12
24
30

Fig. 1. Number of Failures of CBR Component

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

C
as

e
M

em
or

y
S

iz
e

Number of Cases

12
24
30

Fig. 2. Case Memory Size

314 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

N
um

be
r

of
 U

ns
ol

ve
d

C
as

es

Number of Cases

MBR
12
24
30

Fig. 3. Competence: Number of Unsolved Cases

notice that a less precise retrieval strategy may improve global competence,
while being able to store less cases in memory and to reduce average resolution
time. Moreover, with the considered thresholds, ADAPtER is always better in
practical competence that pure MBR. For instance, on the considered batch, the
4:28% of the cases (i.e. 107 cases) are not solved by MBR within the given time
limit, while with �3, ADAPtER fails in just the 1:4% of the cases (i.e. 35 cases).

Finally, we have investigated the quality of solution. As we mentioned in
section 3, we have adopted a very restrictive criterion for estimating the quality
of a solution provided by ADAPtER: the percentage of cases for which it returns
the minimal solutions. The quality metric is then a number in [0; 1] with 1
corresponding to optimum (100%). Quality values are plotted in �gure 4 with
respect to the number of considered cases. Higher is the precision of retrieval
strategy, higher is the average quality, so the trade-o� due to the utility problem
occurs. The important aspect to point out is the quite high quality obtained,
even by considering the very restrictive criterion we mentioned before: after 2500
case, we got an average quality of 71% for �1, 66% for �2 and 65% for �3.

However, just considering the quality in terms of minimality of the set of so-
lutions is not enough; indeed, also the intrinsic quality of the problem should be
taken into account. In fact, a diagnostic problem could be considered completely
solved if the number of (minimal) diagnoses is limited (it should be just one in
order to single out the faulty components). There is a number of reasons why
the set of (minimal) diagnoses is larger than one. In a model-based approach
to diagnosis there may be parts of the model that do not fully account for the
possible diagnostic problems that may be encountered. This does not mean that
the model-based system is not able to solve some problem, but that the model
is not su�ciently detailed in order to discriminate among competing diagnoses
(for example, the model makes use of qualitative abstractions that do not allow

315Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

Q
ua

lit
y

Number of Cases

12
24
30

Fig. 4. Quality of Solutions

the diagnostic systems to distinguish among similar behaviors). Sometimes the
problem does not concern the model, but the system to be diagnosed: the absence
of sensors or measurable parameters in the artifact to be diagnosed prevents the
diagnostic system to have su�cient information for discrimination. More often,
the reason of a large number of diagnoses depends on the under-speci�cation of
the description of the diagnostic problem (typically just some of the relevant ob-
servable parameters are known in the speci�c case). Table 2 speci�es the quality
of solutions produced by ADAPtER with respect to di�erent classes of prob-
lems. Problems in class 1 and 2 correspond to problems having 1 and 2 minimal
solutions respectively. For each class, the corresponding number of cases in the
batch of 2500 cases is reported (in brackets the corresponding percentage over
all the batch). The average quality for the given class is shown, together with
the average cumulative quality (the average quality by considering all cases in
a class less or equal than the current one) that is shown in brackets. If we take

Class Number of cases �1 = 12 �2 = 24 �3 = 30

1 734 (29%) 99% (99%) 95% (95%) 95% (95%)
2 602 (24%) 66% (82%) 65% (80%) 64% (79%)
Table 2. Quality of Solutions wrt Classes of Problems

into consideration the set of problems for which pure MBR provides just a single
solution (i.e. problems with a complete speci�cation in terms of observables), we
can see that the quality is very high and therefore for well-de�ned problems, the
multi-modal system provides in almost all the cases exactly the minimal diag-
nosis. Data reported in table 2 con�rm the hypothesis that precision in retrieval

316 L. Portinale, P. Torasso, and P. Tavano

althoff@iis.uni-hildesheim.de

is directly related to quality, but that the di�erences are not very relevant. On

the other hand, a plausible explanation of the signi�cant di�erence in quality

between problems with one minimal solution with problems with two solutions

concerns the di�culty of the CBR component to cover the whole set of solutions

provided by MBR, by adapting a single retrieved solution.

References

1. D. Aha and J. Daniels (eds.). Proc. AAAI Workshop on CBR Integrations. AAAI
Press, 1998.

2. L. Console, L. Portinale, D. Theseider Dupr�e, and P. Torasso. Combining heuristic
and causal reasoning in diagnostic problem solving. In J.M. David, J.P. Krivine,
and R. Simmons, editors, Second Generation Expert Systems, pages 46,68. Springer
Verlag, 1993.

3. L. Console and P. Torasso. A spectrum of logical de�nitions of model-based diag-
nosis. Computational Intelligence, 7(3):133{141, 1991.

4. E. Freuder (ed.). AAAI Spring Symposium on Multi-modal Reasoning. AAAI
Press, 1998.

5. A.G. Francis and A. Ram. The utility problem in case-based reasoning. Technical
Report ER-93-08, Georgia Tech, 1993.

6. S. Minton. Learning e�ective search control knowledge: an EBL approach. Techni-
cal Report CMU-CS-88-133, Dept. of Computer Science, Carnagie-Mellon Univ.,
1988.

7. L. Portinale and P. Torasso. ADAPtER: an integrated diagnostic system combining
case-based and abductive reasoning. In Proc. 1st ICCBR, LNAI 1010, pages 277{
288. Springer Verlag, 1995.

8. L. Portinale and P. Torasso. On the usefulness of re-using diagnostic solutions. In
Proc. 12th European Conf. on AI - ECAI 96, pages 137{141, Budapest, 1996.

9. L. Portinale and P. Torasso. Performance issues in ADAPtER a combined CBR-
MBR diagnostic architecture. In Proc. AAAI Spring Sympos. on Multi-Modal

Reasoning, pages 47{52, AAAI Press, Stanford, 1998.
10. L. Portinale, P. Torasso, and D. Magro. Selecting most adaptable diagnostic solu-

tions through Pivoting-Based Retrieval. In Proc. 2nd ICCBR, LNAI 1266, pages
393{402. Springer Verlag, 1997.

11. L. Portinale, P. Torasso, and P. Tavano. Dynamic case memory management. In
Proc. ECAI 98, pages 73{78, Brighton, 1998.

12. B. Smyth and P. Cunningham. The utility problem analysed: a case-based reason-
ing perspective. In LNAI 1168, pages 392{399. Springer Verlag, 1996.

13. B. Smyth and M.T. Keane. Remembering to forget. In Proc. 14th IJCAI, pages
377{382, Montreal, 1995.

14. B. Smyth and E. McKenna. Modeling the competence of case-bases. In Proc. 4th

EWCBR, LNAI 1488, pages 208{220. Springer Verlag, 1998.
15. M. van Someren, J. Surma, and P. Torasso. A utility-based approach to learning in

a mixed case-based and model-based reasoning architecture. In Proc. 2nd ICCBR,

LNAI 1266, pages 477{488. Springer Verlag, 1997.

317Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning

althoff@iis.uni-hildesheim.de

A Case-Based Methodology for Planning Individualized
Case Oriented Tutoring

Alexander Seitz

Dept. of Artificial Intelligence
University of Ulm

D-89069 Ulm, Germany
seitz@ki.informatik.uni-ulm.de

Case oriented tutoring gives students the possibility to practice their acquired
theoretical knowledge in the context of concrete cases. Accordingly, tutoring
systems for individualized learning have to take the skills of students at
applying their knowledge to problem solving into account. This paper describes
a case-based methodology for planning tutoring processes depending on the
skills of individual users. We develop methods for retrieving tutoring plans of
users with similar skills and present adaptation techniques for improving these
plans based on the student’s behavior during the corresponding tutoring
process. The developed methodology is based on the notion that a student has to
perform threads of associations in the process of problem solving.

Introduction

A steadily increasing number of case oriented tutoring systems [1,7,11,12] reflects the
experience that education should be viewed as a two-stage process: after systematic
knowledge has been internalized from literature, lectures, courses etc, it has to be
consolidated by practically applying it to concrete tutoring cases. This is especially
true for domains where diagnostic problem solving constitutes an essential element
[10].

A salient feature of case oriented tutoring systems is that a student is trained in
applying his knowledge instead of learning it from scratch. In several domains, as for
example medicine, a huge amount of cases would be necessary to impart all relevant
knowledge. On the contrary, those systems should improve the students’ skill in
applying learned knowledge in the context of concrete cases.

Great effort has been made in the past decades to adapt tutoring systems to the
demands and knowledge of individual users. They are based on facts like the user’s
goal, knowledge of the domain, background, experience or preferences [2]. One
common technique for representing the knowledge of users is the ‘overlay model’ [3].
It identifies the knowledge entities of a learning domain and represents which entities
are already learned by the student. User models are often used for offering
explanations for students’ problem solutions regarding their individual problem-
solving behavior [13] or planning tutoring processes based on the users knowledge
and preferences [9]. Unfortunately, in domains with a large knowledge background it
is difficult and expensive to build an explicit model of all domain knowledge that

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 318-328, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

might be known by the student and is used for problem solving [8]. For example, this
applies to many fields of medicine. Case oriented tutoring systems emphasize the
training of students’ skills to apply their learned knowledge, which causes additional
problems to create an explicit user model.

In the following sections a methodology is described that allows the representation
of student’s skills by representing the methods by which the student is tested on these
skills. A case base of test scenarios is built to plan further tutoring processes for new
students.

Association threads as a basis for modeling tutoring processes

One major purpose of case oriented learning is the consolidation of learned
knowledge by applying it within the context of concrete cases. The application of
knowledge may be identified as a process of performing a thread of associations to
solve a problem. This can be illustrated by examining the mental work done by
medical students when they have to suggest a therapy for a patient in a tutoring case.
An expert in this domain is able to perform direct associations between medical
findings like pain at certain anatomic regions, and diagnoses or therapy prescriptions
that result from them. With a decreasing level of skill, the student has to encounter a
more detailed thread of associations. For example, he does an explicit abstraction
from concrete patient descriptions, like “I have got pain in my belly” to the concept
“pain at the lower right abdomen” and explicitly thinks of differential diagnoses for
this finding. Then he tries to recall findings necessary to confirm or rule out certain
diagnoses and to recognize them in the patient descriptions. After having found a
diagnosis he thinks of treatments that are recommended for it. Figure 1 illustrates this
chain of reasoning.

Fig. 1. Association thread in a medical problem solving procedure

As mentioned above, it can be rather difficult to explicitly represent the
background knowledge that is necessary to perform certain tasks in a tutoring case.

N am e fin a l
d iag no s is

N am e re le va nt

sym pto m s

M a ke d iffe ren tia l
d iag n o ses

A b s trac tio n fro m
p la in tex t

Pa tien t
d escrip tio n

Im p o rtan t
sym p to m s

D ifferen tia l
d iag n o ses

R ean aly ze
p atie nt d a ta

Im p o rtan t
ev id en ce for

D D

A d d it io na l
re lev an t

 e vide nc e

F in d in d ica te d
th erap y

F in a l
d iag n o sis

In d ica ted
th erap y

319A Case-Based Methodology for Planning Individualized Case Oriented Tutoring

althoff@iis.uni-hildesheim.de

This hampers especially an explicit modeling of user knowledge. But still it is
possible to model a student’s skill on applying his background knowledge to perform
those tasks by representing the way he is tested on them. The more he is guided in his
association threads made for solving a problem, the more it is assumed that it is
difficult for him to perform those associations. The other way round, students with
lower skills in certain tasks should be more guided in performing those tasks. This
method conforms to the idea of case oriented tutoring, where students should learn to
apply the knowledge they have acquired in lectures, seminars, or from textbooks. On
the other hand, it should be contrasted to problem based learning [14], where students
develop and extend their knowledge by means of tutoring cases. But nevertheless a
case oriented tutoring system could be equipped with corrections and comments to
student actions, tips, or links to information pages in order to improve the student’s
knowledge.

 Fig. 2. Realization of a decision task for finding important guiding symptoms in a patient
description.

To allow a guidance of students through the tutoring process, an appropriate
execution model is necessary. In the context of the collaborative project Docs’n Drugs
[4], a discrete event simulation approach [6] for the implementation of dynamic
tutoring processes has been developed. In that approach, variable networks of
information and decision tasks are used to model tutoring processes. Both kinds of
tasks present information to the student, for example by describing a dialog with a
patient or displaying an x-ray picture. Specifically, decision tasks demand interaction
from the user, for example making a diagnosis. This structure lends itself to a
translation of association threads into sequences of information and decision tasks.
For example, the association step ‘abstract from patient information’ could be
transformed into a task where patient information is presented followed by a decision

N a v ig a t io n

N e x t S itu a t io n

S itu a t io n S o lu t io n

A n a m n es is

P h y s i ca l E x a m .

Te c h n ic a l E x a m .

L a b o r a to r y

D if f. D ia g n o s is

T h e r a p y

Q u i t

P ro ce e d

Yo u a r e a n ad m i tti n g p h y s i c i a n o n n i g h t d u ty in a sm a ll u r b a n h o s p i ta l.
I t is s a tu r d a y e v e n in g , 2 2 :0 0 h . X - ra y f a c ili tie s , l a b o r a t o r y, a n d o p e r a tin g r o o m a r e a v a ila b l e .

F ir s t im p r e s s io n :
A y o u n g , a d ip o s e w o m a n , w h o lo o k s p a le a n d ti m i d , is s i tt in g o n th e b e d i n fr o n t o f y o u .

C u r re n t a n a m n es is :
T h e 2 6 y e a r s o ld p a t ie n t, M s . N i n a N . , c o m p la in s a b o u t d iff u se p a in a t t h e l o w e r a b d o m e n
 an d s tr o n g v a g in a l h e m o r rh ag es fo r 6 d a y s . A d it io n a l ly to d a y e v e n in g , s tr o n g q u ea s i n e s s ,
v o m it in g a n d h e ad a c h e o cc u r e d . S h e s ay s s h e f a in t ed f o r a sh o r t ti m e o n h e r c o a ch .

W h ic h o f th e g u in d in g sy m p to m s d o y o u c h o o s e a s a b a s is t o m a k e d i ff e re n t ia l d ia g n o s es ?

D if fu se p a i n a t th e lo w e r ab d o m e n

S tr o n g q u e a s in es s a n d v o m it in g

H e ad ac h e

F a i n t

S tr o n g v a g in a l h e m o r r h ag es C o r re c tio n

A n s w er to th e q u e s ti o n an d c li c k o n t h e C o r r ec ti o n b u tt o n .

320 A. Seitz

althoff@iis.uni-hildesheim.de

task of selecting or stating the important guiding symptoms. An example how this
could be realized is depicted in Figure 2.

Tutoring processes that are modeled according to those ideas can be adapted to
students through making association steps explicit by inserting appropriate
information and decision tasks. Other adaptation techniques could be pruning the
number of possible answers in a decision task or raising the difficulty of questions in
it. For example if a student who has difficulties in making reasonable diagnoses, the
system should support him by reducing the number of choices for possible diagnoses.
Or he could be guided to explicitly think of preliminary tasks like deciding whether
necessary evidence for a diagnosis can be found in the patient description.

Thread Configurations

One case in case oriented learning can comprise several learning objectives. In
medical cases, for example, the student has to perform several tasks:

• Request for examinations to gather sufficient patient information for a final
diagnosis.

• Initiating urgent accompanying measures while taking care of a patient.

• Deciding which therapy is necessary.

• Judging if the patient has to be informed about surgical treatments.

Thus the learning objectives of a case can be described by a set of association threads
that the student has to perform in order to follow the given tasks. These threads are
sequences of association steps necessary for solving the tasks. Thereby, the last
association step within a thread is always obligatory as it produces the result of a
thread.

To realize different levels of guidance within a tutoring process, it must be possible
to vary the method of how a student is tested on certain association steps. Different
configurations of information and decision tasks that vary in difficulty can implement
those association tests. It is the task of the author to define an appropriate set of
possible test procedures for each association step and to order its elements according
to their difficulty. Formally, an association test class A for each association step is
extensionally defined by a set of association test categories, which represent the
different methods of testing a student on the association step:

{ }nccA ,,1 �= . (1)

The test categories of an association test class A are ordered by a bijective function
f on the elements of A. Increasing ordinals correspond to test scenarios with
increasing difficulty.

{ }1,,0: −→ AAf � . (2)

The author of a tutoring process may define that the highest category of a certain
association test class corresponds to omitting the association test. If that category is

321A Case-Based Methodology for Planning Individualized Case Oriented Tutoring

althoff@iis.uni-hildesheim.de

used in the tutoring process, it is assumed a priori that the student performs the
association step correctly.

By the presented formalism we can define a thread as a sequence th of association
test classes for each association step that has to be tested within the thread:

nAAAth ,,, 21 �= . (3)

Finally we can obtain instances of a thread by instantiating its association test
classes with concrete test categories. The instantiation of all threads of a tutoring case
is called a thread configuration for that case. Figure 3 shows an abstract view of
transforming association threads into a thread configuration.

 Fig. 3. Transformation of association steps into a thread configuration. The first number in a
number pair denotes the association test category used for testing an association step while the
second one is the number of possible test categories for this association step. Notice that both
thread 2 and 3 have to be passed. Dashed association steps are optional to the student

As an example, we will take a closer look at a thread containing the following
association steps:

• Find important guiding symptoms in a patient description.
• Which groups of tentative diagnoses should be considered?
• Which differential diagnoses are candidates for being the final diagnosis?
• Choose examinations that help to exclude or confirm tentative diagnoses.
• Decide on a final diagnosis.
• Think of an appropriate therapy for the final diagnosis.

Figure 2 shows how the first task could be implemented. After the student has
selected some items and pressed the “Correction” button, the tutoring system
comments his choice by showing the correct answers. Then he is able to enter the next
task by pressing the “Proceed” button. For this task, we substitute a new multiple
choice question for the previous one, which is depicted in Figure 4 and repeat the
procedure described.

���

���

��
�

��
�

���

7KUHDG �

7KUH
D
G
�

7K
UH
D
G
�

322 A. Seitz

althoff@iis.uni-hildesheim.de

 Fig. 4. Decision task for selecting tentative diagnosis groups

In a case with high difficulty, these questions may be omitted if we assume that the
student performs those tasks correctly. Thus we just display the information about the
first impression and the current anamnesis and allow the student to enter the
differential diagnosis task by making the corresponding “Differential Diagnosis”
button active. Otherwise, this button becomes active after the student has passed the
multiple choice task for tentative diagnosis groups. Tests on correct differential
diagnoses can be realized by offering the selection of items in a diagnosis list, as
shown in Figure 5.

 Fig. 5. Decision task for selecting tentative diagnoses. The right list shows possible selections,
while the left one displays the student’s actual tentative diagnosis list

. Again, the student is able to let the system correct his choice. The difficulty of this
task may be reduced by narrowing down the list of choices in the diagnosis selection
list. We could also substitute a multiple choice question with few answers for the
selection list or omit the entire differential diagnosis task. To realize the task of
selecting examinations in order to collect information to make a final diagnosis, we
may offer a set of navigation buttons instead of explicitly asking questions. Figure 6
shows active buttons for the relevant groups of examinations. Clicking one of these
buttons pops up a menu of possible examinations in this group. The student is able to
select one or more examinations from the menus. He finishes this task by clicking the
“Proceed” button again. We can vary the difficulty of this task by reducing the
number of menu items or make one or more examination group buttons inactive.
Finally, the final diagnosis and therapy tasks may be implemented in the same way as
for the tentative diagnosis groups tasks.

P le as e s e le c t o n e o r m o re lik e l y d iff e r en tia l d ia g n o se s .

S e l ec t li s t it em s an d c li c k a n a rr o w to m o v e t h e m to th e o th e r l is t .

A b o r t io n h e m o rr h a g e s
A m en o rr h e a
A p p e n d ic iti s

C h o r io n c a rc in o m a

C o lo n c a rc in o m a

D ia b e te s m e ll it u s
D o u g la s ab s ce s s
D y s m e n o r r h e a
E x t ra u t e r i n e g r a v id i ty
G o n o rr h e a
H e m o p h il ia
H e m o r r h a g ic c o lp i tis
H e m o r r h a g ic c y s ti tis

C er v i x c a r c i n o m a

C er v i x i n s u f f ic ie n c y

C y s ti c m o le

Yo u r c h o i ce D ia g n o se s

C o r re c tio n

C h o o se g r o u p s o f te n ta ti v e d i a g n o se s th a t m ig h t b e r e l ev an t!

T r a u m a

G y n e c o lo g ic d is e a se s

O b s te tr ic d is e a se s

D is ea se s o f th e g as tr o in t e s tin a l t ra c t

U r o lo g ic d is e a se s C o r re c tio n

323A Case-Based Methodology for Planning Individualized Case Oriented Tutoring

althoff@iis.uni-hildesheim.de

 Fig. 6. Task for selecting relevant examinations. The student can get information about the
patient by selecting items in the examination menus

Student modeling by adapting thread configurations

As stated above, in case oriented learning it is important to focus on the skills of a
student to apply his background knowledge in the context of concrete cases. Instead
of explicitly modeling skills of a student, they may be represented as the way a
student is tested on them, which is determined by corresponding thread
configurations. Appropriate configurations for a certain student can be obtained by
adapting model thread configurations of a tutoring case to the problems that arise
when the student works at that case.

Adaptation of thread configurations

If a thread of association steps solves a problem, and intermediate steps within this
sequence are performed perfectly by the student, an adaptation to rise the difficulty of
the thread appears to be reasonable. In this case the sequence is adapted by increasing
the difficulty for the well performed steps. As mentioned above, the maximum
difficulty for an association step may be modeled by making the performing of this
step optional to the student, assuming he is able to perform it correctly.

On the other hand if single association steps are performed badly by the student, as
he shows bad test results or makes wrong decisions, a decrease in the difficulty level

N a v ig a t io n

N e x t S itu a t io n

S itu a t io n S o lu t io n

A n a m n es is

P h y s i ca l E x a m .

Te c h n ic a l E x a m .

L a b o r a to r y

D if f. D ia g n o s is

T h e r a p y

Q u i t

P ro ce e d

Yo u a r e a n ad m i tti n g p h y s i c i a n o n n i g h t d u ty in a sm a ll u r b a n h o s p i ta l.
I t is s a tu r d a y e v e n in g , 2 2 :0 0 h . X - ra y f a c ili tie s , l a b o r a t o r y, a n d o p e r a tin g r o o m a r e a v a ila b l e .

P h y s i c i an

D o y o u ta k e an y d ru g s?

A n y c o n tr a c ep tiv es?

H a v e y o u h ad a n y p r o b l em s
 w i th th e co i l.

S e l ec t e x a m i n a tio n s y o u w an t to p e rf o r m . T h e n c l ic k th e ” C o r r e c t io n ” o r “ P r o c e e d ” b u t to n . .

P a t ie n t

N o

I d id n ’ t to le r a te t h e P il l. S o I u se th e co i l
s i n c e tw o y e a rs .

N o , I h a d n ’t .

D r u g s
P re v i o u s d i s ea se s
A ll e r g ie s
R isk f a c t o r s
F am il iy h is to r y
Ve g e ta tiv e a n a m n e s i s
S o c ia l h is t o ry

C o r re c tio n

324 A. Seitz

althoff@iis.uni-hildesheim.de

of the association step should be performed. This can be done for example by
reducing the set of possible choices for the critical step or extending the given thread
by making the association step just before the critical one obligatory. A reduction of
choices makes it easier for the student to solve a given problem. Extending the thread
with explicit milestones helps the student to form association steps in his mind.

Case-Based planning of the tutoring process

The difficulty of tutoring cases for individual students should be demanding the
student’s skills on solving those cases. Thus the overall goal of planning tutoring
processes for case oriented learning is to optimally adapt those processes to the skills
of a student in the sense of optimizing their difficulty. For that, both skills of the
student on cases he previously worked on and the improvement of his skills with
every case must be taken into account. These aspects can be modeled by the sequence
of adapted thread configurations of the tutoring cases he had been working on. For
example, the history of how a student solved a set of tutoring patient cases provides
not only facts about the problems a student had when working at those cases, but also
how fast he improved his problem solving skills from case to case.

A tutoring process has to test the student on a number of association steps that are
necessary to solve the underlying tutoring case. The difficulty of those test procedures
cannot be considered separately, but must be seen in the context of the whole case.
For example, the difficulty of a differential diagnosis task strongly depends on how
much the student has been guided and helped to collect and understand patient
information in previous abstraction or information tasks. Thus the subgoal of
optimizing the test procedure for a single association step may interact with other
subgoals. Apart from that, if explicitly created tutoring plans for a couple of student
stereotypes are not sufficient, the author of tutoring cases is faced with the difficult
problem of formulating planning knowledge based rules for individualized tutoring
processes. Summing up, there are two major problems we have to deal with.

1. Acquisition of planning rules for individualized tutoring.
2. Pursuing a set of interacting subgoals.

Case-based planning is especially suitable for both of these problems [5]. Instead
of creating new plans from scratch, it supports the reuse of old plans, which pursue a
set of subgoals and may be adapted by modification rules. The repaired plans can be
stored and used for an optimized planning in new situations.

We express tutoring plans by thread configurations. For the planning of optimal
configurations, cases are defined by a sequence of thread configurations that
correspond to the performance of a student on a series of tutoring cases. It is assumed
that a number of students are confronted with the same sets of tutoring cases within a
tutoring phase. A tutoring phase may be a practical training or a seminar about a
certain subject.

 The case base is initially filled with one or more model configuration sequences
built by authors of the tutoring system. This corresponds to building ‘rule of thumb’
plans for some student stereotypes. Generally these sequences have to be adapted as
mentioned in the previous section when a student goes through tutoring processes

325A Case-Based Methodology for Planning Individualized Case Oriented Tutoring

althoff@iis.uni-hildesheim.de

based on them. Finally, the adapted sequence will be stored as a new case for further
reuse. Given a set of initial or adapted configuration sequences, tutoring plans for
further students can be based on them. Assume that a student has passed the tutoring
process for a tutoring case based on a model configuration for this case that has been
adapted to the students’ skills. Now the system searches for sequences of thread
configurations in the case base with a thread configuration for the actual tutoring case
that is similar to the one that has been constructed by the adaptation process. By
adopting the corresponding configuration of the found sequence, the system can plan
the tutoring process for the next tutoring case the user has to solve, by using the
associated thread configuration in the found sequence. Eventually, the adopted
configuration has to be adapted to the student. For the tutoring process planning of the
third tutoring case, adapted configurations for the passed two cases can be used for
searching similar tutoring processes and so on. If thread configurations had to be
adapted within this process, the users’ history is stored in the case base as a new
exemplar for a tutoring process.

By this methodology, not only the process of finding students with similar skills is
realized, but also profiles of students with a similar improvement of skills are tracked
down and used as a basis for further tutoring process planning. Case authors do not
have to explicitly formulate tutoring process planning rules but to formulate some
model plans for further refinement. Furthermore, the subgoals of tutoring association
steps are planned as a coherent set, with regard to the student’s behavior in previous
tutoring cases.

Similarity between thread configurations

The similarity of different thread configurations for a series of tutoring cases is
reduced to separately comparing configurations for each thread within those cases.
For single thread configurations, instances of each association step in both
configurations within a thread are compared. To realize that granularity of similarity
assessment, we define a method dist that returns the distance between two elements of
a association test class A:

[]1,0: →× AAdist (4)

A simple definition of dist may be based on the ordering function f:









=

>
−

−
=

1 if , 0

1 if ,
1

)()(

),(

A

A
A

cfcf

ccdist
jAiA

jiA

(5)

Two thread configurations for the same tutoring case consist of the same set of
threads. Also the class of association tests at the same position in a thread in the two
cases is the same. Threads only vary in the association test categories at the same
position in a thread and thus can be viewed as two instances of a sequence of
association test classes:

326 A. Seitz

althoff@iis.uni-hildesheim.de

Let th1 and th2 be the two instances, namely

ncccth 112111 ,,, �= and ncccth 222212 ,,, �= . (6)

Then the similarity between the two threads represented by th1 and th2 can be
computed by the summation

n

ccdist
ththsim

n

i
iiAi∑

== 1
21

2,1

),(
)(

(7)

The summation is performed over the association test classes Ai in the thread for
which we want to compare the two instances. The range of values for sim is the
interval [0,1], according to the definition of dist.
 The thread configuration for a tutoring case consists of instantiations for each thread
in it. Thus the similarity between two thread configurations of a tutoring case may be
computed as the mean value of the similarities between corresponding thread
instances. In the same way the similarity of two thread configurations of a series of
tutoring cases can be defined as a mean value of similarities between corresponding
case thread configurations.

Conclusion

The presented methods allow the modeling of student skills by a history of how well a
student has performed on a series of tutoring cases. By this means, the explicit
representation of a student’s knowledge, which is especially difficult for case oriented
systems, can be avoided. Moreover, case histories make it possible to model the
improvement of student’s skills and thus can be used for retrieving and adapting
appropriate tutoring plans for further tutoring cases.

On the other hand, the acquisition of tutoring cases is made easier by the methods
described. The author of a tutoring case builds a set of test configurations for each
association step that has to be performed within the tutoring case. The elements of the
obtained sets just have to be ordered according to their difficulty. An explicit
assignment of user stereotypes or difficulty levels to association tests is not necessary.
Only a small set of model configurations for given student stereotypes must be
defined.
Further cooperative work within the scope of the project Docs’n Drugs will be
dedicated to the implementation of thread configurations as corresponding networks
of information and decision for testing and evaluating the proposed methods.

Additionally, research will focus on more sophisticated similarity measures
between thread configurations and explicit weightings of threads that take their
different importance for the tutoring process into account.

327A Case-Based Methodology for Planning Individualized Case Oriented Tutoring

althoff@iis.uni-hildesheim.de

References

1. Baehring T., Weichelt U., Schmidt H., Adler M., Bruckmoser S., Fischer M.:
ProMediWeb: Problem based case training in medicine via the World Wide Web.
Proceedings ED-MEDIA II, Freiburg (1998).

2. Brusilovski, P.: Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction 6 (1996) 87-129.

3. Carr B., Goldstein I.P.: Overlays: A Theory of Modeling for Computer-Aided Instruction.
MIT Press, Cambridge, MA/London (1977).

4. Docs’N Drugs – Die virtuelle Poliklinik. http://www.docs-n-drugs.de
5. Hammond K.: Case-Based Planning. Academic Press, INC., Boston (1989).
6. Martens, A., Uhrmacher, A.M.: Modeling Tutoring as a Dynamic Process - A Discrete

Event Simulation Approach. In: Proc. European Simulation Multiconference ESM'99
Vol.1, Warsaw 1.-4.6.1999, SCS, Gent, to appear.

7. Nuthalapathy F., Oh J., Elsner Ch., Altman M.: Interactive Electronic Problem Based
Learning (iePBL): An Internet based Application for Clinical Medical Education in the
PBL Case Format, Proceedings of the ED-MEDIA World-Conference, Freiburg (1998).

8. Ohlson, S.: Impact of Cognitive Theory on the Practice of Courseware Authoring. In:
Journal of Computer Assisted Learning 4 (1993) 194-221.

9. Papagni M., Cirillo V., Micarelli A.: Ocram-CBR: A Shell for Case-Based Educational
Systems. In: Leake D., Plaza E.: Case-Based Reasoning Research and Development.
Springer, Heidelberg (1997) 104-113.

10. Patel V.L., Kaufman D.R., Arocha J.F.: Steering through the murky waters of scientific
conflict: situated and symbolic models of clinical cognition. Artificial Intelligence in
Medicine 7 (1995) 413-428.

11. Scheuerer C. et al.: NephroCases. Proceedings of ED-MEDIA/ED-TELECOM 98 (1998)
2075-2076.

12. Schewe S., Reinhardt T., Betz C.: Experiences with a Knowledge Based Tutoring System
for Student Education in Rheumatology. In Proc. 5. Deutsche Tagung XPS’99 –
Wissensbasierte Systeme – Bilanz und Perspektiven, Wuerzburg, 1999.

13. Weber G.: Episodic Learnier Modeling. Cognitive Science 20 (1996) 195-236.
14. Wetzel, M.: Problem Based Learning: An Update on Problem Based Learning at Harvard

Medical School. Annals of Community-Oriented Education, 7 (1994) 237-247.

328 A. Seitz

althoff@iis.uni-hildesheim.de

Building Compact Competent Case-Bases

Barry Smyth & Elizabeth McKenna

Department of Computer Science, University College Dublin,
Belfield, Dublin 4, IRELAND

{Barry.Smyth, Elizabeth.McKenna@ucd.ie}

Abstract. Case-based reasoning systems solve problems by reusing a corpus of
previous problem solving experience stored as a case-base of individual
problem solving cases. In this paper we describe a new technique for
constructing compact competent case-bases. The technique is novel in its use of
an explicit model of case competence. This allows cases to be selected on the
basis of their individual competence contributions. An experimental study
shows how this technique compares favorably to more traditional strategies
across a range of standard data-sets.

1 Introduction

Case-based reasoning (CBR) solves problems by reusing the solutions to similar
problems stored as cases in a case-base [9]. Two important factors contribute to the
performance of a CBR system. First there is competence, that is the range of target
problems that can be successfully solved. Second, there is efficiency, the
computational cost of solving a set of target problems.

Competence and efficiency both depend critically on the cases stored in the case-
base. Small case-bases offer potential efficiency benefits, but suffer from reduced
coverage of the target problem space, and therefore from limited competence.
Conversely, large case-bases are more competent, but also more susceptible to the
utility problem and its efficiency issues [see eg., 6, 11, 12, 14]. Very briefly, the
utility problem occurs when new cases degrade rather than improve efficiency. For
example, many CBR systems use retrieval methods whose efficiency is related to the
case-base size, and under these conditions the addition of redundant cases serves only
to degrade efficiency by increasing retrieval time.

A key performance goal for any CBR system has to be the maintenance of a case-
base that is optimal with respect to competence and efficiency, which in turn means
maximising coverage while minimising case-base size. There are two basic ways of
working towards this goal. The most common approach is to employ a case deletion
strategy, as part of the run-time learning process, in order to ensure that all cases
learned increase competence and efficiency. Recent research has suggested a number
of successful deletion policies for machine learning systems [see eg., 11, 12], and
more recently, a set of novel policies designed specifically for CBR systems [16].

Deletion works well by drawing on valuable statistical run-time performance data,
but its starting point is an initial case-base that may be far from optimal. A second

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 329-342, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

(complimentary) approach is to tackle the construction of the initial case-base itself.
Instead of building a case-base from all available training instances we select only
those that are likely to contribute to performance. This ensures that the initial case-
base is near-optimal from the start. This process is referred to as editing the training
data, and in this paper we present a new editing technique designed specifically for
CBR systems.

Section 2 focuses on related editing work from the machine learning and pattern
recognition literature that can be adapted for CBR. These techniques lack an explicit
model of case competence, which, we argue, limits their effectiveness in a CBR
setting. Section 3 addresses this issue by describing a competence model that can be
used during case-base editing. Finally, Section 4 describes a comprehensive
evaluation of the new approach.

2 Related Work

Related work on pruning a set of training examples to produce a compact competent
edited set comes from the pattern recognition and machine learning community
through studies of nearest-neighbour (NN) and instance-based learning (IBL)
methods. In general, nearest neighbour methods are used in classification problems,
regression tasks, and for case retrieval. Training examples are represented as points in
an n-dimensional feature space and are associated with a known solution class
(classification problems) or continuous solution value (regression tasks) or even a
structured solution representation (case-based reasoning). New target instances (with
unknown solutions) are solved by locating their nearest-neighbour (or k nearest
neighbours) within the feature space [see eg., 1, 5, 7, 8, 18].

Since the 1960’s researchers have proposed a variety of editing strategies to reduce
the need to store all of the training examples. For instance many strategies selectively
add training examples to an edited training set until such time as consistency over the
original training set is reached; that is, until the edited set can be used to correctly
solve all of the examples in the original training set [5, 7, 8, 18, 20, 21, 22].

Cases used in CBR systems are similar to the training examples used in
classification systems and hence many of the same ideas about editing training data
can be transferred to a CBR setting. The central message in this paper is that the
successful editing of training data benefits from an explicit competence model in
order to guide the editing process. Previous NN and IBL research reflects this, but the
available models were designed for classification domains and not for case-based
reasoning. We argue the need for a new competence model designed for the specific
requirements of a case-based reasoner.

2.1 Condensed Nearest Neighbour Methods

A common approach for editing training data in NN and IBL methods is the
condensed nearest neighbour method (CNN) shown in Algorithm 1. CNN produces
an edited set of examples (the e-set) that is consistent with the original unedited
training data (the o-set) [5, 8].

330 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

O-SET ← Original training examples
E-SET ← {}
CHANGES ← true

While CHANGES Do
CHANGES ← false
For each case C∈O-Set Do
If E-SET cannot solve C Then
CHANGES ← true
Add C to E-SET
Remove C from O-Set

EndIf
EndFor

EndWhile

Algorithm 1. Condensed Nearest-Neighbour Algorithm

CNN makes multiple passes through the training data in order to satisfy the
consistency criterion. In classification problems a single pass is not sufficient as the
addition of a new example to the e-set may prevent an example from being solved,
even though it was previously solved by the smaller e-set. IB2, a common instance-
based learning approach to editing, employs a version of CNN that just makes one
pass through the training data and hence does not guarantee consistency [1].

The CNN has inspired a range of variations on its editing theme [1, 4, 5, 7, 18] but
this represents just one half of the editing story. A second strategy was inspired by the
work of Wilson [22]. While CNN filters correctly classified cases, so-called “Wilson
editing” filters incorrectly classified cases. As with the seminal work of Hart [8],
Wilson editing has inspired many follow-up studies [see 3, 10, 13, 19]. A full review
of this large body of editing work is beyond the scope of this paper and the interested
reader is referred to the references provided.

2.2 Competence Models

The CNN method suffers from two important shortcomings. First, the quality of
the edited set depends on the order in which training examples are considered.
Different orderings can result in different size edited sets with different
competence characteristics.

A second problem is that the CNN approach adopts a naïve competence model to
guide the selection of training examples. Its strategy is to add an example, e, only if it
cannot be solved by the edited set built so far – by definition such an example will
make a positive competence contribution. However, this is only true in the context of
the edited set that has been built so far. In reality after more examples are added, it
may turn out that the example, e, does not make any significant competence
contribution because it is covered by later examples. In classification problems one

331Building Compact Competent Case-Bases

althoff@iis.uni-hildesheim.de

approach is to select boundary examples for the edited set as these provide necessary
and sufficient class descriptions. CNN as it stands tends to select such boundary
examples but also contaminates the edited set with redundant interior examples [5, 7,
18] – it should be noted that alternative approaches, which focus on the selection of
non-boundary (interior) cases or the generation of classification prototypes, do also
exist (eg, [4, 21, 22]).

To address these issues the reduced NN (RNN) algorithm processes the final CNN
edited set to delete such redundant examples. Briefly, if the removal of an example
has no effect on consistency it is permanently deleted [7].

An alternative strategy is to order examples before CNN processing. One
successful ordering policy for classification problems is to use the distance between
an example and its nearest unlike neighbour (NUN). The NUN concept is based on
the idea that training examples with different classes lie close to each other only if
they reside at or near the boundaries of their respective classes; such examples have
small NUN distances. By sorting examples in ascending order of NUN distance we
can ensure that boundary examples are presented to CNN before interior examples
and in this way increase the chances that interior examples will not be added to the
final edited set [5, 18].

The NUN concept is a competence model for classification problems. It predicts
that the competence of an individual example is inversely proportional to its NUN
distance and as such provides a means of ordering training examples by their
competence contributions.

2.3 Editing Case-Bases

The question we are interested in is how can CNN type techniques be best used in a
CBR setting? In a more general sense however we are interested in how existing
editing approaches from the classification community can be married with case-based
deletion policies to produce a CBR-centric hybrid editing strategy.

Clearly the CNN concept is appropriate for CBR systems, but of course on its own
it will produce sub-optimal case-bases that are order dependent and that include
redundant cases. In the previous section we described how the NUN concept provided
insight into the competence of training examples within classification problems. An
analogous competence model is needed for case-based reasoning.

While conventional nearest-neighbour methods (or more correctly nearest-
neighbour classifier rules) are often used in CBR systems, there are often a number of
distinctions worth noting [9]. Firstly, cases are often represented using rich symbolic
descriptions, and the methods used to retrieve similar cases are correspondingly more
elaborate. Secondly, and most importantly, the concept of a correct solution can be
very different from the atomic solution classes found in classification systems, where
there are a small number of possible solution classes and correctness is a simple
equality test. For example, in case-based planning or design problems, solutions are
composite objects and the concept of correctness usually refers to a proposed target
solution that is functionally or behaviourally equivalent to the true target solution (eg.,
[9, 15]).

332 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

As a result, CBR competence is different from competence in classification
problems where boundary training examples can offer complete class coverage. Cases
do tend to be clustered according to gross solution classes. However, the ability of a
boundary case to solve an interior case is entirely dependent on the potential for
solution adaptation and the availability of limited adaptation knowledge. Thus, the
distinction between boundary and interior cases is no longer well-defined.

An implication of this argument is that the NUN distance metric may not be an
appropriate competence model for CBR applications. A new competence model,
designed specifically for CBR, is needed.

3 Modelling Case Competence

The idea that one can accurately model the competence of a case-base is a powerful
one. In fact it has lead to a number of important developments in CBR in recent times,
most notably in case deletion [16] and case-base visualisation and authoring support
[17]. In this section we will argue that similar competence models can also be used to
guide the construction of a case-base. This model differs from the model introduced
by Smyth & Keane [16] in that it provides the sort of fine-grained competence
measures that are appropriate for a CNN-type editing approach. In contrast the work
of Smyth & Keane focused on a coarse-grained competence model capable of
highlighting broad competence distinctions between cases, but incapable of making
the find-graining distinctions that are important here. We will describe a new metric
for measuring the relative competence of an individual case, and present this as a
mechanism for ordering cases prior to case-base construction (editing).

3.1 A Review of Case Competence

When we talk about the competence of a case we are referring to its ability to solve
certain target problems. Consider a set of cases, C, and a space of target problems, T.
A case, c∈C, can be used to solve a target, t∈T, if and only if two conditions hold.
First, the case must be retrieved for the target, and second it must be possible to adapt
its solution so that it solves the target problem. Competence is therefore reduced if
adaptable cases fail to be retrieved or if non-adaptable cases are retrieved [15]. We
can model these relationships according to the definitions shown in Def. 1 – 3.

Def 1: RetrievalSpace(t∈T)={c∈C: c is retrieved for t}

Def 2: AdaptationSpace(t∈T)={c∈C:c can be adapted for t}

Def 3: Solves(c,t)
 iff c∈[RetrievalSpace(t)∩AdaptationSpace(t)]

Two important competence properties are the coverage set and the reachability set.
The coverage set of a case is the set of all target problems that this case can be used

333Building Compact Competent Case-Bases

althoff@iis.uni-hildesheim.de

to solve. Conversely, the reachability set of a target problem is the set of all cases that
can be used to solve it.

Def 4: CoverageSet(c∈C)={t∈T:Solves(c,t)}

Def 5: ReachabilitySet(t∈T)={c∈C:Solves(c,t)}

If we could specify these two sets for every case in the case-base, and all possible
target problems, then we would have a complete picture of the competence of a CBR
system. Unfortunately, this is not feasible. First, due to the sheer size of the target
problem space, computing these sets for every case and target problem is intractable.
Second, even if we could enumerate every possible problem that the system might be
used to solve, it is next to impossible to identify the subset of problems the system
would actually encounter. Clearly, the best we can do is to find some approximation
to these sets by making some reasonable, simplifying assumption.

So, to characterise the competence of a case-base in a tractable fashion we make
the following Representativeness Assumption:

The case-base is a representative sample of the target problem space.

To put it another way, this assumption proposes that we use the cases in the case-base
as proxies for the target problems the system is expected to solve. This assumption
may seem like a large step, as it proposes that the case-base is representative of all
future problems encountered by the system. It could be argued that we are assuming
that all the problems faced by the system are already solved and in the case-base. We
think that this greatly overstates the reality of the situation and underestimates the
contribution that adaptation knowledge can play in modifying cases to meet target
problems. Furthermore, we would argue that the representativeness assumption is one
currently made, albeit implicitly, by CBR researchers; for if a case-base were not
representative of the target problems to be solved then the system could not be
forwarded as a valid solution to the task requirements. In short, if CBR system
builders are not making these assumptions then they are constructing case-bases
designed not to solve problems in the task domain. Of course implicitly this
assumption is made by all inductive learners, which rely on a representative set of
example instances to guide their particular problem solving task.

Armed with the representativeness assumption, we can now provide tractable
definitions for coverage (Def. 6) and reachability (Def. 7):

Def 6: CoverageSet(c∈C)={c’∈C:Solves(c,c’)}

Def 7: ReachabilitySet(c∈C)={c’∈C:Solves(c’,c)}

Intuitively, the relative sizes of these sets seem to capture the relative competence of
different cases. For example, cases with large coverage sets seem important because
they can solve many other problems and therefore should solve many of the future
target problems. Conversely, cases with small reachability sets seem important
because they must represent regions of the target problem space that are difficult to
solve (regions with a rich solution topology that require more cases for sufficient

334 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

coverage). Unfortunately an accurate measure of true case competence is more
complex than this. Overlapping sets between different cases can reduce or exaggerate
the relative competence of an individual case (see also [16, 17]).

3.2 Relative Coverage

Previous work on the competence of cases has ignored ways of measuring the precise
competence contributions of individual cases. For example, Smyth & Keane [15]
present a number of competence categories to permit a coarse-grained competence
assessment. Alternatively Smyth & McKenna [17] focus on the competence of groups
of cases. We are interested in developing a more fine-grained measure that is similar
in spirit to efficiency models such as the utility metric [11, 12].

To measure the competence of an individual case one must take into account the
local coverage of the case as well as the degree to which this coverage is duplicated
by nearby cases. To do this we define a measure called relative coverage (RC), which
estimates the unique competence contribution of an individual case, c, as a function of
the size of the case’s coverage set (see Def. 8).

Def 8:

Some of the cases covered by c will also be covered by other cases, thereby
reducing c’s unique competence. For this reason, the relative coverage measure
weights the contribution of each covered case by the degree to which these cases are
themselves covered. It is based on the idea that if a case c’ is covered by n other cases
then each of the n cases will receive a contribution of 1/n from c’ to their relative
coverage measures.

Figure 1 displays a number of cases and their relative coverage values. Case A
makes an isolated competence contribution that is not duplicated by any other cases.
Its coverage and reachability sets contain just a single case (case A itself) and so its
relative coverage value is 1; case A is a pivotal case according to the competence
categories of Smyth & Keane [16]. Case B makes the largest local competence
contribution (its coverage set contains 3 cases, B, C and D) but this contribution is
diluted because other cases also cover C and D. The relative coverage of B is 11/6
(that is 1+1/2+1/3). B is also a pivotal case but using relative coverage we can see that
it makes a larger competence contribution than A; previously such fine-grained
competence distinctions were not possible. Cases C and D make no unique
competence contribution as they only duplicate part of the existing coverage offered
by B. Consequently, C and D have relative coverage values of 5/6 and 1/3
respectively; they are both auxiliary cases according to the competence categories of
Smyth & Keane [16].

() ()()
∑

∈
=

ctCoverageSe’c ’cSetachabilityRe

1
cragelativeCoveRe

335Building Compact Competent Case-Bases

althoff@iis.uni-hildesheim.de

Fig. 1. Relative coverage values for cases. Each ellipse denotes the coverage set of its
corresponding case and each RC value is shown in brackets.

3.3 Relative Coverage & CNN

In Section 2 we suggested that the CNN editing procedure could be used to construct
compact competent cases-bases once a suitable measure could be found to sort cases
by their likely competence contributions. Relative coverage is this measure. Our
proposed technique for building case-bases is to use CNN on cases that have first
been arranged in descending order of their relative coverage contributions. This will
allow competence-rich cases to be selected before less competent cases and thereby
maximise the rate at which competence increases during the case-base construction
process.

4 Experiments

Our new editing technique is based on a specific model of competence for case-based
reasoning. We argue that it has the potential for guiding the construction of smaller
case-bases than some existing editing methods without compromising competence,
specifically CNN on its own or CNN with NUN distance ordering. In turn we believe
that, as an ordering strategy, relative coverage will continue to perform well in
traditional classification problems. In this section we validate these claims by
comparing the consistency, size, and competence of the case-bases produced using the
different editing techniques on a range of standard data-sets.

4.1 Experimental Setup

Three different editing techniques are compared for this experimental study (1) CNN
– the standard CNN approach; (2) NUN – CNN with cases ordered according to their
NUN distances; (3) RC – CNN with cases ordered according to their relative coverage
values.

336 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

Four different data-sets are used. Two, Credit (690 cases) and Ionosphere (351
cases), represent classification problems and are available from the UCI Machine
Learning Repository (www.ics.uci.edu/~mlearn/MLRepository.html) [2]. The other 2
are more traditional CBR data-sets. Property (506 cases) is also from the UCI
repository and Travel (700 cases) is available from the AI-CBR Case-Base Archive
(www.ai-cbr.org). The important point to note is that Property and Travel are not used
as classification data-sets. Instead they are used to build a case-based
recommendation system where the objective is to locate a case that is sufficiently
similar to a given target problem across a range of solution features. Consequently,
the concept of a single solution class is no longer valid in keeping with many CBR
applications and domains.

4.2 Consistency Growth

This first experiment is designed to investigate how the consistency of a case-base
(that is, competence with respect to the initial training data) varies as more cases are
added. We are interested in comparing the rate of increase of consistency for the
various editing strategies across the different data-sets.

Method: For each data-set, 3 case-bases (edited sets) are constructed by using each
of the editing strategies on the available training cases. As each case is added to a
case-base, the consistency of that case-base is measured with respect to the initial
training cases; that is, we measure the percentage of training cases that can be solved
by the case-base built so far.

Results: This experiment generates 4 consistency graphs (one for each data-set),
each containing 3 plots (one per editing strategy). The results are shown in Figures
2(a)-(d) as graphs of percentage consistency versus case-base size as a percentage of
overall training set size.

Discussion: In this experiment 100% consistency is achieved by RC with fewer
cases (albeit marginally fewer) than with any other editing strategy. Unfortunately, as
we shall see in the next experiment, this result does not hold in general. However,
aside from the size of the final edited case-bases, we do notice that the graphs indicate
that the RC method is selecting more competent cases more quickly that the other
strategies. For example, in the Travel domain the consistency of the case-base
produced by the RC strategy at the 10% size level is approximately 65% (that is 65%
of the training set can be solved by a 10% subset). In contrast, the CNN policy
produces a case-base with only 40% consistency, and NUN produces a case-base with
only 45% consistency at this 10% size level. Similar results are found in the Property
domain. The results on the classification data-sets are not as positive, but still bode
well for RC. The RC policy generally out-performs CNN and keeps pace with NUN
particularly for small case-base sizes. This leads us to conclude that the relative
coverage measure is also a valid measure of competence in traditional classification
domains.

337Building Compact Competent Case-Bases

althoff@iis.uni-hildesheim.de

40

50

60

70

80

90

100

0 10 20 30 40 50 60
60
65
70
75
80
85
90
95

100

0 5 10 15 20 25 30

20
30
40
50
60
70
80
90

100

0 5 10 15
0

20

40

60

80

100

0 10 20 30%Size

Size %

b) Credit

C
on

si
st

en
cy

 % a) Ionosp.

d) Property

C
on

si
st

en
cy

 % c) Travel

CNN NUN RC

Size %

Size %Size %

Fig. 2(a)-(d). Case-Base Consistency versus Size.

4.3 Size vs Competence

While consistency is a measure of performance relative to the training set, the true test
of editing quality is the competence of the edited set on unseen test data. In this
experiment, we compare the sizes of the case-bases to their competence on unseen
target problems.

Method: Each editing strategy is used to generate case-bases for the 4 data-sets.
However, this time 100 random test problems are removed from the training set
before case-base construction. The final size of the case-bases (at the 100%
consistency mark) and their competence over the 100 test problems is noted. This
process is repeated 100 times, each time with a different set of 100 random test
problems, to generate 1200 case-bases.

Results: For each data-set and editing strategy we compute the mean case-base
size and competence over the 100 test runs. The results are shown in Table 1. Each
cell in the table holds two values: the mean size (top value) and competence (bottom
value) of the case-bases produced by a given editing strategy on a given data-set.

Discussion: RC and NUN produce smaller case-bases than the standard CNN
approach for the classification data-sets (Ionosphere & Credit) – NUN case-bases are
marginally smaller than the RC case-bases, but to compensate the competence of the

338 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

RC case-bases is higher. In fact, with the Credit data-set the RC method produces a
case-base with a competence value that is higher than the CNN case-base which is, on
average, nearly 50 cases larger.

RC produces significantly smaller case-bases than both of the other editing
strategies for the CBR data-sets (Travel & Property). This is because relative
coverage is an explicit competence model for CBR while NUN is designed for
classification problems. In fact, we notice that in these data-sets the NUN method is
performing even worse than CNN – further evidence that the NUN distance concept is
not appropriate in a CBR setting.

Dataset/Editing CNN NUN RC
Ionosphere 61.93

85.78
46.39
84.44

49.47
85.3

Credit 344.84
58.85

297.43
58.95

299.19
60.44

Travel 184.28
89.25

196.98
88.72

165.42
86.4

Property 55.19
95.92

57.81
95.53

45.44
94.62

Table 1. A comparison of different editing strategies over the test data-sets in terms of mean
case-base size and competence. The upper value in each cell is the average size of the case-
bases produces and the lower value is the average competence value.

One of the problems with this experiment is that it is impossible to compare case-
bases with different sizes and competence values. For example we’ve already noted
that the RC method produces slightly larger case-bases than NUN in the classification
problems, but that these case-bases have better competence values. Conversely, in the
CBR data-sets, RC is producing much smaller case-bases, but these case-bases have
slightly lower competence values. What do these competence differences mean? Are
the competence drops found in the CBR data-sets because the RC method is selecting
cases that generalise poorly over the target problems, or are they a natural implication
of the smaller case-bases? If we remove cases from the CNN and NUN case-bases (or
conversely add cases to the RC case-bases) so that all case-bases are normalised to the
same size, how would this change their competence values? These questions are
answered in the next experiment.

4.4 Normalising Competence

This experiment compares the competence of the case-bases produced by the different
strategies after normalising each with respect to the size of the RC case-bases. The
argument could be made that this size-limiting experiment is artificial and that is
serves only to hamper the performance of the other algorithms. However we disagree.
We are not just interested in the ultimate size and competence of the edited case-base
that is produced by a particular editing policy. We are interested in how competence
grows as more cases are added. If, for example, the RC policy is seen to more
aggressively increase competence than the competing policies then this is an

339Building Compact Competent Case-Bases

althoff@iis.uni-hildesheim.de

important advantage, particularly if our editing strategies must work within a
resource-bounded setting where, for example the maximum size of the edited set is
limited.

Method: Each of the CNN and NUN case-bases from the previous experiment are
normalised with respect to their corresponding RC case-base by adding or removing
cases as appropriate. To ensure fairness cases are added or removed using the
appropriate strategy. For example, if a case is removed from a NUN case-base then it
will be the last case that was added.

Results: The results are shown in Table 2. Each value is the mean competence of
the case-bases produced by each of the editing strategies once they have been
normalised to the appropriate RC case-base size.

Discussion: The results are positive. The competence of the RC case-bases is
higher than the corresponding case-bases produced by the other strategies after
normalisation. This demonstrates that the RC method is selecting cases that are more
competent than those selected by any other method, backing up the results found in
section 4.2 when consistency was measured. Moreover, the relative coverage measure
performs well in both classification and CBR settings, while the NUN method
performs relatively poorly in the CBR data-sets. In fact, in Table 2 we see that the
normalised competence values for the NUN case-bases are smaller than the
competence values for the CNN case-bases, for the CBR data-sets.

Dataset/Editing CNN NUN RC
Ionosphere 84.26 85.23 85.3
Credit 58.36 59.3 60.44
Travel 85.03 83.23 86.4
Property 92.65 91.9 94.62

Table 2. The competence values of all case-bases normalised to the RC case-base size.

5 Conclusions

The ability to edit training data prior to learning has been an important research goal
for the machine learning community for many years. We have adapted a traditional
editing procedure, CNN, for use with case-based reasoning systems. The central idea
behind the adaptation is that effective editing must be based on an accurate model of
case competence, so that the competence of a case-base can be optimised with respect
to its size. A new editing technique was introduced, based on a novel measure of case
competence called relative coverage. This new technique was evaluated with respect
to a number of more conventional editing strategies and on a variety of classification
and CBR data-sets. The results were positive but tentative. The new method
performed well on all data-sets and out-performed all rivals on the CBR data-sets. In
general we saw that the relative coverage measure allowed our editing technique to
select cases with higher competence contributions than those cases selected by any
competing editing strategy.

340 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

However, before closing we would like to emphasise that this research represents
the tip of the iceberg of case-base editing. Obviously our current experiments need to
be extended to include a broader range of traditional editing techniques such as the
Wilson-editing approaches [3, 10, 13, 19, 22]. We have described a competence
model for CBR that appears to benefit the editing process, and we have integrated this
into one particular editing approach. Future work will consider the more general
properties of this model with respect to other editing strategies. We believe that,
ultimately, the optimal approach to editing case-bases will incorporate a range of
ideas from a variety of editing approaches.

References

1. Aha, D. W., Kibler, D., and Albert, M.K.: Instance-Based Learning Algorithms. Machine
Learning, 6 (1991) 37-66

2. Blake, C., Keogh, E. & Merz, C.J: UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science (1998)

3. Broder, A.Z., Bruckstein, A.M., and Koplowitz, J.: On the Performance of Edited Nearest
neighbor Rules in High Dimensions. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-15(1), (1985) 136-139

4. Chang, C.L.: Finding Prototypes for Nearest Neighbor Classifiers. IEEE Transactions on
Computers, 2-3(11), (1974) 1179-1184

5. Dasarathy, B.V.: Nearest Neighbor Norms: NN Pattern Classification Techniques. IEEE
Press, Los Alamitos, California (1991)

6. Francis, A.G. and Ram, A.: A Comparitive Utility Analysis of Case-Based Reasoning and
Control Rule Problem Solving. In: Proceedings of the 8th European Conference on
Machine Learning (1995)

7. Gates, G.W.: The Reduced Nearest Neighbor Rule. IEEE Transactions on Information
Theory, 18(3) (1972) 431-433

8. Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information
Theory, 14 (1967) 515-516

9. Kolodner, J. Case-Based Reasoning. Morgan-Kaufmann, San Mateo, California (1993)
10. Koplowitz, J. & Browm, T.A.: On the Relation of Performance to Editing in Nearest-

Neighbor Rules. Proceedings of the 4th International Joint Conference on Pattern
Recognition, IEEE Computer Society Press (1978) 214-216

11. Marckovitch, S. & Scott, P.D.: Information Filtering: Selection Mechanisms in Learning
Systems. Machine Learning, 10 (1993) 113-151

12. Minton, S.: Qualitative results concerning the utility of explanation based learning.
Artificial Intelligence, 42(2-3) (1991) 393-391

13. Penrod, C.S & Wagner, T.J.: Another Look at the Edited Nearest Neighbor Rule. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-7(2) (1977) 92-94

14. Smyth, B. & Cunningham, P.: The Utility Problem Analysed: A Case-Based Reasoning
Perspective. In: Smith, I. & Faltings, B. (eds.): Advances in Case-Based Reasoning.
Lecture Notes in Artificial Intelligence, Vol. 1168. Springer-Verlag, Berlin Heidelberg
New York (1996) 392-399

15. Smyth, B. & Keane, M.T.: Adaptation-Guided Retrieval: Questioning the Similarity
Assumption in Reasoning. Artificial Intelligence, 102 . (1998) 249-293

341Building Compact Competent Case-Bases

althoff@iis.uni-hildesheim.de

16. Smyth, B. & Keane, M.T.: Remembering to Forget: A Competence Preserving Deletion
Policy for Case-Based Reasoning Systems. In: Proceedings of the 14th International Joint
Conference on Artificial Intelligence. Morgan-Kaufmann. (1995) 377-382

17. Smyth, B. & McKenna, E. Modelling the Competence of Case-Bases. In: Smyth, B. &
Cunningham, P. (eds.): .): Advances in Case-Based Reasoning. Lecture Notes in Artificial
Intelligence, Vol. 1488. Springer-Verlag, Berlin Heidelberg New York (1998). 208-220

18. Tomek, I.: Two Modifications of CNN. IEEE Transactions on Systems, Man, and
Cybernetics, 7(2) (1976) 679-772

19. Wagner, T.J.: Convergence of the Edited Nearest Neighbor. IEEE Transactions on
Information Theory, IT-19(5) (1973) 696-697

20. Wilson, D. R. & Martinez, T.R.: Instance Pruning Techniques. In: Proceedings of the 14th

International Conference on Machine Learning (1997) 404-441
21. Wilson, D. R. & Martinez, T.R.: Reduction Techniques for Exemplar-Based Learning

Algorithms. Machine Learning (1998)
22. Wilson, D. L Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE

Transactions on Systems, Man, and Cybernetics, 2-3 (1972) 408-421
23. Zhang, J.: Selecting Typical Instances in Instance Based Learning. In: Proceedings of the

9th International Conference on Machine Learning (1992)

342 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

Footprint-Based Retrieval

Barry Smyth & Elizabeth McKenna

Department of Computer Science
University College Dublin

Belfield, Dublin 4, IRELAND

Barry.Smyth@ucd.ie
Elizabeth.McKenna@ucd.ie

Abstract. The success of a case-based reasoning system depends critically on
the performance of the retrieval algorithm used and, specifically, on its
efficiency, competence, and quality characteristics. In this paper we describe a
novel retrieval technique that is guided by a model of case competence and that,
as a result, benefits from superior efficiency, competence and quality features.

1 Introduction

Case-based reasoning (CBR) systems solve new problems by retrieving and adapting
the solutions to previously solved problems that have been stored in a case-base. The
performance of a case-based reasoner can be measured according to three criteria: 1)
Efficiency – the average problem solving time; 2) Competence – the range of target
problems that can be successfully solved; 3) Quality – the average quality of a
proposed solution. Recently, researchers have begun to investigate methods for
explicitly modelling these criteria in real systems. Their aim is twofold. On the one
hand, it is important to develop predictive performance models to facilitate evaluation
and comparative studies (see for eg., [7,12]). However, in addition, the models can
also be used to drive the development of new techniques and algorithms within the
CBR problem solving cycle. For example, a variety of different efficiency and
competence models have been used recently to guide the growth of case-bases during
learning and case-base maintenance [8, 11, 12].

In this paper we return to the classic problem of case retrieval and propose a novel
retrieval method, footprint-based retrieval, which is guided by a model of case
competence. The next section surveys related work on retrieval. Section 3 describes
the model of case competence that forms the basis of our new retrieval method, which
is discussed in Section 4. Finally, before concluding, Section 5 describes a
comprehensive set of experiments to evaluate the performance of the new algorithm.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 343-357, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

2 Related Work

The retrieval process has always received the lion’s share of interest from the CBR
community. All CBR systems have at least a retrieval component, and the success of
a given system depends critically on the efficient retrieval of the right case at the right
time. Every retrieval method is the combination of two procedures; a similarity
assessment procedure to determine the similarity between a given case and target
problem, and a procedure for searching the case memory in order to locate the most
similar case. Research on the former topic has focussed on developing efficient and
accurate similarity assessment procedures capable of evaluating not just the similarity
of a case but also other criteria such as its adaptability (see for eg., [5, 10]).

In this paper we focus on the search procedure. Research in this area has been
concerned with reducing the search needed to locate the best case without degrading
competence or quality [2, 3, 4, 6, 9, 1, 15]. The simplest approach to retrieval is an
exhaustive search of the case-base, but this is rarely viable for large case-bases. Thus
the basic research goal is to develop a strategy that avoids the need to examine every
case. Most approaches achieve this by processing the raw case data in order to
produce an optimised memory structure that facilitates a directed search procedure.

One approach is to build a decision-tree over the case data (see for eg., [14]). Each
node and branch of the tree represents a particular attribute-value combination, and
cases with a given set of attribute-values are stored at the leaf nodes. Case retrieval is
implemented as a directed search through the decision tree. These approaches are
efficient but may not be appropriate for case-bases with incomplete case descriptions,
or where the relative importance of individual case features can change.

Spreading activation methods (eg., [2]) represent case memory as an
interconnected network of nodes capturing case attribute-value combinations.
Activation spreads from target attribute-value nodes across the network to cause the
activation of case nodes representing similar cases to the target. The approaches are
efficient and flexible enough to handle incomplete case descriptions, however there
can be a significant knowledge-engineering cost associated with constructing the
activation network. Furthermore the spreading-activation algorithm requires specific
knowledge to guide the spread of activation throughout the network. Related network-
based retrieval methods are proposed by Lenz [6] and Wolverton & Hayes-Roth [15].

Perhaps the simplest approach to controlling retrieval cost is to employ an
exhaustive search on a reduced case-base. This strategy is common in the pattern-
recognition community to improve the performance of nearest-neighbour techniques
by editing training data to remove unnecessary examples (eg., [1, 4]). Many editing
strategies have been successfully developed, often maintaining retrieval competence
with an edited case-base that is significantly smaller than the full case-base.

With all of the above methods there is an inherent risk in not examining every case
during retrieval. The optimal case may be missed, which at best can mean sub-optimal
problem solving, but at worst can result in a problem solving failure. In this paper we
propose a novel retrieval method based on the idea of searching an edited subset of
the entire case-base. The key innovation is that retrieval is based on two searches of
two separate edited subsets. The first search identifies a reference case that is similar
to the target problem. This case acts as an index into the complete case-base, and the
second search locates the best available case in the region of the reference case. In

344 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

this sense our method is related to the “Fish-and-Shrink” strategy [9] where cases are
linked according to specific aspect similarities. However, our method is unique in its
use of an explicit competence model to guide the selection of a non-arbitrary case.

3 A Model of Case Competence

Competence is all about the number and type of target problems that a given system
can solve. This will depend on a number of factors including statistical properties of
the case-base and problem-space, and the proficiency of the retrieval, adaptation and
solution evaluation components of the CBR system in question. The competence
model described in this section is based on a similar model first introduced by Smyth
& McKenna [12]. The present model introduces a number of important modifications
to increase the effectiveness and general applicability of the model.

In this paper, the crucial feature of our competence model is that it constructs a
subset of the case-base called the footprint set, which provides the same coverage as
the case-base as a whole. This footprint set, and its relationship to the complete case-
base, is central to our new retrieval algorithm.

3.1 Coverage & Reachability

Consider a set of cases, C, and a space of target problems, T. A case, c∈C, can be
used to solve a target, t∈T, if and only if two conditions hold. First, the case must be
retrieved for the target, and second it must be possible to adapt its solution so that it
solves the target problem. Competence is therefore reduced if adaptable cases fail to
be retrieved or if non-adaptable cases are retrieved. We can model these relationships
according to the definitions shown in Def. 1 – 3.

Def 1: RetrievalSpace(t)={c∈C: c is retrieved for t}

Def 2: AdaptationSpace(t)={c∈C: c can be adapted for t}

Def 3: Solves(c,t) iff c∈[RetrievalSpace(t) ∩ AdaptationSpace(t)]

Two important competence properties are the coverage set and the reachability set.
The coverage set of a case is the set of all target problems that this case can solve.
Conversely, the reachability set of a target problem is the set of all cases that can be
used to solve it. By using the case-base as a representative of the target problem space
it is possible to estimate these sets as shown in Def. 4 & 5 (see also [11]).

Def 4: CoverageSet(c)={c’∈C:Solves(c,c’)}

Def 5: ReachabilitySet(c)={c’∈C:Solves(c’,c)}

345Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

Furthermore, we use the term related set to refer to the set produced from the union of
a case’s coverage and reachability sets.

Def 6: RelatedSet(c)= CoverageSet(c) ∪ ReachabilitySet(c)

3.2 Relative Coverage

The size of the coverage set of a case is only a measure of its local competence. For
instance, case coverage sets can overlap to limit the competence contributions of
individual cases, or they may be isolated and exaggerate individual contributions [11,
12]. It is actually possible to have a case with a large coverage set that makes little or
no contribution to global competence simply because its contribution is subsumed by
the local competences of other cases. At the other extreme, there may be cases with
relatively small contributions to make, but these contributions may nonetheless be
crucial if there are no competing cases.

Def 7:

() ()()
∑

∈
=

ctCoverageSe’c ’cSetachabilityRe

1
cragelativeCoveRe

For a true picture of competence, a measure of the coverage of a case, relative to other
nearby cases, is needed. For this reason we define a measure called relative coverage
(RC), which estimates the unique competence contribution of an individual case, c, as
a function of the size of the case’s coverage set (see Definition 7). Essentially, relative
coverage weights the contribution of each covered case by the degree to which these
cases are themselves covered. It is based on the idea that if a case c’ is covered by n
other cases then each of the n cases will receive a contribution of 1/n from c’ to their
relative coverage measures.

The importance of relative coverage is that it provides a mechanism for ordering
cases according to their individual, global, competence contributions. In section 3.4
we will see how this allows us to represent the competence of a complete case-base in
terms of a subset of cases called the footprint set.

3.3 Competence Groups

As a case-base grows clusters of cases tend to form distinct regions of competence.
We can model these regions as competence groups (see Figure 1). A competence
group is a collection of related cases, which together make a collectively independent
contribution to overall case-base competence.

Def 8: For c1, c2 ∈ C, SharedCoverage(c1, c2)
 iff [RelatedSet(c1) ∩ RelatedSet(c2)]

The key idea underlying the definition of a competence group is that of shared
coverage (see Definition 8). Two cases exhibit shared coverage if their related sets

346 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

overlap. This is seen as an indication that the cases in question make a shared
competence contribution, and as such belong to a given competence group.

Figure 1. The formation of competence groups and the footprint set in a case-base.

Shared coverage provides a way of linking related cases together. Formally, a
competence group is a maximal collection of cases exhibiting shared coverage (see
Definition 9). Thus, each case in a competence group must share coverage with some
other case in the group (this is the first half of the equation). In addition, the group
must be maximal in the sense that there are no other cases in the case-base that share
coverage with any group member (this is the second half of the equation).

Def 9: For G = {c1,...,cn} ⊆ C,

 CompetenceGroup(G) iff ∀ci∈G,∃cj∈G-{ci}: SharedCoverage(ci,cj) ∧

 ∀cj∈C-G,¬∃cl∈G: SharedCoverage(cj,cl)

3.4 The Footprint Set

The footprint set of a case-base is a subset of the case-base that covers all of the cases
in the case-base1 – it is related to the concept of a minimal consistent subset in
classification research (see for eg., [3]). By definition, each competence group makes
a unique contribution to the competence of the case-base. Therefore, each competence
group must be represented in the footprint set. However, not all of the cases in a given
competence group are included in this subset (see Figure 1). For example auxiliary
cases make no competence contributions [11] – an auxiliary case is a case whose
coverage set is completely subsumed by the coverage set of another case.

The construction of the footprint set is carried out at the group level. For each
group we compute its group footprint, that is, the subset of group cases that
collectively cover the entire group. The algorithm in Figure 2 is used for identifying
the group footprint cases; it is a simple modification of the CNN/IB2 algorithms (see
for eg., [1, 4]). The first step is to sort the cases in descending order of the relative
coverage values; this means that cases with large competence contributions are added
before cases with smaller contributions, and thus helps to keep the footprint size to a

1 The footprint concept used here should not to be confused with Veloso’s concept of footprint

similarity (see [13]). Our present notion is based on the footprint concept introduced in [11].

347Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

minimum. The group footprint is then constructed by considering each case in turn,
and adding it to the group footprint only if the current footprint does not already cover
it. Note that a number of passes over the group cases may be necessary if new
additions to the footprint can prevent previously covered cases from being solved, as
does occur in many classification problem domains. Finally, the overall footprint set
is the union of all of the cases in the individual group footprints.

Group ← Original group cases sorted according to their RC value.
FP ← {}
CHANGES ← true

While CHANGES Do
CHANGES ← false
For each case C∈Group Do

If FP cannot solve C Then
CHANGES ← true
Add C to FP
Remove C from Group

EndIf
EndFor

EndWhile

Figure 2. The Group Footprint Algorithm.

Note that the relationship between the footprint set and the complete case-base is
preserved. By using the related set of a footprint case we can associate it with a set of
similar cases from the complete case-base. This critical link between the footprint set
and the case-base is a key element in our new retrieval algorithm.

Target ← Current target problem
CB ← Original case-base
FP ← Footprint Set

Stage 1
ReferenceCase ← a case in FP that is closest to the Target.

Stage 2
RelatedSet ← RelatedSet(ReferenceCase)
BaseCase ← a case in RelatedSet that is closest to Target

Figure 3. The Competence-Guided Retrieval Procedure.

4 Footprint-Based Retrieval

The objective in this paper is to present footprint-based retrieval, a simple but novel
approach to case retrieval that is comprised of two separate stages. Stage one is

348 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

designed to focus the search in the local region of the case-base that contains the
target problem. Stage two then locates the nearest case to the target in this region. The
key innovation of the approach stems from its direct use of a model of case
competence to guide the retrieval process. The basic algorithm is shown in Figure 3
and the retrieval process is illustrated in Figure 4.

4.1 Stage 1: Retrieving from the Footprint Set

The footprint set is typically much smaller than the full case-base, and this means that
the process of searching the footprint set is much less expensive than searching the
entire case-base. During the first stage of retrieval the target problem is compared to
each case in the footprint, in order to locate the case that best matches the target. This
case is termed the reference case.

The reference case provides important clues concerning the ultimate solvability of
the target problem, even at this early stage of problem solving. For example, the
reference case may be able to solve the target problem as it stands, and further
retrieval work may not be needed, especially if an optimal case is not required.
However, the real importance of the reference case is that it provides an index into the
full case-base for the next stage of retrieval.

4.2 Stage 2: Retrieving from the Related Set

The reference case may, or may not, be able to solve the current target problem, it
may even be the closest case to the target in the entire case-base – however, this
cannot be guaranteed. The objective of the next stage of retrieval is to compare the
target problem to other (non-footprint) cases in the case-base in order to locate the
most similar case in the entire case-base. The footprint case selected in stage one acts
as a reference point for this next stage of retrieval. Only the cases nearby to the
reference case need to be compared to the target.

During the construction of our competence model the related set of each case, c, is
computed. The cases in this set are precisely those cases that are nearby to c.
Therefore, during the second stage of retrieval each of the cases in the reference
case’s related set is compared to the target problem. Again, as in stage one, this is an
inexpensive procedure, compared to searching the entire case-base, since each related
set contains only a very small subset of the entire case-base.

4.3 Discussion

One way to think about the proposed retrieval method is as a single search through
one subset of the entire case-base. In this sense the new technique looks very similar
to other methods such as CNN retrieval. However, there is one important difference.
The subset used by a technique such as CNN is computed once, at training time,
without reference to a specific target problem – essentially an eager learning
technique. However, the new method combines cases from a similar once-off subset
of the entire case-base with additional cases that have been chosen with respect to a

349Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

particular target problem – the additional cases are chosen according to a lazy
learning policy.

This turns out to be an essential feature. It allows the proposed retrieval approach
to adapt its search space to the characteristics of an individual target problem. This in
turn greatly improves the competence and quality of the retrieved cases.

Figure 4. Footprint-based retrieval is a two-stage retrieval process. First, the footprint case that
is nearest to the target problem is identified. Second, the case from its related set that is nearest
to the target is identified and returned as the base case.

5 Experimental Studies

The footprint-based retrieval technique has been described, which, we claim, benefits
from improved efficiency, competence, and quality characteristics. In this section we
validate these claims with a comprehensive experimental study.

5.1 Experimental Setup

Altogether four different retrieval methods are evaluated; all use a standard weighted-
sum similarity metric. The first (Standard) is the brute force, nearest-neighbour
method where the target case is compared to every case in the case-base and the most
similar case is retrieved. The second method (CNN) is a standard way to reduce
retrieval time by producing an edited set of cases using the standard CNN approach.

350 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

The third method (FP) is analogous to the CNN method, except that the footprint set
of cases is used as the edited set – this is equivalent to running stage one of footprint-
based retrieval only. Finally, the fourth technique (FPRS) is the full footprint-based
approach. Note that by comparing the FP and FPRS results in the following sections
we can evaluate the contributions of each retrieval stage separately.

Two standard data-sets are used in the study. The first is a case-base of 1400 cases
from the Travel domain. Each case describes a vacation package using a range of
continuous and discrete features such as: type of vacation; number of people; length
of stay; type of accommodation, etc. The case-base is publicly available from the AI-
CBR case-base archive (see http://www.ai-cbr.org). The second data-set contains 500
cases from the Property domain, each describing the residential property conditions in
a particular region of Boston. This data-set is publicly available from the UCI
repository (see http://www.ics.uci.edu/~mlearn/MLRepository.html)

These data-sets are processed to produce a range of different case-base sizes and
target problem sets. In the Travel domain we produce 10 case-base sizes, ranging
from 100 cases to 1000 cases, with accompanying target problem sets of 400 cases.
For the Property domain we produce 6 case-base sizes from 50 to 300 cases, and 200
target problems. In each domain, for each case-base size n, we produce 100 different
random case-bases and target problem sets to give 1000 test case-bases for the Travel
domain and 600 test case-bases for the Property domain. There is never any direct
overlap between a case-base and its associated target problem set.

5.2 Efficiency

The first experiment is concerned with evaluating the efficiency of the retrieval
algorithms over a range of case-base sizes. Efficiency is measured as the inverse of
the number of cases examined during retrieval. This is a fair measure as all four
algorithms perform a simple search through a set of cases using the same similarity
operator.

Method: Each case-base of size n is tested with respect to its target problem set
and the average retrieval cost for the set of targets is computed. This cost is then
averaged over the 100 case-bases of size n. This produces an average retrieval cost
per target problem for each case-base size.

Results: These retrieval efficiency results are shown in Figure 5(a) - (d) as plots of
efficiency (inverse number of cases examined during each retrieval) versus case-base
size, for the Travel domain and the Property domain, respectively. Figures 4 (a) and
(b) show the mean retrieval cost for each of the four retrieval algorithms as case-base
size increases, however since the CNN, FP, and FPRS curves are difficult to
distinguish, Figures 5(c) and (d) show additional detail over a restricted efficiency
range. As expected, the Standard retrieval method performs poorly, while the three
edited retrieval methods perform much better. Note that the FP curves also show how
small the footprint set is with respect to overall case-base size.

Discussion: For small and medium case-base sizes both of the footprint-based
methods (FP and FPRS) out-perform the CNN approach. However, eventually the
FPRS method may become marginally less efficient than the CNN and FP methods;
this is seen after the 600 case mark in the Travel domain (see Figure 5(c)), but is not

351Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

evident in the Property domain.. The reason for this is the second stage of retrieval in
the FPRS method. CNN and FP do not incur this extra cost. For small and medium
sized case-bases the related sets of cases are small and so this extra cost does not
register as significant. However, as the case-base grows, so too does the average size
of a related set, and therefore, so too does the cost of this second phase of retrieval.
This second stage cost remains low however, and, we argue, is comfortably offset by
the significant benefits for FPRS when it comes to competence and quality, as we
shall see in the following sections.

Case-Base Size

E
ff

ic
ie

nc
y

(a)

Case-Base Size

E
ff

ic
ie

nc
y

(b)

Standard
CNN
FP
FPRS

Standard
CNN
FP
FPRS

0

50

100

150

200

250

300

350
50 100 150 200 250 300

0

200

400

600

800

1000

1200
100 200 300 400 500 600 700 800 900 1000

Standard
CNN
FP
FPRS

Standard
CNN
FP
FPRS

40

60

80

100

120

140

160
100 200 300 400 500 600 700 800 900 1000

30

40

50

60

70

80

90

100

110

120
50 100 150 200 250 300

Case-Base Size

E
ff

ic
ie

nc
y

(c)

CNN
FP
FPRS

Case-Base Size

E
ff

ic
ie

nc
y

(d)

CNN
FP
FPRS

Figure 5. Efficiency vs. Case-Base Size for the Travel (a & c) and Property (b & d) domains
respectively. Graphs (c & d) show additional detail for the CNN, FP, and FPRS results.

5.3 Competence

There is typically a tradeoff between the efficiency and competence of a retrieval
technique. In particular, since the footprint and CNN methods do not examine every
case in the case-base, it is possible that important cases are missed during retrieval
thereby limiting the overall problem solving competence. In this experiment we look
at how each retrieval method performs in terms of competence, where competence is
defined to be the percentage of target problems that can be successfully solved by a
given retrieval algorithm.

Method: Each case-base of size n is tested with respect to its associated set of
target problems, and the competence of each retrieval method over these target
problems is computed (that is, the percentage of target problems that can be correctly

352 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

solved using each retrieval method). This cost is averaged for each of the 100 case-
bases of size n to compute a mean competence for each case-base size and retrieval
method.

40
45
50
55
60
65
70
75
80
85
90

50 100 150 200 250 300
60

65

70

75

80

85

90

95

100

100 200 300 400 500 600 700 800 900 1000

Case-Base Size

C
om

pe
te

nc
e

(%
)

(a)

Case-Base Size
C

om
pe

te
nc

e
(%

)

(b)

Standard
CNN
FP
FPRS

Standard
CNN
FP
FPRS

Figure 6. Competence vs. Case-Base Size for (a) the Travel, and (b) the Property domains.

Results: The results are displayed as graphs of competence versus case-base size
for each domain in Figure 6(a) and (b). Each graph shows the results for the four
different retrieval methods. The trade-off between retrieval efficiency and retrieval
competence now becomes clearer. By definition, the Standard retrieval method
defines the optimal competence for each case-base size in the sense that it guarantees
the retrieval of the nearest case to a given target problem, which for our purposes is
assumed to be the correct case. This assumption is typical in most traditional CBR
systems but it may not hold in other domains such as classification problems – future
work will focus on this issue further. In this experiment the important thing to note is
the difference between each of the edited retrieval methods and the Standard method.
It is clear that in both domains, and for every case-base size, the FPRS method
outperforms the CNN and FP methods. In fact the FPRS method exhibits competence
characteristics that are nearly identical to the optimal Standard method results. For
example, Figure 6(b) shows that for the Property domain the competence of the
Standard method, at the 300 case mark, is 86%. Compare this to competence of
84.5% for the FPRS method but only 77% and 79% for the FP and CNN methods
respectively.

Discussion: The reason for the improved competence of the FPRS method is its
second, target-specific retrieval stage. During this stage the FPRS method searches a
small but dense set of cases from the original case-base in the region of the target
problem, and thus benefits from the additional detail of the full case-base in the
vicinity of the target problem. The CNN and FP methods derive no such benefit from
their single stage search since their edited sets lack the detail of the original case-base
in the region of the target problem.

5.4 Quality

In many problem solving settings (for example classification problems) the notion of
solution quality is not meaningful – the concept of quality is implemented as the

353Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

accuracy of class prediction, and a solution class is either correct or it is not.
However, in other domains and tasks quality is vitally important. There may be a
wide range of correct solutions to a problem that lie on a quality continuum. Different
retrieval algorithms can have similar competence characteristics but very different
quality characteristics – they may facilitate the solution of the same range of
problems, but the quality of their proposed solutions may differ significantly. In
general, solution quality is a function of the distance between the target and the
retrieved case. As this distance increases, the amount of adaptation needed also tends
to increase, and as adaptation work increases, solution quality tends to degrade. This
correlation between similarity distance, adaptation effort, and ultimate solution
quality is typical in many CBR systems. Of course pairing similarity and quality in
this way does simplify the quality issue, but we believe that it is nonetheless a valid
and useful pairing, one that allows us to at least begin to understand the implications
that footprint-based retrieval may have for solution quality. The question to be
answered in this experiment then is exactly how close do the CNN, FP, and FPRS
methods get to the optimal quality level of the Standard approach?

Method: As in the earlier experiments, each case-base of size n is tested with
respect to its target problem set. This time the average distance between target and
retrieved case is computed. This distance is then averaged over the 100 case-bases of
size n to produce a mean distance per target problem for each case-base size. The
inverse of this average distance is used as a quality measure.

5

6

7

8

9

10

11

12

13

14
50 100 150 200 250 300

0

2

4

6

8

10

12

14

16
100 200 300 400 500 600 700 800 900 1000

Case-Base Size

Q
ua

lit
y

(a)

Standard
CNN
FP
FPRS

Case-Base Size

Q
ua

lit
y

(b)

Standard
CNN
FP
FPRS

Figure 7. Quality vs. Case-Base size for (a) the Travel, and (b) the Property domains.

Results: The results are displayed in Figure 7(a) and (b) as graphs of quality
(decreasing average distance) versus case-base size for the Travel and Property
domains, respectively. The results show a clear separation of the four algorithms into
two groups. The Standard and FPRS methods perform significantly better than the FP
and CNN methods. In fact, the FPRS method displays a retrieval quality that is
virtually identical to that of the Standard method. For example, Figure 7(a) shows that
for the Travel domain the average distance of retrieved case from a target problem, at
the 1000 case mark for the Standard and FPRS methods, is 2.33 and 2.37,
respectively. This is compared to values of 5.1 and 5.3 for the CNN and FP methods
respectively. Thus, the quality of FPRS is more than twice that of a CNN or FP.

Discussion: Clearly, from a quality viewpoint, the FPRS method benefits greatly
from its second retrieval stage, a benefit that can be seen directly in the graphs as the

354 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

difference between the FPRS and FP quality curves. In fact, it is interesting to note
that for both domains, the difference in quality between the FPRS method and the
CNN and FP methods is itself increasing with case-base size.

5.5 Optimality

So far we have seen that the FPRS method benefits from superior efficiency,
competence and quality characteristic. We have shown that the method approaches
the optimal competence and quality characteristics of an exhaustive case-base search,
while at the same time benefiting from the efficiency characteristics of edited case-
base methods such as CNN. This last experiment is a refinement of the above
competence and quality experiments. It is concerned with investigating retrieval
optimality, that is, the ability of a retrieval algorithm to select the closest case to a
target problem. Obviously, the Standard method will always retrieve this optimal
case. The same is not true of CNN since it may not have access to these optimal cases
– they may have been dropped during the editing process. The question that remains
to be answered is: how often does the FPRS method retrieve the optimal case?

Method: As in the earlier experiments, each case-base of size n is tested with
respect to its target problem set. This time we are interested in how often each of
FPRS, FP, and CNN select the same case for a target problem as the Standard
method.

Results: The results are displayed in Figure 8(a) and (b) as graphs of optimality
versus case-base size for the Travel and Property domains, respectively. The results
show clearly that the FPRS method is far superior to the CNN and FP methods. In fact
in both domains, and for all case-base sizes, FPRS optimality is at least 90%. In
contrast, the optimality of the CNN and FP methods decreases with case-base size and
fall to as low as 15% for the Travel domain (at 1000 cases) and 35% for the Property
domain (at the 300 case mark).

Discussion: Of course the reason for the poor performance of the CNN and FP
methods is that they do not have access to an entire case-base, and therefore, they do
not always have access to the optimal case. For example, in the Travel domain, the
CNN case-base at the 1000 case mark contains an average of 135 cases, that is, 13.5%
of the total cases. Therefore, all other things being equal, we can expect the optimality
of CNN, at the 1000 case mark, to be as low as 13.5%, a prediction that conforms
well to the observed value of 15% optimality (see Figure 8(a)). While the FPRS
method does not explicitly eliminate any cases from the case-base, during any given
retrieval it is limited to a search of a small subset of these cases; namely, the FP set
plus the related set of the reference case. Like the CNN subset, the FPRS subset is
small relative to the entire case-base. For example, at the 1000 case mark in the
Travel domain, the FPRS subset is about 14% of the case-base, and so one might
expect FPRS optimality to be comparably low. However, the results show that the
FPRS method has a retrieval optimality of 96% for the 1000 case mark in the Travel
domain (see Figure 8(a)). The critical factor is that part of the FPRS subset is target
specific. The related set has been chosen with reference to a specific target problem
and, therefore, it is likely to contain the optimal case for a given target. This makes all
of the difference, and ensures near perfect retrieval optimality for the FPRS method.

355Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

0
10
20
30
40
50
60
70
80
90

100

50 100 150 200 250 300
0

10
20
30
40
50
60
70
80
90

100

100 200 300 400 500 600 700 800 900 1000

Case-Base Size

O
pt

im
al

 R
et

ri
ev

al
s

(%
)

(a)

Case-Base Size

O
pt

im
al

 R
et

ri
ev

al
s

(%
)

(b)

Standard
CNN
FP
FPRS

Standard
CNN
FP
FPRS

Figure 8. Percentage of Optimal Retrievals vs. Case-Base size for (a) the Travel, and (b) the
Property domains.

6 Conclusions

In this paper we describe footprint-based retrieval, a novel retrieval approach that uses
an explicit model of case competence to guide search. The approach consists of two
distinct stages. During stage one, a compact competent subset of the case-base is
searched to retrieve a case that is similar to the current target problem. This case acts
as a reference point for the full case-base. During stage two the cases nearby to this
reference case are searched and the closest one to the target is retrieved. A
comprehensive evaluation of the retrieval technique shows that the approach benefits
from superior efficiency, competence, and quality characteristics when compared to
more traditional retrieval techniques.

The new method relies heavily on the availability of a comprehensive model of
case competence and, of course, there is a cost associated with the construction of this
model. In fact we can show that the model construction is O(n2) in the size of the
case-base. However, for an existing case-base this can be thought of as an additional
once-off setup cost and as such does not contribute an additional runtime expense.

Obviously the success of footprint-based retrieval will depend very much on the
properties of the footprint set constructed for a given case-base. In this paper we have
described one particular footprint construction algorithm based on CNN. However,
other variations are possible and our future research will focus on a complete
investigation of alternative approaches to footprint construction.

Our current work continues to investigate the issue of performance modelling in
CBR, and we believe that predictive models hold the key to a wide range of open
problems. We are currently building a range of applications to demonstrate a variety
of different uses for performance models such as our model of competence. For
example, we have already applied competence models to the problems of case-base
maintenance, case deletion, case-base construction, and authoring support.

356 B. Smyth and E. McKenna

althoff@iis.uni-hildesheim.de

References

1. Aha, D.W., Kibler, D., and Albert, M.K.: Instance-Based Learning Algorithms. Machine
Learning 6 (1991) 37-66.

2. Brown, M.G.: An Underlying Memory Model to Support Case Retrieval. In: Topics in
Case-Based Reasoning. Lecture Notes in Artificial Intelligence, Vol. 837. Springer-
Verlag, Berlin Heidelberg New York (1994) 132-143.

3. Dasarathy, B.V.: Nearest Neighbor Norms: NN Pattern Classification Techniques. IEEE
Press, Los Alamitos, California (1991)

4. Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information
Theory, 14 (1967) 515-516.

5. Leake, D.B., Kinley, A., and Wilson, D.: Case-Based Similarity Asessment: Estimating
Adaptability from Experience. In: Proceedings of the 14th National Conference on
Artificial Intelligence. AAAI Press (1997)

6. Lenz, M.: Applying Case Retrieval Nets to Diagnostic Tasks in Technical Domains. In:
Smith, I. & Faltings, B. (eds.): Advances in Case-Based Reasoning. Lecture Notes in
Artificial Intelligence, Vol. 1168. Springer-Verlag, Berlin Heidelberg New York (1996)
219-233

7. Lieber, J.: A Criterion of Comparison between two Case-Bases. In: Haton, J-P., Keane,
M., and Manago, M. (eds.): Advances in Case-Based Reasoning. Lecture Notes in
Artificial Intelligence, Vol. 984. Springer-Verlag, Berlin Heidelberg New York (1994) 87-
100

8. Minton, S.: Qualitative Results Concerning the Utility of Explanation-Based Learning,
Artificial Intelligence, 42(2,3) (1990) 363-391

9. Schaaf, J. W.: Fish and Shrink: A Next Step Towards Efficient Case Retrieval in Large-
Scale Case-Bases. In: Smith, I. & Faltings, B. (eds.): Advances in Case-Based Reasoning.
Lecture Notes in Artificial Intelligence, Vol. 1168. Springer-Verlag, Berlin Heidelberg
New York (1996) 362-376

10. Smyth, B. and Keane. M. T.: Adaptation-Guided Retrieval: Questioning the Similarity
Assumption in Reasoning. Artificial Intelligence 102 (1998) 249-293

11. Smyth, B. & Keane, M.T.: Remembering to Forget: A Competence Preserving Deletion
Policy for Case-Based Reasoning Systems. In: Proceedings of the 14th International Joint
Conference on Artificial Intelligence. Morgan-Kaufmann. (1995) 377-382

12. Smyth, B. & McKenna, E.: Modelling the Competence of Case-Bases. In: Smyth, B. &
Cunningham, P. (eds.): .): Advances in Case-Based Reasoning. Lecture Notes in Artificial
Intelligence, Vol. 1488. Springer-Verlag, Berlin Heidelberg New York (1998). 208-220

13. Veloso, M. Flexible Strategy Learning: Analogical Replay of Problem Solving Episodes.
Proceedings of the 12th National Conference on Artificial Intelligence (1994) 595-600.

14. Wess, S., Althoff, K-D., Derwand, G.: Using k-d Trees to Improve the Retrieval Step in
Case-Based Reasoning. In: Topics in Case-Based Reasoning. Lecture Notes in Artificial
Intelligence, Vol. 837. Springer-Verlag, Berlin Heidelberg New York (1994) 167 – 181

15. Wolverton, M., and Hayes-Roth, B.: Retrieving Semantically Distant Analogies with
Knowledge-Directed Spreading Activation. In: Proceedings of the 12th National
Conference on Artificial Intelligence, (1994) 56-61.

357Footprint-Based Retrieval

althoff@iis.uni-hildesheim.de

Is CBR Applicable to the Coordination of Search and
Rescue Operations? A Feasibility Study

Irène Abi-Zeid1, Qiang Yang2, and Luc Lamontagne1

1Defence Research Establishment Valcartier, 2459 boul. Pie-XI,
Val Belair, Quebec, G3J 1X5, Canada

{irene.abi-zeid, luc.lamontagne}@drev.dnd.ca
2Simon Fraser University, School of Computing Science

Burnaby, British Columbia, V5A 1S6. Canada
qyang@cs.sfu.ca

Abstract. In response to the occurrence of an air incident, controllers at one of
the three Canadian Rescue Coordination Centers (RCC) must make a series of
critical decisions on the appropriate procedures to follow. These procedures
(called incident prosecution) include hypotheses formulation and information
gathering, development of a plan for the search and rescue (SAR) missions and
in the end, the generation of reports. We present in this paper the results of a
project aimed at evaluating the applicability of CBR to help support incident
prosecution in the RCC. We have identified three possible applications of CBR:
Online help, real time support for situation assessment, and report generation.
We present a brief description of the situation assessment agent system that we
are implementing as a result of this study.

1 Introduction

In response to the occurrence of an air incident, controllers at one of the three
Canadian Rescue Coordination Centers (RCC) must make a series of critical decisions
on the appropriate procedures to follow in order to deal with the incident. These
decisions and procedures (called incident1 prosecution) include an assessment of the
degree of emergency, a formulation of the hypotheses on what might have happened
and where, the development of a plan for the search and rescue (SAR) missions and in
the end, the generation of reports. The workflow of a controller may be roughly
described as follows:

1. Receive alert;

2. Classify the situation through an interactive Q/A process;

3. Iteratively narrow down the range of hypotheses by gaining new
information through the information gathering process (communications
search);

1 The term usually used in a RCC is case prosecution. However, to avoid confusion with a case

in CBR we will use the term incident prosecution.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 358-370, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

4. Initiate search planning;

5. Further narrow down the hypotheses using the new information gained;

6. Initiate SAR missions, task resources and monitor progress. At the same
time, record important events;

7. Generate report.

It is important to note that not all air incidents lead to search planning. Incident
prosecution is often limited to receiving the alert, classifying the situation, narrowing
down the range of hypotheses (steps 1 to 3) and generating a report (7).

Prosecuting a SAR incident is knowledge intensive and exhibits strong real time
characteristics. A typical controller handles two to three incidents at the same time.
Furthermore, the Canadian RCCs receive well over 5,000 incidents per year. It would
therefore be beneficial to develop a decision support system for automating as much
of the process as possible, and for capturing and reusing the knowledge. Cottam et al.
[2], [3] describe work done in the UK on a generic knowledge acquisition approach
for search and rescue planning and scheduling operations. The authors found that the
SAR problem solving is structured enough to allow a decision support system to
advise the human controller.

Having such a system would enable RCC controllers to better support and
coordinate their incident prosecution in real time, to streamline the incident reporting
procedures, and to help train junior operators using realistic SAR scenarios. As part of
an effort to design decision aid tools for the RCC controller, we decided to investigate
and evaluate the applicability of CBR to help support incident prosecution in the
RCC.

We begin in section 2 by describing the incident prosecution process. Section 3
presents our approach for evaluating the applicability of CBR to the RCC
environment. This includes a brief description of the interviews conducted with the
controllers as well as a summary of the related documents and databases surveyed.
Section 4 presents our findings and recommendations on how CBR could be used,
and section 5 presents the agent system that we are developing as a result of this
study. We conclude in section 6.

2 Incident Prosecution in the RCC

In general, SAR incident prosecution can be broken down into three phases where
each phase can somewhat overlap the adjacent ones. For example, when a telephone
call is received (first notice), the operation enters an uncertainty phase. In this phase
the controller will collect information about the details of the flight plan and people
involved. If not enough information has been obtained, the operation will progress
into the alert phase whereby the controller will expand the information gathering
activities and alert SAR agencies. If a certain amount of time has passed after the
uncertainty phase without obtaining more information about the plane, the operation
enters the distress phase. In this phase the controller initiates the tasks that consist of
planning, coordinating, and monitoring search missions. Once the cause of the
incident and the location of the aircraft are determined, he may be required to

359Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

mobilize and monitor the rescue process. Tasks in this phase involve notifying various
agencies involved, including hospitals and police, notifying the relatives and
dispatching planes or helicopters to the crash site. An incident report will be filed in
the end, and news dispatches will be sent out to various media agencies before the
incident is closed.

The tasks conducted in the uncertainty and alert phases are called situation
assessment (SA), a process similar to diagnosing a patient by a doctor. SA refers to
the tasks of finding out the true nature of the incident by formulating and verifying
hypotheses through an information gathering process. It is much like detective work.
Over 90% of the incidents are false alarms, caused by faulty equipment, power lines
or even Electronic Locator Transmitters (ELT) that the pilots forgot to turn off.
Furthermore, the receipt of reports on an overdue (late) aircraft does not necessarily
imply that the aircraft itself has crashed somewhere. Rather, there are many
possibilities why the craft has gone missing, ranging from the fact that the pilot may
have landed halfway to refuel, to the possibility that the pilot never took off in the
first place. To summarize, the decision process in incident prosecution consists of
situation assessment and mission planning and monitoring. Figure 1 presents a
schematic description of the controller’s tasks.

Disseminate Case -related Information
(Handover & Public Relations)

Produce and Complete Reports, Files & Records

Situation assessment Mission planning and
monitoring

Manage, Maintain & Monitor
Resources & Systems

Fig. 1. Schematic description of a controller’s tasks

2.1 Why CBR?

In the past, CBR has been applied to areas similar to our problem. These include
classification, diagnosis and planning. The PROTOS system is used for classifying
hearing disorders [12]. Based on the knowledge on a given patient, PROTOS finds a
similar case and uses that case’s class to determine the patient’s disorder type. The
CASEY system is designed to obtain a causal explanation regarding a patient’s
disorder given his signs and symptoms [8]. The CHEF system was designed to
suggest recipes for cooking [5]. Given the goals of the meal, including style and
ingredients, CHEF produces a sequence of actions by modifying a previously used
recipe. It indexes the failures it has encountered in the past and uses domain specific
knowledge to address these failures. MI-CBP is a Mixed-Initiative Case-Based
planning system that is the integration of two systems: ForMAT, a case-based system

360 I. Abi-Zeid, Q. Yang, and L. Lamontagne

althoff@iis.uni-hildesheim.de

for supporting military force deployment planning within the military transportation
domain and Prodigy/Analogy for automating plan construction or adaptation [17].

From our initial knowledge of the SAR domain, we felt that there was at least one
possibly worthwhile application for CBR: Situation assessment. When the first notice
is received, a controller could retrieve from a case base cases with similar initial
information. He then could adapt the past problem solving strategies regarding
hypotheses formulation and information gathering. We have therefore concentrated in
this study on situation assessment and excluded the mission planning and monitoring
part of the controller’s tasks.

3 Our Approach

The initial questions that we asked are:

• What is a case? Can a RCC incident be considered a CBR case?

• Do controllers make use of past incidents in their operations (implicitly or
explicitly)?

• Can the incidents be compared, generalized?

• Is there sufficient historical information? And can the information be
exploited by CBR techniques?

• Is it possible to quantify similarity and dissimilarity?

• Is the knowledge of a controller more rule-based or case-based?

In order to try to answer these questions, we went through a series of interviews as
well as through the documents and the databases that consigned the historical RCC
incident information. We summarize our observations below.

3.1 Interviews

Our first task was to get familiar with the RCC operations and the accumulated data.
This was accomplished through visits to the RCCs and interviews with controllers:
Six visits to RCC Victoria over a six months period, a review of four days of taped
interviews with RCC Trenton, individual discussions with experienced controllers on
other occasions, and participation in a one-week training course provided to
controllers. This allowed us to gain first hand experience in actual operations of the
RCC, and to assess the dataflow and workflow of the organization.

During the first visit, an overview of the operations of the RCC was given by a
senior controller. This was followed by an overview of CBR given by us. We had
prepared a set of questions for the interviews. These were mostly related to the
activities of a controller. We then asked about the training required and some
important factors that make a successful controller. We learnt that incidents are
currently being recorded on paper in real time, using a checklist and tables. In the
future, a database front-end system (CaseMaster) will be used to record all incident

361Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

information, including the major actions taken by the RCC controllers and the time
and circumstances of the action. This system has been tested and will be used in the
near future.

During our various meetings, the controllers expressed the following concerns:
First, it is very time consuming to brief or communicate with another controller in the
RCC or at another RCC about the current incident information. Second, it is time
consuming to file reports at the end. Third, it is sometimes possible to forget factors
that should be evaluated while narrowing down potential hypotheses especially in the
presence of incomplete information. They felt that recorded incidents could help
address these problems. They rejected a rule-based system as a potential decision aid
because they felt it was too “rigid”. Furthermore, they confirmed that they retrieved
similar incidents and solved new problems by making use of past incidents, especially
for device related analogies. For example, if an incident involves a Beaver plane, then
past knowledge about the most breakable devices on that plane can serve as a hint for
the possibilities for the current incident.

3.2 Procedures Manual

In order to complement our knowledge acquisition process, we studied the national
SAR manual [11] and RCC Victoria Standard Operations Procedures [14] for carrying
out SAR operations in Canada. One of the most interesting aspects of the manuals is a
collection of possible scenarios and their corresponding solutions. It is interesting to
note that this method of presenting scenario-solution pairs is consistent with the
problem-solving model of CBR.

3.3 Historical Data

We examined the RCC Victoria Statistical Summary [15]. This 8-page document
reports on the annual operational figures. It begins with a national comparison of the
incidents that occurred in 1996. It then separately reports on the use of assets and
resources for marine, air and land SAR incidents in 1996. The summary is very useful
in providing a big picture of the SAR incidents handled at RCC Victoria and the
corresponding statistical figures, however it is not of any practical use for CBR.

3.4 Incident Logs

As incidents are prosecuted, information is recorded in incident logs containing
incident descriptions, unit assisted descriptions, type of incident, difficulty level,
action taken, weather report, resources used, critical factors and anomalies, etc. This
information will be recorded in electronic form in the near future. The most
interesting aspect of these forms is the manual logging of pertinent chronological
descriptions of the actions taken by the controllers.

362 I. Abi-Zeid, Q. Yang, and L. Lamontagne

althoff@iis.uni-hildesheim.de

3.5 Statistical Database Model SISAR

When the operations are completed, information is logged into SISAR, a statistical
database which keeps information similar to the one contained in the incident logs.
However, SISAR only provides categorical summaries of an incident, recording
information such as the number of persons on board and the type of aircraft involved.
It does not record all the relevant causal factors and the process followed by a
controller to narrow down the hypotheses. Our study concluded that not enough detail
is provided in the SISAR database logs about the events that occur and the reasoning
that goes on.

4 Results

In studying the SAR domain and investigating the application of CBR, we focused on
the following issues [7], [9]:

1. What is a case?

2. What are the indexes?

3. How are the cases acquired?

4. Is there any adaptation?

5. What are some recommendations?

Our results are summarized in the form of answers to each of the above questions.
In defining what is a case, we kept in mind that a case normally consists of the
following elements:

• Name and id;

• Keywords for retrieval;

• Facts denoting problem solving context;

• Solution used in the past;

• Outcomes denoting success or failure;

• Solution context;

• Interpretations and annotations of the case;

• Links to other cases

4.1 CBR for Online Help

The first envisaged application of CBR was to provide online help with procedures
during real time incident prosecution. This is similar to using CBR for help desks in

363Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

technical troubleshooting. The main purpose of such a system would be to remind the
controller of the appropriate procedures when the controller is aware of the stage in
which the SAR operation is. For example, when a controller is aware that he is in the
uncertainty phase and would like to consult the operational procedures as outlined in
the National SAR Manual.

Description of a Case. In this application, a case would consist of a pair, where the
first element of the pair is a problem resolution context or phase (for example, air-
case-uncertainty-phase), and the second element is a procedure itself that may be
presented in textual format on the computer screen. As an example, consider the
procedure for a distress phase operation taken from [11].

Case name: Distress phase of Air SAR

Case content: RCC action during DISTRESS phase of an aircraft emergency:

• Initiate action with appropriate SAR units and services;

• ...

• When the incident involves an aircraft of foreign registry, RCC shall inform
National Defense Operations Center to advise appropriate embassy if
required;

• Develop rescue plan if casualties require assistance, notify medical
facilities, police/coroner, establish the most expeditious means and method
of rescue.

Description of the Indexes. The indexes for these cases are all the relevant
information that one can use to classify the current situation in terms of phase
information. In the air SAR phase identification example, the indexes can be the
following questions:

• Aircraft didn’t land on time and lost communication? (yes/no);
• ...
• Following the uncertainty phase, communications search received no new

information? (yes/no);

Acquiring the Cases and Using Adaptation. Major sources of the case information
are the SAR manuals and the training manuals. There are probably simple forms of
adaptation that can be performed on these procedures, although in the current
practice, these adaptations are mostly done by the controllers.

Recommendations. Our observations are that the experienced controllers have
already mastered all the basic procedures indicated in the SAR manuals. This
assertion is based on the fact that they are actually doing their job in the operational
environment. We suspect that this method of using CBR where cases are recorded as
operational procedures would be limited to training and to providing assistance to
junior air SAR controllers.

364 I. Abi-Zeid, Q. Yang, and L. Lamontagne

althoff@iis.uni-hildesheim.de

4.2 CBR for Situation Assessment

We present here the most promising application of CBR to incident prosecution:
Situation assessment. Recall that the first part of incident prosecution involves finding
out which of the hypotheses holds for the current situation. A hypothesis is a plausible
cause and outcome for the incident. An example of a hypothesis on a cause of
incident is “mechanical failure” for the outcome “crash”. A lot of information must be
gathered by the RCC controller in order to narrow down the hypotheses space. For
example, the controller may check the weather condition to see whether the likelihood
of a crash is large given an overdue report. At the same time, a request will be sent
out to get the flight plan of the pilot in order to find all airports where the pilot might
have landed, and so on. CBR can be used to rank and eliminate various hypotheses
and to determine the associated information gathering tasks.

Description of a Case. A case may consist of each possible hypothesis (cause,
outcome). It consists of both the problem attributes and the associated methods to
operate on them. In particular, a case here would consist of the following elements:

• A hypothesis for the possible cause and possible outcome of the incident;

• A hierarchical task network (HTN) [4], [16] for the information gathering
process to confirm the hypothesis (Fig. 2);

• A record of executed information gathering tasks for the current hypothesis
object, and the information gathering steps yet to be executed for further
confirming the hypothesis;

• An evaluation function of priorities for not-yet executed information
gathering tasks;

• Indices with weights attached to the expected values of the answers to the
queries.

C heck SAR SA T C h eck EL T with High F liers

Ch eck a ll in fo sources

O bta in fligh t path C heck with a irp orts Talk to re lat ives of p ilot

G et fu rther in fo
(the case is m ore seriou s)

B roadcast m issing p lan e m essage

O verdue airp lane HTN
(verify nature of prob lem)

Fig. 2. An information gathering HTN example for an overdue airplane

Description of the Indexes. For the controller to assess the current situation, rank
the remaining hypotheses, and weigh the next steps, a channel must exist between the
known facts and knowledge and the system stored HTNs and hypotheses. This

365Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

channel is provided by a layer of indexes. The cases may be indexed by different
problem features:

• Overdue planes;

• ELT signals;

• Flare sightings;

• Crash reports;

• Mayday calls;

• Problem context;

• Weather reports;

• Vehicle involved;

• People involved;

• Fight path and location information.

Acquiring the Cases and Using Adaptation. Cases can be acquired through three
sources. First, the National SAR Manual and other written documents provide a
detailed outline of procedures and possibilities for the air SAR causes. Second,
additional causes and hypotheses can be obtained from the RCC controllers and pilots
themselves. The controllers we have met all have vast amount of experience on a
potential range of hypotheses. Third and most importantly, causes can be obtained
from a systematic scanning of the incident logs. The adaptation is in the form of
selecting a task in an HTN to expand, and in adding and deleting new tasks in the
HTN of a retrieved case. To expand a task, one has to determine which subtasks to
execute and which information sources to access given several alternatives. Choosing
an appropriate alternative will have an important impact on the effectiveness of the
SAR operation.

Recommendations. There are two ways to use CBR in the context of a case as
defined throughout this section. The first envisaged way was to have an interactive
system in the form of a checklist into which the controller records his information
gathering actions and the results. These results are then used by the system to update
the list of the information gathering tasks that remain to be executed either by the
controller or automatically when possible. This approach has the limitation of
involving the controllers extensively in real time for providing values for indexes. It
would therefore be difficult to win over the support of the controllers for such a
system.

The second envisaged way, (and the one currently under development) is to use
case-based HTN retrieval as a reminder list in the background and as means to
acquire automatically the information that is available electronically. Information
gathering is seen here as a planning task [6], [13]. The resulting system would be in
the form of a background intelligent agent with minimum interaction with the
controller. A limitation with this approach is that a fairly sophisticated monitoring and

366 I. Abi-Zeid, Q. Yang, and L. Lamontagne

althoff@iis.uni-hildesheim.de

filtering system that reports on relevant incoming information must be assumed for
telephone sources.

4.3 CBR for Report Generation

We present here the third possibility for using CBR: Raw CBR cases for report
generation.

Description of a Case. A case in this approach would be a full recording of the
history of events unfolding along a time line. An example is shown below:
Begin case:

Case 009:
Indexes:
Weather condition: clear
Caller: Airport staff

Table 1. An example of a chronological list of actions and events.

Events Time Events
10:23am Call received about an overdue plane:

Information: small plane; expected landing
time 9 am; Person On Board unknown;

10:25am Called to obtain flight path plan information
10:30 Called to talk to wife of pilot
10:30am Electronic Locator Transmitter (ELT) signal

received along flight path

Forgotten Tasks:
A call to RCMP should have been initiated at 10:25am.
A request for more information should have been sent out to airports at source
and destination.
Pitfalls to be avoided
Wait for more information before phoning the wife.
Outcome
Plane landed to refuel in an airport along the flight path.

End Case.

Description of the Indexes. The indexes for this case base would be a combination
of the initial triggers for the case, and the contextual information such as the weather
report and the type of airplane. As such, the set of indexes is not very different from
those outlined in subsection 4.2.

Acquiring the Cases and Using Adaptation. One of the most promising methods
would be to use an enhanced version of the CaseMaster system. In this situation, we
are not looking at adapting the solutions to the incident but rather to adapt old reports

367Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

based on the contents of the new incident. Here, CBR is used more as means for
organizing, storing and retrieving incident logs.

Recommendations. In addition to generating reports, cases may be used as means of
communication between controllers. Furthermore, they could serve as a basis for
generating useful indexes for the application described in subsection 4.2. In this
manner, we ensure that the case base index is always current and up to date.

5 A Brief Description of ASISA: Agent System for Intelligent
Situation Assessment

We present in this section a brief description of an initial prototype to assist the
controller in situation assessment. This is the result of the second recommendation.
This tool, ASISA: Agent System for Intelligent Situation Assessment, is a
combination of CBR and Hierarchical Task Network (HTN) planning techniques. In
this initial prototype, cases are used to describe hypotheses and to encapsulate
information-gathering queries for identifying the correct hypothesis. Figure 3 presents
a schematic description of ASISA.

Selected

Hypothesis
Objects

Relatives
(Personnal

Info)

Hypothesis

Objects

Library

User Interface

Environmental
Sources
(Weather)

FSS
(Flight
Plans)

SARSAT
(ELTs)

Selected
Tasks

Monitoring Task
Delegation

Selected
Hypotheses

Initial
Alert

Infos

Info
Source

• • •

Selected

Plans

Hyp Formation

Hyp Selection

Task execution

Plan selection
Plan

Library

Fig. 3. A diagram illustrating the main components of ASISA

First, upon receiving an initial indication of a problem, the available relevant
information is input into the system. The system retrieves a collection of similar cases
from the case base. They consist of the hypotheses H1, H2, ... Hn that can be used to
characterize the current situation, where each of the Hi’s provides a plausible cause
for the current case such as “plane crashed due to mechanical failure”. Subsequently,
the system enters a cycle in which it identifies (from the case base) the information
gathering tasks described by the HTN associated with each hypothesis object. These
HTNs are refined by the plan selection module and used by the task execution module
to determine the information gathering actions to be executed next. The process

368 I. Abi-Zeid, Q. Yang, and L. Lamontagne

althoff@iis.uni-hildesheim.de

continues until a final conclusion about the nature of the incident is reached by the
ASISA system. The overall workflow for this iterative process is depicted in Figure 4.

Info List
(source, location, weather, situation, etc...)

Hypothesis Set
(H1, H2, ...Hn)

Suggestion of Info Gathering Tasks
for Hypothesis Confirmation

Selected Task Network
(HTN) Termination

Hypothesis Formation

Execute
Tasks

&
Store
New
Info

First Notice
(initial indication)

Fig. 4. Information flow in ASISA

The agent-based ASISA system will benefit the SAR controller in several ways.
First, because the agent is constantly monitoring a variety of information sources, it
can help filter out a large quantity of irrelevant information, and help the controller
concentrate on the critical information only. Second, given the overwhelming
workload during the high seasons for air incidents, the agent system can help improve
the accuracy and shorten the time required for assessing a case. This effect translates
directly into one of saving more lives. Third, for junior air SAR controllers, the agent-
based system can become a handy decision support system and a tutoring system. We
expect that the learning speed of the new controllers will be improved with the help of
our agent system.

5.1 Related Work

HICAP (Hierarchical Interactive Case-based Architecture for Planning) [9] is a
planning architecture developed to support planning of Noncombatant Evacuation
Operations by assisting military commanders in interactively refining plans. It is
similar to what is proposed in ASISA in the sense that it uses HTN to represent tasks
and subtasks. However, a major difference with ASISA is that while HICAP is meant
to be highly interactive, ASISA is meant to be very little intrusive and with minimum
interaction with the controller. The reason is that incident prosecution is a real-time
operation where the controller has no time to interact with a computer. Since most of
the controller’s activities are conducted over the phone, one of our ongoing research
projects is to monitor telephone conversations and try to extract the information
necessary to feed the ASISA system. However at this point, we assume that such
information is readily available for ASISA.

Another application domain for ASISA has been identified as the cable TV
troubleshooting domain that bears resemblance with the search and rescue problem
domain [1].

369Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

6 Conclusions

Our study has revealed three possible ways to use a CBR system for incident
prosecution, each corresponding to a different usage of the case information:

1. CBR for online help: A case may be viewed as a specific procedure on how
to deal with a certain situation as outlined in the standard operational
procedures;

2. CBR for situation assessment: A case may be viewed as a hypothesis on the
cause and outcome of an incident, along with the information gathering tasks
for ascertaining that cause;

3. CBR for report generation: A case may be viewed as a step-by-step
recording of all actions taken by the controller.

As a result of this study, we are currently implementing ASISA, an agent system
for situation assessment where CBR is used for storing, and retrieving hypothesis
along with their associated information gathering tasks represented as HTNs.

Many issues still need to be explored with regards to CBR and SAR, mainly the
applicability of CBR to support the second phase of incident prosecution: Mission
planning and monitoring.

References

1. Carrick C., Qiang Y., Abi-Zeid, I., Lamontagne L.: Activating CBR Systems
through Autonomous Information Gathering. ICCBR’99 (1999)

2. Cottam, H., Shadbolt, N., Kingston, J., Beck, H., Tate, A.: Knowledge Level
Planning in the Search and Rescue Domain. In Bramer, M.A., Nealon, R. (eds.):
Research and Development in Expert Systems XII. SGES Publications (1995)
309-326

3. Cottam, H., Shadbolt, N.: Knowledge Acquisition for Search and Rescue.
Proceedings of the 10th Knowledge Acquisition for Knowledge Based Systems
Workshop, KAW 96 (1996)

4. Erol, K. Hierarchical Task Network Planning: Formalization, Analysis and
Implementation. Ph. D. Thesis, University of Maryland (1994)

5. Hammond, K. Case Based Planning: A Framework for Planning from
Experience. Journal of Cognitive Science, 14 (3) (1990)

6. Knoblock, C. and Ambite, J.-L.: Agents for Information Gathering. In Bradshaw,
J. M. (ed.): Software Agents. (1997) 347-374

7. Kolodner, J.: Case Based Reasoning. Morgan Kaufmann Publishers, Inc. (1993)
8. Koton, P.: Reasoning about Evidence in Causal Explanation. In Proceedings of

the 1998 AAAI Conference. AAAI Press/MIT Press (1988)
9. Leake, D.: Case Based Reasoning: Experiences, Lessons and Future Directions.

AAAI Press (1996)
10. Munoz-Avila, H., Aha D. W., Breslow L., Nau D.: HICAP: An Interactive Case-

Based Planning Architecture and its Application to Noncombatant Evacuation
Operations. NCARAI Technical Note AIC-99-002 (1999)

11. National SAR Manual. December (1995)

370 I. Abi-Zeid, Q. Yang, and L. Lamontagne

althoff@iis.uni-hildesheim.de

12. Porter, B., Bareiss, R., and Holte, R.: Concept Learning and Heuristic
Classification in Weak Theory Domains. Artificial Intelligence (45) (1990) 229-
263

13. Pryor, L. and Collins G.: Planning to perceive: A utilitarian approach. In
Working notes of the AAAI Spring Symposium on the Control of Selective
Perception. March (1992)

14. RCC Victoria Standard Operating Procedures (1997)
15. RCC Victoria 1996 Statistical Summary (1996)
16. Sacerdoti, E. D.: Planning in a hierarchy of abstraction spaces. In Allen, J.,

Hendler J., and Tate A. (eds.): Readings in Planning. Morgan Kaufman (1990)
98-108

17. Veloso, M. M., Mulvehill A. M., Cox M. T.: Rationale-Supported Mixed-
Initiative Case-Based Planning. In Proceedings of the Ninth Conference on
Innovative Applications of Artificial Intelligence. AAAI Press (1997) 1072-1085

371Is CBR Applicable to the Coordination of Search and Rescue Operations?

althoff@iis.uni-hildesheim.de

Integrating Case-Based Reasoning and Hypermedia
Documentation: An Application for the Diagnosis of a

Welding Robot at Odense Steel Shipyard

Eric Auriol1, Richard M. Crowder2, Rob MacKendrick3, Roger Rowe4 and Thomas
Knudsen5

1 AcknoSoft, 15 rue Soufflot, 75 005 Paris, France, auriol@ibpc.fr
2 Department of Electrical Engineering, University of Southampton, Southampton, UK,

SO17 1BJ, rmc1@soton.ac.uk
3 Parallel Applications Centre, Chilworth, Southampton, SO167NS, UK,

rmk@pac.soton.ac.uk
4 MultiCosm Ltd, Chilworth, Southampton, SO167NS, UK, R.Rowe@multicosm.com
5 Odense Steel Shipyard Ltd, PO Box 176, DK 5100 Odense C, Denmark, tdk@oss.dk

Abstract. Reliable and effective maintenance support is a vital consideration
for the management within today’s manufacturing environment. This paper dis-
cusses the development a maintenance system for the world largest robot
welding facility. The developed system combines a case-based reasoning ap-
proach for diagnosis with context information, as electronic on-line manuals,
linked using open hypermedia technology. The work discussed in this paper
delivers not only a maintenance system for the robot stations under considera-
tion, but also a design framework for developing maintenance systems for other
similar applications.

1 Introduction

Odense Steel Shipyards (OSS) builds container ships of a quality and size that cannot
be matched by their competitors. OSS achieves this advantage by using a high level
of automation in their design and production processes. This is typified by the com-
pany's wide spread introduction of robotic welding systems, in particular the B4 robot
station.

The use of high technology production facilities requires the introduction of effec-
tive maintenance systems. The main purpose of these systems is to minimise produc-
tion costs by ensuring the reliability, and production quality of the manufacturing
systems. In addition the maintenance cost should be minimised by effective use of
resources.

Any form of maintenance requires the application of knowledge held by people
familiar with the system. At OSS these are the operators and the system specialists.
The operators are responsible for operating and undertaking maintenance of the robot.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 372-385, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

At OSS the operators are concerned with the entire system, and will have engineering
expertise to solve many problems. Robot specialists will have in depth knowledge of
the robotic systems, and therefore will be called upon when an operator is unable to
rapidly solve a problem. It is the case (both at OSS and generally) that there are more
operators than robot specialists available for the maintenance of the system, as spe-
cialists are shared amongst a number of robot installations. One approach to mini-
mising maintenance costs is to develop a system that enables the operator to under-
take more of the maintenance tasks. This will minimise the time currently wasted in
waiting for robot specialists.

To undertake a maintenance task reference has to be made to the information
stored in documentation. In the case of the robot being considered in the paper, this
information consists of a considerable number of loose leave documents, drawings
ranging from A4 to A0, and proprietary information. This by its very nature can be
easily damaged, or lost when taken on to the factory floor. The solution is the com-
puter-based integration of a diagnostic system with a document storage and retrieval
system.

This paper discusses aspects of the HELPMATE* project that is developing a com-
puter-based system capable of supporting the operator to diagnose and repair faults
within the B4 welding station. The developed application, Freya, required the inte-
gration of a Case Based Reasoning (CBR) system (Kate developed by AcknoSoft)
with an open hypermedia system (MicroCosm Pro developed by MultiCosm).

1.1 The Target System: the B4 Robot Station

OSS's B4 robot station is the world's largest robot station for arc welding. The robot
station is designed to weld ship hull sections up to 32 × 22 × 6 meters, and 400 tonnes
in weight. The robot station consists of 12 individual robot gantries, each with 8 de-
grees of freedom, suspended 17m above the shop floor, and is capable of welding up
to 3 kilometres of steel per day. As OSS only has once such installation, any failure
will impact on the material flow through the yard.

The B4 robot station is designed by OSS, including a cell control system called
Rob-Ex (Robot Execution system). Rob-Ex is capable of handling the planning and
scheduling of the robot's welding jobs, followed by downloaded the post-processed
robot program to the local robot controller for execution. Rob-Ex also includes sub-
systems that schedule and plan preventative maintenance activities.

While the Rob-Ex system has a fault detection capability, where the detected fault
is communicated to the operator as a code, Rob-Ex does not provide any diagnostic
information. The resolution of the fault is down to the operators and specialists.
While some faults (e.g. replacement of welding wire) can be resolved with ease, more
difficult faults (e.g. a drive or servo failure) will require information from system
documentation, or in extreme cases discussion with the B4's system specialist.

* Hypermedia with Enhanced Linking Providing Maintenance and Analysis Tools for Engi-

neering

373Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

1.2 Benefits to OSS

The B4 robot station is a key installation on the Yard, and because there are no re-
placement or backup installations, the work performed on the B4 robot station di-
rectly influences the output of the Yard. For the B4 robot station, and other installa-
tions with the same crucial role, a diagnosis hypermedia maintenance tool, which the
HelpMate technology provides, is essential for the following reasons:
− The reliability of the installation is improved;
− The quality of the work performed by the installation is improved;
− As reliability improves, planning on the entire production line is easier;
− Time wasted waiting on maintenance experts is minimised;
− Experts can be released from existing installations, and be used for development

of new technology;
− The maintenance costs are minimised.

2 Case-Based Reasoning and Inductive Learning

2.1 Principles

Case-Based Reasoning (CBR) and inductive learning are different but complementary
methods for utilising past information in solving problems. Case-Based Reasoning [1]
stores past examples, and assigns decisions to new data by relating it to past cases. A
case is defined as the description of a problem that has been successfully solved in the
past, along with its solution. When a new problem is encountered, CBR recalls similar
cases and adapts the solutions that worked in the past for the current problem. Induc-
tive learning [2] creates a general description of past examples, and then applies this
description to new data. Inductive learning extracts a decision tree from the whole
case history and then uses this general knowledge for problem solving.

In all its various meanings, inductive learning or "induction" has to do with reach-
ing conclusions about a whole class of facts based on evidence on part of that class.
Recorded cases of equipment failure and repair, legal cases and their adjudication, or
the credit records of debtors all are a small part of the potential events in each of these
areas. The original idea of what we call induction is to generalise the lessons of past
cases into rules, in order to remain consistent with the way human experts think while
providing the input to expert systems that knowledge engineers failed to [3, 4].

The inductive method is based on a decision tree created from case history. The di-
agnosis system then uses this tree for problem solving. Inductive learning requires
that the data be structured, for example by using classes of objets with slots. A stan-
dard relational database schema can easily be mapped onto this object model. It al-
lows defining the vocabulary used to describe the cases. For example, an error code
on a control panel or the weld quality.

374 E. Auriol et al.

althoff@iis.uni-hildesheim.de

Instead of building a generalisation of a database as the inductive learning ap-
proach does, CBR directly looks for similar cases in the database, with respect to the
requirements of the user. CBR offers flexible indexing and retrieval based on similar-
ity. For applications where safety is important, the conclusions can be further con-
firmed, or refuted, by entering additional parameters that may modify the similarity
values. CBR appeals to those professionals who solve problems by recalling what they
did in similar situations. It works well even in domains that are poorly understood or
where rules have many exceptions.

2.2 Application in HelpMate

We used the Kate suite of CBR tools to capture the experience in the form of a case
base. We followed the INRECA2 methodology [5] so that we could apply a classical
CBR development:
1. Defining an initial data model
2. Creating a questionnaire and acquiring the cases
3. Defining the fault tree and the similarity measures
4. Updating the previous points when additional knowledge / cases are available

We worked in close co-operation with the B4 robot cell specialist at each step of
the development. However, it appeared quickly that this approach did not match
completely with the specialist’s one, since he expressed his knowledge directly in
terms of rules. Therefore we developed an additional tool to capture his knowledge in
a theoretical failure tree, in order to extract automatically analytical cases from this
tree. We then moved from the normal development scheme presented above, to a
more integrated one where cases can be described both in an analytical way by the
specialist, and in a standard way by using the system and logging its results. We fi-
nally chose to apply an inductive learning approach in order to create a common
decision tree from both the analytical and the real cases. Additionally, we kept track
of statistics of the cases reached when the system is running so that the measure of
similarity between the problem and the different solutions evolves over time in order
to favour the most probable solutions. Therefore, the different steps are:
1. Defining / updating the data model
2. Creating / updating analytical cases through the theoretical failure tree
3. Creating / updating real cases through analysing the log reports
4. Merging the analytical and the real cases
5. Creating / updating the decision tree
6. Updating the statistical records of cases to assess the similarity

At the time when the system was put into operation (15th of February 1999), the
case base contained more than 250 cases. The application covered an estimated 95 %
of the known faults which generate an error code on Rob-Ex (in excess of 40 error
and sub-error codes), giving access to approximately 80 repair procedures.

375Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

3 Hypermedia Documentation

3.1 Principles

Whilst the CBR technology provides the diagnosis, CBR does not provide any of the
information required to undertake a repair. In most cases extra information is needed,
including the location of the fault, together with the relevant repair and recommis-
sioning procedures. In the case of a large industrial plant this information is currently
supplied in paper or electronic format from a large number of suppliers. Hence even
if the fault is known, the operator still has to locate the correct procedure, from what
in many robotic systems can be a small library of information.

Hypermedia is particularly suited to engineering applications, as information is
conventionally organised into a large number of relatively small documents, with a
considerable amount of cross-referencing. In addition at any one time the user will
only require assess to a small fraction of the available information resource.

The concept of industrial strength hypermedia as a solution to information man-
agement in manufacturing was initially proposed by [6]. Malcolm argued for hyper-
media systems that had evolved beyond a stand-alone status to become a technology
that integrates resource over the complete engineering enterprise. In a previous in-
dustrial hypermedia application, Crowder et al. [7] demonstrated that by using an
open hypermedia system, a common knowledge base can be used for a range of tasks.

In any hypermedia application two sets of data are required, the resource docu-
ments and the linking information. It should be noted that a number of industrial
information systems have the link information embedded within the resources, re-
sulting in a closed application [8]. The use of embedded information will restrict the
application of hypermedia systems to industrial applications, as any document
change, however minor, could lead to a significant re-authoring exercise. An open
hypermedia system permits the development of industrial strength hypermedia, which
incorporates an easily maintained system which can be integrated with existing net-
works, databases, and as discussed in this paper knowledge based system technolo-
gies.

3.2 Application in HelpMate

The B4 robot station information consists of a considerable number of loose leave
documents, drawings ranging from A4 to A0, and proprietary information, including
engineering drawings, location drawings, test schedules. To speed the processing of
text based material, use is made of optical character recognition software capable of
processing documents in Danish. During the development of this application, at times
it was considered quicker to redraw, or re-enter the information in the correct format,
than convert the documents to electronic format, particular if the quality was poor.

376 E. Auriol et al.

althoff@iis.uni-hildesheim.de

However some concern has been expressed with the maintenance of the audit trail in
this situation.

In all over one hundred documents were converted to populate the resource base of
the pilot system. Following the construction of the resource base, the link base can be
constructed. MicroCosm is supplied with a set of tools that ensure authoring is an
efficient process. Three different types of approach to linking are required:
− Structural linking of the documents, for example indexes to sections of manuals.

This is a routine process that can easily by automated. The hierarchical structure
of many technical documents comes to the aid of the industrial author as most
chapters, sections, and subsections, etc. are formatted using heading styles or at
least have a different format to the rest of the text

− The robot specialist who is experienced in the subject area makes manual links.
This turns the information into a cognitive and pedagogical structure that is easy
to navigate.

− The robot specialist makes the links between the solutions provided by the KATE
system and the information resources provided.

The development of the application is by necessity an iterative process. The robot
specialist was asked which documents were linked, and then the developers imple-
mented this and confirmed with by the robot specialist. In this way the operators can
capture the organisational memory for use in the cell.

The number of incorporated documents in the delivered system was more than 500
and the number of links was more than 2000.

4 Integration Between CBR and Hypermedia

The Freya system required the technology partners to extend their basic software,
Kate [9] and MicroCosm Pro [10], to function in an integrated manner as a hyperme-
dia diagnostic system interfacing to the Rob-Ex cell control system. The generic inte-
grated part has been called KateCosm, and is designed to be reused for other similar
applications. The KateCosm architecture is based onto three reusable objects:
− The Kate filter
− The MicroCosm filter interface for creating indirect links (set of functions)
− The Kate system book

These different parts are detailed below.

4.1 The KateCosm Architecture

MicroCosm Pro integrates the various required functions into a single application
system. MicroCosm systems contain “filters” that carry out actions (e.g. Compute
Links) requested by the User or requested by other filters: MicroCosm “viewers”
present resources such as documents or video clips to the User and capture the actions
the User wishes to apply to the resource. The communication is via an internal mes-
sage protocol that can be extended to other system components via the Windows

377Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

DDE system. A new Kate filter is added to MicroCosm to integrate Rob-Ex and Kate
into the MicroCosm system. Being a filter it can receive messages from other parts of
MicroCosm and it can send messages to be handled by other components. The filter
accepts messages from the Rob-Ex filter, to pass control codes from the Rob-Ex sys-
tem into Kate. The filter embodies a new set of common functions (a Windows’
DLL) that serves as the MicroCosm side of the code interface to Kate. The filter re-
ceives MicroCosm messages from Kate indicating the links to be made available and
generates the MicroCosm messages that cause MicroCosm to present the links (typi-
cally by a MicroCosm Results box).

MicroCosm Pro is an environment that supports reading and authoring from the
same configuration and via the same User interfaces (though it is always possible to
install MicroCosm so that authoring of hypermedia links is unavailable for particular
users). MicroCosm supplies “linkbase filters” to create and edit the links. The request
to add a link is made via a Viewer’s “Action” menu item while the documents are in
the viewer: the request is passed to the linkbase filter which in turn communicates
with the user to capture further details about the intended new link (a link title, for
instance).

MicroCosm’s link creation process supports Button Links - the standard hypertext
concept in the WWW or Windows Help, and “Generic Links”. The latter are associa-
tions between a phrase, the source selection, and a destination that may be in any
document. But rather than applying just to a single occurrence of the phrase in a
given document, a generic link applies to any occurrence of the phrase anywhere in
the document set. Consequently the link has to be authored once only - but is effec-
tive from any number of documents.

The generic link idea is taken further in KateCosm to tailor links to the CBR envi-
ronment - the “Indirect Link”, or Linking by Reference. These indirect links have
Source Selections that refer to a Kate data model, expressed by the Classes, Slots and
Values used in the Case. This offers a number of benefits - thus Natural Language can
be switched just by substituting a new table, and Diagnostic cases can be rearranged
without having to re-author the associated hypermedia links. KateCosm has a Micro-
Cosm Filter User Interface for authoring indirect links.

The MicroCosm Pro message model ties the KateCosm software components to-
gether. Events from Rob-Ex are presented to other MicroCosm filters as MicroCosm
messages. MicroCosm messages are communicated from Kate to MicroCosm to indi-
cate the hypermedia links to be offered to the user at each stage during the consulta-
tion. In the latter case the messages indicate the Table indexes of the hypertext links
needed at a given stage in the consultation.

A Kate CBR application can be written in one of two ways – using a scripting lan-
guage (e.g., ToolBook) to develop all the CBR case screens, or by programming these
screens directly using the C interfaces to Kate. KateCosm takes advantage of the
ToolBook approach to minimise application development effort and complexity. Kate
offers a ToolBook System script, the System Book, to integrate Kate with other soft-
ware; the KateCosm integration exploits this script which has been extended to cope
with the new functionality required.

378 E. Auriol et al.

althoff@iis.uni-hildesheim.de

4.2 Freya Architecture

Freya is the application based onto the KateCosm architecture, specifically designed
to diagnose the B4 robot station. Therefore we retrieve the main components of
KateCosm, applied to the welding robot specific data model, case base and hyperme-
dia documentation. Figure 1 presents the architecture.

Fig. 1. Freya Architecture. The Freya user starts the navigation in the MicroCosm environment
and can follow the links found in the Freya linkbases. From there he can start a consultation
and launch the Freya system book. When browsing the fault tree, the indirect links between the
Freya data model and the Freya linkbases are displayed automatically and the user can follow
them thank to the Kate filter.

Navigation

Rob-Ex/Freya
Connection

OSS/Multicosm

Freya User

Modified Kate
ToolBook Scripts

(system book)

Existing Kate
ToolBook Scripts

ToolBook interface

KATE

Freya Data
Model and
Case Base

Multicosm

AcknoSoft

New
Interface

DLL
(Kate filter)

Freya
Application

Freya linkbases
(indirect links)

Rob-Ex
Freya
filter

Other
Multicosm

filters

Microcosm
Filter Manager

Microcosm Pro

Consultation

Rob-Ex
Initiated
Session

379Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

5 Current State of the Application

A small-scale pilot system has been used at OSS since the summer 1998, to obtain
initial users feedback, and to let the operators gain confidence in the technology. The
feedback has been highly positive with the users taking a degree of ownership of the
project. This can be achieved by actively encouraging the users to voice their con-
cerns and criticism, and feeding this back into the design process. As will be appreci-
ated the factory floor is a hostile environment for any piece of computer equipment,
in particular when the operator’s input device is subjected to dirt and grease. While
Freya could be kept in a supervisor’s office, to gain maximum benefits from the sys-
tem, it was clear from the outset that a machine on the factory floor would be re-
quired. For the interface device a modified tracker ball is used, these are easy to use
and do not suffer from problems experienced by the mouse or touch screens.

A first full-scale pilot application has been delivered in January 1999, to enable to
have the feedback of super-users. The first version has been installed in the B4 hall in
February 1999 and is regularly evaluated internally and updated with respect to users’
wish list (fixing bugs, updating diagnosis process and documentation).

5.1 Typical Session

A typical session starts when the operator chooses his name in the user’s list. If an
existing session is already opened by another operator, the current state is stored in an
history file so that the previous operator can restart his session at his point of use (it
should be recognised that only one PC is available in the B4 hall for Freya). An addi-
tional tool called the «wrapper» manages this part of the system. Then operator is
presented with two options, to use the system as an information resource or follow a
diagnostic procedure.

As an information resource the operator is taken to an index page, and by follow-
ing links can navigate the resource to locate the information. When starting a diag-
nostic procedure the operator follows a question and answer dialogue session, using
the user interface as that shown in Figure 2.

380 E. Auriol et al.

althoff@iis.uni-hildesheim.de

Fig. 2. Typical session during the diagnosis process. At each level of the decision process, the
operator can display the list of solutions reached so far, go back and modify a previous level,
select one of the proposed values or select “Unknown” to enlarge the search.

Fig. 3. Once the operator reaches a set of possible solutions, he can compare the initial prob-
ability of each solution as provided in the case base and the computed frequency based on real
cases. He can confirm the solution (and hence, update the case statistics) or unconfirm it (then
he has to provide the correct solution).

Once the answer is selected, selection of ‘OK’ takes the user to the next stage in
the case. If however the question can not be easily answered, selection of the ‘?’
presents the operators with a range of option, with respective probabilities, the most
probable solution based on the operator's knowledge of the problem and on case sta-
tistics can be selected (Figure 3). The operator has the opportunity to confirm the

381Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

solution proposed, which changes the statistic of the case base and therefore the com-
puted frequency of solutions, or unconfirm it. In the latter case, he is required to indi-
cate what would be the correct solution. All operators’ actions are traced into a log
report, which is regularly analysed by the B4 specialist in order to update the case
base.

At any place during the diagnosis process a point may be reached where informa-
tion is required. A link then takes the user to the open hypermedia resource base,
allowing the repair to be undertaken. The Kate filter paints automatically the active
links in blue (this is not shown in the back-and-white screenshots). Figure 4 shows a
typical page of information.
Remark: All the figures presented below have an English interface for the sake of
clarity. In the system installed in the B4 hall, the user interface and the data model are
in Danish. This does not affect the linking procedure thank to the indirect links. Ad-
ditionally, this multi-language approach makes it easy to evolve to other languages in
the future.

Fig. 4. Typical information resource. The documents are linked to each other thank to the
MicroCosm linkbase.

6 Evaluation

We describe in this section the current results of this on-going project, both in terms
of the development efforts involved, and in term of improvement of the performance
and easiness of the diagnostic process.

382 E. Auriol et al.

althoff@iis.uni-hildesheim.de

6.1 Main Dates and Efforts Involved

The HelpMate project started in September 1997 and will end up in November 1999.
Most of the time during the first year has been spent on technical work for building
the bridge, called KateCosm, between the case-based reasoning and the multimedia
tools. In parallel, a pilot system was developed and delivered in June 1998 in order to
collect the end-users requirements. The first version of the system has been delivered
in January 1999 and installed after testing in the B4 hall on the 15th of February 1999.
A second version has been delivered in April 1999. During the development process,
an end-user’s “wish list” has been continuously maintained in order to improve the
system in the desired way.

The overall effort for the HelpMate project was estimated as follow:
− Technical integration between the case based and the hypermedia tools: 7 months
− Model building and case authoring: 6 months
− Hypermedia preparation: 7 months
− System development: 9 months
− Organisation (training, operation, tuning, evaluation…): 10 months

In practice, it appeared that the technical part (integration and system develop-
ment) required more effort than expected. For the integration part, this is due to the
fact that we wanted create a generic integration procedure between Kate and Micro-
Cosm, beyond the target application. For the system development part, this is due to
the two-steps approach chosen (pilot + several versions delivered). The user require-
ments that arose from the pilot were much more complex and difficult to complete
than it was expected when we started the project. Additionally, new tools were re-
quired both for the development part (e.g., the tool for building analytical cases from
fault trees) and for the application part (e.g., the wrapper, and the tool for logging the
end-users actions). On the other hand, the case authoring was easier to complete,
thanks to the pilot system. It was recognised that analytical cases were needed, which
were available directly from the super-users under the form of fault trees. The analy-
sis of cases provided by the end-users was eased thanks to the log facility.

6.2 Freya Users

There are a number of different types of users of Freya. Table 1 lists the various cate-
gories and indicates the number of users in each category. “Normal” users can consult
the system. They can confirm or unconfirm a solution proposed by the diagnostic tool.
Their actions are logged into a log file so that it is possible to create new cases or to
modify existing cases by analysing the content of the log files. More generally, all
actions of the users (cases used, solutions obtained, documents browsed…) are logged
for further analysis. The super-users have different rights in Freya. They can create
new cases or validate existing ones, modify the data model, create new links between
the documents etc. Also the super-users do the initial test of a new version of Freya.
Among the super-users, the service co-ordinator has a specific role: He is responsible
for maintaining up to date the case base, the document base, the data model and more
globally the diagnostic system.

383Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

Table 1. The type and number of Freya users

HelpMate users Nb. of users Reserve
users

Nb. of super-users within
each user type

Operators 12 5 1
Maintainers 3 2 1
Foreman 1 1
Service co-ordinator 1 0 1

− The operators: As shown in the table above, there are 12 full-time operators and
5 reserve operators. The welding robot installation in hall B4 is operated 24
hours daily, by 3 separate shifts. There are 4 operators per shift. The operators
main tasks are to perform daily robot welding operations, to repair minor faults
and to co-ordinate major repairs.

− The maintainer: There are 3 (not full-time) maintainers and 1 reserve maintainer.
The maintainers’ main tasks are to perform routine preventive maintenance and
major reparations.

− The foreman: There is only one foreman responsible for the robot system. The
foreman’s main tasks are to co-ordinate and to plan the production of assemblies
at the robot station in shop B4.

− The service co-ordinator: There is one service co-ordinator for co-ordinating and
planning the routine and emergency servicing of all robot installations in the
yard. He is also responsible for helping other shipyards, using the OSS robot
systems, to detect robot faults. The service co-ordinator’s role has not become
fully established, because the position is relatively new.

6.3 Results of the Evaluation

The main goal of the second phase of the project, which has started with the release
of the first version of Freya in the B4 hall in February 1999, aims at evaluating the
results of the system. This is achieved through round-table discussions between B4
robot station maintenance and production personnel, and through direct measure-
ments of the time spent for diagnostic and documentation search tasks.

It is too early in the evaluation to have a clear measurement about the quantitative
gains associated to the use of Freya. However, it is felt than Freya can contribute to
reduce the expenses of maintaining complicated technological gantry systems and to
reduce robot down time caused by repetitive faults and no cause found, which can
affect the cost effectiveness of the gantry system. More results will be available in a
later phase.

According to OSS, the results of the HelpMate application are today mainly quali-
tative. Freya helps:
− To involve the robot operators in the maintenance process by creating greater

competence in diagnosing and repairing minor failures in the system. The robot
operators do not need to refer systematically to the maintainer each time a failure

384 E. Auriol et al.

althoff@iis.uni-hildesheim.de

occurs. This saves the maintainer’s time for other tasks, and increase the avail-
ability of the robots since the failures are repaired quicker;

− To exchange and expand knowledge and experience concerning maintenance.
This is particularly true for the maintainers, the foreman and the service coordi-
nator;

− To accelerate operator training. The introduction of Freya required regular
teachings by the service coordinator to the operators. As a consequence, opera-
tors working during the day shifts could share their experience with the ones
working during the night shift;

− To create an on-line help system for the operators and to give the operators easy
access to pertinent information.

7 Conclusion

The HELPMATE project aims to take the diagnostic capabilities of case-based rea-
soning and augment this with open hypermedia linking technology to provide the
operator with important context information regarding the problems and solutions
presented to him. This has been achieved through a seamless integration of two in-
dustrial products, Kate and MicroCosm Pro. It is a major challenge, not only to pro-
vide a single application for the specific need of the B4 robot station at OSS, but also
to develop a pragmatic and repeatable processes in order to ensure that the system
receives acceptance by the people tasked with robot maintenance. In the future, Freya
is expected to be used for other robot stations and other types of equipment, such as
cutting machines and cranes. The industrial partners of HelpMate will sell the Kate-
Cosm solution as an add-on of their specific own product.

8 Acknowledgements

The authors acknowledge the European Commission for funding HELPMATE under
grant number ESPRIT IV, project 25282.

9 References

1. Aamodt A. & Plaza E., "Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches". AI Communications 7, Vol. 1, 1994.

2. Quinlan J. R., “Learning Efficient Classification Procedures and their Application to Chess
End Games”, in Machine Learning 1: an Artificial Intelligence Approach, Michalski R.S.,
Carbonell J.G. & Mitchell T.M. (eds.), Morgan Kaufmann, Redwood City CA, 1983.

3. Manago M. & Auriol E., “Application of Inductive Learning and Case-Based Reasoning for
Troubleshooting Industrial Machines”, in Machine Learning and Data Mining – Methods
and Applications, Michalski R.S., Bratko, I. & Kubat, M. (eds.), John Wiley & Sons, 1998.

385Integrating Case-Based Reasoning and Hypermedia Documentation

althoff@iis.uni-hildesheim.de

4. Lenz M., Auriol E. & Manago M., “Diagnosis and Decision Support”, in Case-Based Rea-
soning Technology – From Foundations to Applications, Lenz M., Bartsch-Spörl B., Burk-
hard H.-D. & Wess S. (eds.), Springer, 1998.

5. Bergmann R., Breen S., Göker M., Manago M. & Wess S. (eds.), “Developing Industrial
Case Based Reasoning Applications - The INRECA Methodology”, Springer, 1999 (to ap-
pear).

6. Malcolm K, Poltrock S. & Schuler D., “Industrial Strength Hypermedia: Requirements for a
Large Engineering Enterprise”. Proceedings of Hypertext’91, December 1991.

7. Crowder R. M., Hall W., Heath I., Bernard R. & Gaskall D., “A Hypermedia Maintenance
Information System”. IEE Computing and Control Engineering Journal, 7(3), 1996, 109-
13.

8. Greenough R. & Fakun D., “An innovative information system to support team based
maintenance”. 3rd International Conference: Managing Innovative Manufacturing, Notting-
ham UK, July 1998.

9. Further information on MicroCosm can be found at http://www.multicosm.com/
10.Further information on Kate can be found at http://www.acknosoft.com/

386 E. Auriol et al.

althoff@iis.uni-hildesheim.de

Integrating Rule-Based and Case-Based Decision

Making in Diabetic Patient Management?

Riccardo Bellazzi1, Stefania Montani1, Luigi Portinale2, Alberto Riva1

1 Dipartimento di Informatica e Sistemistica
Universit�a di Pavia, Pavia (Italy)

2 Dipartimento di Scienze e Tecnologie Avanzate,
Universit�a del Piemonte Orientale "A. Avogadro", Alessandria, (Italy)

Abstract. The integration of rule-based and case-based reasoning is
particularly useful in medical applications, where both general rules and
speci�c patient cases are usually available. In the present paper we aim at
presenting a decision support tool for Insulin Dependent Diabetes Melli-
tus management relying on such a kind of integration. This multi-modal
reasoning system aims at providing physicians with a suitable solution to
the problem of therapy planning by exploiting, in the most
exible way,
the strengths of the two selected methods. In particular, the integration is
pursued without considering one of the modality as the most prominent
reasoning method, but exploiting complementarity in all possible ways.
In fact, while rules provide suggestions on the basis of a situation detec-
tion mechanism that relies on structured prior knowledge, CBR may be
used to specialize and dynamically adapt the rules on the basis of the
patient's characteristics and of the accumulated experience. On the other
hand, if a particular patient class is not su�ciently covered by cases, the
use of rules may be exploited to try to learn suitable situations, in order
to improve the competence of the case-based component. Such a work
will be integrated in the EU funded project T-IDDM architecture, and
has been preliminary tested on a set of cases generated by a diabetic
patient simulator.

1 Introduction

The interest in multi-modal approaches involving Case-Based Reasoning (CBR)
as a fundamental modality is recently increasing in very di�erent areas and
tasks [1, 9]. In fact, because of its \inductive" nature, CBR is well suited for
integration with other reasoning paradigms grounded on more general knowledge
such as Rule-Based or Model-Based systems. Particular attention has received
the combination of CBR with Rule-Based Reasoning (RBR), since rules are
in fact the most succesful knowledge representation formalism for intelligent
systems.

Such a kind of integration has been pursued in very di�erent tasks like plan-
ning [4], diagnosis [13], legal reasoning [18,5] and classi�cation [21]. In such ap-
proaches, RBR and CBR can cooperate at di�erent levels. The usual integration

? This paper is part of the EU TAP project T-IDDM HC 1047.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 386-400, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

is represented by the Rule-Based system dealing with knowledge on standard or
typical situations, letting CBR to face problems that are not typically covered
by rules. In this view, RBR is usually applied �rst; when it fails to provide the
user with a reliable solution, CBR allows one to retrieve similar cases from a li-
brary of peculiar and non-standard situations [21]. Other approaches suggest to
exploit the di�erences in generality between rules and cases, so rules are used as
an \abstract" description of a situation, while cases represent a further \special-
ization". Cases assist RBR by instantiating and by providing suitable contexts
to rules, while rules assist CBR by permitting the extraction of more general
concepts from concrete examples [5]. In this case, the resulting architecture may
be more
exible than in the previous kind of approach, as it is possible to decide
\a priori" which method should be applied �rst, or to select the most convenient
one in a dynamic way, depending on the situation at hand [5, 3]. In particular,
the rule base and the case memory can be searched in parallel for applicable enti-
ties. Then the best entity (i.e. rule or case) to reuse (and therefore the reasoning
paradigm to apply) can be selected on the basis of its suitability for solving the
current problem [3].

The common basis of all the above approaches (except perhaps the work in
[5]) is that CBR and RBR are to some extent used in a quite exclusive way.
In the present paper, we propose an approach combining rules and cases in a
medical application, where the cooperation between RBR and CBR takes place
within a general problem-solving cycle. This results in a very tight integration
with cases and rules
exibly used during problem solving.

The basic philosophy underlying this work is to overcome the limitations of
the two paradigms. On one side, we aim at providing a Rule-Based system with
the capability to specialize the rules on the basis of the patient's characteristics,
by trying to avoid the quali�cation problem (i.e. without highly increasing the
number of rules for dealing with more speci�c situations); moreover we would like
some rules (or part of them) to be dynamically adapted on the basis of the past
available experience. On the other side, we would like to provide a CBR system
with a module for giving suggestions based on structured prior knowledge, and
not only on the case library; this can be realized in at least two ways: by using
general knowledge coded into rules as the basis for adapting retrieved solutions
of past cases and by \�lling the competence gap" that the CBR component
may have because of the speci�c nature of cases. This capability is particularly
important for medical applications, since �nal decisions should be always based
on established knowledge.

2 The Application Framework: IDDM Patient
Management

Medical applications are a natural framework where the integration of structured
general knowledge and more speci�c situations can be exploited; indeed, well-
established knowledge is in general available in forms of rules [3], prototypes [20]
or models [11] and speci�c knowledge may be obtained from patient case-bases.

387Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

Following the ideas outlined in section 1, we have de�ned a multi-modal
decision support tool for the management of Insulin Dependent Diabetes Melli-
tus (IDDM) patients. Rather interestingly, while Rule-Based systems have been
largely exploited in the context of medical problems, no examples of Case-Based
Reasoning (CBR) systems for diabetes therapy can be found in the literature,
although, being IDDM a chronic disease, it would be possible to rely on a large
amount of patient data, coming both from periodical control visits and from
home monitoring.

IDDM patients undergo control visits every 2/4 months; during these visits
physicians analyze the data coming from home monitoring, in order to assess the
metabolic control achieved in the period under examination. The results of such
analysis are then combined with other available information, such as laboratory
results and historical and/or anamnestic data, in order to revise the patient's
therapeutic protocol. During this complex process, the physician may detect
some problems and propose a solution relying on some structured knowledge
(i.e. the pharmacodynamic of insulin, the main drug provided in the protocol)
as well as on the speci�c patient behavior (i.e. young or adult patient) and on
previous experience (i.e. the information that a certain protocol has been ap-
plied on that patient or to patients with similar characteristics in the past, with
a particular outcome). When dealing with automated decision support in IDDM
management, the combination of di�erent reasoning tools seems a natural solu-
tion: the widely-recognized scienti�c knowledge is formalized in our system as a
set of rules [7], while additional knowledge, consisting of evidence-based infor-
mation, is represented through a database of past cases collected by physicians
during visits. The latter kind of knowledge is very important, since information
gathered from periodic visits is the ground for any therapy adjustment.

In this paper we present the overall architecture of the multi-modal reasoning
system, as well as a �rst implementation developed within the EU-project T-
IDDM. In particular, the Rule-Based system has been de�ned in collaboration
with the Department of pediatrics of the Policlinico S. Matteo Hospital of Pavia,
and has been revised on the basis of the suggestions of the medical partners of
T-IDDM [14]. The case-base has been derived from the clinical records of 29
patients, for a total of 145 cases collected at the Policlinico S. Matteo Hospital
in Pavia. The details of the proposed architecture are presented in the following.

3 Integrating CBR and RBR for IDDM Patient

Management

3.1 The CBR System

The CBR component of our decision support tool is based on the architecture
we described in [2]. A case is de�ned by a set of feature-value pairs, by a solution
and by an outcome: formally it is the triple

C = fhF : fi; hS : si; hO : oig

388 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

where f is the vector of values for the set of descriptive features F , s is the
solution schemata selected from the solution space S and o is the outcome of the
solution selection in the space of the possible outcomes O.
In IDDM management, we interpret a periodical control visit as a case. In this
context, F summarizes the set of data collected during the visit; we have de-
�ned 27 features of which 6 are linear (continuous), and 21 are nominal (dis-
crete); among them, some are abstractions of the raw visit data. The features are
extracted from three sources of information: general characterization (e.g. sex,
age, distance from diabetes onset), mid-term information, (e.g. weight, Glycated
Hemoglobin (HbA1c) values), and short term (day-by-day) information (e.g. the
number of hypoglycemic episodes). The solution s is the array of insulin types
and doses prescribed by the physician after the analysis of the feature values,
and the outcome o of the therapeutic decision is obtained by inspecting HbA1c
and the number of hypoglycemic events at the following visit. Table 1 in section
4 shows a subset of an example case features. To make retrieval more
exible
we have structured the case memory resorting to a taxonomy of prototypical
classes, that express typical problems that may occur to patients1.

Retrieval is hence implemented as a two-step procedure: a classi�cation step,
that proposes to the physician the class of cases to which the current case could
belong, and a proper retrieval step, that e�ectively identi�es the \closest" past
cases. This will allow the actual retrieval to be focused on the most relevant part
of the case library; as a consequence a very simple
at memory organization is
su�cient to store cases inside a given class2.

The taxonomy on which we based our classi�cation consists of a set of mutu-
ally exclusive classes that may occur to IDDM pediatric patients (see �gure 1).
Root class (Patient's problems) represents the most general class including all
the possible cases we may store into the case memory. The root's subclasses are
prototypical descriptions of the set of situations they summarize. In more detail,
an inner node (called macroclass) represents a class with certain properties that
all the classes of its descending subtree have in common, while leaves (called
basic classes) provide the most detailed description of pathologies, or clinical
course conditions taken in consideration. Each case in the case memory is an
instance of a unique basic class and can be retrieved through such a class. The
classi�cation process aims at limiting the search space for similar cases to the
context (i.e. the class, or a small number of classes in the taxonomy), into which
the problem at hand can be better interpreted. In other words, we implement
the usual situation assessment step of the CBR cycle [10] by means of prototype
classi�cation. Classi�cation may be performed on the leaves of the taxonomy

1 Even if at the current stage such a taxonomy is derived a-priori by consider general
medical knowledge, the possibility of automatically discovering such a structure by
means of clustering algorithms is currently under investigation.

2 Actually, cases are stored in an OracleTM relational data-base, whose table structure
mirrors the classes taxonomy; each leaf of the taxonomy tree matches a table, whose
columns correspond to the case features, and whose rows are instances of the class
at hand (i.e. the cases).

389Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

Hypoglycemia
Problems

Overweight
problems

Anorexia
Stabilized
Metabolism

Behavioural
Puberal
Problems

Puberty with
Associated
Diseases

Patient’s
problems

Bulimia

Change
 Life
 Style

No
 Motivation

Falsifier

Typical
Puberal
Problems

Celiac
Disease

Clinical
Remission

Hormones

Fig. 1. Taxonomy of classes of prototypical situations that may happen during monitoring

of pediatric IDDM patients

tree, to �nd the most probable classes to which the input case could belong;
when several features in the case are missing, or when a less speci�c identi�ca-
tion of the situation at hand is required, the classi�cation step may be conducted
just at the upper level of the tree, working on the more general macroclasses.

Our tool implements a Naive Bayes strategy, a method that assumes condi-
tional independence among the features given a certain class, but that is known
to be robust in a variety of situations [8], even in the presence of conditional
dependencies3 . In our application, the prior probability values were derived from
expert's opinion, while posterior probabilities were learnt from the available case
base (145 cases) by using a standard Bayesian updating technique [15].

The actual case retrieval takes place by exploiting the classi�cation results.
The physician is allowed to choose whether to retrieve cases belonging only to
the most probable class identi�ed by the classi�er (intra-class retrieval), or to a
set of possible classes (inter-class retrieval). Independently of the intra-class or
inter-class choice, searching and matching procedures are based on a Nearest-
Neighbor (NN) technique; what is di�erent in the two situations is just the
adopted distance metric. Indeed, if we focus our attention to just one class (the
most probable one), a simple Heterogeneous Euclidean-Overlap Metric (HEOM)
can be adopted; in the second hypothesis, we cannot rely on the surface simi-
larity provided by HEOM and a metric like the Heterogeneous Value Di�erence
Metric (HVDM) has to be considered. In this situation, di�erences are evaluated
by explicitly considering the class of each case (see [22] for a general discussion
on HEOM and HVDM and [2] for more details on the application in our system).
Both methods are applicable not only for numeric and continuous variables, but

3 See [2, 15] for details of the implementation.

390 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

also for symbolic ones. Moreover, since HVDM may be computationally ine�-
cient when working with case-bases of relevant size4, we have also implemented
a non exhaustive search procedure, that exploits an anytime algorithm called
Pivoting-Based Retrieval (PBR) [16]. Experimental results have shown the e�-
cacy of PBR in our application, even for large case-bases (see [2] for evaluation
on a case library containing more than 10000 cases).

3.2 The Rule-Based System

The Rule-Based system relies on a taxonomy of rule classes, that embed the
domain knowledge of the application; the production rules are �red through a
forward chaining mechanism.

Problems
detection

Suggestion generation

Application of the
selected suggestions to

the current protocol
and search for additional
suitable library protocols

Ordered list of the
selected

therapeutic protocols

Patient’s Modal Day

Patient’a metabolic alterations
in the monitoring period

All possible
therapy

adjustments

Elimination of the unfeasible
adjustments

Suitable therapy adjustments for
the patient at hand

(1)

(2)

(3)

(4)

Fig. 2. Steps of the Rule-Based reasoning process.

The system performs a series of steps (see �gure 2), each one relying upon a
speci�c rule class.
Data analysis and problem identi�cation.
In order to temporally contextualize the large amount of time-stamped data col-
lected by patients during home monitoring (Blood Glucose Level (BGL) mea-
surements, insulin doses and diet information), the day is subdivided into seven

4 HVDM complexity is known to be O(FnC) [22], where F is the number of features,
n is the number of cases and C is the number of classes (proportional to the number
of cases)

391Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

non-overlapping time-slices, centered on the injection and/or meal times. The
raw data are then abstracted through a Temporal Abstractions (TA) technique
[12]: in particular, STATE abstractions (e.g. low, normal, high values) are ex-
tracted and aggregated into intervals called episodes. From the most relevant
episodes, it is possible to derive the modal day [12], an indicator able to sum-
marize the average response of the patient to a certain therapy. The BGL modal
day, in particular, is obtained by calculating the marginal probability distribu-
tion of the BGL state abstractions in each time slice, through the application of
a Bayesian method able to explicitly take into account the presence of missing
data [17].

After the BGL modal day has been calculated, the problem detection rule

class is exploited, to identify the patient's metabolic alterations. Such rules act
as follows: when the frequency (called minimum probability) of a certain BGL
abstraction is higher then the � threshold, and when the number of missing
data (called ignorance) is su�ciently small to rely on such information (i.e.
it is smaller than the � threshold), a problem is detected. For example, the
following rule detects a hypoglycemia problem in a generic time slice Y using
the information contained in the relative modal day component X:

IF X IS A BGL-MODAL-DAY-COMPONENT

AND THE TIME-SLICE OF X IS Y

AND THE BGL-LEVEL OF X IS LOW

AND THE MINIMUM-PROBABILITY OF X >= alpha

AND THE IGNORANCE OF X <= beta

THEN GENERATE-PROBLEM HYPOGLYCEMIA AT Y

where � and � are the two threshold parameters that can be instantiated at
run-time. Their default values where derived from medical knowledge, and are
equal to 0.3 and 0.8 respectively.
Suggestions generation.
In order to cope with the problem it founds, the Rule-Based system generates
a set of suggestions. Each rule in the suggestion generation rule class has
a premise which is veri�ed by the presence of a particular metabolic alteration.
Rules are divided into subclasses on the basis of the advice they generate: a
speci�c problem might be solved by adjusting the insulin doses, or by revising
the diet, or the physical exercise plan. Suggestions selection.
Among all the generated suggestions, the system selects the most e�ective ones,
always verifying their suitability for the patient at hand. Such a step relies upon
the activation of two rule classes, the suggestion selection rule class and
the �ltering rule class. The premises of the suggestion selection rules take
into account the patient's characteristics (e.g. age, associated diseases). The
�ltering rules are applied after the deletion of suggestions that resulted to be
not admissible for the patient at hand, to identify just the most e�ective action
in a single time slice.
Protocol revision.
Insulin suggestions are applied to the current insulin protocol by the protocol

392 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

rule class, obtaining a revised therapy for the patient at hand. If other suitable
protocols are available in the system data-base, they are retrieved as well, and
pushed in an ordered list. The more a protocol is similar to the current one
(in terms of number of injections and of insulin doses for every injection), the
higher position it takes in the list: the similarity is calculated using the HEOM
method [22]. The physician is able to evaluate the system choices step by step,
and �nally to choose a suitable solution among the proposed ones.

3.3 Integration between CBR and RBR

As previously noted, the rule base is partitioned into a set of rule classes that
perform the above outlined reasoning steps, and the order in which the rule
classes are activated is determined by a set ofmetarules. The integration of CBR
into this framework is achieved by de�ning additional metarules that guide the
interaction between the results of the CBR procedures and the rule system. This
corresponds to de�ne a Supervisor controlling the activation and integration of
the CBR and RBR components by means of such metarules. Integration takes
place by means of a rule re�nement process involving the change of suitable
rule parameters on the basis of information obtained from the case library (i.e.
classi�cation and retrieval).

Re�nement a�ects rule parameters that without case speci�c information
tend to deal with too general situations. This occurs as follows: rules are repre-
sented as objects characterized by an activation condition, an action and a set
of parameters that in
uence both the activation condition and the action. In
this phase, the parameters of the rules can be changed in order to obtain a more
e�ective and more suitable de�nition of a therapy for the patient at hand. In
particular, the behavior of two rule classes is a�ected.
Problem detection rules can be specialized by:

1. setting a proper value of the � threshold for the frequency of BGL abstrac-
tions;

2. de�ning the maximum admissible number of missing data so that the infor-
mation may be relied upon (i.e. setting the � threshold).

This kind of re�nement is made by considering the class of the patient to which
the input case refers. This can be in principle either the most probable class
pointed out by the Naive Bayes classi�er, or the class of the most similar case
if inter-class retrieval is required. In the latter situation, the process becomes a
NN classi�cation that may produce, in general, di�erent results from the Naive
Bayes technique5.

For example, when dealing with patients su�ering from anorexia, it is im-
portant to be able to promptly detect all hypoglycemic episodes, even when few
data are available. This is motivated by the fact that such patients run a higher

5 This should happen only if the posterior distribution on classes resulting from

Bayesian classi�cation is not signi�cantly skewed.

393Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

risk of hypoglycemia, due to their nutritional disorder. This implies that the �

threshold has to be decreased, while the � threshold has to be increased. As an

example, the rule described in section 3.2 becomes:

IF X IS A BGL-MODAL-DAY-COMPONENT

AND THE TIME-SLICE OF X IS Y

AND THE BGL-LEVEL OF X IS LOW

AND THE MINIMUM-PROBABILITY OF X >= 0.2

AND THE IGNORANCE OF X <= 1

THEN GENERATE-PROBLEM HYPOGLYCEMIA AT Y

Suggestion generation rules can be specialized by modifying:

1. the number of insulin doses to be added or eliminated to tackle a metabolic

alteration;

2. the overall variation in daily requirement;

3. the quantitative variation in a single insulin dose.

This is done by considering retrieved cases and in particular by correlating the

metabolic state of the patient associated to the input case with the therapeutic

actions adopted in retrieved insulin protocols.

In particular, the whole integration, summarized in �gure 3, allows the physi-

cian to be provided with a suitable set of suggestions for insulin protocol adjust-

ment, in the following way:

INPUT
CASE

PROBLEM
DETECTION

CLASSIFICATION
AND RETRIEVAL

RULE
BASE

CASE
BASE

PROBLEM
DETECTION

RULES
(P.D.R.)

RELEVANT
CASES AND

CLASSES

DETECTION
PARAMETER
REFINEMENT

REFINED
P.D.R.

SUGGESTION
PARAMETER
REFINEMENT

REFINED
S.R.

SUGGESTION
RULES
(S.R.)

Fig. 3. CBR-RBR Integration

394 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

{ The Supervisor invokes the Bayesian classi�er of the CBR module on
the patient's visit data. During this step, the user of the system (i.e the
physician) can choose whether to exploit only the results of the classi�cation
step, if the output is considered reliable, or to analyze the \closest" cases
obtained through intra-class or inter-class retrieval.

{ If the physician chooses to rely just on the Bayesian classi�cation step, the
information about the class is used to re�ne the � and � thresholds for the
relevant problem detection rules and the rule-based system is then applied
to such re�ned rules.

{ If the physician decides to perform retrieval, a simple test on the applicability
of the corresponding protocols is performed6. Only cases whose protocol has
a positive test are considered for subsequent elaboration. If no such a case
is retrieved, then RBR is applied without considering any CBR integration.

{ If useful speci�c cases are obtained, both detection rules and suggestion rules
can be in principle re�ned. In particular, NN classi�cation (if di�erent from
the Bayesian one) can be exploited for detection parameter re�nement. After
that the relationships between the features describing the metabolic state of
the patient and the therapeutic actions in the retrieved cases are evaluated.
For example, the HbA1c trend and the insulin requirement trend are jointly
analyzed to determine whether an increase in the former is treated with an
increase in the latter. The results of retrieval will then be used only if the
relationship is statistically signi�cant (with a p-value of 0.1)7.

{ In case the previous step identi�es a signi�cant therapeutic action, the re-
�nement of suitable suggestion rules takes place by distinguishing between
cases having positive outcome (i.e. cases for which the applied protocol has
resulted in a low number of hypoglycemic events and in a HbA1c decreasing
trend) from those having negative outcome (all the others). Only for \positive
cases" the result of the CBR process, is used to tailor the Rule-Based system
according to the identi�ed context. In particular, some descriptive statistics
are used to set the number of insulin injections (voting strategy on the vari-
ation of injection number of retrieved positive cases or computation of the
mean variation), the variation of daily insulin requirement (computation of
mean variation) and the variation of a single insulin dose (computation of
mean variation).

{ The result of the previous step is a set of re�ned suggestion rules that can
be used to complete the RBR cycle described in �gure 2 for providing �nal
suggestions to the physician.

To summarize, CBR in
uences steps (1) and (2) in �gure 2, by transforming
the sequence of such steps as shown in �gure 3. Finally, the RBR proceeds with
suggestions selection and with the de�nition of a list of alternative protocols, as
described above. The integration, by making the system more e�ective in the
detection of patient's problems, and in prescribing insulin modi�cations that can

6 Such a test is simply based on the number of insulin doses (injections) they predict.
7 A �

2 test is applied to check if the conditional distribution of the insulin requirement
trend given HbA1c trend is signi�cantly di�erent from the uniform distribution

395Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

be stronger or milder, depending on the context in which the RBR is operating,
can enhance the RBR performance; in particular we expect the time needed for
problem resolution to be reduced, through the de�nition of a therapy properly
tailored on the patient's peculiar needs.

An important aspect of the above integration process concerns the fact that
also CBR can take advantage of the result of RBR. In fact, if the outcome of
CBR is not applicable in a given context (i.e. to a given input case and with a
particular case library available), RBR is performed without integration, in order
to avoid wrong specialization due to misleading cases. This situation suggests
that a gap in the competence of the CBR component is present; our approach
is to �ll this gap by relying on the (possibly conservative) result of the RBR
process. Indeed, in such a kind of situations (i.e. if no suitable case is retrieved,
either because no positive outcome is found or because the retrieved therapeutic
protocols are signi�cantly di�erent from the current one) then, as soon as the
outcome of the proposed protocol is available (usually at the next periodical
visit), a new case is learnt and stored in memory with the following parameters:

Descriptive features: the features of the input case;

Classi�cation: either the class resulting from Bayesian classi�cation if reliable or
the class resulting from NN classi�cation;

Solution: the insulin protocol suggested by the Rule-Based system;

Outcome: the resulting outcome.

4 Implementation and System Evaluation

From an implementation point of view, the RBR and the CBR systems are
fully integrated in the T-IDDM architecture, a distributed, Web-based environ-
ment, where the cooperation among the di�erent modules relies on Lispweb, an
extended, special-purpose Web server written in Common Lisp, that makes it
possible to create \intelligent" and \secure" applications while remaining in the
context of Web-based systems [19]. In particular the T-IDDM service is provided
by the communication between two main units: a Patient Unit (PU), meant to
help patients in day by day self monitoring, and a Medical Unit (MU). The
latter, devoted to assist physicians in IDDM patients management, includes the
RBR and the CBR systems, and will soon be extended with the multi-modal
reasoning functionality described in this paper.

In order to provide a �rst evaluation of multi-modal reasoning described in
the previous sections, we have compared the performances of RBR with the ones
of the CBR-RBR integrated approach in stabilizing the metabolic control of a
simulated patient. The patient's characteristic features have been derived from
a real pediatric patient case of our case memory, while her BGL measurements
were generated by an IDDM patient simulator, developed in the context of the
T-IDDM project [6]. The test has been carried out as an iterative procedure,
consisting in simulating 7 days of monitoring data and then in revising the
insulin protocol on the basis of the collected information.

396 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

Table 1 and table 2 report the most relevant features of the test patient, and
the therapeutic protocol at the beginning of the experiment.

Age 19

Sex Female

Weight 40

Height 160

HbA1c 5.1

HbA1c Trend Decreasing

Insulin Requirement 0.6

Insulin Requirement Trend Decreasing

Table 1. The main features de�ning the test case

Breakfast Regular Insulin 4

Breakfast NPH Insulin 0

Lunch Regular Insulin 4

Lunch NPH Insulin 0

Dinner Regular Insulin 4

Dinner NPH Insulin 12

Table 2. The therapeutic protocol at the beginning of the experiment

The CBR system identi�ed the above case as an example of anorexia, and we
used this information to re�ne the problem detection rule class (see section 3.3
for an example). By performing some statistical analyses on 20 cases retrieved
through a NN technique, a signi�cant result about the average variation of in-
sulin doses in each injection was obtained; in particular the average variation
of NPH insulin at dinner was equal to 4, while the default variation proposed
by the Rule-Based system is of 1 unit. This result was used in the multi-modal
approach to specialize the suggestion generation rule class, permitting a more
aggressive action in insulin treatment. We began our study by generating 7 days
of BGL data, with an average of three measurements per day and including
also some post-prandial data. To introduce intra-patient variability, the data
were derived adding a 10% noise on the simulation results. The obtained BGL
values were analyzed both by the Rule-Based system and by the multi-modal
reasoning system. The revised protocols were acquired by the simulator and used
to obtain the data for the following monitoring period. Such procedure ended
when the simulated patient metabolic condition was stabilized. Figure 4 shows
the outcome of the Rule-Based system, while �gure 5 shows the outcome of
the integration approach. While the Rule-Based system, being more conserva-

397Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

tive and \cautious", took 4 weeks (i.e. 4 adjustments) to stabilize the simulated
patient, the integrated approach was more e�ective, as 1 week was enough to
produce the same result. These �rst validation results proved to be encouraging,
although we aim at exploiting real patients' BGL measurements to get more
reliable information.

5 10 15 20 1 6 11
40

60

80

100

120

140

160

Time (hours)

B
G

L
(m

g/
dl

)

rule−based system

Fig. 4. The 24 hours pro�les of blood glucose in response to the di�erent therapeutic
protocols proposed by the rule-based system. The patient's metabolic stabilization (within
normal BGL ranges, i.e. 65-140 mg/dl), represented by the dash-dotted line, is obtained
after three intermediate adjustments, represented by the dashed lines.

5 Conclusions

In this paper, we have described a reasoning approach that integrates CBR and
RBR to provide suggestions on insulin therapy planning for IDDM patients. We
plan to include the multi-modal reasoning system here described in the running
prototype of T-IDDM. As a matter of fact, the T-IDDM project validation phase
has already started, involving eight pediatric patients at the Policlinico S. Matteo
Hospital in Pavia, and eight adult patients in the three other project validation
sites. By making the multi-modal reasoning methodology available for the testing
sites, we will be able to get a feedback of its performance directly from the end
users. Moreover, in the future we will study a possible integration of CBR with
other reasoning systems, such as model-based ones. Finally, from an application
point of view, we will work on possible implementations of multi-modal reasoning
in the context of di�erent chronic diseases management.

AcknowledgmentsDr. Stefano Fiocchi and Dr. Giuseppe d'Annunzio are grate-
fully acknowledged their support in the CBR and in the RBR systems de�nition.
We thank Prof. Claudio Cobelli and Gianluca Nucci for having provided us with

398 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

5 10 15 20 1 6 11
40

60

80

100

120

140

160
multi−modal reasoning system

B
G

L
(m

g/
dl

)

Time (hours)

Fig. 5. The 24 hours pro�les of blood glucose in response to the di�erent therapeutic
protocols proposed by the multi-modal reasoning system. The BGL values fall into the
normality range just with one protocol revision (dash-dotted line).

the simulation tool. Finally we thank the T-IDDM partners for their suggestions

on the Rule-Based system.

References

1. D. Aha and J. Daniels (eds.). Proc. AAAI Workshop on CBR Integrations. AAAI
Press, 1998.

2. R. Bellazzi, S. Montani, and L. Portinale. Retrieval in a prototype-based case
library: a case study in diabetes therapy revision. In Proc. 4th EWCBR, LNAI
1488, pages 64{75. Springer Verlag, 1998.

3. I. Bichindaritz, E. Kansu, and K.M. Sullivan. Case-based reasoning in CARE-
PARTNER: gathering evidence for evidence-based medical practice. In Springer
Varlag, editor, Proc. 4th EWCBR, LNAI 1488, pages 334{345, 1998.

4. P.P. Bonissone and S. Dutta. Integrating case-based and rule-based reasoning: the
possibilistic connection. In Proc. 6th Conf. on Uncertainty in Arti�cial Intelligence,
Cambridge, MA, 1990.

5. L.K. Branting and B.W. Porter. Rules and precedents as complementary warrants.
In Proc. 9th National Conference on Arti�cial Intelligence (AAAI 91), Anaheim,
1991.

6. C. Cobelli, G. Nucci, and S. Del Prato. A physiological simulation model of the
glucose-insulin system in type 1 diabetes. Diabetes Nutrition and Metabolism, 11,
1998.

7. The Diabetes Control and Complication Trial Research Group. The e�ect of in-
tensive treatment of diabetes on the development and progression of long-term
complications in insulin-dependent diabetes mellitus. The New England Journal
of Medicine, 329:977{986, 1993.

8. P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classi�er
under zero-one loss. Machine Learning, 29:103{130, 1997.

9. E. Freuder (ed.). AAAI Spring Symposium on Multi-modal Reasoning. AAAI
Press, 1998.

399Integrating Rule- and Case-Based Decision Making in Diabetic Patient Management

althoff@iis.uni-hildesheim.de

10. J.L. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

11. P. Koton. Integrating causal and case-based reasoning for clinical problem solving.

In Proc of the AAAI Symposium on Arti�cial Intelligence in Medicine, pages 53{54,

Stanford, 1988.

12. C. Larizza, R. Bellazzi, and A. Riva. Temporal abstractions for diabetic patients

management. In LNAI 1211, pages 319{330. Springer Verlag, 1997.

13. D. Macchion and D.P. Vo. A hybrid KBS for technical diagnosis learning and

assistance. In Lecture Notes in Arti�cial Intelligence 837, pages 301{312. Springer

Verlag, 1993.

14. S. Montani, R. Bellazzi, C Larizza, A. Riva, G. d'Annunzio, S. Fiocchi, R. Lorini,

and M. Stefanelli. Protocol-based reasoning in diabetic patient management. In-

ternational Journal of Medical Informatics, 53:61{77, 1999.

15. S. Montani, R. Bellazzi, L. Portinale, S. Fiocchi, and M. Stefanelli. A case-based

retrieval system for diabetic patients therapy. In Proceedings of IDAMAP 98 work-

shop, ECAI 98, pages 64{70, Brighton, 1998.

16. L. Portinale, P. Torasso, and D. Magro. Selecting most adaptable diagnostic solu-

tions through Pivoting-Based Retrieval. In Proc. 2nd ICCBR, LNAI 1266, pages

393{402. Springer Verlag, 1997.

17. M. Ramoni and P. Sebastiani. The use of exogenous knowledge to learn bayesian

networks for incomplete databases. In Advances in data Analysis, LNCS, pages

537{548. Springer Verlag, 1997.

18. E.L. Rissland and D.B. Skalak. Combining case-based and rule-based reasoning: a

heuristic approach. In Proc. 11th IJCAI, pages 524{530, Detroit, 1989.

19. A. Riva, R. Bellazzi, and M. Stefanelli. web-based system for the intelligent man-

agement of diabetic patients. MD Computing, 14:360{364, 1997.

20. R. Schmidt and L. Gierl. Experiences with prototype designs and retrieval methods

in medical Case-Based Reasoning systems. In Proc. 4th EWCBR, LNAI 1488,

pages 370{381. Springer Verlag, 1998.

21. J. Surma and K. Vanho�. Integrating rules and cases for the classi�cation task.

In Proc. 1st ICCBR, LNAI 1010, pages 325{334. Springer Verlag, 1995.

22. D.R. Wilson and T.R. Martinez. Improved heterogeneous distance functions. Jour-

nal of Arti�cial Intelligence Research, 6:1{34, 1997.

400 R. Bellazzi et al.

althoff@iis.uni-hildesheim.de

Managing Complex Knowledge in Natural Sciences

Noël Conruyt, David Grosser

IREMIA, Institut de REcherche en Mathématiques et Informatique Appliquées
University of La Réunion

15, av. René Cassin – 97715 Saint-Denis, Messag. Cedex 9, France
{Conruyt, Grosser}@univ-reunion.fr

Abstract. In many fields dependant upon complex observation, the
structuring, depiction and treatment of knowledge can be of great
complexity. For example in Systematics, the scientific discipline that
investigates bio-diversity, the descriptions of specimens are often highly
structured (composite objects, taxonomic attributes), noisy (erroneous or
unknown data), and polymorphous (variable or imprecise data). In this
paper, we present IKBS, an Iterative Knowledge Base System for dealing
with such complex phenomena. The originality of this system is to
implement the scientific method in biology: experimenting (learning rules
from examples) and testing (identifying new individuals, improving the
initial model and descriptions). This methodology is applied in the
following ways in IKBS: 1 - Knowledge is acquired through a descriptive
model that suits the semantic demand of experts. 2 - Knowledge is processed
with an algorithm derived from C4.5 in order to take into account structured
knowledge introduced in the previous descriptive model of the domain. 3 -
Knowledge is refined through the use of an iterative process to evaluate the
robustness of the descriptive model and descriptions. The IKBS system i s
presented here as a life science application facilitating the identification of
coral specimens of the family Pocilloporidæ.

1. Introduction

In the natural sciences, data to be processed may be more complex than in other fields.
In Systematics, attributes that describe organisms are numerous (> 100) compared
with the number of individuals by class which is mostly not representative (< 10): the
domain to describe is established deterministically (empirically) rather than
probabilistically (statistically) [14]. In such domains, we must take into account
diversity and incompleteness, and the exception is the only valid rule.

Learning systems intended to facilitate classification (class definition) and
identification of natural organisms must adapt themselves to the representation and
process of such reality.

For the necessities of representation, taking into account the structuring of
biological knowledge [2], [5] is a progress that allows to consider useful common
sense background knowledge in order to acquire, manage and process complex
knowledge in a more elegant and efficient way.

The identification procedure that is described in this paper takes care of structured
descriptions intelligently by reducing the number of eligible criteria for information

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 401-415, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

gain calculation and manages coherent consultations through a guide to observation
(web questionnaire).

Nevertheless, the problem we are faced with in Systematics is more difficult: good
identifications depend on previously good classifications from experts, and also good
descriptions from other biologists. Nature is so conceived that giving a name to
organisms can also be difficult for experts (synonymies’ problem), especially when
there is a great intra-specific variation. This is the case in coral taxonomy where the
number of named species in the world is uncertain [18]. Thus, managing complex
knowledge in natural sciences means to cope with such evolving knowledge.

We have designed an Iterative Knowledge Base System to build knowledge bases in
natural sciences that responds to these requirements. The main goal of IKBS is to
produce quality descriptions which is a key factor for getting better results in
identification process [11] and avoid future revisions.

2. Methodology

In the computer sciences, knowledge is a controversial term [Kodratoff, 1997]. We
thus offer a working definition for our purpose in biology that consists of three kinds
of knowledge: domain, instantiated and derived.

Domain knowledge (or background knowledge) relates to the definition of what is
observable, i.e., build a descriptive model that corresponds to the modeling of data, or
metadata [6]. Instantiated knowledge refers to the description of observed instances
(case descriptions). Derived knowledge can be compared with produced hypotheses
(cluster definitions, decision trees, rules, identification) discovered from domain and
instantiated knowledge. Obviously, knowledge is also grounded in expert’s mind and
what is “extracted” is but a minimal part of his or her experience.

Knowledge Discovery methodology views knowledge as an output of a linear
process of input data handling [8]. In biological domains, our emphasis is placed on a
different interpretation of knowledge which consists of both input (domain and
instantiated) and output (derived). This viewpoint is more relevant to Case-Based
Reasoning methodology: i.e. the CBR cycle described in [1] with an extensive use of
domain knowledge in the processing phase.

In practice, knowledge is extracted with IKBS by a cyclical process, divided into
three parts:

1. Knowledge acquisition:
• Acquire a descriptive model (domain knowledge or observable facts),
• Acquire descriptions (observed facts or cases),

2. Knowledge processing:
• Generate classification rules with decision tree induction,
• Identify new observations(unknown specimens) with case-based reasoning,

3. Knowledge validation and refinement:
• Verify the origin of misidentifications by analyzing differences of interpretation

between the expert and the users of the knowledge base,
• Iterate on the definition of the descriptive model (characters), update old cases.

For experts in biology, this approach is well suited to the natural process of their
knowledge acquisition (conjecture and test) [16]:

402 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

1. Observe and familiarize oneself,
2. Represent observations, i.e. make descriptions,
3. Build hypotheses from descriptions (pre-classified), i.e. generate identification keys,
4. Test and experiment them with new observations, i.e. identify new specimens,
5. Refine their initial knowledge (new characters, cases and classifications).

The last point of the method is fundamental because the building of a knowledge
base in natural sciences is very difficult. This was our experience in applications such
as diagnosis of plant pathologies [12]. It is hard for experts to define the best
representation of reality at once in a descriptive model. The challenge is to acquire the
best character definitions and illustrations leading to interpretations of observations
understood by anyone consulting the knowledge base.

3 . Knowledge acquisition

This part of the methodology is very important to acquire a case base with good
quality descriptions, i.e. that are well structured in different dimensions with all the
required information, with characters, illustrations and comments that are easily
comprehensible for other biologists.

3 . 1 The descriptive model

The descriptive model represents all the observable characteristics (objects, attributes
and values) pertaining to individuals belonging to a particular domain. It is organized
in a structured scheme, the name of the domain being at the root of a description tree.
Each node of the tree is an object (a component of the individual) defined by a list of
attributes with their respective possible values. Designing a descriptive model is
essentially an expert task.

For helping them, we have set up logical rules for case description covering:
decomposition, viewpoint, iteration, specialization, contextual conditions, etc. [11].
These rules were constructed from the analysis of expert’s process of creating
monographs of organisms or diseases.

To serve as an example, we present the descriptive model of one of the world’s
most widespread family of corals: Pocilloporidæ [7] (see Fig. 1). 51 objects and 120
attributes have been defined by the expert. With them, biologists are able to describe 4
genus and 14 species (see attribute called “taxon” in Fig. 1).

There are multiple benefits in such a representation. Viewpoints divide the
descriptive model into homogeneous parts, thus giving a frame of reference for
describing organisms at a particular level of observation (see objects identification,
context, description, macro and micro structure in Fig. 1).

Sub-components introduce modularity into the descriptions making it possible to
structure the domain from most general to most particular parts. This object
representation of specimens is semantically better than the flat feature-value one: in
the former, local descriptions of attributes depend on the existence of parent objects,
although in the latter the defined characters are independent of one another. Some of
the possibly missing objects are marked with a minus sign (e.g. columella).

403Managing Complex Knowledge in Natural Sciences

althoff@iis.uni-hildesheim.de

F
ig. 1. P

art of the descriptive m
odel of the F

am
ily P

ocilloporidæ

404 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

Fig. 1 shows the partitioning dimension of objects (subpart links for disjoint
classes). For some of them (i.e. septa), other dimensions such as multi-instantiation
(x symbol) and specialization (̂ symbol) of objects can be seen. The former enables
users to describe several sorts of the same object by descriptive iteration (there are 4
possible instances for septa in Fig. 1) and the latter lets users name each sort with the
help of the following classification tree of objects (specialization links in Fig. 2).

Fig. 2. Classification tree of object “septa”

In fact, one of the roles of the descriptive model is to bring an observation guide for
the end-user: the objects are linked together by relations that go from the most general
to the most specific (from left to right), making the next description process easier for
the non specialist (see below).

3 . 2 The descriptions

Starting from the selection of a descriptive model, the program automatically
generates a questionnaire [4]. It permits the less informed biologists, as the expert, to
acquire personal descriptions and create a case base. An identification name is
associated to each observation in order to form a description or a case (Fig. 3).

The description process generates sub-trees of the descriptive model (Fig. 1 and
Fig. 3). Therefore, observed descriptions can be directly compared to one another by
leafing through page by page: this navigation process is easier than viewing different
lists of attribute-value pairs.

In Fig. 3, we illustrate possibilities of IKBS for rendering complete and
comprehensive descriptions of a given sample.

Different types of attribute are used: taxonomic ones (e.g. general shape of object
colony), numerical intervals (e.g. diameter of apical parts) and multi-nominal values
(e.g. section of apical parts). The latter shows variation in objects displaying a set of
multiple elements.

The visualization of objects differs graphically according to their status: black if
present, black with a cross if absent, dimmed if unknown (see object “hood” at the
bottom-right side of Fig. 1 and Fig. 3).

At last, an object can be specialized (e.g. the septa of calices from apical parts, see
Fig. 1): the result is a substitution of its name by a more precise one (e.g. primary
septa, see Fig. 3) with its associated attributes (inherited or not, see Fig. 2).

It is important for the user to visualize structured descriptions: so doing brings
better clarity and comprehensibility to the acquisition phase. This is the most
important part of our methodology for acquiring good results of classification and
identification.

405Managing Complex Knowledge in Natural Sciences

althoff@iis.uni-hildesheim.de

F
ig. 3. P

art of the description tree of a case of the F
am

ily P
ocilloporidæ

: Stylophora subseriata

406 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

4 . Knowledge processing

This section highlights how usual inductive learning algorithms can be stretched to
complex data processing by using domain knowledge to generate accurate and
meaningful decision trees (from pre-classified examples).

4 . 1 Tree-based classification using domain knowledge

Starting from the well known decision tree builder algorithm C4.5 [17] which works
on discrete and continuous attributes, IKBS extends some functionality of this
algorithm for dealing with:
1. Structured objects
2. Taxonomic attribute-values
3. Multi-valued attributes:

Let E={w 1, ..., w n} be a set of observed examples, M={N, Y}, a set of observable
components and attributes defined in the descriptive model with N={n1,..., nm} a set of
structured components and A = {A1, ..., Ap} a set of attributes depending on N.

Let dom(A) be the definition domain (range) of A.

Structured objects
The algorithm for building decision trees from structured objects is the following:

BuildDecisionTree (E, M)
Y = SelectClassifier (root(M))
BuildTree(E, Y)

end BuildDecisionTree

BuildTree(E, Y)
if stop Criterion(E, Y) then BuildLeaf(E)
else
A = BestTest(E, Y) // A = y(n)
di = BuildNode(A)
Y = FilterClassifier(A) // depending on type of A
partitioning(di) = R(E)

// R(E) : " w ˛ E, Q(v1, A(w))=1Û w ˛ Ei

for each Ei ˛ partitioning(di)
BuildBranch(vi)
if (A = exist(n)) Ù (vi = “Present“))
Y = SelectClassifier (n)

end if
BuildTree (Ei, Y)

end for each
end if

end BuildTree

407Managing Complex Knowledge in Natural Sciences

althoff@iis.uni-hildesheim.de

SelectClassifier (r)
Y’ = ˘
if (possiblyAbsent(r) = “yes”) then
Y’ = Y’ ¨ {exist(r)}

else
Y’ = Y’ ¨ Att(r)
for each nf ˛ depend(r)

SelectClassifier (nf)
end for each

end if
return Y’

end SelectClassifier

The original aspect of the algorithm is the classifier’s selection function. The tree
of the descriptive model is followed from root to leaves, component by component in
depth search first. If one of it can be absent (e.g. calices on verrucæ of Fig. 1), an
“exist component” test is dynamically generated and placed in the eligible classifiers’
list with values “Present” or “Absent”. The sub-tree of this object is not yet visited in
order to avoid inapplicable sub-objects and attributes as other classifiers. On the other
hand, if components are always present (e.g. septa), dependent attributes are placed in
this list.

In the identification process (see further), if the test exist of a component is chosen
as the “best” one and the user answers that it is really present, then the classifier’s
selection function is recursively called on the sub-tree of the descriptive model.

Taxonomic attribute-values
For attributes which values are structured by relations of hierarchical type (classified
values), an extension of the discrete classifier partitioning process is proposed.

A

v1 vi vk... ...

vi1 vij vim... ...

dfirst =

d’ {
Fig. 4. Classified values of attribute A

The method consists, when such a classifier is selected, in creating a set of
partitions corresponding to the first level of the hierarchy (noted dfirst= {v1,…, vi,…,
vk} with k elements). Each case is assigned to the partition that generalizes its value.
Let A be a taxonomic attribute with the domain d = {v1,…,vi,…,vn} of n modalities
and d’ = {vi1,…,vij,…,vim}Ì d is a subtree of m submodalities of vi [Fig. 4.]:

Let Q be a Boolean application (called question) which determines if the modality
vi generalizes a value vij. Q is defined by:

Q(vi, vij) = 1, if vij ˛ d ¨ {vi} else Q(vi, vij) = 0
Then, we can generate k partitions from dfirst:

EA1={w ˛ EA /Q(v1, A(w))=1},…, EAk={w ˛ EA / Q(vk,A(w))=1}

408 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

In the next step, we create temporarily k attributes {A1,…, A j,…, Ak} in each
partition EA1,…,EAk with a set of modalities defined by the subvalues of {v1,…,
vi,…,vk}. These ones can be picked by the test function (information gain, gain ratio)
and the method is recursively reapplied.

Multi-valued attributes
When modeling the descriptive model, a discrete attribute (nominal or taxonomic) can
be defined as multi-valued. It can express doubt (disjunction of imprecision) or the
simultaneous presence of states (conjunction of variation) like in the following
expression:

v = (v11 &…v1i…& v1m) | … | (vj1 &…vji…& vjn)…| (vk1 &…vki…& vkp)
where cfj = (vj1 &…vji…& vjn)

Depending on the semantic associated with a conjunctive form of a case (cf), IKBS
can apply three processing methods:
1. If cf is true information (association of co-existing facts), create k partitions

corresponding to each conjunction of v, and dispatch cases with such value in each
partition: cf is seen as a new possible value of dom(A).

2. If cf expresses fuzzy information (the intrinsic variability of multiple objects is an
adding source of noise), treat conjunctions as disjunction.

3. Allow the user to customize the degree of similarity ¶ between two conjunctive
forms.
The default method is the third one with ¶ = 1 because it gives a good compromise

between the tree size (number of nodes) and the discrimination accuracy. Indeed, the
first method don’t generate a deep tree, but carries a major risk of misidentification:
each cf of the selected attribute at a node of the decision tree must match exactly the cf
of the tested case. The third method is more flexible because it makes a fuzzy
matching for dispatching cases in each partition, depending on the number of
differences between the two conjunctive forms and ¶ .

4 . 2 Identification process

Given a set of examples, IKBS dynamically extracts the most efficient criteria from
the ordered list of tests after each answer of the user. The cases are selected from this
reply. If the answer is unknown, the second most discriminate test is proposed to the
user, and so on. This procedure is the same as in KATE [13]. Nevertheless, IKBS
processes cases that are in an object oriented formalism, while KATE starts from cases
represented in a data table. In the former, the “exist (objects)” tests are directly
exploitable at a node of the decision tree, while in the latter, these tests are deduced
from the appearance of at least one not-applicable value in the object’s attribute
column of the table. Our approach is semantically better because it guarantees that the
inapplicability of an attribute’s value depends on the absence of an object and not the
contrary.

An illustration of a decision tree built with 30 training cases is shown in Fig. 5.
The numbers refer to previously discussed classifiers’ types: taxonomic attributes (1
and 2 highlight the use of the same classifier at two different levels of the values’
hierarchy), multi-valued attributes (case bulbosa with size of spines “short&long”
goes in three branches (3)) and structured objects (4).

409Managing Complex Knowledge in Natural Sciences

althoff@iis.uni-hildesheim.de

F
ig. 5. P

art of a decision tree that m
akes use of dom

ain know
ledge

410 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

5 . Validation and refinement

We experimented on corals to test the reliability of IKBS identification with different
users. We tested two consecutive descriptive models in a sub-domain of
Pocilloporidæ: the genus Pocillopora (9 species and ecomorphs). The validation of
both descriptive models was qualitative. It led to modification of the initial descriptive
model (dm1) and case base to the one shown in this paper (dm2). The first test with
dm1 is called A. Later, another test B on dm2 was carried out. The experiments were
made with a sample of 15 specimens of the Genus, each one of them being described
completely in both descriptive models by 3 different biologists (x1, x2, x3), and the
expert (E). With this training set of 60 cases, the expert added 22 other descriptions of
Pocillopora (37 expert cases). The four experiments that were led with IKBS are the
following:

• A1: 15 cases of xn tested against 37 cases of E.
• A2: 15 cases of xn tested against 67 cases (E+other xn).
• B1: 15 cases of xn tested against 37 cases of E.
• B2: 15 cases of xn tested against 67 cases (E+other xn).

The results on 15 consultations are shown in table 1.

Table 1. Number of good identifications with IKBS

x1 x2 x3

A1 6 7 8

A2 9 8 10

B1 9 10 11

B2 11 10 12

The results show that updating the first descriptive model and case base on
Pocillopora brought better results. When testing the expert training set, it gave 20%
(3/15) of improvement in identification process (from 46% to 66%). If we integrate
other biologists’ descriptions of the same specimens in the reference case base, the
score goes up from 60% to 73%.

The reasons of these improvements are principally:

1. the expert was able to detect inconsistencies in the first case base (omissions or
errors in descriptions) and descriptive model (misunderstood characters, faulty
illustrations). He could verify the answers of other biologists in regards to decision
tree questioning that lead to misidentifications. He noticed the difficulties of
interpretations of observation of specimens on some noisy comparative attributes
and refined them into a new descriptive model.

411Managing Complex Knowledge in Natural Sciences

althoff@iis.uni-hildesheim.de

2. Consequently, the expert, aware of the importance of transmitting his knowledge to
other biologists, postulates more precise and relevant characters that may be easier
to observe and/or offer less ambiguous values (easier to interpret) in his descriptive
model. For example, he will refine on the basis of mutually exclusive values,
monosemic attributes, frames of reference, warning signals, enhanced illustrations.

6 . Discussion

IKBS has been implemented in Java language and is fully operational on
(http://www.univ-reunion.fr/~ikbs) . Experts unaccustomed to
computers are able to model and describe, and any non-specialists interested in the field
can describe and identify new observations. IKBS is used directly by experts for
creating descriptive models and filling cases without any help from a computer
scientist. They find the interface very pleasant and enjoy the effectiveness of the tool.

In our methodology, it is important that the case base contains descriptions of
specimens made by biologists other than the expert. This, in order to counterbalance
his interpretation of observations (inter-observer variation) when consulting the
knowledge base. The results of the identification process are more dependable when
we mix descriptions of different users for the same specimens (shown in Table 1). As
they are labeled with the correct identification name from the expert, we can integrate
the noise due to misinterpretations from end-users directly into the case base.

Similarly, because of the intra-specific variability, the number of described
specimens by species must be increased. Insofar as Pocilloporidæ is concerned, this
family is one of the sixteen families of corals containing the greatest intra-variability,
and its complex diversity was covered with detailed precision.

The difficulty arises due to the number of attributes applicable to each case. Thus,
the building of an exhaustive knowledge base is time-consuming for describers:
updating a case with the latest descriptive model on Pocilloporidæ requires nearly a
whole day’s work!

7 . Related work

In other domains such as botany and zoology, some researchers have come up with
solutions for coding descriptions [5]. Their programs enable to compare descriptions
and facilitate identification process from databases [10], [15].

In Case-Based Reasoning methodology, IKBS can be compared with AcknoSoft’s
KATE, Isoft’s RECALL and TecInno’s CBR-Works. These decision support systems
have been designed to cope with industrial fields and very large databases [3]. In the
life sciences, our objective is to deal with more complex descriptions and less data
(cases) by class.

412 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

8 . Conclusions and future work

In collaboration with three experts, we are presently experimenting with IKBS on
three other families of corals of the Mascarene archipelago (Fungiidæ, Poritidæ,
Thamnasteriidæ). The meticulous choice of terms, drawings and images seems
decisive for generating a dependable knowledge base and managing the complexity of
natural objects.

This is why we are designing IKBS to build cooperative knowledge bases. The aim
is to encourage experts to draw up a common thesaurus of vocabulary and illustrations
(i.e. the questionnaire) on the same Family.

Collections of specimens, like experts, are distributed around the world. Thanks to
satellite high-speed broadband networks, we have been able to demonstrate
Telesystematics using video-conferencing and IKBS. At ATM Developments’98,
experts were able to share their interpretations of observations of specimens under a
microscopic examination synchronously between La Reunion (South-West of Indian
Ocean) and Rennes (France).

Nowadays, expertise in natural sciences is precious (it becomes very rare). It is
therefore urgent to develop tools that will ensure that expertise be collected and
safeguarded for transmission to future generations. If this is not done, we will be left
only with monographic descriptions and museum collections.

Acknowledgement

We would like to thank the French experts G. Faure, M. Pichon and M. Guillaume
for their valuable contributions on the applications on corals. We are also grateful to
Philippe Sills for English improvement. This work is supported by the Conseil
Régional of La Reunion Island.

References

1 . Aamodt A., Plaza E., Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches, AI Communications 7(1): 39-59, 1994.

2 . Allkin R., Handling taxonomic descriptions by computer, In; Allkin R. and Bisby F.A.
(eds.), Databases in Systematics. Systematics Association London, Academic Press,
26: 263-278, 1984.

3 . Althoff K. D., Auriol E., Barletta R., Manago M., A review of Industrial Case-Based
Reasoning Tools, AI Intelligence, Oxford, 1995.

4 . Conruyt N., Grosser D., Faure G. Ingénierie des connaissances en Sciences de la vie:
application à la systématique des coraux des Mascareignes. Journées Ingénierie des
Connaissances et Apprentissage Automatique (JICAA’97), Roscoff, pages 539-566,
1997.

5 . Dallwitz M.J., Paine T.A., Zurcher E.J., User’s guide to the DELTA System. A general
system for processing taxonomic descriptions, Canberra: CSIRO, Div. Entomol., 4th
ed., 1993.

6 . Diederich J.R., Milton J., Creating domain specific metadata for scientific data and
knowledge bases, IEEE Trans., Knowledge Data Engineering 3(4): 421-434, 1991.

413Managing Complex Knowledge in Natural Sciences

althoff@iis.uni-hildesheim.de

7 . Faure G., Recherche sur les peuplements de scléractiniaires des récifs coralliens des
Mascareignes. Thèse es sciences, Univ Aix-Marseille II, 1982.

8 . Fayyad U., Piatetsky-Shapiro G., Padhraic S., From Data Mining to Knowledge
Discovery in Databases, AI magazine, 17(3): 37-54, Fall 1996.

9 . Kodratoff Y. L’extraction de connaissances à partir des données. Journées Ingénierie des
Connaissances et Apprentissage Automatique (JICAA’97), Roscoff, pages 539-566,
1997.

10.Lebbe J., Systématique et informatique. Systématique et biodiversité, Bourgoin T. (Ed),
Biosystema, 13:71-79, Paris, 1995.

11.Le Renard J., Conruyt N. On the representation of observational data used for
classification and identification of natural objects. IFCS’93, Lecture notes in Artificial
Intelligence, Springer-Verlag, pages 308-315, 1994.

12.Manago M., Conruyt N. Using Information Technology to Solve Real World Problems,
Lecture Notes in Computer Science subseries, 622: 22-37, Springer Verlag, 1992.

13.Manago M., Althoff K.D., Auriol E., Traphoner R., Wess S., Conruyt N., Maurer F.,
Induction and reasoning from cases, First European workshop on case-based reasoning
(EWCBR-93), MM Richter, S Wess, KD Althoff and F Maurer (Eds.), Springer Verlag,
(2), 1993.

14.Mingers J. Expert Systems – Rule induction with statistical data. Journal of the
operational research society. 38(1): 39-47, 1987.

15.Pankhurst R.J., Practical taxonomic computing. Cambridge Univ. Press, Cambridge,
1991.

16.Popper K.R., La logique de la découverte scientifique. Payot (Eds.) Press, Paris, 1973.
17.Quinlan J.R., C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Altos,

CA, 1993.
18.Veron J.E.N., Pichon M., Scleractinia of eastern australia, vol. I, Part I, Australian

Institute of Marine Science Monograph Series, 1976.

414 N. Conruyt and D. Grosser

althoff@iis.uni-hildesheim.de

ELSI: A Medical Equipment Diagnostic System

Paul Cuddihy(cuddihy@crd.ge.com),

William Cheetham (cheetham@crd.ge.com)

GE Research & Development Center,

1 Research Circle, Niskayuna, NY 12309

Abstract - A case-based reasoning system for diagnosing medical equip-
ment, called ELSI, has been in use by the GE corporation since 1994. When
a customer or field engineer calls the service center for help with a problem,
the equipment’s error log is automatically downloaded. In ninety seconds or
less, ELSI displays a sorted list of the best-matching logs in a case base of
previous known problems, shows the fix, service notes, explains which sec-
tions of the log match, and which fixes each section predicts. This diagnostic
information allows the service center engineer to recommend a temporary
work-around or remote fixes to a customer, or helps a field engineer show
up on site with the right parts the first time.

1 Introduction
The General Electric Company (GE) is one of the worlds largest manufacturers and
service providers for medical imaging equipment. GE Medical Systems is constantly
advancing the state of the art in equipment availability, reliability, and service quality.
One tool used to help achieve these advances is a case-based reasoning system that has
been in use since 1994 to aid in diagnosing medical equipment.

GE medical equipment, including Computed Tomography, Magnetic Resonance, and
X-Ray, use microprocessors that constantly monitor the status of the equipment.
Machines are equipped with a telephone connection so that when a maintenance issue
is detected an error log can be transferred directly to a central service facility.

A case-based reasoning system called ELSI (Error Log Similarity Index) [1] is one tool
used to diagnose the issue and determine how to fix it. The diagnoses are performed by
comparing the logs of the new problem to the logs of old problems with known fixes.
When the most similar past cases are found, their known fixes are delivered as the most
likely fixes to the new problem.

ELSI does not contain any explicit domain knowledge about the equipment that it diag-
noses. The only knowledge that it has is the set of previous error logs and the fix that
was done for each of those logs. It learns how best to compare error logs by itself, with
very little human interaction. The more cases it has seen, the better it knows which parts
of the error logs are important for diagnosis.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 415-425, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

ELSI is designed to operate in a noisy environment, where there is no guarantee that
each case’s error log actually contains enough data to diagnose a fix accurately. Many
fixes can be arrived at with different sets of error log entries, and many error logs do
not contain enough information to diagnose a single fix.

ELSI is “glass box” approach. It show the developer and users what parts of the error
logs are most useful, and precisely how useful they are. The knowledgeable user can
use this information to confirm ELSI’s recommendations with complete confidence,
while the less knowledgeable user can actually learn about the domain from ELSI. This

Build Case
(w/o fix)

New Failure:
log only

Suggested Fixes &
Similar Past Cases

“Diagnostic
Directory”

Log and
Confirmed Fix

Past Failures:
logs & fixes

Learning System Diagnostic System

Build Cases

elsi-diagelsi-learn

Compare Cases Find Similar
Cases

Figure 1: ELSI Overview

416 P. Cuddihy and W. Cheetham

althoff@iis.uni-hildesheim.de

also allows error log design feedback and can build and standardize diagnostic knowl-
edge.

The ELSI diagnostic system is flexible and adaptable. It grows more accurate as more
cases are collected, and expands its usefulness as new versions of the equipment are
released or error logs are gathered for existing equipment not previously included.

The result is a diagnostic system which operates with minimal knowledge acquisition
or expert interaction--the largest obstacles of traditional expert systems. The only local
expertise required is the collection of logs, removal or quantification of extraneous
entries such as dates and times, and the classification of cases by fix.

Figure 1 shows the overall ELSI process. It is separated into two executable programs,
one for adding new cases to the case-base (elsi-learn) and one for diagnosing fixes
using the case-base (elsi-diag).The remainder of this paper will describe this ELSI
process in detail. Section 2 presents the error logs used for diagnosis and the possible
fixes. Section 3 goes through the ELSI process for learning new cases. Section 4 shows
how to diagnose an issue. Section 5 tells how we improved the diagnostics by deter-
mining our confidence in the diagnosis performed. Section 6 describes how the case-
base was maintained. And, section 7 summarizes the results obtained from using ELSI.

2 Error Logs and Fixes
The system error log is one of the most powerful tools for examining the recent state
of a piece of equipment in the field, and any abnormal conditions that may have been
recorded. However, the error logs often contain a complicated stream of status codes,
register dumps, and other information that is hard for a human expert to quickly scan
and process. Logs typically contain a mix of information relevant and irrelevant to any
particular recent problem.

Most importantly, software control systems have a tendency to cascade error messages
(one error causes a stream of several messages). This leaves a human reader searching
backwards to find the “original” error, and often obscuring the fact that the entire group
of messages and the order in which they cascaded is much more diagnostically signif-
icant than any single message by itself.

Fixes can range from as simple as resetting a circuit breaker or rebooting a sub-system,
to physical replacement of parts. A significant portion of issues can be solved without
physically visiting the equipment. When a repair is needed, there is often a work-
around which will allow a system to run until the proper parts arrive.

All of these elements create opportunity for an automatic learning system to analyze
error logs remotely and provide human experts with the information they need to
quickly diagnose a problem.

3 Learning System
In the learning process, past cases with known fixes are analyzed. Sections of logs
which are diagnostically significant are extracted, weighted, and stored for later use in
diagnostics. This consists of three steps, which are very briefly outlined below:

• log pre-processing

417ELSI: A Medical Equipment Diagnostic System

althoff@iis.uni-hildesheim.de

• block-finding algorithm
• block-weighting

3.1 Log Pre-Processing

In order to learn without any engineering knowledge, ELSI treats all log entries as text
patterns. ELSI’s patented block-finding algorithm finds cascades of error logs by
searching for groups of identical lines in the error logs.

Therefore, the logs need to be pre-processed in order to remove irrelevant information
that changes arbitrarily (such as dates or counters), and occasionally to simplify values
by rounding them or quantiling them (e.g. change both 99.9 and 99.8 to “99+” or “high”
so that the text will match).

Since the pre-processed log will be shown to an expert end user, we have found it best
to maintain as much of the log format and structure as possible. This is achieved by
techniques like X-ing out dates and scan numbers. Figure 2 shows an example of pre-
processing.

In this example, the dates and scan numbers have been removed, since they are not
diagnostically significant, and if left intact they would prevent two identical lines from
occurring in different cases.

MSG: HTRTRQ 5 LOGGED: 02/26/97 15:36:49
 AP Subprocess Failure at Bcode: 9101 status: 8

MSG: HSRTRQ 9 LOGGED: 02/26/97 15:36:50
 Run Error of 95 in TE at Bcode: 9050

 User Specified Abort (Rstat contains req code).

 TE user specified abort code: 9101 Scan number 117

Raw Log

MSG: HSRTRQ 5 LOGGED: xx/xx/xx xx:xx:xx
 AP Subprocess Failure at Bcode: 9101 status: 8

MSG: HSRTRQ 9 LOGGED: xx/xx/xx xx:xx:xx
 Run Error of 95 in TE at Bcode: 9050

 User Specified Abort (Rstat contains req code).

 TE user specified abort code: 9101 Scan number xxx

Pre-processed Log

Figure 2: Pre-processing

418 P. Cuddihy and W. Cheetham

althoff@iis.uni-hildesheim.de

Experience has shown that it is easier to throw out information that is changing arbi-
trarily than it is to pre-determine which information is important extract it for process-
ing by ELSI. It is also easier to troubleshoot: An expert can look at cases with the same
fix, but which didn’t match, and do a quick check to make sure the logs actually do look
different. If they are nearly identical, the expert can decide whether a small tweak to
the pre-processing could make them completely identical.

For log formats which are already columns of information, pre-processing consists of
simply extracting the desired columns. Figure 3 shows a log in a column based format.

3.2 Block-Finding Algorithm

Once logs are pre-processed, ELSI compares all cases with the same fix to see which
lines in the error logs match. Each group of matching lines is called a “block”.

Figure 4 shows a simple example. Here, two parsed logs are compared. The block-
finding algorithm finds the two largest blocks of consecutive matching lines possible,
block A and block B. These blocks are stored by ELSI and used to find similar cases
in the future.

Additional logic detects blocks which are subsets of each other but have the same
diagnostic value. When found, the simplest version of the block is used, and others are
discarded.

It is this block-finding algorithm (and the block-weighting algorithm that follows)
which gives ELSI the capability of building up knowledge without expert intervention.
Unlike traditional case-based reasoning, ELSI is not only collecting and comparing
cases, but it is learning how to compare the cases.

3.3 Block-Weighting

The number of blocks collected during the block-finding process can be quite large.
The next step has to be deciding which blocks are meaningful and which are not. ELSI
performs this task through the following steps:

• grouping cases into “case sets,” where a set contains all cases with the same
repair (or “fix”)

• searching all cases for all blocks
• counting how many case sets each block falls into
• giving a higher weight (more importance) to blocks which occur in fewer case

sets

error_code code ath bcode
---------- ------ ---- ------
LDSUMSG 1
MQERR1 1 13
LDDIDAS 1 13 300

Raw Log

Figure 3: A Simple Log Format

419ELSI: A Medical Equipment Diagnostic System

althoff@iis.uni-hildesheim.de

Through block-finding and block-weighting, ELSI has determined what to look for in
future error logs, and how much power each block of error log entries has in determin-
ing which repair is needed. ELSI has performed these two steps with neither expert
interaction nor domain knowledge.

These steps have also boiled a large number of complex error logs into a much smaller
amount of block information. This will allow ELSI to quickly scan new logs and diag-
nose them without doing time-expensive comparisons to each old log in the case base.

4 Diagnostic System
In the diagnostic process, a log (or set of logs) from a new issue is searched for diag-
nostically significant blocks. The most similar cases in the case-base are found, and
their fixes are recommended as solutions to the new issue.

Log 2
error_code code ath bcode
---------- ------ ---- ------
MQERR1 1 13
LDDIDAS 1 13 300
MGERR3 1 13
LDDITGC 1 13 10
MGERR 1 16
TUBECON 8 16 100
LDDITCL 65534 16 10
LDBLDA 65534 0 20
HSRVRQ 7 8010
HSRVRQ 5 9101
HSRVRQ 9 9050
RWGTSM 2 7000 700
RWGTSM 4
RWLOOP 65534 7000 1800
RWLOOP 65534 -1 6300
HSRVRQ 7 8010
HSRVRQ 5 9101
HSRVRQ 9 9050
RWGTSM 2 7000 700
RWGTSM 4
RWLOOP 65534 7000 1800
RWLOOP 65534 -1 6300
RWREPRI 5
RWREPRI 6 360
HSRVRQ 7 8010
HSRVRQ 5 9101
HSRVRQ 9 9050
RWGTSM 2 7000 700
RWGTSM 4
RWLOOP 65534 7000 1800
RWLOOP 65534 -1 6300
HSRVR 7 8010
HSRVR 5 9101
HSRVR 9 9050
RWGTSM 2 7000 700
RWGTSM 4

A

Log 1
error_code code ath bcode
---------- ------ ---- ------
LDSUMSG 1
MQERR1 1 13
LDDIDAS 1 13 300
MGERR3 1 13
LDDITGC 1 13 10
MGERR 1 16
TUBECON 8 16 100
LDDITCL 65534 16 10
LDBLDA 65534 282 20
HSRVRQ 7 8010
HSRVRQ 5 9101
HSRVRQ 9 9050
RWGTSM 2 7000 700
RWGTSM 4
RWLOOP 65534 7000 1800
RWLOOP 65534 -1 6300
HSRVRQ 7 8010
HSRVRQ 5 9101
HSRVRQ 9 9050
RWGTSM 2 7000 700
RWGTSM 4
RWLOOP65534 7000 1800
RWLOOP 65534 -1 6300
RWREPRI 5
RWREPRI 6 360
HSRVRQ 7 8010
HSRVRQ 5 9101
HSRVRQ 9 9050
RWGTSM 2 7000 700

B

Figure 4: Block Finding Example

420 P. Cuddihy and W. Cheetham

althoff@iis.uni-hildesheim.de

4.1 Similarity Index

The similarity index is ELSI’s measure of how closely the blocks on two cases’ logs
match. It is calculated using the following steps:

• Search each case’s log(s) for all known blocks.
• Sum the weights of the matching blocks (those which occur in both cases).
• Sum the weights of all blocks in each case.
• Calculate the portion of the blocks which match, using the formula below.

Figure 5 shows similarity indices calculated for a hypothetical new case. In this exam-
ple, the new case has four blocks: A, C, E, and F. Case 10 in the case base has all of
these blocks, with one additional block, B. Since this block has a weight of zero, it is
ignored and the two cases have a similarity of 1.000: sqrt(7/7 * 7/7). This perfect sim-
ilarity means that the two cases have the same set of blocks (blocks with no weight
don’t count!). Notice that it does not mean that the logs are identical, only the important
blocks are identical.

The next two most similar cases are case 4 and case 5. These have essentially the same
blocks as the new cases, except that they do not contain block F. The similarity equation
for these yields 0.76. ELSI displays the top three matching cases to the user.

5 Confidence Index
The latest version of ELSI does not display similarity, but instead computes a confi-
dence index[2,3]. This index increased accuracy significantly over similarity scores by
computing not only how many blocks of error code lines match, but how many blocks
need to match before the cases should be considered similar.

Remember the original description of the problem domain stated that it can not be
presumed that there is enough information in each case’s error log to determine a fix.

Now consider the situation where several cases have been added with virtually identical
error logs but different fixes. Presumably the error log does not contain enough infor-
mation to distinguish the problems. However, using just the similarity measure, ELSI
would report very high similarity with all the cases since the logs are nearly identical.
This is not desirable.

With the confidence index, the most similar cases are found, then the similarity of the
new case to each retrieved case is compared against other known cases’ similarities to
the retrieved case.

So, if a stored case has cases with five different fixes all matching it with a similarity
of 0.8 or above, then when our new case matches it with 0.8 similarity, a confidence of
0.2 is reported (indicating that only 1/5 of the known cases with a 0.8 similarity actually
share the same fix).

weightsmatching∑
weightscase1∑

--
weightsmatching∑

weightscase2∑
--×

421ELSI: A Medical Equipment Diagnostic System

althoff@iis.uni-hildesheim.de

On the other hand, if a stored case is surrounded by matches of only 0.5 or better but
all the cases share the same fix, then when our new case matches it with a 0.8 similarity,
a confidence of 1.0 is reported (indicating that every case with 0.8 similarity to this case
is correct).

The confidence algorithm is patented and a complete description is available in US
Patent No 5,799,148 “System and Method for Estimating a Measure of Confidence in
a Match Generated from a Case-Based Reasoning System.”

6 Updating the Case-Base
The single feature which has allowed ELSI to be a technical success is the ease at which
new cases can be added to the case base. This ease of use is a result of the combination
of ELSI’s tolerance noisy data, and the built in functionality for tracking cases which
were run through ELSI in the past, and quickly converting them into new cases.

The case-base is updated about every six weeks. An expert raises ELSI’s “Track past
usage” screen, and logs into the maintenance database which contains field engineers
comments on past site visits. ELSI shows past cases run through diagnostics one-by-
one, and the user searches the maintenance database for comments on the actual fix.
The fix information is then used to check the proper check box:

Block
Name

wgt 1 2 3 4 5 6 7 8 9 10 11
New
Case

Block A 0 A A A A A A A A A A A A

Block B 0 B B B B B B

Block C 1 C C C C C

Block D 3 D D D

Block E 3 E E E E

Block F 3 F F F F F F

Block G 9 G G

Block H 9 H H H

Total
Weight

----- 18 9 18 4 4 4 3 6 3 7 6 7

Matching
Weight

----- 0 0 0 4 4 1 3 3 3 7 3 --

Similarity
Index

----- 0 0 0 .76 .76 .19 .65 .46 .68 1.0 .46 --

Fix 1 Fix 2 Fix 3 Fix 4

Figure 5: Similarity Example

422 P. Cuddihy and W. Cheetham

althoff@iis.uni-hildesheim.de

• If the top case suggested by ELSI was the correct fix, the “Hit: 1st Guess
Right” check box selected.

• If the correct fix was the second or third case suggested by else the “Ballpark:
Result Useful” check box is selected.

• If at least one case was suggested and none of the top three cases were correct
then the “Miss: Incorrect Results” check box is selected.

• If there were not any confident matches then the “No Strong Match” check box
is selected.

Figure 6: Tracking Past ELSI Accuracy

423ELSI: A Medical Equipment Diagnostic System

althoff@iis.uni-hildesheim.de

• If the issue was one that is not supposed to be covered by ELSI then the “Out
of Scope” check box is selected.

• If the issue was a test, demo, or had an error in the log file the “Skip: Not a
Case” check box should be selected.

The “Build Case” button then brings up an equally simple screen in which the error
log, fix, and comments are captured into a new case. The case is immediately re-run
through diagnostics to make sure there were no pre-processing problems and to check
which cases match. The user can then confirm the case to be used during the next
training session.

Experience has found that it is most cost effective to train on the small fraction of cases
for which follow-up information on the fix is easiest to obtain, instead of expending
large efforts to follow up on every past case.

We have also found that ELSI handles enough bad data that it is best to add every case
that passes the most cursory review described above. After training, ELSI clearly
shows which cases do not match others with the same fix. If too many of these start to
show up, they can be manually edited or removed.

7 Benefits and Future Work
GE Medical Systems has been using ELSI to diagnose X-Ray machines since 1994.
Early in the life of ELSI, a study was performed on 241 calls which applied to parts of
the system for which ELSI was thought to have experience. It gave very useful answers
70% of the time (32% first guess correct and 38% second or third guess correct) and
gave no answer 24% of the time. 7% of the time, the answer was not correct, and was
overridden by the service or field engineers.

The ELSI tool is now launched automatically when calls for certain models of
machines arrive at the service center, resulting in several thousands of runs in a pro-
duction environment over the last three years. In less than ninety seconds (including
log download time), ELSI has provided engineers with the historical diagnostic infor-
mation necessary to make remote fixes, suggest temporary work-arounds, and perform
complex diagnoses faster than ever before. The case base has grown to 1555 cases with
coverage of over 50 different fixes.

The system has also been demonstrated effective on other types of imaging equipment
with no changes to the software (only the log pre-processing rules need to be changed,
and ELSI provides a graphical user interface to perform these customizations).

The most useful focus of future work would be help in automatically deciding which
cases can be removed from the system without adversely affecting accuracy. A smaller
case base is easier to maintain and has better performance.

The U.S. Patent and Trademark office has issued two patents on the algorithms
described herein.

424 P. Cuddihy and W. Cheetham

althoff@iis.uni-hildesheim.de

8 Acknowledgments
Special thanks to the Research and Development team, including Rasik Shah, Yumi
Kim, and Alyce Stewart; and to the team of service engineers at GE Medical Systems,
including Lyle Haferman, Dave Jarkins, Jon Schubert and many others.

9 References

[1] Cuddihy, P., and Shah, R., “Method and System for Analyzing Error Logs
for Diagnostics”; US Patent 5463768; Oct 31,1995

[2] Cuddihy, P., and Cheetham, W.,“System and Method for Estimating a Mea-
sure of Confidence in a Match Generated from a Case-based Reasoning Sys-
tem”; US Patent 5799148; Aug 25, 1998

[3] Cheetham, W., Case-Based Reasoning with Confidence, Ph.D Thesis, Rens-
selaer Polytechnic Institute, 1996.

425ELSI: A Medical Equipment Diagnostic System

althoff@iis.uni-hildesheim.de

 Case-Based Reasoning for Candidate List Extraction in
a Marketing Domain.

 Michael Fagan, Konrad Bloor

 BT Laboratories, Martlesham Heath
Ipswich, Suffolk. IP5 3RE. UK

 michael.2.fagan@bt.com

 Abstract. This paper describes a software tool called CALIBRE (Candidate
Library Retrieval). The tool incorporates case-base reasoning to support the
extraction of candidate lists for targeted marketing campaigns. The tool has
been aimed at users in the marketing domain. This domain is characterised by
very large databases containing many Terabytes of customer related informa-
tion. Large systems such as these require careful management of the queries
being submitted to optimise the use of processing and storage resources. The
CBR approach encourages consistent best practice as well as cutting down on
valuable negotiation time. An early prototype has been built and is currently
used for experimental purposes.

 1 Introduction

 Extraction of candidate lists for targeted marketing campaigns is currently a time
consuming and highly subjective area.

 The time taken to produce a list can be measured in weeks, which in many circum-
stances could mean the loss of a window of opportunity.

 Corporate databases are continually increasing in size and complexity, which can
only magnify the problem.

 Current ‘candidate list’ generation processes typically involve many people who,
in theory at least, collaborate and negotiate to produce an optimum list within an
optimum time.

 Feedback, measuring the successfulness of the list (i.e. the percentage of take up)
is often very limited.

 An attractive goal therefore is to reduce the time spent on negotiation and increase
the amount of feedback within the current process.

 This paper describes the use of Case-Based Reasoning (CBR) [1,2] combined with
Data Mining [3,4] as an innovative form of knowledge management to support this
goal. An early prototype tool called CALIBRE (Candidate Library Retrieval) has
been developed to explore initial ideas for the application of extraction and manage-
ment of candidate lists for marketing campaigns.

 The structure of this paper is as follows: Section 2 gives an overview of the ap-
proach taken. Section 3 describes the implementation of the tool. Section 4 discusses

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 426-437 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

current issues and further work, section 5 looks at related work. Finally, Section 6
looks at the current status and plans for the tool.

 2 Approach

 The current process for list generation involves the production of SQL code which
is constructed via negotiation through e-mail and telephony correspondence. This is
inherently flawed. The resultant query could and has produced quite different outputs
from what was originally envisaged.

 2.1 Current Process

 In large businesses, such as BT (British Telecommunications plc), there are usually
many roles associated with the extraction of a candidate list. The diagram in Fig 1
describes the typical roles involved, the arrows indicating communication. A surpris-
ing find is the apparent lack of feedback once the list has been produced. The effect
of the numerous lines of communication could be analogous to a game of ‘Chinese
Whispers’, the information being slightly changed at each step of the process making
it extremely conceivable that the end product is a total opposite to what was initially
requested.

 Fig 1. Typical List Generation Process

Marketer

Interpreter

Tuner

 Code Tester

Code Generator

Code Executor

Candidate List

Distributor

427Case-Based Reasoning for Candidate List Extraction in a Marketing Domain

althoff@iis.uni-hildesheim.de

 2.2 Proposed CBR enhanced Process

 The advantages to a case-based approach include the following:
i. A problem does not need to be defined completely due to the use of a scor-

ing and matching algorithm - a solution can still be found [5],

ii. The approach is simple, and easy to implement, using procedures familiar to
those involved in expert systems and information retrieval,

iii. Commercial tools already exist with built-in case-based reasoning support,
allowing systems to be built quickly,

iv. A case-based reasoning system will quickly capture knowledge specific to its
domain; it will learn problem-solution pairs, and will, as time passes, grow
more able to solve problems.

The disadvantages could include the following:
Traditionally, a case-based reasoning system is not well suited to scale, although this
has been addressed [6].
A case is typically composed of a number of attributes, which have to be defined be-
fore the case-base is populated. Since they do have to be defined, the application of
case-base reasoning is suited to very specific applications, that typically involve one
type of recurring problem.

The Calibre list generation process reduces the number of roles and therefore, in
this case, an increase in clarity and responsibility.

Fig 2. Calibre List Generation Process

Fig 2 illustrates that the marketer who has an initial idea of who and when to target
can experiment with these ideas through an iterative approach. This is achieved by
using a number of Data Mining methods to cluster customer profiles and use these as
cases within a casebase. The marketer is then allowed to ask the question ‘Who is

Distributor

Candidate
List

Marketer

Calibre

.

.

Sales
Agents

428 M. Fagan and K. Bloor

althoff@iis.uni-hildesheim.de

similar to my ideal profile?’. The Calibre tool will return the first ten closest matches,
by default, which can give the marketer a quick indication of the result.

An attempt was made previously [7] to speed up the negotiation process by man-
aging more effectively the SQL queries used to generate the candidate list. This at-
tempt solved only a small distinct piece of a much larger problem.

Calibre endeavors to replace the current negotiation process with a combination of
Case-based Reasoning, Data Mining and Socket communication over a web client.

Calibre was built by tackling each of the disadvantages of the current process in
turn, and examining the requirements of any replacement system:
• Time:

 The ability to produce mailing list in hours or days as opposed to weeks
would make for a campaign effort that was much more responsive to cus-
tomer and company needs.

• What-if scenarios:
 This would allow marketers to examine how the customer type and number
of customers varied as they changed their requirements.

• Feedback:
 Little or no feedback means that assessment of campaign effectiveness is
very difficult.

• High cost:
 A new process would have to either reduce the cost of making queries, or
always return pertinent results.

• Sensitive site removal:
 The process would automatically remove sensitive addresses, or include
some capability for making an address ‘sensitive’ so that it would not be re-
turned by any query. This sensitive site removal could be achieved using
several different approaches. Clustering [7], one cluster could contain all the
sensitive addresses; matching would then not occur on that cluster. Parti-
tioning of a case-base, which could be implemented via rules. Using a cur-
rent field, or an additional field as an attribute of a case, to represent ‘sensi-
tivity’ could be used. Either a case-based match giving it a lower score than
any threshold possible would then use this field or a process that ‘plucked’
the addresses out of the final list.

 It can be seen that the new process, in addition to reducing the time taken, would

have to work on a faster time-scale, and eliminate the need for specialist’s [9].
 Case-based reasoning in tandem with other techniques can plausibly work as the

mechanism that will enable the marketing requirements to be fulfilled.

429Case-Based Reasoning for Candidate List Extraction in a Marketing Domain

althoff@iis.uni-hildesheim.de

 3 Implementation

 CALIBRE (Candidate Library Retrieval) has been designed to give an accessible
web interface in order that marketers, through iteration, can arrive at a suitable set of
criteria for the selection of a marketing campaign list.

 Through the use of Case-based reasoning within the ART*Enterprise product [5],
the CALIBRE server is able to connect to many different database systems. An Ora-
cle database has been used as the permanent storage for a case-base, which allows for
simple updating via a data mining process, which adds new cases to the case-base
when it finds them

 Fig 3. Calibre Architecture

 3.1 The Data Mining Process

 It is envisaged that the actual marketing data will be held in a vast data warehouse.
Different aggregate views on this data will make up a number of data marts. To ex-
tract meaningful cases from these data marts to insert into the case-base, the data
mining process has to be run.

 This process is useful because it adds value to the data, by means of classifying
sites as belonging to a certain cluster, that will share certain traits with the other sites

ART*Enterprise CALIBRE Server

CBR

Socket Communication + Admin Layers

Calibre
CB

Class

 OracleData Mining

Web Client

Mining
Process

1

Mining
Process

2

View 1

View 2

Addr

Mart 1

Mart 2

430 M. Fagan and K. Bloor

althoff@iis.uni-hildesheim.de

in that cluster. Since this is a proof of concept, this process is run on an ad-hoc basis,
using SAS[10] to cluster sample data into cases, which is then exported into Oracle,
to be the case-base. This procedure speeds the process up via data abstraction.

 It is envisaged that one ‘sub’ data mining process will exist for each data mart.
Thus, different views of the main customer data will be mined, and the results put
into the casebases. The data mining process has the potential of acting as an auto-
matic maintenance advisor, which is currently a research issue within the Case-based
Reasoning community.

 3.2 The Server

 The CALIBRE server has been created in order to give the user marketing data, by
means of the client. It uses the following techniques to do this:
• Object-oriented programming
• Case-based reasoning
• The Berkeley sockets mechanism.
• A report.

3.2.1 Object-oriented Programming

The CALIBRE server uses the object-oriented capabilities of ART*Enterprise to
provide an easy-to-use layer of abstraction, which uses composition (as opposed to
inheritance) to perform its goal. Its primary goal is to serve the client the data re-
quired. This implies secondary goals: to overcome ART*Enterprise imposed limits,
and allow for modular, simple addition of other data-marts to the system - and hence
other collections of data, if they are created.

This layer of abstraction (the ‘calibre-cb’ class) provides methods that create, im-
port and query a calibre-cb object, while managing a case-base as a collection of one
or more actual ART*Enterprise case-bases (as these are limited in size to 65535 cases
each).

The calibre-cb class also handles all administration with regard to the requirements
of ART*Enterprise concerning case-bases and reporting. The exception to this, is
obtaining address information (or other information, if specified in the appropriate
instance of a calibre-cb object), which is a responsibility outwith the class, handled by
a function.

The handling of multiple (but not concurrent) users is achieved by the use of user
objects. Each of these has as attributes the user details, such as name, password,
security level, etc. This allows for flexible access control. In the current system, the
different marts need one level of access, that is granted to normal users, and another
level of access to stop the server through software, that is granted to the administrator
account.

431Case-Based Reasoning for Candidate List Extraction in a Marketing Domain

althoff@iis.uni-hildesheim.de

3.2.2 Case-based Reasoning

The CALIBRE server can claim speed increases because of the way it uses data
mining techniques together with case-based reasoning to give data abstraction. The
case-based reasoning engine of ART*Enterprise allows CALIBRE to quickly match a
presented case against a case base and return the results to the client. The procedure
that the CALIBRE goes through in order to obtain addresses from matches on a pre-
sented case goes as follows:
1. On initialisation, CALIBRE loads in all case-bases that are defined, from external

sources, and commences listening on a port.
2. A client connects.
3. The server obtains the presented case from the client.
4. It then instantiates a case object of the correct type, with the information it has

obtained.
5. CALIBRE then executes a case-based match with the case-object in question, on

the client specified data mart.
6. The attribute that is used for joining is obtained from the first n matches (where n

is user specified).
7. A query is run on the data source that is defined to be for addresses. Because of

the limitations of Oracle, the query is actually split up into chunks that ask for
less than 255 tuples/addresses at a time. This can be executed either sequentially
or in parallel

8. The address data (or other data) is sent to the client, along with a score, and a set
of criteria for each address, for user perusal.

The matching used in the tool was the standard supplied in the Brightware
ART*Enterprise product [5]. This consisted of two types, text and numeric.

The text matching feature score is the product of the percentage of subfeatures
which match and the feature score range

where

• ifmw , is the match weight of feature f for case i

• ifmmw , is the mismatch weight of feature f for case i.

• ifmsf , is the number of matching subfeatures of feature f for case i.

• ftsf is the total number of subfeatures of feature f for the presented case.

() 1....,,
,

,, equationmmwmw
tsf

msf
mmwscorefeature ifif

f

if
ifif −+=−

432 M. Fagan and K. Bloor

althoff@iis.uni-hildesheim.de

 The numeric matching is based on the distance between two numbers. The equation
for computing a feature score in this case is:

 where
• ifcv , is the numeric value of feature f of case i.

• fpcv is the numeric value of feature f of the presented case.

• ifmdev , is the match deviation of feature f of case i.

3.2.3 The Berkeley Sockets Mechanism

The CALIBRE server uses the Berkeley sockets mechanism [11] in order to com-
municate with the client. This means that any client software that communicates
using the protocol that the CALIBRE server expects, can extract marketing informa-
tion, given the correct privileges.

3.2.4 The Report

The information is passed to the client As the report is specified in the calibre-cb
class, it only contains information specified by the administrator.

The presentation of the report to the user is an interface concern; what the interface
chooses to do with the raw data sent to it is arbitrary. The interface may display it in
CSV (Comma Seperated Value) format for importing into a spreadsheet or DBMS, as
an HTML table, or even print onto envelopes or address labels. The report is sent
back to the client with three stages for every address/record that has matched within
the threshold:

Several ‘criteria’ strings are sent. These are plain english explanations of why the
address is being sent, which can be printed in some form to the user. These are sent
so that the user may build up trust with the system, and for the system to be able to
justify the displaying of an address.

The score is sent
The address (or other data that has been administrator specified) sent. There is

some information, sometimes ‘NULL’ where the attribute for the tuple in question is
blank. The client can strip this out. All the information is in upper case.

This simple format means that the client can ignore any of the information not ap-
plicable to its purpose. An automated client may obtain cases and weightings from a

() 2....,,
,

,

,, equationmmwmw
mdev

pcvcv
mwscorefeature ifif

if

fif

ifif −
−

−=−

433Case-Based Reasoning for Candidate List Extraction in a Marketing Domain

althoff@iis.uni-hildesheim.de

list, and create a file from which to print onto envelopes, while ignoring criteria and
site number. On the other hand, the Web/CGI client that has been created allows one
to examine the criteria, if a build-up of trust is required.

3.3 System Use

Outwardly, the system is to be used by those who do not necessarily have vast
computing experience or skills, and are more interested in results. As such, the inter-
face has to reflect this by being both intuitive and simple, while not getting in the way
of the ministrations of an expert user. Internally, the interface between the client and
the server has to be well defined, to enable for easy maintenance and alterations by
administrators and programmers.

Fig 4. The User View

 3.3.1 Perl/CGI
 The interface has been designed to be intuitive to use, with attractive, consistent

appearance and feel.

434 M. Fagan and K. Bloor

althoff@iis.uni-hildesheim.de

 The data mart selection screen is extremely simple, requiring one to, if necessary,
change the server and port number, enter username and password for the CALIBRE
server, and select a data mart. Upon selection of a data mart, a screen is presented
that allows one to enter a value and a weighting for each field, thus building up a
prospective case. This screen also allows changing of the maximum number of ad-
dresses wanted, and a threshold; all addresses displayed will have a score allocated
that is greater than, or equal to this threshold.
 Once the data of a prospective profile is entered, and the weightings, threshold, and
maximum matches are adjusted to the users satisfaction, then the submit button is
pressed. It is here that any applicable results are displayed after a time interval that is
a variable depending on the machine that the CALIBRE server is resident on, the
machine the web server is resident on, and the quality of link.
 The results screen displays the current time, the number of results that the query actu-
ally matched with, and the number of results displayed. Below this, is the table of
addresses. This table displays the address, along with the site number, and (with a
modern browser, e.g. Netscape Navigator, or Microsoft Internet Explorer) a graphical
‘hotspot’, that displays the criteria information for a moment, while the mouse arrow
is over it. This allows the user to gradually build up trust with the information that is
given them.

3.3.2 Server
 The server presents the same interface to all clients. Through this interface, the

client requests the services it needs in order to fulfil the objectives it has been set by
its user.
 The server upon receiving a username and password, processes a number of com-
mands, ending with a ‘bye’, whereupon the user is disconnected and the server waits
again for another connection. The finite automaton below shows this sequence:

 Fig 5. A Finite Automaton showing states of the Server

Waiting

Waiting for
 Login

Waiting for
password

Waiting for
command

Processing
command

command

complete

‘Bye’

connect

username

password

435Case-Based Reasoning for Candidate List Extraction in a Marketing Domain

althoff@iis.uni-hildesheim.de

 The command set that is allowed depends on the users security level, and may well
vary. The setup of the server currently is that three security levels are used:

 User accounts are easily added to the system by defining an instance of the class
‘user’ with the appropriate details

 The commands currently allow the client to achieve objectives such as the follow-
ing:
i. Change to a different data mart.
ii. Request to download a configuration file of the current mart.
iii. Query the current case-base
iv. Execute administrative commands.

 The model used is not difficult to extend, and could be done so to provide extra

functionality.

4 Discussion

 The user may enter values for as many as the presentation case features as re-
quired. If only one feature is chosen then only that feature will be used to calculate
the feature score.

 The tool allows people within the marketing domain to experiment and specify ex-
actly the type of profile they wish to target.

 Further experiments are required in the following areas:
• Automating the Data Mining process to populate the data marts which in turn

populate the casebases
• Negotiation between distributed casebases
• Implementation of maintenance strategies
• Addition and updating of a campaign casebase via a web interface for the inclu-

sion of feedback from sales representatives.
 It must be stressed that although the software tool is being used for experimental

purpose it is still classed as ‘work in progress’.

5 Related Work

 An extensive search found only one paper [5] relating to the use of Case-Base
Reasoning within this domain, although many papers have been written relating to the
use of large scale casebases [12,13,14,15]. The approach taken is one in which SQL
queries are managed and reused to extract customer information. This approach only
addressed a small part of a very large problem that of the extraction process.

436 M. Fagan and K. Bloor

althoff@iis.uni-hildesheim.de

6 Conclusions

 The techniques used and methodologies followed are tried and tested. The novelty
is in the application of Case-Base Reasoning to a new domain.
 We have tried to extend the boundaries of CBR by becoming removed from the typi-
cal conversational type of interaction.
 Within the Marketing domain it maybe that the marketer has only an outline of an
idea. This tool gives him/her the opportunity to experiment at low cost and then pub-
lish results when satisfied.

References

 [1] Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, methodological
Variations, and System Approaches. AI Communications 7(1), 39-52, 1994

 [2] Leake, D.: Case-Based Reasoning: Experiences, Lessons, & Future Directions. AAAI
Press, ISBN 0-262-62110-X LEACP, 1997

 [3] Piatetsky-Shapiro, G., Frawley, W. J. (eds), Knowledge Discovery in Databases, AAAI
Press, 1991.

 [4] Ribeiro, J. S., Kaufmann, K. A., Kerschberg, L., ‘Knowledge Discovery from Multiple
Databases’, in KDD-95: Proc. of the 1st Int’l Conf. on Knowledge Discovery and Data
Mining, U. M. Fayyad, R. Uthurusamy (eds.), AAAI Press, 1995, pp240-245.

 [5] Brightware Inc (1996). ARTScript Programming Guide 3, Rules & CBR
 [6] Brown, M. (1993). A Memory model for Case Retrieval by Activation Passing, Depart-

ment of Computer Science, Manchester University.
 [7] Everitt, B.S. (1980), ‘Cluster Analysis’, 2d Edition, London: Heineman Educational Books

Ltd
 [8] Fagan, M, Corley S L, ‘CBR for the Reuse of Corporate SQL Knowledge’ in Advances in

Case-Based Reasoning, EWCBR-98. Springer-Verlag, pp382-391.
 [9] Schank, R.C., Abelson, R. (1977) Scipts, Plans; Goals and Understanding: An Inquiry into

Human Knowledge Structures.
 [10] SAS, http://www.sas.com/
 [11] Richard Stevens, W. (1990). UNIX Network Programming, Prentice-Hall.
 [12] Kitano, H., Shibata, A., Shimazu, H., Kajihara, J., & Sato, A. (1992) Building large-scale

and corporate wide case-based systems In, Proceedings of AAAI-92
 [13] Netten, B.D., & Vingerhoeds, R.A. (1995) Large-scale fault diagnosis for on-board train

systems In, Case-Based Reasoning Research and Development
 [14] Waltz, D. (1996) Large-Scale Applications of CBR In, Advances in Case-Based Reason-

ing
 [15] Schaaf, J.W (1996) Fish and Shrink: A Next Step Towards Efficient Case Retrieval in

Large-Scale Case Bases In, Advances in Case-Based Reasoning

437Case-Based Reasoning for Candidate List Extraction in a Marketing Domain

althoff@iis.uni-hildesheim.de

CBR for the Reuse of Image Processing Knowledge :
a Recursive Retrieval/Adaptation Strategy

Valérie FICET-CAUCHARD, Christine PORQUET & Marinette REVENU

GREYC-ISMRA - 6 Bd du Maréchal Juin - F14050 CAEN cedex FRANCE
tél: +33 (0)2-31-45-27-21 fax: +33 (0)2-31-45-26-98 e-mail: Valerie.Ficet@greyc.ismra.fr

Abstract . The development of an Image Processing (IP) application is a com-
plex activity, which can be greatly alleviated by user-friendly graphical pro-
gramming environments. Our major objective is to help IP experts reuse parts of
their applications. A first work towards knowledge reuse has been to propose a
suitable representation of the strategies of IP experts by means of IP plans (trees
of tasks, methods and tools). This paper describes the CBR module of our inter-
active system for the development of IP plans. After a brief presentation of the
overall architecture of the system and its other modules, we explain the distinc-
tion between an IP case and an IP plan, and give the selection criteria and func-
tions that are used for similarity calculation. The core of the CBR module is a
search/adaptation algorithm, whose main steps are detailed: retrieval of suitable
cases, recursive adaptation of the selected one and memorization of new cases.
The system’s implementation is presently completed; its functioning is de-
scribed in a session showing the kind of assistance provided by the CBR module
during the development of a new IP application.

1. Introduction

We are doing research work in the design of an interactive system that can provide
assistance during the working out of Image Processing (IP) applications; the system’s
architecture has been detailed in [5]. Our system is composed of several modules
dealing with the tuning out of IP applications through interactive acquisition and rep-
resentation of IP knowledge coming from IP experts, the execution of such IP appli-
cations and the reuse of applications following a Case-Based Reasoning approach
(CBR). This paper is dedicated to a detailed description of the CBR module: in par-
ticular, our description of IP cases, similarity calculation between two cases and recur-
sive search/adaptation algorithm are presented and discussed.
In section 2, the framework of our research is briefly presented along two axes: our
objectives with regards to IP and our modeling of IP application. Sections 3 and 4 are
entirely dealing with the CBR module: first, our definition of an IP case and the func-
tions used for similarity calculation are given (section 3). Then the search/adaptation
algorithm is described and explanations are given about the process of case selection,
recursive adaptation of the selected solution and memorization of new cases (section

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 438-452, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

4). Finally, a complete session showing how to use the CBR module for developing an
IP application is described in section 5.

2. Research framework: the TMT model

Our primary objective is to represent and structure the knowledge of different IP ex-
perts so as to enable knowledge share and reuse. To achieve such a goal, we are advo-
cating for an interactive system enabling knowledge acquisition from IP experts, as it
comes to the fore through the development of IP applications. In this section, our ap-
proach for the building of applications is presented; we describe our model for the
representation of applications and briefly give an idea of the functioning of two essen-
tial modules of the system: the interactive creation module and the execution module.

2.1. Representation of applications by hierarchical plans

Our approach to the development of IP applications is based on the smart supervision
of libraries of operators. An operator is a program that performs one basic operation
on one or several images. It takes as inputs the image(s) to be processed as well as
parameters and produces as outputs one or several images as well as numerical and/or
symbolical results. With such libraries, the building of an application then “simply”
consists in linking operators and tuning their parameters. Users can thus stand back
from computer codes and perform programming at the “knowledge” level.
However, a real-size application can lead to sequences of up to tens of operators. In
order to represent the reasoning associated to such sequences, we suggest to use a
representation based on trees of tasks, that we call “IP plans”. Such trees correspond to
hierarchical decompositions of problems into sub-problems, each problem or sub-
problem being related to an IP task. As is shown in figure 1, a plan not only represents
the linking of IP operators corresponding to the leaves of the tree, but also all the rea-
soning necessary for the creation of such a linking, which is represented by IP tasks
schematized as gray boxes.

Fig. 1: representation of an IP plan

2.2. The TMT model

In our system, IP plans as well as control tasks (dealing with plan management and
system control) are uniformly represented within the “task – method – tool” model. In

439CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

this model, a task represents a goal or sub-goal; a method describes a know-how, it
specifies how a task can be performed; a tool reifies a computer code (IP operator,
Lisp or C function) in conceptual terms with a link to the code enabling to run it.
There exist two types of methods: “terminal” methods (fig. 2a) that achieve a task by
calling to a computer code through the medium of a tool and “complex” methods
(fig. 2b) that decompose a task into sub-tasks by means of a “THEN” tree. Finally, as
there may exist several strategies to solve an IP problem, a task can be associated to
several methods (fig. 2c) by means of an “OR” tree, the choice of the method to be
applied being made at the time of execution.

task

tool

method

task1

task1.3task1.2task1.1

 then then

method

Task2

or or

 Method2.3 Method2.2 Method2.1

 a) b) c)

Fig. 2: various possible links between tasks, methods and tools

2.3. System’s functionalities

Our system is provided with a graphical interface, in which several functionalities
have been defined for the interactive construction and the interactive execution of IP
applications. In particular, they include the visualization of applications as trees of
tasks, so that users can study the reasoning associated to any given IP plan.
In order to create a new IP plan, the user has to define his/her tasks and tools by filling
in fields in appropriate windows; he/she can link then by defining methods and data
flows between tasks and sub-tasks or tasks and tools. There are three ways for speci-
fying the way to get the values of parameters for tasks and tools: computed from an-
other task or tool, fixed once and for all, or to be required from user.
When they want an application to be executed, users simply have to select the root
task of the corresponding plan in a menu and the plan is immediately visualized on
screen as a schematic tree of tasks. The plan can then interactively be executed: users
are required to choose between methods when several methods exist to perform some
given task, and also to provide values for “user” parameters. Once the execution is
completed, they can have access to any information about tasks and tools that have
actually been executed and moreover, visualize any intermediate image in order to
assess critical points.
In addition to the creation and execution functionalities that have just been described,
the third and most original functionality integrated into the system consists in a second
mode for creating applications through CBR. The corresponding CBR module is de-
tailed in the next two sections.

440 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

3. Case representation and similarity

A case is broadly composed of two parts: description of the solution and description of
the problem. In our system, a solution is represented as a TMT tree, which can be
accessed through its root task. In Case-Based Planning [9] [12] or Case-Based Design
[11], a solution is generally built by combining parts of several plans coming from
several cases. In order to make this kind of design possible, we have decided to asso-
ciate several cases to one single plan: the first case is associated to the root task of the
plan, the others to some sub-tasks of the same plan, that are considered as representa-
tive of specific IP techniques. In the example of figure 3, cases are associated to tasks
Ta1, Ta2 et Ta4 that correspond to some specific strategy in IP; by contrast, no case is
associated to tasks Ta3, Ta5, Ta6, Ta7 et Ta8.

Ta1

Ta2 Ta3 Ta4

Ta6Ta5 To1 Ta7 Ta8

To2 To5To4To3

Defined cases :

C1Å Ta1
C2Å Ta2
C4Å Ta4

Fig.3: association of a set of cases with a TMT plan

The problem’s description is made thanks to a set of discriminative criteria, which
have been found out from a thorough study of the IP domain. Results of this study are
presented in section 3.1; the similarity functions for comparing cases are described in
section 3.2.

3.1. Criteria for case selection

The finding out of a relevant set of similarity criteria enabling to characterize an IP
problem is based, on the one hand, on a study of IP systems detailed in [6] and, on the
other hand on the study of books and Ph.D. dissertations dedicated to IP techniques [4]
[10].
The major issue is here to choose an indexing vocabulary that can be shared and ac-
cepted by any IP programmer. Except for low-level actions (corresponding to opera-
tors from an IP library), there really exists no consensus on IP terms. In particular, this
can be explained by difficulties to cut oneself off from the domain of application
(most IP programmers work on one type of application at a time and thus only use
terms from their current domain of application).
The criteria we put forward come from a classification of the most often encountered
terms used to describe IP actions and data. We have made a distinction between two

441CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

broad categories of criteria: criteria related to the task definition and criteria related to
the image description.

Criteria related to the task definition
This first category includes data related to the operation performed by a task and to its
position in the plan in relation to other tasks. Such criteria include IP type or phase,
problem definition and abstraction level.
IP type or phase broadly corresponds to the type of problem that is solved by a task.
According to the task’s abstraction level, one can take into account:
• either the IP type: the root task of a complete plan defines a high-level processing,

which belongs to an IP type (detection, segmentation, classification,…),
• or the IP phase: each sub-task of a plan defines one part of the complete processing,

which corresponds to one specific step (pre-processing, seed determination, region
determination, …).

The various IP phases correspond to a vertical division of the plan (fig. 4); for some
types of problems, some phases may be optional.

Ta1

Ta3Ta2 Ta5

Ta7Ta6To1 Ta10

To2

To7

To6To3

Ta4

Ta9Ta8

To4 To5

seed determination groupingpre-processing region determination

Fig.4: vertical division of a plan solving a segmentation problem

The definition of the problem is composed of a set of keywords selected among three
pre-defined lists: 1. a list of verbs describing the operations performed by the task
(detect, classify, binarize, smooth, …), 2. a list of nouns corresponding, either to ob-
jects on which the action is performed (contours, regions, image background, …), or
to IP techniques (region growing, region division, …) and 3. a list of adjectives quali-
fying, either the objects on which the action is performed (small, local, …), or the
action itself (partial, strong, …).
As can be noticed in previous examples, the vocabulary from these three lists of key-
words is completely independent from the domain of application.
Finally the abstraction levels that correspond to a horizontal division of the plan
(fig. 5) are based on the abstraction levels of the automatic planner BORG [3].
• Tasks belonging to the intentional level answer question such as “what to do ?” and

deal with IP objectives.

442 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

• Tasks belonging to the functional level answer questions such as “how to do ?” and
refer to some IP technique, leaving aside technical constraints related to their im-
plementation.

• Tasks belonging to the operational level answer questions such as “by means of
what ?” and represent IP technical know-how that can be implemented as algo-
rithms.

Ta1

Ta5

Ta4 Ta7

Ta9Ta8

To1

Ta12

To2

To7

To6To3

Ta6

Ta11Ta10

To4 To5

Ta3Ta2

intentional

functional

operational

Fig.5: horizontal division of a plan

Criteria related to the image description
Among the criteria related to the context of images, some correspond to physical
knowledge (related to image formation) and describe image quality (e.g. type of
noise, amount of noise and quality of contrast). These criteria are of paramount
importance for the choice of the pre-processing steps.
Other criteria rather correspond to perceptual knowledge (symbolic description in
terms of visual primitives). They include the presence or absence of an image back-
ground and the aspect of objects (homogeneous gray level, light color, texture, thick
boundaries, …).
The third group of criteria corresponds to semantic knowledge (scene analysis and
components of the scene) and describes the appearance of what is to be detected, but
in abstract terms, independent from the domain of application. These latter criteria
include the form of objects (convex, concave, elongated, compact, square, round, …),
the relative size of objects, their position (left, middle, right, top, bottom, center) and
inter-object relations (proximity, connectivity, inclusion, …).

3.2. Similarity calculation between two cases

One can consider two principles for the determination of similar cases, either maxi-
mize similarity [2] or minimize adaptation effort [11]. Owing to the absence of any
automatic method for evaluating IP results, we have chosen the former. First the func-
tions used for similarity calculation between a source case and a target case are de-
scribed. Then comparison modes for each type of criterion are detailed. Finally, the

443CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

management of missing values for a criterion is explained; in fact, as it is the case in
ISAC [1], all previously enumerated criteria need not be taken into account in any
application.

Similarity functions
Our first group of criteria (i.e. criteria related to the task definition) is here to charac-
terize the action performed by a task, and is thus closely dependent on the TMT
model. Such criteria define a set of tasks that can solve one “type of problem”. They
are “compulsory” (each criterion of the target case must have a value) and are used to
reduce the search space. A first similarity function Φt using the criteria related to the
task definition will thus be applied to reduce the set of candidate target cases. This
function is defined by formula (1) as the weighted average of the similarity results for
each criterion: S is the source case, T is the target case , αCr is the importance coeffi-
cient associated to criterion Cr and ϕCr(S,T) is the similarity between S et T related to
criterion Cr. The result value of any ϕCr function is between 0 (if values of Cr between
both cases are very different from each other) and 1 (when they are deemed identical).
All αCr coefficients are also comprised between 0 and 1, in order to normalize the Φt

function (return values between 0 and 1).

The second group of criteria (i.e. criteria related to the context of images) character-
izes the objects to be detected and depends on the current image. Such criteria are not
meaningful for any application: for instance, contrast quality has no sense when proc-
essing a region map. This second group of criteria are “optional” ones (all criteria of
the target case need not be filled in); they enable to select the nearest cases among the
candidates obtained after applying function Φt. The second similarity function Φi is
thus used to reduce the set of selected cases, in order to get a list of reasonable size.
This function is defined by formula (2) as the weighted average of similarity results on
each criterion; notations and properties are the same as in formula (1).

The definitions of functions ϕCr that are in charge of similarity calculation for each
category of criterion are given in the next paragraph. The use of similarity functions Φt

et Φi in the selection/adaptation algorithm, as well as the adjustment of importance
coefficients are explained in section 4.

Criterion comparison modes
It is clear that the list of criteria related to the context of images cannot be exhaustive:
the criteria we put forward are coming from our study on IP literature and the devel-
opment of our own applications. It should be completed in the course of further appli-
cations. Each criterion type is associated to a generic similarity function, in order to
easily integrate new criteria. Here are the types of criteria that are presently available:

()
()()

{ })1(definition task the torelated criteria
,

, ∈∀
×

=Φ
∑

∑
Cr

TS
TS

Cr

CrCr
t

α

ϕα

()
()()

{ })2(ndescriptio image the torelated criteria
,

, ∈∀
×

=Φ
∑

∑
Cr

TS
TS

Cr

CrCr
t

α

ϕα

444 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

• strict numerical criterion: the value must be of integer or real type and comparison
between two values returns 1 when values are strictly equal and 0 otherwise,

• strict symbolical criterion: the value is a symbol and comparison between two val-
ues returns 1 when values are strictly equal and 0 otherwise (e.g. presence of an
image background),

• gradual numerical criterion: the value belongs to integer or real intervals and com-
parison between two values returns the difference between the two values divided
by the interval length (e.g. relative size of objects),

• gradual symbolical criterion: the value belongs to an ordered set of symbols and
comparison between two values returns the difference between the two values ac-
cording to their order in the set, divided by the interval length (e.g. noise amount),

• multi-valued criteria: the value is defined as a non-ordered list of symbols and/or
numbers and comparison between two values returns the ratio of the number of
common elements in both lists to the length of the target case list (e.g. verbs used in
the problem’s definition).

A missing criterion value for a given case can be due to several causes (no meaning,
usefulness, …) and can be taken into account in several ways (do not take into ac-
count, consider as a specific value, …). Our point of view on that issue differs whether
one considers the source case or the target one:
• the absence of a value in a target case means that the value is considered as irrele-

vant for this case (either it is meaningless, or it has been judged as useless by user),
that absence will have no consequence on similarity calculation (ϕCr(S,T)=0 and
αCr=0),

• the absence of a value in a source case (while this value is present in the target one)
means that one similarity condition is not respected; that absence should lower the
result of similarity calculation (ϕCr(S,T)=0 and αCr≠0).

Both conditions are respected by the set of generic functions that compute similarity
for each criterion type.

4. Recursive selection/adaptation algorithm

In the selection/adaptation process of most CBR systems, one can notice, on the one
hand, the existence of a preliminary step in the selection process, aiming at reducing
the search space [1] [8], and on the other hand, the fact that the selection/adaptation
cycle must be applied iteratively, in particular in CBR planning [9] [11].
Our approach (fig. 6) is also based on a selection/adaptation cycle, iteratively applied
at various levels of the plan, but in addition, at each cycle loop, a reduction step of the
search space has been included.

445CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

Case base

reduction

Case

selection

adaptation

Case base
Reduced case base Selected

cases
Solution

Fig. 6 : schema of our selection/adaptation process

The reduction of the search space can be achieved, either by using criteria corre-
sponding to strict constraints, or by considering that two cases can only be compared
when defined by the same set of criteria. The latter technique is not adapted to our
domain. As a matter of fact, among the criteria related to the context of images, some
of them bring nothing new about the target case, without disqualifying the source case.
The reduction step can thus be achieved by means of function Φt using the
“compulsory” criteria related to the task definition, while the selection step makes use
of function Φi with the “optional” criteria related to the image description.
The objective of our CBR module is to provide some assistance to IP programmers
when they are building applications, by helping them reuse solutions of previously-
solved problems that are somewhat analogous to their current problem. The selec-
tion/adaptation process must thus take place in cooperation with the user, according to
the following algorithm:
1. Ask user for values of criteria related to the task

definition
2. Determine the set Σ of cases matching the desired cri-

teria by means of Φt
3. Ask user for values of criteria related to the image

description
4. While Σ is not of reasonable size do

Modify the weight of criteria
Reduce the set Σ by mean of Φi

5. Ask user to choose a case among the set Σ
6. Present the plan associated to the chosen case to user

and propose him/her to modify the unsuitable sub-tasks,
either by re-running the algorithm, or by building it
from scratch, via the interactive creation module

Steps 1 and 3 correspond to the input of the description of the target case. Step 2 is the
reduction step of the search space. The selection of candidate source cases is done in
step 4; step 5 corresponds to the user’s final choice. Finally, step 6 consists in adapting
the plan associated to the selected source case to the current problem.
Principles for selection and adaptation of cases used in our algorithm are detailed in
next two sections.

446 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

4.1. Selection of a source case

In the course of step 2 of the algorithm, the reduction of the search space consists in
selecting source cases that solve the same type of problem as target case T. It corre-
sponds to a selection of cases S such that Φt (S,T) > αt where αt is a threshold fixed
beforehand (as function Φt returns a value between 0 and 1, αt is fixed to a default-
value of 0.5). The weights of each criterion in function Φt are also fixed: the same
importance is granted to all criteria. This step provides a first set of cases Σ.
So that the user can choose a case at step 5, the set of cases resulting from step 4 must
be of reasonable size. If the set is too small, the user’s choice will loose importance,
and if it is too large, the user’s choice will be difficult. The iterative nature of step 4
enables to get a set whose size can be shown to the user as a list: he/she can then ex-
amine each case in detail, before making the final choice, which well accounts for the
intuitive aspect that characterizes the way IP experts work. The modification of set Σ
at each iteration is done by means of a relaxation process, by modifying the weights of
criteria and/or the selection threshold. To implement this kind of relaxation, when the
user enters the values of criteria for the target case, he/she must indicate whether the
criterion is considered as important or not. All importance criteria are initialized with
0.5. At each iteration, the system keeps the cases S from set Σ such that Φi (S,T) > αi

where αi is the selection threshold. If the size of the resulting set is too small or too
large (by default between 2 and 5 cases), the coefficients of the most important criteria
are raised by 0.1, whereas those of the least important ones are lowered by 0.1 for the
next iteration. When it is no longer possible to modify coefficients (coefficients of the
least important criteria have reached 0), if the set of source cases is still too small or
too large, a second relaxation mode consisting in lowering threshold αi is applied.

4.2. Interactive plan adaptation

Case adaptation by means of parts of other cases is particularly worthwhile in the
domain of CBR planning. In our system, a case can be adapted at several levels and in
several ways: locally or globally, either by means of the CBR module, or by means of
the interactive creation module.
The plan solution to a case may only require minor local modifications. For instance,
the parameters of an operator must be tuned, or an operator should be replaced by
another one that better matches the current problem. This first type of modification
can be taken into account by using the modification menu of the interactive creation
module.
But a plan may also require broader modifications, i.e. necessitate the replacement of
a whole sub-plan by another one. To achieve such modifications, step 5 of the selec-
tion/adaptation algorithm offers a means to adapt the solution of the current case by
replacing the root task of any sub-plan of the current plan by another task. The substi-
tution task can be obtained, either by re-running the algorithm in order to retrieve a
similar case, or by building it from scratch, via the interactive creation module. In the
example of figure 7, a plan is adapted along three successive steps:

447CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

• replacement of sub-plan A by sub-plan A’, which is obtained by re-running the
selection algorithm,

• replacement of sub-plan B by sub-plan B’, which is built via the interactive creation
module.

• transformation of tool C into tool C’, simply by changing the operator linked to tool
C.

Plan associated to selected case Plan after one adaptation step

Plan after two adaptation steps Plan after three adaptation steps

Sub-plan replaced during the first adaptation step

Sub-plan replaced during the second adaptation step

Sub-plan replaced during the third adaptation step

A A’

B

B’

C C’

Fig. 7: adaptation of a solution plan along three steps

This example shows the interest in having a recursive algorithm: a plan can be
adapted, whatever its level within the tree of tasks (A is a high-level task, B a low-
level task, C an operator) and as long as necessary (A is replaced by A’, then A’ is
adapted by replacing C by C’). Once a new plan is completed, one has to decide
whether new cases associated to this plan should be added to the case library. This
issue is discussed in the next section.

4.3. The memorization step

Memorizing a new case should only be considered if it brings new knowledge to the
base. It implies that a case must respect two conditions in order to be integrated: the
corresponding knowledge must be correct and it must bedifferent enough from the
knowledge of the cases that are already in the base.
Checking the first condition consists in verifying the consistency and efficiency of the
produced plan. A plan is consistent when its execution is normal and it is efficient if it

448 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

produces satisfactory results. Consistency can be checked by the correct progress of
the plan execution, while its efficiency must be assessed by the user, who is the only
judge of its relevancy. The integration of new cases will thus be achieved, on user’s
requirement, once the solution has been validated through a set of tests.
Several cases associated to one complete plan can be integrated into the base: in fact,
if the complete plan represents the solution of a high-level problem, its various sub-
plans represent solutions of problems at lower levels. When the integration of a case is
required, a first step consists in determining the list of plans and sub-plans that are
candidates to integration. This list corresponds to the plans that have been adapted, i.e.
the ancestors of replaced sub-plans that are large enough (at least three levels of
tasks). If the substitution plan has been built via the interactive module, it will also be
inserted into the list. Figure 8 takes up again the plan adapted in figure 7; the determi-
nation of the candidates to integration is achieved by examining the three replaced
sub-plans:
• sub-plan of root A’: D is inserted into the list; A’ is not inserted because it stems

from a case of the base,
• sub-plan of root B’: plans of roots E and F are inserted into the list; B’ has been

manually built but it is not inserted because it has only two levels.
• sub-plan of root C’: plans of roots A’ et G are inserted into the list, whereas H and

C’ are not because they have less than three levels.

B’

C’

EA’

D

FG

H

Fig. 8: determination of candidate cases to memorization

Then, for each plan in the list, the user has to provide values for the criteria of the
corresponding case that have been modified. The system searches the case base for the
most similar case to the new case and integrates the latter if similarity is lower than a
given threshold (i.e. the new case is different enough from all base cases). The simi-
larity here considered corresponds to the minimum between similarity on task criteria
related and similarity on image criteria.

5. The CBR module at work: an example

In this section, a session showing how the CBR module can be used during the crea-
tion of a new application is described. The new problem consists here in extracting
objects in an image from industrial origin (image (2), fig. 9). The user begins by de-

449CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

fining his/her target case through an input window: IP type is segmentation, problem
is defined as extract and object, task’s level is intentional, amount of noise is low,
quality of contrast is medium, there is an image background, objects are character-
ized by their light gray level aspect, convex form, size relatively large and connec-
tivity relation. Background, aspect, form and relation are considered as important by
the user.
The selection algorithm is then run and a list of four cases is returned, among which
the user chooses the case that seems to be the best match for his/her problem. The plan
solution to the selected case can be visualized, so as to study its strategy and it can
also be executed.
The root task of the selected plan (fig. 9) is “isolate objects from background”; this
plan has been built for a cytology application (images (1) and (3)), for the extraction
of some categories of cells.

Isolate objets
from background

Obtain objects
from regions

i1

Eliminate
background

i1 i8
i9

i21

i9 i10 i8
i10

Select
background

i1 i6 i6

i8
i9

i21

i21Label
regions

i8
i9

Eliminate
regions due

to noise

Extract
objects from

regions

A1 A2 A3 A4

(1) (2) (3) (4)

Fig. 9 : plan associated to the selected case with input and output images

The user can then start adapting the proposed plan to his/her new problem. The first
modification deals with the “select background” task: in the initial plan, the problem
was to isolate dark objects on a light background, whereas here, objects are light and
background is dark. The first adaptation step simply consists in inverting the selection
of objects (sub-plan F1, fig. 10) and is thus achieved via the interactive module. As
results after execution are still unsatisfactory (imprecise localization of contours, ob-
jects not properly separated, image (4)), the user considers a second adaptation step by
re-running the selection algorithm in order to find another sub-plan for the task “obtain
objects from regions”. A new target case corresponding to this sub-problem is thus
defined, the algorithm is re-run and the user finally chooses substitution sub-plan F2
(fig. 10). After replacement, the resulting plan (fig. 10) may further be improved by
local modifications (e.g. replacement of an operator by another one).

450 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

Isolate objects from
the background

Obtain the objects
from the regions

Eliminate the
background

Select the
background

F1

Mark the
regions

A2

F2

Fig. 10 : partial representation of plan after adaptation

Once all adaptations are completed, one has to define the new cases to be integrated
into the base. The system produces the candidates to integration: they are the plans of
roots “select background”, ”obtain objects from regions”, “isolate objects from back-
ground” and ”eliminate background”. For these four tasks, the user is required to de-
fine the corresponding cases: two of these four cases are integrated into the base.
The assistance provided by the CBR module for the tuning of this plan shows the
aptness of our selection criteria and the efficiency of the selection/adaptation algo-
rithm: the interactive and recursive nature of this algorithm enables to rapidly get a
satisfactory solution. However, the number of further local adaptations that must be
made reveals the scarcity of our present case base, which must now be enlarged by
systematically integrating all plans and cases corresponding to the applications devel-
oped within our research team.

6. Conclusions

In this paper, a CBR module providing assistance to knowledge reuse has been de-
scribed. It enables an IP expert to retrieve an existing plan that solves a problem simi-
lar to his/her current problem and adapt it to the new situation. He/she can thus reuse
his/her own knowledge or knowledge previously modeled by other IP experts. Our
recursive selection/adaptation algorithm alternates retrieval and adaptation steps, thus
enabling to build a plan by combining parts of other plans. Criteria for selecting cases
are based on a definition of IP tasks and a description of images.
Similar ideas can be found in HICAP [7], a general-purpose planning architecture that
is applied to the planning of military evacuation operations. It is also a CBR system
that can assist users during the construction of hierarchical plans of tasks. The system
integrates a user-friendly task editor conducting an interactive conversation with the
user. For tasks that can be decomposed in multiple ways (i.e. problem-specific tasks),
a case is associated to each available decomposition method (whereas in our system,
cases are associated to tasks and not to methods). So in HICAP, the user has to define

451CBR for the Reuse of Image Processing Knowledge

althoff@iis.uni-hildesheim.de

a case in order to select each method used in the plan, which seems to be more con-
straining and time-consuming for the user.
The TMT system has presently been used to develop eight distinctive applications, in
order to test the system along three main axes: validation of the model and architec-
ture, experimentation of the interface by a novice and search for similarities between
applications from different fields.
In order to restrain the scope of the problem, tests have presently been limited to seg-
mentation applications. Further work will consist in diversifying the content of our
libraries (plans and cases) by integrating applications dealing with more varied treat-
ments (from image restoration to image interpretation) and applied to images from
various domains. This should also enable to enrich the vocabulary used for the de-
scription of cases, and thus complete our set of criteria, so as to get a more exhaustive
lists of terms.
In addition, one should consider means to alleviate the user’s task in the course of the
adaptation step. By using “simple” rules based on the comparison of some criterion
values, the system could provide more assistance to user by indicating which parts of
the plan need an adaptation.

References

[1] A. Bonzano, P. Cunningham & B. Smyth, Using introspective learning to improve retrieval
in CBR: A case study in air traffic control, ICCBR’97, Rhode Island, USA, July 1997.

[2] P. Caulier & B. Houriez, A Case-Based Reasoning Assistance System in Telecommunica-
tions Networks Management, XPS’95, Kaiserslautern, Germany, 1995.

[3] R. Clouard, A. Elmoataz, C. Porquet, M. Revenu, Borg : A knowledge-based system for
automatic generation of image processing programs, IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 21, n. 2, pp. 128-144, February, 1999.

[4] A. Elmoataz, Mécanismes opératoires d’un segmenteur d’images non dédié: définition
d’une base d’opérateurs et implémentation, Thèse de Doctorat, Caen, July 1990.

[5] V. Ficet-Cauchard, C. Porquet & M. Revenu, An Interactive Case-Based Reasoning System
for the Development of Image Processing Applications, EWCBR’98, Dublin, Ireland,
pp. 437-447, September 1998.

[6] V. Ficet-Cauchard, Réalisation d’un système d’aide à la conception d’applications de
Traitement d’Images: une approche basée sur le Raisonnement à Partir de Cas , Thèse de
Doctorat, Caen, January 1999.

[7] H. Munoz-Avila, D. Aha, L. Breslow & D. Nau, HICAP: An Interactive Case-Based Plan-
ning Architecture and its Application to Noncombatant Evacuation Operations. IAAI-99.

[8] B.D. Netten & R.A. Vingerhoeds, Structural Adaptation by Case Combination in EADOCS,
GWCBR’96, Bad Honnef, Germany, March 1997.

[9] B. Prasad, Planning With Case-Based Structures, AAAI Fall Symposium, MIT Campus,
Cambridge, Massachusetts, November 1995.

[10] Russ, John C. (1995) The Image Processing Handbook, second edition, CRC Press, 1995.
[11] B. Smyth, Case-Based Design, Doctoral Thesis of the Trinity College, Dublin, Ireland,

April 1996.
[12] M. Veloso, H. Munoz-Avila & R. Bergmann, Cased-based planning: selected methods and

systems, AI Communications, vol. 9, n. 3, September 1996.

452 V. Ficet-Cauchard, C. Porquet, and M. Revenu

althoff@iis.uni-hildesheim.de

Virtual Function Generators: Representing and
Reusing Underlying Design Concepts in Conceptual
Synthesis of Mechanisms for Function Generation

Younghyun Han1, and Kunwoo Lee2

1 Institute of Advanced Machinery and Design, Seoul National University,
2 School of Mechanical & Aerospace Engineering, Seoul National University,

San 56-1, Shinlim, Kwanak, Seoul 151-742, Korea
{yhhan, kunwoo}@cad.snu.ac.kr

Abstract. This paper describes an approach to represent and reuse efficiently
the underlying design concepts in the existing mechanisms in order to synthe-
size mechanisms for function-generation and motion-transmission. A notion of
virtual function generator is introduced to conceptualize and represent all possi-
ble underlying design concepts in the existing mechanisms. The virtual function
generators are extracted from the existing mechanisms and composed of one or
more primitive mechanisms together with the involved functions. They serve as
new conceptual building blocks in the conceptual synthesis of design alterna-
tives. The whole design concept or sub-concepts of the mechanisms can be rep-
resented and reused efficiently by the notion of virtual function generator. New
mechanisms are generated by extracting and combining the underlying design
concepts via the virtual function generators. The capability of the proposed ap-
proach is illustrated with a design example.

1 Introduction

When designers are faced with design tasks, they usually review the existing design
cases of similar tasks and generate many design concepts or alternatives by combining
the relevant elements of the existing design cases [1-3]. This common activity of the
design is realized in the field of mechanisms design by using atlases of mechanisms
[4, 5], which is one of the typical approaches to type synthesis [6, 7]. This approach
can provide direct ideas or useful design concepts for a design task because numerous
design cases are classified and grouped according to their functions. Although the
approach is still the typical pattern of mechanism design, it is very tedious and cum-
bersome to inspect all the relevant design cases even though computer-assisted tools
are available. Hence, a desirable approach to the conceptual design of mechanisms
requires a systematic way of reusing the previous design concepts in the existing des-
ign cases to generate design alternatives for function generation tasks.

To reuse the prior design concepts in the existing mechanisms, the essential task

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 453-467, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

would be to understand how the functions of the mechanisms are realized, and to rep-
resent and store the underlying design concepts in a computerized form. To this end,
some functional and/or behavior models of mechanical devices have been proposed
[8-11]. Different from these model-based approaches, in the area of mechanism de-
sign, especially for function generation, one useful method conceptualizing the
mechanisms is to identify and understand them by the combinations of basic building
blocks [7, 12]. Since the building blocks correspond to physical artifacts in the real
world and have their specific functions, the underlying design concepts can be con-
ceptualized easily and intuitively by the designer. The whole design concepts can be
represented by the combination of the constituent basic building blocks. In addition to
the whole design concepts, the individual sub-concepts constituting the whole concept
should be stored because new design alternatives are mostly obtained in the conceptual
design phase by transferring a part of a mechanism or by combining parts from differ-
ent mechanisms.

Thus, a systematic and efficient way should be provided to represent the sub-
concepts as well as the whole design concepts. To this purpose, this paper proposes an
efficient representation scheme for reusing the underlying design concepts and sub-
concepts in the existing mechanisms using the notion of virtual function generators.
The notion of virtual function generators is based on using the conceptual building
blocks of primitive mechanisms to conceptualizing the underlying design concepts.
The whole concept and sub-concepts of the existing design cases are all extracted and
conceptualized as virtual function generators, which express the respective functions
(motion transformations from input to output) of the extracted design concepts. New
design alternatives can be synthesized by combining virtual function generators, which
retain the underlying design concepts in the existing mechanisms.

2 Conceptual Synthesis of Mechanisms for Function Generation

Mechanisms and corresponding synthesis tasks can be typically classified as rigid-
body guidance, path generation, and function generation [7, 12]. Function generation
task which this paper addresses involves the design of mechanisms, wherein coordi-
nated motions (or forces) between input and output links connected to ground should
be satisfied. In this case, the mechanism in question should satisfy the desired motion
transformation from input to output. In addition, mechanisms of this type can provide
the functionality that a single input drives multiple outputs of different motion type in
a complex machine.

Design specifications in the design of a mechanism for function generation can be
described qualitatively or quantitatively in terms of types of input and output motions
and other constraints. Here, other constraints comprise behavioral relationship be-
tween input and output (linear or nonlinear), motion characteristics (continuous or
intermittent), motion direction (oscillatory/reciprocating or unidirectional), transmis-
sion characteristics (interchangeability, cycle ratio), orientation of input and output
(parallel, perpendicular and skew), space requirement, cost, weight, safety, environ-
ment, etc. In the conceptual synthesis stage, not all of the specifications listed above

454 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

can be considered all together. Hence, the concept generation procedure should gener-
ate design alternatives using only the critical design requirements. Then other re-
maining constraints can be utilized to select promising design concepts from the solu-
tion candidates generated. In the case of the function generation task, especially for
the concept generation stage, the motion types of input and output, and motion char-
acteristics can be regarded to be the critical design requirement. Thus the design
problem of concept generation stage can be described as: given a set of motion types
and characteristics of input and output(s), find all possible design alternatives which
transform and transmit the desired motion(s) from the input to the output(s).

3 Representing Mechanisms with Conceptual Building Blocks

The notion of basic building blocks is widely used to conceptualize and represent
many complicated mechanisms [7, 12]. In particular, in a mechanism for function-
generation and motion-transmission, commonly called function generator, the notion
of building blocks helps understand how the overall function is conceptualized and
achieved. For example, the impact printing mechanism in an electric typewriter [12]
shown in Fig. 1 can be viewed to consist conceptually of three conceptual building
blocks: cam with oscillating follower, double-rocker, and type lever. The input rota-
tion into the cam with oscillating follower is transformed to an oscillatory rotation and
it is transmitted to the type-lever through the double-rocker. By identifying a mecha-
nism as a combination of basic building blocks, we can easily understand how the
overall function of the mechanism is accomplished. The constructive building blocks
represent the individual subfunctions from which the overall function is achieved.
Thus, the notion of building blocks allows us to understand the underlying design
concepts for realizing the overall function of a mechanism.

In this work, primitive mechanisms are supplied to represent the existing mecha-
nisms as a combination of conceptual building blocks. The primitive mechanisms are
physical building blocks to form a resultant mechanism, which transforms and trans-
mits motion(s) from input to output(s). An abstraction scheme is required to represent

Fig. 1. Kinematic diagram of the impact printing mechanism in an electric typewriter

Type- lever

Double-Rocker

Cam

Follower

455Virtual Function Generators

althoff@iis.uni-hildesheim.de

the primitive mechanisms in a computerized form and to use them in the computation-
al synthesis procedure.

A primitive mechanism is abstracted and represented by a directed graph with one
edge and two vertices, as shown in Fig. 2. The edge represents the abstract structure of
a primitive mechanism, and two vertices of the edge indicate the input and output
points, respectively. The edge has a direction from the input vertex to the output,
which represents the flow of motion through the abstract structure of the mechanism.

The motions of input and output are classified as translation (T), rotation (R), and
helical motion (H: coordinated T and R), following and extending the classification by
Erdman [12], and Joskowicz [13]. In particular, the rotation is subdivided into shaft
rotation (R0) and pivotal rotation (R) in our approach. Shaft rotation is considered to
have zero radius of rotation as in most primitive mechanisms, and pivotal rotation has
conceptual radius of rotation as in crank or lever that is swiveled around an axis. In
addition to the primary classification of the motion, motion qualifiers are used to rep-
resent behavioral characteristics of the motion: oscillating (o), reciprocating (r), and
intermittent (i). Reciprocating and oscillating respectively qualify translation and
rotation when the direction of motion changes during operation. Intermittent qualifies
the continuity property of the motion.

Notice that a primitive mechanism can have multiple functions according to the
classification of motion described above, as indicated in the figure. This is because the
same primitive mechanism can be used for different motion transformations. For ex-
ample, the slider-crank mechanism of an internal combustion engine is used for trans-
forming a reciprocating motion to a shaft rotation (rT�R0), whereas it transforms a
shaft rotation to a reciprocating motion (R0�rT) in a sawing machine. This is possible
because of the reversibility of the mechanism; the input and output of the mechanism
are interchangeable. On the other hand, the cam with oscillating follower, as shown in
the figure, can perform various functions of motion transformation (R0�oR or
oR0�oR) as different output points are considered. Thus, the selection for the output
point of a mechanism can also give rise to different functions. These different func-
tions, motion transformations, of a mechanism can be utilized as distinct design con-
cepts for particular purposes in different mechanical devices.

As described earlier, many complex mechanisms can actually be conceptualized

Primitive
mechanism

Functions
Abstract

representation
Primitive

mechanism
Functions

Abstract
representation

Cam-oscillating
follower

R
0
�oR

0

oR
0
�oR

0

R
0
�oR

oR
0
�oR
...

R0 oR0

Crank-rocker

R
0
�oR

0

...

R0 oR0

Slider-crank

R
0
�rT

oR
0
�rT

rT�R
0

rT�oR
0

...

R0

rT

Lever or crank

R
0
�R

oR
0
�oR

R�R
0

oR�oR
0

R0

R

Fig. 2. Examples of primitive mechanisms with their functions and abstract representations

456 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

and expressed by using the primitive mechanisms as the constructive building blocks.
As an example, a film clawing mechanism [4] (Artobolevsky, CmL OC 3209) is illus-
trated with its abstract representation in Fig. 3(a). The mechanism transforms an input
motion of shaft rotation (R0) into two output motions: reciprocating translation (rT)
and oscillating shaft rotation (oR0), and transmit them respectively to the output link
(claw). Two cams transform the input rotation into two separate reciprocating mo-
tions. Then a slider-crank transforms one of the reciprocating motions into an oscil-
lating motion. Thus the mechanism can be identified conceptually to be composed of
three primitive mechanisms.

The mechanism is represented as a directed graph with no cycle, as shown in Fig.
3(b). The edges of the graph represent the constituent primitive mechanisms. The root
and leaf vertices indicate the input and output motions, respectively, and intermediate
nodes denote type of the common motion between two concatenated primitive mecha-
nisms. The edge label identifies the involved primitive mechanism. Thus, with the
edge label and two relevant types of motion, the related primitive mechanism and its
involved specific function (one of multiple functions of the primitive mechanism) can
be identified.

4 Underlying Design Concepts and Virtual Function Generators

To reuse the underlying design concepts of the existing mechanisms in the conceptual
synthesis of design alternatives for a new mechanism, we should first conceptualize
the design concepts and then store them for later use. To this end, we introduce the
notion of virtual function generator, using and extending the notion of building blocks
[7, 12, 14] mentioned earlier.

4.1 Conceptualizing Underlying Design Concepts

In the design of function generators, the entire design space is designated basically by
the overall function of motion transformation from input to output(s). Then the overall
function is decomposed into several subfunctions, and then the designer tries to find
physical artifacts to accomplish the individual subfunctions.

Fig. 3. Kinematic diagram and abstract representation of a film clawing mechanism

R0

rT

oR0

rT

CprF CtF

SC

(a) (b)

CtF:
Cam with
translating
follower

Claw

CprF:
Cam with

positive-return
follower

SC:
Slider-crank

457Virtual Function Generators

althoff@iis.uni-hildesheim.de

Most researches have used primarily the above approach in designing mechanisms
conceptually [7, 11, 15]. They apply some technique or principles to decompose the
specified design requirements and this kind of decomposition can be regarded as trans-
forming the target cases. However, the present approach applies no explicit decompo-
sition process by a certain principle, but tries to reuse the underlying design concepts
inherent in the existing mechanisms by extracting them from the source design case.

The proposed approach to conceptualize the underlying design concepts is ex-
plained with the foregoing example of the impact printing mechanism in Fig. 1. Fig.
4(a) represents the mechanism in terms of three primitive mechanisms and their in-
volved functions. With this example, we could infer which underlying design concepts
constitute the whole mechanisms, as follows.

We could first reason that the final mechanism is obtained by the combination of
three sub-mechanisms as depicted in Fig. 4(b). Each sub-mechanism consists of a
primitive mechanism with a specific function; thus, in this case, a primitive mecha-
nism and its involved function constitute a conceptual building block. The entire
mechanism can be conceptualized by three conceptual building blocks, and three un-
derlying design concepts can be recognized by the involved functions of each con-
ceptual building block. This way of conceptualization presumes that the entire design
space has been separated or discretized into three design subspace through the function
decomposition or the evolution of design specifications. Each sub-mechanism or con-
ceptual building block represents a subspace of the whole design space and account
for each subfunction of motion transformation for the involved design subspace. This
recognition reflects the most low-level conceptualization of the underlying design
concepts for the resultant mechanisms in terms of the conceptual building blocks.

On the other hand, we could also reason that the entire mechanism is synthesized
by the combination of two sub-mechanisms, as shown in Fig. 4(c) or (d). Each sub-
mechanism is composed of one or two primitive mechanisms and an overall function.
This way of conceptualization presumes that the entire design space has been separat-
ed into two design subspaces. One of the design subspaces is realized by a conceptual
building block of a primitive mechanism, and the other by a conceptual building block
consisting of two primitive mechanisms. In other words, the whole mechanism is
generated by two conceptual building blocks and respective underlying design con-
cepts realizing them. From this case, we can see that a new conceptual building block
can be derived from two primitive mechanisms, as a whole, as well as one primitive

Fig. 4. Possible combinations of underlying design concepts

++R0 oR0CoF oR0 oR0DR oRoR0 L

oRoR0 oR0DR LR0 oR0CoF +

R0 oR0 oR0CoF DR oRoR0 L+

R0 oRoR0 oR0CoF DR L(a)

(d)

(c)

(b)

458 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

mechanism alone.
Conceptualizing the entire mechanism in this way provides a higher-level function

decomposition than that of the case in Fig. 4(b). Of course, this kind of conceptualiza-
tion can further proceed, resulting in that of Fig. 4(b) if the function decomposition is
guided by a design principle or a causal model with strong domain knowledge. How-
ever, the design principles for type synthesis is not well defined in most cases and the
synthesis task is usually performed by the designer’s intuition. In the traditional ap-
proach depending on the designer’s intuition, the design concept for a subfunction
(design subspace) is sometimes realized at a time without further decomposition proc-
ess. These design concepts are usually obtained by his/her own experience, or by
referring to and transferring the related concepts in other mechanisms. Reflecting
these intrinsic aspects of the design, the conceptualizations shown in Fig. 4(c) and (d)
can be regarded as distinct underlying design concepts of the mechanism.

Similarly, the entire mechanism itself in Fig. 4(a) could also be regarded as a dis-
tinct design concept. In this case, a group of three primitive mechanisms and involved
functions constitute a conceptual building block realizing the whole design concept of
the mechanism. It is assumed here that the specified function has been realized by a
design concept without any function decomposition process.

Because only the final artifact of a mechanism are provided in the atlases of
mechanisms, and the design principles or knowledge for type synthesis of the mecha-
nism are not available to us, we could not infer further by which way the mechanisms
has been originally conceptualized. Hence, we solely presume that all possible combi-
nations of sub-mechanisms of the entire mechanism could be distinct underlying des-
ign concepts by which the mechanism has been realized.

In summary, when conceptualizing the underlying design concepts or principles for
a mechanism, we could recognize the entire mechanism by combinations of higher-
level conceptual building blocks as well as by that of low-level conceptual building
blocks. The conceptual building block here is composed of one or more primitive
mechanisms and related functions.

4.2 Virtual Function Generators

With the assumption described earlier, we should consider, as conceptual building
blocks, the combinations of primitive mechanisms appearing in all possible sub-
mechanisms of a mechanism as well as the individual primitive mechanisms. Not only
the individual primitive mechanisms constituting the mechanism but also all possible
concatenated chains, as a whole, can be a conceptual building block.

We introduce the notion of virtual function generator to represent them consis-
tently, because these building blocks are virtual entities derived from the existing
mechanisms, and can perform respective functions like physical mechanisms. The
notion of virtual function generator incorporates the traditional physical building
blocks of primitive mechanisms and the new conceptual building blocks obtained by
the combinations of the primitive mechanisms.

The virtual function generator consists of one or more primitive mechanisms with

459Virtual Function Generators

althoff@iis.uni-hildesheim.de

respective involved functions, and performs a specific transformation of motion from
input to output. They are extracted and generated from the existing mechanisms. Sev-
eral virtual function generators can be extracted from a mechanism. In the forgoing
example of the impact printing mechanism in Fig. 1 and 4, a total of six virtual func-
tion generators can be derived: cam with oscillating follower + double-rocker + lever
(Fig. 4(a)), cam with oscillating follower + double-rocker (left one in Fig. 4(d)), dou-
ble-rocker + lever (right one in Fig. 4(c)), and three individual primitive mechanisms
(Fig. 4(b)). The function generator represents the entire design concept when derived
from the whole mechanism or a sub-concept if derived from a part of the mechanism.

The notion of virtual function generator introduced in the present paper has the
following characteristics and advantages.

First, the virtual function generator is composed of concatenated primitive mecha-
nisms as well as a primitive mechanism alone. This combination of primitive mecha-
nisms shows quite different motion characteristics, spatial configuration, orientation of
input and output, etc., from those of a single physical building block of a primitive
mechanism even if the overall functions are equivalent. Thus it can serve as a new
conceptual building block for the synthesis of mechanisms.

Second, it realizes the separation of the functional aspects from the physical build-
ing blocks, and provides flexibility in conceptualizing the usage of the traditional
physical building blocks. A primitive mechanism can have multiple functions and
each of the multiple functions can be used distinctly in different mechanisms. Thus the
virtual function generators represent the specific usage of the individual primitive
mechanisms or a combination thereof in the individual mechanisms. In addition, it can
represent the common functionality that has been multiply used in several different
mechanisms, which will be described later.

Third, the extraction of virtual function generators from a mechanism can be re-
garded to decompose the whole design space (overall function) of an existing design
case into all possible combination of subspaces (subfunctions). Thus the virtual func-
tion generators play an implicit role as a previously prepared set of subfunctions that
could be used in the function decomposition process, though the function decomposi-
tion is not explicitly carried out in our approach. Our approach that will be described
later rather attempts to merge and combine these prepared subfunctions (virtual func-
tion generators) to satisfy the specified overall function.

5 Case Extraction and Representation

The virtual function generators are derived from all possible combinations of sub-
mechanisms of an existing mechanism. They can be obtained by extracting all possible
subgraphs from the graph representation of the mechanism. For example, recall the
foregoing example of a film clawing mechanism shown in Fig. 3. We can consider a
total of six subgraphs from the graph structure of the film clawing mechanism in Fig.
3(b) and the extracted sub-mechanisms (subgraphs) are depicted in Fig. 5.

460 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

For the reuse of the previous design concepts in the conceptual synthesis procedure,
the extracted sub-mechanisms should be stored in the form of virtual function genera-
tors. Three types of virtual function generators are defined according to the structure
of the extracted sub-mechanisms; M-type is constructed from a primitive mechanism
(see (a), (b), (c) in Fig. 5), C-type a concatenated chain of primitive mechanisms (see
(e) in Fig. 5), and G-type a graph structure with multiple outputs (see (d), (f) in Fig.
5). The virtual function generators contain the following data.

Overall function. The overall transformation of motion from input to output(s) is
stored. M-type and C-type have one input and one output. G-type has one input and
multiple outputs.

Structure. The constituent primitive mechanisms and their involved functions are
specified by a graph representation. The information related to the constituent primi-
tive mechanisms is supplied by the knowledge base storing the primitive mechanisms.
Since each primitive mechanism can have several functions, the function that is cur-
rently used in the mechanism should be designated accordingly.

Derivation information. A list of parent mechanisms and types of derivation is
maintained for later use in the synthesis procedure. The parent mechanism is an exist-
ing mechanism stored in the case base, from which virtual function generators are
derived. There can be more than one parent for a virtual function generator, because
conceptually identical combination of primitive mechanisms can be used multiply in
different mechanisms. The type of derivation denotes that the virtual function genera-
tor is constructed either from the entire mechanism (complete) or from an extracted
sub-mechanism (partial).

6 Organization of Case Base and Indexing

In order to reuse the underlying design concepts in the existing mechanisms efficiently
for the conceptual synthesis process, we should organize a case base for storing and
retrieving them. That is, the virtual function generators extracted from the existing
mechanisms should be indexed according to their functions. Besides, the virtual func-

Fig. 5. Extracted sub-mechanisms of the film clawing mechanism

R0

rT
CprF

(a)

R0

rT
CtF

(b)

oR0rT SC

(c)

(f)

R0

oR0rT
CtF

SC

CprF
rT

R0

rT

rT

CprF

CtF

(d)

R0

oR0rT
CtF

SC

(e)

461Virtual Function Generators

althoff@iis.uni-hildesheim.de

tion generators consist of the primitive mechanisms stored in the knowledge base, and
stem from the design cases of the existing mechanisms. Thus the organized case base
should incorporate the knowledge base and the physical case base of the existing
mechanisms.

Fig. 6 illustrates the case base established in our work. The case base is organized
as a multi-layered structure and each layer represents different levels of abstraction.

The first layer is a functional index layer. It consists of actual indices (a primary in-
dex and auxiliary indices) to the virtual function generators stored in the next virtual
case layer. The primary index contains indices for virtual function generators (M-type
and C-type) with a single input and a single output (SISO), and is used actually for the
synthesis process. The auxiliary indices are classified according to the number of
outputs as: SI2O (single input/two outputs), SI3O, etc. Each of them is composed of
indices for G-type virtual function generators and used to directly retrieve the exact-
matching design cases, which will be explained later. An index in this layer is desig-
nated by the transformation of motion from input to output(s) (e.g., R�T, rT�oR,
etc.). All virtual function generators performing the same function are assigned to the
same index. Thus all the virtual function generators with the specified function can be
accessed as a whole through the corresponding index. This layer abstracts the mecha-
nisms in a functional point of view.

The second is a virtual case layer, wherein virtual function generators are stored as
virtual cases. The virtual function generators are stored in separate reservoirs accord-
ing to their structures. Since the virtual function generators consists of the constituent
primitive mechanisms and involved functions realizing a specific overall function, this
layer represents an abstraction level of mechanisms in terms of functions and physical
artifacts.

The third layer is composed of the knowledge base of primitive mechanisms and
the physical case base of the existing design cases (mechanisms). This layer provides
physical building blocks and artifacts; thus it abstracts mechanisms from a physical
point of view.

To explain the procedure of storing and indexing the virtual function generators, re-
call again the virtual function generators (sub-mechanisms) in Fig. 5 extracted from
the film clawing mechanism in Fig. 3, and the illustrative example of the case base in
Fig. 6. First, since three virtual function generators shown in Fig. 5(a), (b), and (c) are
M-type, they are stored in the M-type reservoir as M0 (cam with positive return fol-
lower), M1 (cam with oscillating follower), and M2 (slider-crank) as shown in Fig. 6,
and are indexed in the SISO index of the functional index layer according to their
functions (R0�rT: M0, M1; rT��R0: M2). The information of the parent mechanisms
and the types of derivation are also shown respectively in dashed lines. Next, a C-type
virtual function generator is derived from the sub-mechanism in Fig. 5(e). It is stored
as C0 (cam with translating follower + slider-crank) in the C-type reservoir and in-
dexed in the SISO index by the overall function (R0��R0) as shown in Fig. 6. Finally,
two G-type virtual function generators with a SI2O graph structure are derived from
the sub-mechanisms in Fig. 5(d) and (f). They are stored in the G-type reservoir and
indexed in the SI2O index according to their functions: G0 and G1 in Fig. 6. All of the
types of derivation of the derived virtual function generators are partial except for the

462 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

case of Fig. 5(f).
Notice that some of the virtual function generators derived from a sawing machine

and the impact printing mechanism are also stored and indexed as M3 (slider-crank;
R0�rT) and M4 (lever; oR0��R) in the case base. They will be used in the design
example later.

7 Case Reuse: Conceptual Synthesis of Mechanisms

We can consider two kinds of strategies when synthesizing design alternatives by
reusing the previous design cases. The first one is searching for exact-matching source
cases. Here, the exact matching means that the desired motions at input and output(s)
are satisfied by the whole or a part of an existing mechanism. Since all sub-
mechanisms are already extracted and stored as the virtual function generators, and
they are indexed into the functional indices, we can retrieve exact-matching cases
(virtual function generators) efficiently without time-consuming graph matching.
Individual exact-matching cases can be chosen as design alternatives without further
adaptation (synthesis) process.

The second strategy is searching for partial-matching cases that satisfy part of the
specified function, and merging them to satisfy the overall function. In this case, par-
tial-matching source cases derived from different mechanisms are combined and vari-
ous new design alternatives are generated. A combination of parts of and/or the whole
existing design concepts can give rise to new design concepts. It can be considered
that this method shares similarity with the techniques of combination or transference
which is recognized as a common method of concept generation in the systematic
approach of engineering design [1, 11, 15-18].

A compatibility principle [19] is required to validate the synthesized mechanism

Fig. 6. Illustrative example of the organization of the case base

Case Base

Physical case layer:
 knowledge base

& case base

Functional
index layer:

Input/output motions

Virtual case layer:
virtual function

generator

Sub-indices Primary index (SISO) Auxiliary index (SI2O)

0

2

1

Film clawing mechanism

Impact printing mechanism

Sawing mechanism

R0->rT rT->oR0R0->oR0 oR0->oR

C0 G0
G1

Cam with translating follower# 2

Lever (crank)# 3

Slider-crank# 0

Cam with positive-return follower# 1

R0->oR0/rTR0->rT/rT

M0
M1
M2
M3
M4

463Virtual Function Generators

althoff@iis.uni-hildesheim.de

obtained by combining two partial-matching cases (virtual function generators). It can
be stated in our application as: If the output motion of one virtual function generator is
the same as the input motion of the other virtual function generator, two virtual func-
tion generators can be combined to produce a new function generator. A pair of virtual
function generators satisfying the compatibility principle of combination is referred to
as compatible virtual function generators.

The design alternatives with one input and one output are generated by incorporat-
ing two strategies of finding exact-matching cases and finding/combining partial-
matching cases as follows.

Given an input motion of Mi and an output motion Mo, a set Pi of input-matching
cases with the specified input motion, and a set Po of output-matching cases with the
specified output motion are retrieved from the case base using the functional indices.
Then the two partial-matching cases are combined if the output motion of an input-
matching case is the same as the input motion of an output-matching case. Fig. 7 il-
lustrates that a desired mechanism with input motion of Mi and output motion of M0 is
obtained by combining two partial cases: pi and po. During this process, exact-
matching cases are easily obtained by searching for the same virtual function genera-
tors that exist in both the input matching and the output matching cases. This is be-
cause they satisfy both the specified input and the output motions and are already
retrieved in both Pi and Po. Thus, These virtual function generators can fulfill the
specified function by themselves, and become possible design alternatives for the
desired mechanism.

When the desired mechanism has multiple outputs, the foregoing procedure is ap-
plied repeatedly for each pair of the specified input motion and output motions until
the synthesized mechanism for each output is merged to the previously obtained
mechanism and the desired mechanism is finally synthesized. On the other hand, the
exact-matching cases (virtual function generators) can also be retrieved easily by the
auxiliary sub-indices that store the virtual function generators with multiple outputs.
They also become possible design alternatives without further synthesis process.

Consider a sewing mechanism for an illustrative example. The input motion to the
sewing machine is a shaft rotation via belt-pulley from an electric motor. From the
input motion, it should transmit a reciprocating motion to the needle and two oscillat-
ing motions to the feed dog. Thus, the desired mechanism should be composed of
three chains that transform and transmit the specified input motion (R0) to individual
desired output motions (rT, oR, oR). Here, we will show that the design concept for
each chain can be obtained from the virtual function generators in the case base in Fig.

Fig. 7. Combining two compatible partial-matching cases

Mi Mo

Mo
po: Mc

Mi
Mcpi:

464 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

6.
First, consider a chain that transform the input motion (R0) into the output motion

(oR) and transmit it to the feed dog; the desired function is specified by R0�oR. From
the case base in Fig. 6, the input-matching cases with the input motion of R0 are re-
trieved by the functional index of R0�rT as M0, M1, and M3, and by the one of
R0�oR0 as C0. The output-matching case with the output motion of oR is retrieved as
M4 by the functional index of oR0�oR. Then possible compatible virtual function
generators are combined. Here, the input matching case C0 (cam with translating
follower + slider-crank; R0 rT oR� �

0) and the output matching case M4 (lever;
oR0�oR) can be merged and a chain of C0 + M4 (R0 rT oR� �

0 oR) � is produced as
shown in Fig. 8(a). Notice that the chain is generated by two partial-matching cases
derived from different parent mechanisms. The virtual function generator of C0 is
derived from the film clawing mechanism in Fig. 3 and the virtual function generator
M4 originates from the impact printing mechanism in Fig. 1. When the actual case
base is used instead of the illustrative one in Fig. 6, many other chains can be obtained
and one of them is illustrated in Fig. 8(b). These two chains transform the input mo-
tion into two oscillating motions and transmit them to the feed dog.

 Next, a chain transforming the specified input (R0) to reciprocating motion (rT) of
the needle is obtained as follows; the desired function is represented by R0�rT. The
retrieved input-matching cases are the same as the foregoing example: M0 (R0��T),
M1 (R0�rT), M3 (R0�rT) and C0 (R0�oR0). The output-matching cases are re-
trieved by the functional index of R0�rT as M0 (R0�rT), M1 (R0�rT) and M3
(R0�rT). Since M0, M1, and M3 exist in both partial-matching cases, each of them
can be a solution as an exact-matching case. Fig. 8(c) shows the resultant mechanism
that is generated by merging the foregoing two chains and M3 (slider-crank). In this
case, no chain is generated by combining two partial-matching cases because there is
no compatible combination.

If the actual case base is used, more chains can be obtained for the individual mo-
tion transformations, and it gives rise to numerous final design alternatives. Notice
that the sewing machine is conceptually synthesized by transferring and merging des-

Fig. 8. Conceptual synthesis of a sewing machine

(c)

rT

oR0

rT

CtF

SC

R0

oR oR

oR0

oR0

CoF

L

CR

SC

L

M3

C0

�

(a)

oR0

rT

CtF

SC

R0

oR0

rT

CtF

SC

R0

oR

L

oR0

oR

L M4

fo
ur

-b
ar

 G
en

ev
a

ioR0

oR0

CR

Geneva

R0

C
am

-l
ev

er
 m

ec
ha

ni
sm

D
er

iv
ed

co

m
pl

et
el

y

�oR0

CR

R0

D
er

iv
ed

pa

rt
ia

lly
oR

oR0

CoF

L

oR0

(b)

CR

R0

oR

oR0

CoF

L

oR0

465Virtual Function Generators

althoff@iis.uni-hildesheim.de

ign concepts from different existing mechanisms.

8 Conclusion

This paper proposes a case-based approach to represent and reuse the underlying
design concepts in the existing mechanisms for the conceptual synthesis of mecha-
nisms in the function generation and motion transmission tasks, and illustrates its
capability with a design example. The approach provides a systematic way of reusing
the previous design concepts underlying in the numerous existing design cases. The
previous design concepts are derived from the existing mechanisms and substantiated
via the notion of the virtual function generators. The organization of the case base
enables us to retrieve efficiently the prior design concepts necessary to synthesize
various new design alternatives.

By conceptualizing the overall function of a mechanism in terms of subfunctions
using the conceptual building blocks of virtual function generators, one can easily
capture the underlying sub-concepts of design. The notion of virtual function generator
is very useful in representing common functionality that is used in the design of func-
tion generators, and provides flexibility in mapping functions to structures by separat-
ing the functional aspects from the physical artifacts. With the notion of virtual func-
tion generators, new design concepts for function generators can be obtained easily
and efficiently by transferring and/or combining the underlying design concepts de-
rived from different mechanisms.

Acknowledgements

This work has been partially supported by the Turbo and Power Machinery Re-
search Center of the Institute of Advanced Machinery and Design, Seoul National
University, Korea.

References

 1. Pahl, G., Beitz, W.: Engineering Design. 2nd edn. Springer-Verlag, London (1996)
 2. Maher, M.L., Balachandran, M.B., Zhang, D.M.: Case-Based Reasoning in Design. Law-

rence Erlbaum Associates, Mahwah New Jersey (1995)
 3. Maher, M.L., Pu, P. (eds.): Issues and Applications of Case-Based Reasoning in Design.

Lawrence Erlbaum Associates, Mahwah New Jersey (1997)
 4. Artobolevsky, I.I.: Mechanisms in Modern Engineering Design. Vols. 1-3. MIR Publishers,

Moscow (1986)
 5. Chironis, N.P.: Mechanisms, Linkages, and Mechanical Controls. McGraw-Hill, New York

(1965)
 6. Erdman, A.G.: Computer-Aided Mechanism Design: Now and the Future. Transactions of

466 Y. Han and K. Lee

althoff@iis.uni-hildesheim.de

the ASME Journal of Mechanical Design. 117 (1995) 93-100
 7. Kota S., Chiou, S.-J.: Conceptual Design of Mechanisms Based on Computational Synthesis

and Simulation of Kinematic Building Blocks. Research in Engineering Design. 4 (1992)
75-87

 8. Shimomura, Y., Yoshioka, M., Takeda, H., Umeda, Y. Tomiyama, T.: Representation of
Design Object Based on the Functional Evolution Process Model. ASME Journal of
Mechanical Design. 120, (1998) 221-229

 9. Goel, A.K., Bhatta, S.R., Stroulia, E.: KRITIK: An Early Case-Based Design System. In:
Maher, M.L., Pu, P. (eds.): Issues and Applications of Case-Based Reasoning in Design.
Lawrence Erlbaum Associates. (1997) 87-132

 10. Bhatta, S.R., Goel, A.K.: From Design Experiences to Generic Mechanisms: Model-Based
Learning in Analogical Design. Artificial Intelligence in Engineering Design, Analysis and
Manufacturing. 10 (1996) 131-136

 11. Sycara, K.P., Guttal, R., Koning, J., Narasimhan, S., Navinchandra, D.: CADET: a Case-
based Synthesis Tool for Engineering Design. International Journal of Expert Systems. 4
(1992)

 12. Erdman, A.G., Sandor, G.N.: Mechanism Design: Analysis and Synthesis, Vol. 1, 3rd edn.
Prentice-Hall, Upper Saddle River New Jersey (1997)

 13. Joskowicz, L.: Mechanism Comparison and Classification for Design. Research in Engi-
neering Design. 1 (1990) 149-166

 14. Chakrabarti, A., Bligh, T.P.: An Approach to Functional Synthesis of Solutions in
Mechanical Conceptual Design. Part I: Introduction and Knowledge Representation. Re-
search in Engineering Design. 6 (1994) 127-141

 15. Madhusudan, T.N., Sycara, K.P., Navin-Chandra, D.: On Synthesis of Electro-mechanical
assemblies. Proceedings of The 1996 ASME Design Engineering Technical Conference and
Computers in Engineering Conference. August 18-22, 1996.

 16. Pugh, S.: Total Design. Addison-Wesley (1990)
 17. Voβ, A., Coulon, C.-H.: Structural Adaptation with TOPO. Proceedings of the ECAI 96

Workshop: Adaptation in Case-Based Reasoning. John Wiley & Sons (1996)
 18. Bhatta, S.R., Goel, A.K.: An Analogical Theory of Creativity in Design. Proceedings of

Second International Conference on Case-Based Reasoning (ICCBR-97): Case-Based Rea-
soning Research and Development. Providence RI USA, (1997) 565-574

 19. Chakrabarti, A., Bligh, T.P.: An Approach to Functional Synthesis of Solutions in
Mechanical Conceptual Design. Part II: Kind Synthesis. Research in Engineering Design. 8,
(1996) 52-62

467Virtual Function Generators

althoff@iis.uni-hildesheim.de

Shaping a CBR view with XML

Conor Hayes, Padraig Cunningham

Department of Computer Science
Trinity College Dublin
Conor.Hayes@cs.tcd.ie

Abstract. Case Based Reasoning has found increasing application on the
Internet as an assistant in Internet commerce stores and as a reasoning agent for
online technical support. The strength of CBR in this area stems from its reuse
of the knowledge base associated with a particular application, thus providing
an ideal way to make personalised configuration or technical information
available to the Internet user. Since case data may be one aspect of a company’s
entire corporate knowledge system, it is important to integrate case data easily
within a company’s IT infrastructure, using industry specific vocabulary. We
suggest XML as the likely candidate to provide such integration. Some
applications have already begun to use XML as a case representation language.
We review these and present the idea of a standard case view in XML that can
work with the vocabularies or namespaces being developed by specific
industries. Earlier research has produced version 1.0 of a Case Based Mark-up
Language which attempts to mark-up cases in XML to enable distributed
computing. The drawbacks of this implementation are outlined in this paper as
well as the developments in XML that allow us to produce an XML “View” of
a company’s knowledge system. We will detail the benefits of our system for
industry in general in terms of extensibility, ease of reuse and interoperability.

1 Introduction

Adding intelligence to Internet applications is an obvious role for Case-Based
Reasoning (CBR). E-commerce sets out to sell products without the intervention of a
sales-assistant and in the absence of human sales assistants there is a need for
intelligent software assistants to lubricate the sales process. Since what is available is
catalogue data and data on user behaviour and preferences CBR is an obvious
technology to create these sales assistants. In this scenario, the obvious cases are
descriptions of the commodities on sale and the task is to identify the case
configuration that meets the user’s requirements.1 These cases might describe package
holidays, hardware configurations, or real estate for instance.

The proposed standard for distributing data of this type on the Internet is XML
(eXtensible Mark-up Language) so it is important that the CBR process can deal with
data in this format. Indeed Shimazu (1998) and Watson & Gardingen(1998) have

1 Several online CBR applications that conform to this secnario already exist; see

http://wwwagr.informatik.uni-kl.de/~lsa/CBR/CBR-Homepage.html for some
examples.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 468-481, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

described CBR applications that receive cases in an XML format. We have already
presented a proposal for CBML, a case description language based on XML (Hayes et
al. 1998, Doyle et al. 1998).

XML is a description language that supports meta-data descriptions for particular
domains and these meta-data descriptions allow applications to interpret data marked
up according to this format. The meta-data description is the Document Type
Declaration (DTD) and, for instance, a DTD for real estate will attach semantics to a
document marked up in that format.

In (Hayes et al., 1998) we proposed a generic DTD for CBR called CBML that
allowed cases to be marked up in an XML-based format. The major drawback of this
approach was that data needed to be marked up in this CBR specific format but now
the evolving potential of XML allows for an improvement on this idea. In an e-
commerce situation domain specific DTDs exist and catalogue data will be marked up
in this format – for instance RELML has been proposed as a standard for marking up
real estate data. Any case-based assistant that would operate in this space would need
to access this data. The new XML proposals for Namespaces and Schemas allow for a
CBR view on this data and it is this approach that we describe here. This approach has
the advantage that it uses existing XML data; it simply provides the appropriate CBR
perspective on this data.

In section 2 we review two CBR applications that use XML as a case
representation language to query a relational data base. In section 3 we examine and
critique an earlier proposal for a standard case representation language in XML. We
find that while the principle is still a sound one, the implementation is hampered by a
failure to recognise the necessity of retaining the integrity of data marked up
according to an industry specific vocabulary. The inability of the DTD to describe
structured data objects such as a case base is also brought to light.

Section 4 reviews an XML standardisation project in the domain of Real Estate in
the context of past CBR work in this domain. We argue that as standards such as The
Real Estate Listing Mark-up Language (RELML) emerge, CBR techniques will have
to integrate easily within these existing data structures. In section 5 we introduce the
XML concepts of namespaces and schemas, which will allow us to integrate CBR
with existing mark-up. We follow this in section 6 with our proposal for what a case
namespace should look like.

2 Two XML–CBR applications

The Caret System by Hideo Shimazu is a development of earlier work on retrieving
cases from a relational database (Shimazu 1998). It uses XML to mark up cases of
natural language text describing technical support problems and solutions. Support
staff mark up cases in XML and the documents are then parsed and stored in a
relational database by the Caret system. Features either contain coded (discrete) data
or textual data. However only the coded tags affect the retrieval mechanism.

The Caret system follows from work on the SQUAD system in which information
retrieval using CBR is integrated with a relational database management system for
reasons of security, data integrity, data standardisation and scalability (Kitano &
Shimazu 1998). Indeed Kitano and Shimazu propose that CBR applications have been

469Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

too narrowly focused on domain specific problems. They suggest that a case based
system should be viewed as a medium to be used in conjunction with the mainstream
corporate information system. We would share this view, and we anticipate that a
standard way of marking up cases will provide an opening in this respect.

The retrieval technique used in Caret is a version of the Many are called Few are
chosen (MAC/FAC) retrieval methods outlined by (Gentner & Forbus 1991). This
algorithm is chosen in order to allow SQL retrieval from the database without having
to retrieve every record to compute similarity. Since it uses only coded tags as
features by which to calculate similarity, Caret returns a rude subset of the case base
relying on the client case adapter to further stream the matched queries.

Since Caret doesn’t use the textual parts of its cases in its retrieval mechanism, it is
not quite a textual Case Base Reasoning System. Its retrieval mechanism could as
easily be applied to any type of data. The second example we look at applies ideas
from the Caret system to a sales support system for the installation of air conditioning
units.

The HVAC air conditioning sales support system uses a similarity table to send
SQL queries to an Access data base of existing installations (Gardingen & Watson
1998). A Java servlet retrieves the cases and converts them to XML. The URL
addresses are sent to a Java based client adapter which issues http requests for the
XML files. The client then performs nearest neighbour ranking and displays the
results.

Both implementations outlined use a vocabulary of user-defined tags and a DTD
that assumes a case representation consisting of a feature list and corresponding
values. In each implementation, the use of XML allowed the developer to define
structured domain specific data. Furthermore XML data was downloaded by issuing
HTTP requests from the client end.

However, these implementations highlight some shortcomings with representing
case data in this way. Data typing is not possible, nor does or is there any allowance
for feature weighting. Also Since DTD creation is a difficult task, it would make
sense to use the standard DTDs or schemas which emerge for industry specific data.
The task in this scenario would be to use the vocabulary from these DTDs or a
combination of DTDs and render them in case form. What is being proposed is a
facility to create a standard case view of data, baring in mind that XML is suited to
full integration with database technology, and that XML documents can easily be
created on the fly from an existing database or from several databases. However, as
we shall discuss in the following two sections the current DTD model is not powerful
or flexible enough to support this task.

The next section will look at our early attempts to create a standard case
representation language. The shortcomings of this implementation anticipate the new
W3C namespace recommendation and the W3C schema proposal which will allow us
to create a standardised case view of existing corporate data.

470 C. Hayes and P. Cunningham

althoff@iis.uni-hildesheim.de

3 Standard Case Base Representation language

We originally designed CBML as an XML application to facilitate the storage and
exchange of case data over a network. The design was motivated by the need to
initiate a standard for the exchange of case data, particularly in relation to distributed
computing (Hayes et al. 1998, Doyle et al 1998). Version one of CBML was
influenced by the functionality of the CASUEL language specification (INRECA
1994). Casuel was developed as an interface language between all INRECA
component systems. It was intended to serve as a standard for exchanging information
between classification and diagnostic systems that use cases. CBML was intended to
establish the ground on which the CBR community could build a standard for the
exchange and storage of case data on the Internet. Several shortcomings have
emerged with this early implementation and we will deal with these below.

Despite the simplicity of this early implementation, CBML required a case
structure file and case base file as well as their respective DTD files to describe each
case file. This implies that at least two separate documents (depending upon whether
the case structure file and the case base file include their respective DTDs) need to be
transmitted. This requires a minimum of two http requests for each case base.

Fig. 1. The relationship between the four documents required to represent data in CBML

CBML is a flabby implementation which significantly increases the amount of data
required to describe the case base. For instance, the case feature value pair
HolidayType = Bathing is described in CBML as
<feature name=”HolidayType”>Bathing</ feature >

where the element feature and its attribute name are defined beforehand in the
case base DTD. A less verbose way of describing the same pair would be to define the
tag <HolidayType> thus allowing the XML feature value pair
<HolidayType>Bathing</HolidayType>.

471Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

From this example it is clear that the first implementation, as well as being over
long, is not at all an intuitive representation of the feature value pair of this case.
Secondly, and more importantly, in an attempt to maintain the generality of the
language the portability of the data it describes has been compromised. Whereas the
first example is meaningful to software that expects CBML data, it poses real
problems to any software that does not expect the “feature” part of the “feature-
value” pair to be represented as a value of the name attribute associated with the
element <feature>.

Also, there was no way of elegantly merging elements defined according to
another DTD with CBML elements without violating the readability and
“meaningfulness” of the former. As in the example given earlier, a bathing holiday
may be marked up as <HolidayType>Bathing</HolidayType> using a
hypothetical travel agent’s DTD. The CBML representation of this does not respect
the mark-up for this type of data and imposes its own “case-centric” version:
<feature name=”HolidayType”>Bathing</feature>

Another drawback was the impossibility of having cases containing mixed data,
that is, elements with tags defined according to different domains. These types of
cases would occur in complex component based descriptions. Furthermore, In terms
of XML document architecture, there is no logical connection between the case
structure document and the case base document. (This shortcoming is dealt with in
our new implementation). In this respect we were following the CASUEL syntax in
which one document provides a case super-class from which a set of case instances
are derived. We recognised that the super-class in our implementation was described
in different parts by the casestruct.xml and the casebase.dtd since both these
documents contribute to the description of a specific case structure within a domain.
While the XML document architecture would suggest that the descriptive information
in casestruct.xml should be contained in the casebase.dtd, it was not possible to merge
these documents. Since the DTD only describes document structure it is not powerful
enough to represent the extra information contained in the casestruct.xml document.

It became clear to us that the weakness of the CBML document architecture was
tied to the limitations of the DTD to describe the type of data required by cases.
Indeed, there is a growing opinion that the DTD is unsuited to the rigorous description
demanded by data objects and that a new mechanism must be established2. This
mechanism called a schema will support data typing, be easily extensible and achieve
the inheritance requirements described earlier3.

We will address the impact of this development in section 5.

2 Connolly, D., Bray, T. W3C (1999) XML Activity Page,

http://www.w3.org/XML/Activity.html
3 Malhotra, A., Maloney, M., W3C (1999) XML Schema Requirements,

http://www.w3.org/TR/NOTE-xml-schema-req

472 C. Hayes and P. Cunningham

althoff@iis.uni-hildesheim.de

4 A Case Study

Before examining the feasibility of designing an XML based case based language, it
is important to examine the situations in which such a language might be used and
how it might interact with current data storage and representation techniques. We
have examined already the case for Case Based Reasoning as a technology suited to
the demands of internet commerce (Doyle et al. 1998). In drawing up a case based
representation language, we have to examine whether we are helping or hindering the
transmission of information that has been marked up in an industry specific mark-up
language. It would seem to us that we should be looking to facilitate how data is
marked up in other agreed DTDs rather than shoe-horning it into a “case-centric”
mark-up language.

In the example given above, if the tag <HolidayType> were a standard tag for
the travel industry, it would not make sense converting this to
<feature name=”HolidayType”> simply to cater towards documents that
store their travel data in the form of cases. We would argue that a case base
document should be considered no differently that a document containing industry
standard data.

A concrete example is the emergence of the Real Estate Listing Mark-up (RELML)
language developed by OpenMLS and 4th World Telecom to facilitate searches on the
web for real estate offered for sale from various agents through out the USA.4 The
motivation behind the RELML project is the recognition that local knowledge is
important in describing and valuing property. Therefore rather than centralising this
information, local real estate knowledge is marked up locally according to the
publicly available RELML DTD. This data is then indexed by a crawler and from
these indices searches can be performed from various web sites.

Providing a standard mark-up language allows different real estate agents list their
properties in a form that can be easily searched, without losing the local knowledge
which a centralised system might entail. More importantly, independent vendors are
placed on a level footing with larger franchised businesses.

4 OpenMLS, Real Estate Listing Management System, http://www.openmls.com
 Rein, Lisa. (1998) The Business of Residential Listings. XML.com,

http://www.xml.com/xml/pub/98/08/real/openmls.html

473Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

Fig. 2. The architecture proposed for the Real Estate Listings project consists of three tiers,
where a crawler on the middle tier centrally indexes real estate data in XML from real estate
member sites. Clients may then query this database and replies are delivered in raw XML or
HTML depending on the ability of the client software.

Integrating CBR with XML and current database technology is particularly
important if, as in this example, the case base is changing on a daily basis. The
OpenMLS system anticipates the emergence of online brokerage facilities. Once the
first wave of Internet commerce finishes, there still remains the problem of having a
community of virtual shop fronts but no easy way to locate them, or compare prices
and services. The next issue will be to establish an easy way to find a community of
holiday vendors, for example, and be able to query their products quickly. This does
not entail centralising knowledge, but exploiting the diversity of the Internet by
providing a common language by which various vendors can market their goods.
XML has already been suggested as a solution in this respect5. In the OpenMLS
application the XML documents describing each property reside on the local real
estate sites and are downloaded from the local site once a search at the broker end
indicates a match. A better metaphor, therefore, than the virtual shopping mall would
be a virtual brokerage house.

The type of scenario described by the OpenMLS system is readily amenable to the
type of inexact searches suited to CBR. For instance, in a variation of the Rachmann
CBR system, the indexed data from several real estate agents in a locality could be
searched in order to determine a property valuation (Cunningham et al. 1994). The
following example marked up in RELML is a slightly modified case taken from the
property evaluation domain illustrated in Hanney’s work (Hanney 1996).

5 Microsoft Corp. (1998) Improving the Online Shopping Experience with XML

http://www.microsoft.com/xml/scenario/junglee.asp

474 C. Hayes and P. Cunningham

althoff@iis.uni-hildesheim.de

The RELML is a proposed standard which is not comprehensive enough to fully
capture the details of residential real estate. However, it does give an indication of the
benefits of an XML based industry standard mark up language and it certainly could
be used in a case based search. The following illustrates a Dublin property marked up
using pared down RELML:

<?XML version=’1.0’?>
<RESIDENTIAL-LISTING VERSION=’A1’>
<REMARKS> </REMARKS>
<GENERAL>
<IMAGE FORMAT=’JPEG’ WIDTH=’150’ HEIGHT=’150’
SRC=’http://www.hayesrealty.ie/search/homes/7466.jpg’/>
<TYPE>SINGLE-FAMILY</TYPE>
<PRICE>41500</PRICE>
<AGE UNITS=’YEARS’>5</AGE>
<LOCATION COUNTRY=’IRE’ COUNTY=’Dublin’>
<ADDRESS>127 Cabra road</ADDRESS>
<CITY>Dublin</CITY>
<ZIP>7</ZIP>
</LOCATION>
<STRUCTURE>
<NUM-BEDS>2</NUM-BEDS>
<NUM-BATHS>2</NUM-BATHS>
<BUILDING-AREA UNITS=’SQ-FEET’>1100</BUILDING-AREA>
</STRUCTURE>
<DATES>
<LISTING-DATE>11/1/99</LISTING-DATE>
<LAST-MODIFIED>11/1/99</LAST-MODIFIED>
</DATES>
<LAND-AREA UNITS=’ACRES’>0.75</LAND-AREA>
</GENERAL>
</RESIDENTIAL-LISTING>
</XML>

Fig. 3. A Dublin property marked up in basic RELML.

The case marked up in figure 3 gives no indication of what tags contribute to it being
a case – what are its features, weighting information, which features may be
constraints, what types are permissible as feature values etc. A CBR application
processing this document would have to be hard coded with this information, and this
coding would have to be changed every time a new feature is added or a constraint
imposed, for example. This becomes a serious drawback when a product range
changes or is updated.

What is required is an XML methodology that can provide a standard CBR view of
data already marked up with user defined tags. This would provide searchable data to
any CBR application that recognises the standard, and at the same time maintain the
structural and descriptive integrity of the user-defined tags. To understand how this
can be achieved we will briefly introduce the concept of XML namespaces and
schemas.

475Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

5 Namespaces and Schemas

The namespace facility is an advanced feature of XML, outlined in a W3C
recommendation as of January 1999.6 Namespaces allow developers to uniquely
qualify element names and relationships to avoid name collisions on elements that
have the same name but are defined in different vocabularies. They allow tags from
multiple name spaces to be mixed, which is essential if data is coming from multiple
sources. Namespaces in XML are identified by a URI (Universal Resource Identifier)
which allows each namespace to be universally unique. Every namespace is
associated with a user defined prefix which allows the tags from each namespace to
be distinguished even though they may in fact have the same name.

For example, an online bookstore may define the <TITLE> tag to mean the name
of a book, contained only within the <BOOK> element. In a mailing list of customers,
however, the <NAME> tag might indicate a person’s position, for instance:
<TITLE>President</TITLE>. Namespaces help define this distinction clearly.

<booksbought xmlns:bks=”http://www.bookstore.com”
 xmlns:cst=”http://www.bookstore.com/customerlist”>

<book><bks:title>Fidelity in a Nutshell<bks:title><book>

<cst:name>W J Clinton<cst:title>President</cst:title></cst:name>

</booksbought>

Fig. 4. In this example the prefixes cst and bks denote the tag sets associated with the
customerlist and book stock schemas respectively.

What is most important from the point of view of standardising a case based
vocabulary is that namespaces allow us to define a unique case namespace that can be
referenced by anyone wishing to mark up data in case format. Furthermore,
namespaces will allow feature terms to be defined from several standard vocabularies
(DTDs).

In section 5 we will present a case namespace which can be used to provide a
standard case view of XML data. Before this however we wish to briefly discuss
DTDs and Schemas, and the benefits adopting the latter will bring to case based data
processing.

6 World Wide Web Consortium 14-January-1999 Namespaces in XML,

http://www.w3.org/TR/1999/REC-xml-names-19990114/

476 C. Hayes and P. Cunningham

althoff@iis.uni-hildesheim.de

 5.1 Schemas

In section 3 we acknowledged the insufficiency of our earlier implementation of a
case base mark-up language. This was mainly due to two factors. Firstly, our
implementation made no provision for dealing with data already marked up according
to an existing DTD. Secondly, the DTD documents required by our implementation
were not adequate to the task of describing case data. We began to view the
caseStruct.xml document as a supplement to the case Base DTD, but a supplement
that had no logical connection to the CaseBase within the standard document
architecture outlined in XML 1.07 Its use would be limited to applications that were
hard coded to recognise the CBML document structure. A better solution would have
beeen to amalgamate the descriptive properties of the casestruct.xml and the DTD of
the Case Base. However, the classical XML DTD is not descriptive enough to contain
this additional information.

In fact, the legacy of a DTD as a descriptive syntax for document interchange
makes it ill suited to the demands of data interchange (Boumphrey et al. 1998).
Whereas document interchange is concerned mainly with document structure and the
hierarchy of its elements, data interchange has more rigorous requirements such as an
ability to constrain data types, provide easy extensions and inheritance facilities.
Moreover, DTDs are unable to express the data relationships inherent in a relational
database, nor do they provide support for the new W3C recommendation on
namespaces.

It is unsurprising therefore that work has begun on finding an alternative to the
DTD that has the descriptive powers required to adequately mark-up data. This
alternative is called an XML schema and currently four such proposals are before the
W3 consortium. Schema semantics constitute a superset of those provided by XML
DTDs and are designed specifically for data interchange. Unlike the DTD, a schema
document is itself an XML document with a mechanism somewhat analogous to but
more expressive than a DTD for constraining document structure.

To date, the W3C Schema working group have published a requirements document
for XML schemas and plan to deliver working drafts and proposed recommendations
later this year 8. Despite the immaturity of the Schema recommendation, we have
decided in the following section to use one of the proposal notes (XML-Data)9 as a
basis for designing a case namespace10. While the details of the schema syntax are
expected to change, the principles elucidated in the proposal note soundly reflect the
issues surrounding XML data mark-up.

7 W3 Consortium 10-February-1998. Extensible Mark-Up Language (XML) 1.0

http://www.w3.org/TR/REC-xml
8 W3C XML Activity page http://www.w3.org/XML/Activity.html
9 W3C Note 05 Jan 1998, XML-Data, http://www.w3.org/TR/1998/NOTE-XML-data/
10 Microsoft Internet Explorer 5 provides support for a schema and data typing based on the

XML-Data proposal note.

477Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

6 A Case Namespace

The XML namespace mechanism allows us to create a unique set of structured XML
tags that can be referenced from within any XML document. By providing an agreed
case namespace, we are essentially allowing any developer mark-up data in a standard
case format. Data already marked up according to an existing DTD or schema can
also be converted to case data by using the namespace facility to mix tags from
different domains. We are attempting in this way to present the idea of CBR as a
medium (Kitano & Shimazu 1995).

Figure 3 illustrates the document architecture for a case based view of real estate
data using the namespace and schema mechanism. The real estate case schema is
essentially a real estate case template created from the case namespace and the real
estate namespace or tag set. Another way of visualising this is by imagining that the
case namespace provides the pieces for a case wrapper around data tagged according
to another namespace. The makeup of this template is determined by a domain expert
using the case namespace and the real estate namespace. This is not simply a question
of picking and mixing at will. Each namespace has rules that need to be complied
with. For instance, within the case namespace the case element must contain a
featurelist element and a solution element. Once the Real Estate Case
Schema has been determined, an XML case base compliant with this can be created
on the fly using technology such as active server pages.

Fig. 5. The document architecture for a case-base marked up using a Real Estate namespace
and a case namespace.

We have decided to use the well known travel domain11 as a basis for comparison
with CBML version 1.0. The small size of each case also allows us also demonstrate
our concept with brevity. Figure 6 illustrates a simple case base in XML containing
one case marked-up using the case namespace and a hypothetical travel agent
namespace. Elements prefixed by the letter c belong to the case namespace. Since the
travel agent namespace is declared first, it becomes the default namespace in this
document and non-prefixed elements are understood to belong to this domain.

11 Decision support in a travel agency, by Mario Lenz, GMD-FIRST, available at

http://wwwagr.informatik.uni-kl.de/~bergmann/casuel/casebases.html

478 C. Hayes and P. Cunningham

althoff@iis.uni-hildesheim.de

<?xml version=’1.0’?>
<holidaycases xmlns:t="http://www.travelagent.com/travel"

 xmlns:c="x-schema:caseschema.xml">
<c:cases>

<c:case caseid="1">
<c:featurelist>

<c:feature>
<holidayType>Bathing</holidayType>

</c:feature>
<c:feature><price>2498</price></c:feature>
<c:feature>

<numberofPersons>2</numberofPersons>
</c:feature>
<c:feature><region>Egypt</region></c:feature>
<c:feature><transport>Plane</Transport></c:feature>
<c:feature><duration>14</duration></c:feature>
<c:feature><season>April</season></c:feature>
<c:feature><accomodation>2</accomodation></c:feature>

<c:featurelist>
<c:solution>

<hotel>Hotel White House, Egypt</hotel>
</c:solution>

</c:case>
</c:cases>
</holidaycases>

Fig. 6. A Case marked up using a case schema and a holiday schema

1. <Schema name ="caseschema" xmlns="urn:schema-microsoft-com:xml-data"
2. xmlns : dt="urn:schema-microsoft-com:datatypes">
--

3. <ElementType name="feature" content = "mixed" model="open"
order="many">

4. <AttributeType name="weight" required="no" dt:type="int"
model="closed"/>

5. <AttributeType name="constraint" required="no" dt:type="boolean"
default="0"/>

6. </ElementType>
7. <ElementType name="featurelist" content="eltOnly" model="open"

order=many">
8. <element type="feature"/>
9. </ElementType>
10. <ElementType name="solution" content="mixed" model="open"/>
11. <ElementType name="case" content="eltonly" order="one">
12. <AttributeType name="caseid" required="yes" dt:types="integer"

model="closed"/>
13. <element type="featurelist"/>
14. <element type="solution"/>
15. </ElementType>
16. <ElementTye name="cases" content ="eltonly" model ="open"

order="many">
17. <element type="case"/>
18. </ElementType>
--

19. </Schema>

Fig. 7. An excerpt from a Case Schema based on XML-Data schema proposal.

The case namespace referenced in the holidaycases tag in figure 6 is
delimited by the simple case schema shown in figure 7. This schema is easily
extended and includes a facility for data-typing .

479Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

A full explanation of the syntax of the schema is outside the scope of this paper.
However, a few points will make it a little clearer. The schema is an XML document
itself, unlike the DTD which is defined according to EBNF notation. The
ElementType tag (I will use tag in place of element here for purposes of clarity)
defines the features that can appear in an XML document based on this particular
schema. The ElementType tag contains a list of the elements permissible within
the parent element. Constraints can be placed on these as to whether their presence is
optional, their number and their type. For example, the Featurelist tag is
defined in line 7 and it is allowed contain many Feature tags (line 8). Likewise the
AttributeType defines an attribute associated with the element defined by an
ElementType tag. For example, in lines 4-5 of figure 7 there are optional weight
and constraint attributes associated with the feature element defined in line 3.

7 Conclusions

This paper presented the idea of a standard integrated CBR view of a company’s
information system. The ability of XML to integrate with relational database systems
makes it a suitable candidate to represent this view. We have looked at two CBR
systems that store cases in a database and use XML as a case representation format.
These systems make use of the XML facility to create a custom tag set for each
domain of use. We explain that since good DTD creation is not an easy task, and
domain specific vocabularies are emerging it makes sense to find a standard way of
representing case data without violating the syntax of the domain data. As an
example, we look at an industry initiative in the real estate domain that uses a
standard XML vocabulary, and suggest a role for CBR in such a scenario. We review
CBML, an initial implementation of a standard case representation language using
XML, and find it lacking for a number of reasons. Its syntax subsumes that of the
domain data completely and its document architecture can only be understood by
applications that have been designed to handle it. Our research into a solution has led
us to the conclude that the current DTD model is inappropriate for the more rigorous
requirements of data (as opposed to document) description. We then introduce two
new initiatives stemming from the XML project - namespaces and schemas, which
when used together allow us to create a powerful descriptive model for data which
can be used as an alternative to the DTD. Arising from this we present the idea of a
case namespace represented by a powerful case schema. The examples we present are
taken from the holiday domain.

Further work will need to be done to refine our case namespace and explore its
application in the realm of internet commerce, particularly in the area of internet
brokerage. Schemas offer the advantage of easy extensibility, inheritance and data-
typing support - none of which can be achieved with the current DTD model. The
goal is to develop an XML case schema that fully exploits these features.

480 C. Hayes and P. Cunningham

althoff@iis.uni-hildesheim.de

References

[1] Boumphrey, F. et al. (1998) XML Applications, Wrox Press, pgs. 97 -130
[2] Cunningham P., Finn. D., Slattery, S. (1994) Knowledge Engineering

requirements in Derivational Analogy in Topics in Case Based Reasoning,
Lecture notes in Artificial Intelligence, S. Wess, K-D Althoff, M.M Richter
eds., pp234-245, Springer Verlag, 1994

[3] Doyle, M., Ferrario, M.A, Hayes, C., Cunningham, P., Smyth, B. (1998) CBR
Net: Smart Technology Over a Network. TCD Technical Report TCD-CS-
1998-07 - available at http://www.cs.tcd.ie/publications/tech-reports/tr-
index.98.html

[4] Gentner, D., and Forbus, K. D. 1991. MAC/FAC: A model of similarity based
access and mapping. In Proceedings of the Thirteenth Annual Conference of
the Cognitive Science Society. Northvale, NJ: Erlbaum

[5] Gardingen D., Watson I. (1998). A Web based Case-Based Reasoning System
for HVAC Sales Support. Proceedings of British Expert Systems conference
1998.

[6] Hanney, K 1996. Learning Adaptation Rules From Cases. MSc. Thesis.
Computer Science Department, Trinity College Dublin.

[7] Hayes C., Cunningham P., Doyle M. (1998) Distributed CBR using XML in
proceedings of the Workshop: Intelligent Systems and Electronic Commerce,
Bremen, September 15-17 1998. Also available as TCD technical report TCD-
CS-1998-06
http://www.cs.tcd.ie/publications/tech-reports/tr-index.98.html

[8] INRECA consortium.(1994). Casuel: A Common Case Representation
Language, available at http://wwwagr.informatik.uni-
kl.de/~bergmann/casuel/CASUEL_toc2.04.fm.html

[9] Kitano, H. & Shimazu, H. (1996) The Experience Sharing Architecture: A
Case Study in Corporate-Wide Case-Based Software Quality Control. In Case-
Based Reasoning: Experiences, Lessons & Future Directions. Leake, D.B.
(Ed.) pp 235-268. AAAI Press/The MIT Press Menlo Park, Ca, US.

[10] Shimazu, H. (1998). Textual Case Based Reasoning using XML on the World-
wide Web in Advances in Case Based Reasoning, proceedings of 4th European
workshop on CBR (EWCBR),
Springer Verlag LNAI

[11] Wilke, W., Lenz, M., Wess, S. (1998). Intelligent Sales Support with CBR. In
Case-Based Reasoning Technology: from foundations to applications. Lenz,
M., Bartsch-Sporl, B., Burkhard. H-D & Wess, S. (Eds.). Lecture Notes in
AI#1400 91-113. Springer-Verlag, Berlin.

481Shaping a CBR View with XML

althoff@iis.uni-hildesheim.de

Integrating Information Resources:

A Case Study of Engineering Design Support?

David B. Leake,1 Larry Birnbaum,2 Kristian Hammond,2 Cameron Marlow,3

and Hao Yang4

1 Computer Science Department, Lindley Hall, Indiana University,

150 S. Woodlawn Ave, Bloomington, IN 47405, U.S.A., leake@cs.indiana.edu
2 Intelligent Information Laboratory, Computer Science Department,

Northwestern University, 1890 Maple Avenue, Evanston, IL 60201, U.S.A.,

fbirnbaum,hammondg@ils.nwu.edu
3 Computer Science Department, The University of Chicago,

1100 East 58th Street, Chicago, IL 60637, U.S.A., cameron@ils.nwu.edu
4 PDC, MD 270, GB-D68, Vehicle Operations, Ford Motor Company, 21500

Oakwood Blvd., Dearborn, MI 48124, U.S.A., hyang1@ford.com

Abstract. The development of successful case-based design aids de-

pends both on the CBR processes themselves and on crucial questions of

integrating the CBR system into the larger task context: how to make the

CBR component provide information at the right time and in the right

form, how to access relevant information from additional information

sources to supplement the case library, how to capture information for

use downstream and how to unobtrusively acquire new cases. This paper

presents a set of design principles and techniques that integrate meth-

ods from CBR and information retrieval to address these questions. The

paper illustrates their application through a case study of the Stamping

Advisor, a tool to support feasibility analysis for stamped metal auto-

motive parts.

1 Introduction

An experienced designer's memory of prior design experiences can be a powerful

aid during the design process. When the designer who faces a new task is re-

minded of similar previous tasks, those remindings may suggest related solutions

and warn of potential problems to avoid. Case-based design support systems

leverage this process: They augment the designer's own memory by providing

relevant cases from a library of prior experiences.

Case-based design has long been an active area of case-based reasoning re-

search, and numerous case-based design aids have been implemented to support

?This research is supported by the Ford Motor Company under award No 0970-355-

A200. David Leake is currently a Visiting Professor at Northwestern University,

on sabbatical leave from Indiana University, and thanks the Intelligent Information

Laboratory and the Northwestern Computer Science Department for their support.

His research is supported in part by NASA under award No NCC 2-1035.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 482-496, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

a wide range of design tasks (see (Kolodner, 1993) for some examples of these
systems). Fully realizing the bene�ts of such systems, however, requires address-
ing additional issues beyond the case-based design support process itself. In order
to maximize the usefulness of case-based design aids, they must be designed not
as stand-alone systems but as integral parts of a single uni�ed framework that
supports all phases of the design process and the multiple actors that are often
involved, and that draws on the multiple available information resources. De-
velopers of such systems must address crucial questions of integrating the CBR
system into the larger task context: how to make the CBR component provide
information at the right time and in the right form, how to exploit other infor-
mation sources in concert with case information, and how to capture information
for use downstream and to unobtrusively acquire new cases. This paper presents
a set of design principles and techniques addressing these questions. It illustrates
their application through a case study of the Stamping Advisor, a tool to support
feasibility analysis for stamped automotive parts.

2 The Stamping Advisor Domain

Automotive body design is a crucial task in automobile development. Body de-
sign has a profound impact on the vehicle's appeal and function, and the body
is the most expensive component of the vehicle to manufacture. Stamped body
parts, which make up the major portion of the body subsystem, are designed un-
der constraints arising from aesthetic considerations, structural and functional
requirements, cost concerns, and the availability of manufacturing resources.

Body styles are developed in an iterative process between the designers and
feasibility engineers who examine the design for potential manufacturing issues.
These include formability issues, which may result in splitting or wrinkling of the
metal after the stamping process; manufacturing process complexity issues, such
as shapes that must be stamped with a large number of dies (increasing costs),
and quality concerns due to material properties and feature shapes, which may
add signi�cant cost to die testing or a�ect the quality or consistency of the �nal
product.

The feasibility engineer's task is to identify potential problems, to justify why
they are likely to occur, to estimate the costs that will be incurred if they are not
addressed, and to propose design revisions to remedy them. Feasibility engineers
report that they often base their judgments on speci�c experiences with prior
designs. However, new engineers begin their work without this library of expe-
riences, and even experienced engineers may not have had experience with the
most relevant designs for a particular problem. Multiple information resources
exist to aid the feasibility analysis task, such as records of experiences with
prior designs, stored in paper and electronic forms. However, it may be di�cult
or excessively time-consuming for engineers to locate the needed information.
Likewise, communicating their decisions and justi�cations is often cumbersome:
The standard method for communicating their decisions downstream is to �ll
out and send a paper form.

483Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

Key questions for improving this process are how to provide better access
to experiences and other engineering knowledge, and how to improve the use-
fulness of the information when it is reapplied. A collaboration was established
between the Intelligent Information Laboratory at Northwestern University and
the Vehicle Operations and Visteon divisions at the Ford Motor Company to
investigate integrated case-based design support systems to address these ques-
tions. The company already had captured paper records of feasibility assessment
issues and decisions, some of which had been placed in a database, providing a
library of seed cases. The research question was how, given a set of feasibility
analysis cases and the standard manuals used by feasibility engineers, to access
and present them to maximize their usefulness to the design process.

Thus one goal of the project was information integration (Knoblock and
Levy, 1998): to develop methods for satisfying the designer's information needs
using cases and other information sources, for integrating the CBR system to
automatically produce the information needed downstream, and for supporting
unobtrusive case acquisition from available information. The Intelligent Informa-
tion Laboratory developed the Stamping Advisor system, described in this paper,
to demonstrate a framework for this design support process, and its approaches
are now being applied to new systems at the Ford Motor Company.

3 Principles for Integrated Intelligent Design Support

The Stamping Advisor system embodies �ve general principles for the integra-
tion of case-based design support systems into the design environment. These
principles are:

{ Seamless interaction: Interaction with the combined system must parallel
the feasibility engineer's own problem-solving process.

{ Just-in-time retrieval: The system must proactively anticipate informa-
tion needs and automatically provide the right information when it is needed,
rather than placing the burden on the user to formulate requests.

{ Integration with other knowledge sources: The system must link all
available information resources, presenting prior cases, supplementary infor-
mation to help understand the cases or apply their lessons, and additional
information as appropriate to the task.

{ Integration across tasks: The system must serve not only the immediate
reasoning task but also the downstream tasks it serves. The system should
automatically access information about the previous tasks to provide a con-
text for its reasoning, and should produce products that can be used by the
reasoning processes downstream.

{ Experience capture: Each processing episode must provide new cases in
a usable form.

These principles are related to basic tenets of the case-based reasoning cog-
nitive model (Kolodner, 1994; Leake, 1998; Schank, 1982): That accessing and
storing cases is a natural part of task performance and that models of knowledge

484 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

access must re
ect the task context. Our design support framework extends these
principles to anticipate the user's needs, accessing relevant information wherever
it is available, and extends the target of support beyond the current user to cap-
ture and transmit relevant information downstream.

3.1 Realizing these principles

Achieving a design support system that respects the previous principles requires
addressing a number of CBR issues. Integrating the system with the feasibility
engineer's reasoning and providing just-in-time support requires modeling his or
her reasoning process, and especially modeling when and why particular cases
and other information resources are retrieved. Integrating multiple knowledge
sources depends both on appropriate task-based indexing and on methods for
similarity assessment and retrieval that can be applied to preexisting documents
and other information sources that di�er from traditional cases. Experience cap-
ture depends on methods for case acquisition. The remainder of this paper dis-
cusses how the Stamping Advisor system addresses each of these issues.

4 Coordinating Case Presentation with the Reasoning of

Feasibility Engineers

One of the goals of the Stamping Advisor project was to make case presentation
�t the engineer's own reasoning. This is done in two ways: by designing the
case presentation interface to �t the engineer's reasoning style, and by using
knowledge of the engineer's task to anticipate the engineer's information needs
and provide information proactively.

Feasibility engineers are given a computer-generated image of the part to
evaluate, produced by the computer-aided design (CAD) system that the engi-
neer used to generate the design. Interviews with feasibility engineers established
that one of their reasoning styles is to sequentially scan the image, tracing around
the boarder of the part looking for portions of the design that raise feasibility
issues. The primary system interface provides a CAD image of a part, with dif-
ferent regions annotated by information about relevant cases. This makes it easy
for the engineer to follow his or her normal process of scanning the design.

Given a design whose feasibility needs to be determined, the system presents a
summary of the cases retrieved and the issues involved, using a graphical display
of a part image with annotations concerning the number of issues found for each
region of the part and their resolutions. The graphical interface organizes case
information geometrically according to the regions of the part. For each region,
it provides a summary of the cases found that involve issues for that region. The
summaries of the issues for each area of the design are highlighted with color-
coded warnings to identify the most problematic regions (green when surrogates
support feasibility, yellow for limited problems, red for more serious problems).
Figure 1 shows the issue summary interface for an automobile fender. In the
screen display, the leftmost box, describing the headlamp opening, is highlighted

485Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

in red because previous cases identi�ed two potential issues that could not be
resolved. The boxes for the nose (upper left) and wheel opening (bottom center)
are highlighted in yellow, because each one includes one unresolved problem. No
other problems were found, so all other boxes are highlighted in green.

Fig. 1. Screen image from the Stamping Advisor's issue summary screen.

To see additional information for a region, the feasibility engineer clicks on
the boxes for the displayed issue sets to select a region of interest. A window ap-
pears with information about problems in prior parts (called \surrogate parts")
in which that region was similar. The engineer can select problems from this
list to see how they were resolved. In some cases, the design will have been re-
vised to repair the problem, suggesting a possible revision to consider. In others,
the previous engineer may have detected mitigating factors that were originally
overlooked, which made the problem inapplicable; these suggest factors for the
engineer to check in the current design. In some cases, the prior engineer may
have decided that the problematic design feature was so valuable aesthetically
that it counterbalanced the extra production costs; in that situation the old
case contains information about the estimated costs to consider when weighing
whether to allow the potential problem to remain. The interface for this process
is shown in Figure 2.

486 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

Fig. 2. Presentation of relevant surrogates, issues, and resolutions.

5 The Case Retrieval Process

In the Stamping Advisor, each part type is associated with a prede�ned set of
classes of features to examine for feasibility. For a fender, there are ten such
classes. Eight of these are associated with geometric regions of the part (e.g.,
the class of features involved in the headlamp opening), while two concern char-
acteristics of the material used (e.g., stamping aluminum parts instead of steel
parts involves special feasibility issues concerning sheet metal thickness).

When the system retrieves cases for potential issues, candidate cases are �l-
tered according to the type of part being analyzed; for example, when examining
the feasibility of a fender, only prior experiences with fenders are considered for
retrieval. Within the cases for the given type of part, the system retrieves one set
of relevant cases for each class of features to examine. For example, the system
retrieves cases for fenders with similar headlamp openings to suggest feasibility
issues associated with the design of the headlamp opening; it retrieves cases for
fenders with similar wheel opening tabs to suggest feasibility issues associated
with the design of the wheel opening tabs, and so forth. After cases have been
�ltered by the part and the type of part feature under consideration, the ba-
sic matching process is a nearest-neighbor algorithm using feature weightings
developed for the domain.

487Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

In some instances, relationships may exist between distinct classes of fea-
tures, so that simply considering the regions independently is not su�cient. For
example, one stamping problem is \springback," in which a panel returns to its
original shape after stamping (e.g., because of the amount of stretching required
and the material used). The amount of \springback" may depend on the relation-
ships between the shapes of two adjacent regions. In such cases, the relationship
across types of features is recorded and used to adjust the weighting of retrieved
cases. For example, if both adjacent regions have features that suggest spring-
back, the weight of the cases suggesting springback is increased compared to the
weights that were derived from looking at each region alone before considering
the supporting relationship between them.

6 Integrated Information Access

Cases are helpful for warning of potential problems and suggesting prior solu-
tions. However, additional information may be needed to assess the relevance of
prior issues, to determine the applicability of old solutions, or to develop new
solutions re
ecting changed constraints. For example, Ford maintains on-line
manuals with design recommendations for keeping stamping costs reasonable
and for maintaining consistent styling. Given that these information sources will
often be required to supplement retrieved cases, access to this information is
important.

Keeping with the philosophy of integrating the CBR system, our goal was
to use knowledge of the user's task and task context to automatically guide
the search for this information: to automatically present the engineer with the
supplementary information that is useful, given the knowledge that it is being
retrieved in response to speci�c issues in a speci�c case. To provide this support,
the Stamping advisor uses tracking information about the current task to auto-
matically formulate targeted queries that can go against documents indexed by
standard search engines. The delivered system demonstrates this capability by
automatically generating queries to retrieve relevant style guidelines from the
Ford Advanced Feasibility Guidelines for Styling.

6.1 Query Generation and Document Retrieval

As a product of the manual feasibility analysis process, textual information such
as part names, part numbers, problem descriptions, feature names, and the vehi-
cle name are recorded in a paper description. This information has been encoded
into the database from which the cases are retrieved, and consequently is avail-
able for every part handled by the Stamping Advisor. This text is su�cient to
distinguish parts at a textual level.

The Stamping Advisor uses this descriptive information, combined with its
model of task relevance, to form queries to other information resources. Specif-
ically, when a feasibility engineer is considering a feature, the system automat-
ically forms queries to gather additional information about related features or

488 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

problems from on-line resources. Four pieces of information establish the context
for this query: the names of the vehicle, part, and problematic feature, and the
textual description of the problem in question. These are extracted form the
record of the current design. The system removes words contained in a standard
stop list and makes a query from the remaining terms.

For example, when the feasibility engineer examines the headlamp opening
problems highlighted in Figure 1, one of the issues is that the attaching
ange is
too wide. The Stamping Advisor generates a query containing \Sable headlamp
opening" for the part under consideration, and \attaching
ange wide" for the
problem. Upon the feasibility engineer's request, this query is used to search
for relevant guidelines in on-line manuals. Before initiating search, the engineer
can request that the query be focused on only similar parts or similar problems,
and can edit the query text as desired (e.g., to replace \Sable" to compare the
styling on a di�erent line of car). The query presentation interface is shown at
the bottom right of Figure 2.

Once created, this query can be passed to any typical Internet search engine
to search selected resources. In our implementation, we use the document in-
dexing system Verity to index documents such as the on-line Ford Style Guide
illustrated in Figure 3. Verity processes queries by stemming each of the given
words, broadening the search to other possible forms of the terms, and assign-
ing a numerical score. This score is based �rst on the number of word matches
and then on the density of those matches within a given document. The list of
matches is presented to the feasibility engineers, who can select documents to
retrieve.

7 Integration Across Tasks

Previous case-based design support tools have a natural goal: aiding a designer
in his or her task. However, in industrial settings, the designer's task is only
one step in an extended process. For example, in stamping design, one or more
designers initially formulate the design, a feasibility engineer critiques the de-
sign and makes suggestions, and the design is re�ned though an iterative cycle
of changes and critiques. When a design is �nalized, downstream design team
members may need to evaluate the design, its potential issues and the design-
ers' justi�cations for why they matter (or do not matter), and how they were
resolved. Ideally, design aids should support this entire process rather than sup-
porting only one individual step. This requires the sharing of information across
tasks.

A tenet of our design support principles is that the design support system for
any particular task should automatically access information about the previous
tasks to provide a context for its reasoning, and should produce products that
can be used by the reasoning processes downstream. Work is under way on
augmenting the CAD system used for initial design to automatically capture the
speci�cation information used in feasibility analysis cases (e.g., to capture the
part number, part type, vehicle, and a pointer to the CAD �le), to be passed

489Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

Fig. 3. Style guide page retrieved as relevant to the problem of headlamp opening

being too tight.

automatically to the Stamping Advisor at the start of feasibility analysis. This
will provide additional integration between the task of the initial designer and
the feasibility engineer.

At the close of the feasibility assessment process, the system generates a
Final Report Document to aid upstream or downstream design team members
who need to understand or evaluate the feasibility engineer's work, replacing
documentation generated by hand. In our model of the evaluation task, the
information needed is: (1) the part being examined, (2) the issues considered, (3)
how they were disposed of, and (4) the surrogates providing evidence relevant to
the issues and decisions. A sample Final Report Document is shown in Figure 4.

8 Case Capture

Ford maintains an extensive library of reports of feasibility analysis problems and
solutions in paper form. However, as is often the case in applying CBR, there
is a bottleneck in translating this information into a usable case form. The abil-
ity of the Stamping Advisor to create Final Report Documents suggests a way
to alleviate this bottleneck. In the Stamping Advisor, a user's decisions about
appropriate surrogates, the problems they predict, and the ultimate disposition

490 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

Fig. 4. Final report document.

of the problems are captured by the system during the feasibility assessment
process. These are used to create the Final Report Document. This document is
produced as the by-product of the user's decision-making and does not require
additional e�ort on his or her part beyond that already required to convey the
needed information downstream. This document automatically combines infor-
mation captured from the user with other background information, gathering all
the information needed to generate a new feasibility assessment case.

This case capture framework gathers data when they are available at each
phase of the design process, not just during feasibility analysis. The growing
record is made available to each downstream process for reasoning from existing
data and addition to the record. In particular, information is built up during ini-
tial part design, feasibility analysis, and �nal decision-making on how to proceed
on a part.

Information used to characterize part designs in the CAD system (e.g.,
(model, year, and part number, and a pointer to the CAD �le) provide an initial
record of the design. Current seed cases include geometric features, and work
is ongoing to support the addition of geometric features to new cases. Ideally,
general-purpose automatic geometric matching procedures (e.g., (Coulon and

491Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

Ste�ens, 1994)) could be applied to the designs. However, given the specialized
domain and comparatively small number of important features, special-purpose
feature extraction routines also appear practical. Some of these have been devel-
oped by Ford. Alternatively, because the engineer must already document the
important geometric features when describing problems to generate the down-
stream report, it would be comparatively simple to tag these features according
to a prede�ned vocabulary of standard features that can then be used for match-
ing.

When the Final Report Document is provided electronically to the person
who determines the �nal disposition of the request, that person can enter the
�nal decision to complete the case information. By controlling the information
that can be entered at each step of the process (e.g., though menus), cases can be
standardized. However, the ability to do textual searches provides the additional
capability to search through free-form comments, etc.

In summary, our framework integrates case capture across di�erent parts of
the design process and uses cases as a vehicle both for sharing knowledge as
it is gathered and for long-term knowledge capture. In particular, case content
should:

1. Be built up incrementally as a natural part of the problem solving process.
2. Be used incrementally during the process, as soon as it has been generated.
3. Provide a full record of relevant information at the end of the process, in the

form needed for future use by tools to support feasibility assessment.

This supports rapid growth of case information and the standardization of pro-
vided information.

9 Relationship to Previous Work

9.1 Case-Based Design Support

A wide range of case-based design support tools has been developed for numer-
ous tasks such as architectural design (Gebhardt et al., 1997; Goel et al., 1991;
Hua and Faltings, 1993; Maher et al., 1995; Smith et al., 1995), conceptual de-
sign of aircraft subsystems (Domeshek et al., 1994; Leake and Wilson, 1999),
autoclave layout design (Hinkle and Toomey, 1995), device design (Goel, 1989;
Sycara et al., 1991), and circuit design (Vollrath, 1998). The Stamping Advisor's
task is most closely related to that of the load validator in the system Clavier
(Hinkle and Toomey, 1995), which warns users about potential problems in new
autoclave layouts by presenting users with similar prior layouts and their out-
comes. A crucial issue in autoclave layout design is the interacting e�ects of
components of the layouts, and these interactions are hard to explain and sepa-
rate. Consequently, Clavier based its predictions on the similarity of the previous
layouts, taken as a whole, with entire current designs. In the Stamping Advi-
sor domain, problems can be localized by the feasibility engineer. Consequently,
Stamping Advisor cases represent problems at the level of the individual regions

492 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

they a�ect (with additional checks for interactions that span multiple regions),
which facilitates transfer of problem information to new contexts (for exam-
ple, headlamp opening problems can be predicted based on prior experiences
with the headlamp openings in very di�erent styles of fenders). The Stamping
Advisor also di�ers in using cases not only to advise, but also to capture and
communicate the rationale underlying design decisions taken in response to its
advice.

The Stamping Advisor demonstrates a number of principles for integrating
CBR into the engineering design process. First, the system brings CBR into the
feasibility engineer's normal reasoning process by integrating case-based support
with the CAD tools already used to create and examine designs for stamped
parts. This approach is similar to those taken by the FABEL (Gebhardt et

al., 1997) and CADRE (Hua et al., 1996) projects, both of which integrate
the CBR system with existing CAD systems. It di�ers, however, in using a
very speci�c task model to automatically determine the types of information to
provide and when to provide it with just-in-time retrieval. In contrast, FABEL
provides a \virtual construction site" that the engineer can navigate, and a
tool kit from which the designer selects tools to perform particular types of
retrievals. The Stamping Advisor uses its model of how the feasibility analysis
task is done to anticipate speci�c information needs and proactively determine
what information is needed and how to retrieve it.

9.2 Integrating CBR and IR

The Stamping Advisor also goes beyond case-based support to integrate mul-
tiple knowledge sources. There is considerable current interest in the use of
CBR for textual cases, and in the use of information retrieval methods to access
them (Lenz and Ashley, 1998). A challenging question is how to maintain the
strengths of CBR|the pragmatic focus that traditional CBR provides|while
exploiting the generality of IR methods for assessing the similarity of documents.
This depends on bridging the gap between task-relevant indexing used in CBR
and methods that can be applied to unstructured textual data. (Rissland and
Daniels, 1996) present one method for this integration in the retrieval of legal
cases. Their system �rst performs a feature analysis to do a traditional CBR
retrieval of the most relevant cases from a case library represented in a carefully
structured form. It then uses the textual descriptions of those cases as seed exam-
ples for the relevance feedback mechanism of a text-based information retrieval
system, which generates queries to retrieve similar texts from a larger library
of textual case descriptions. The Stamping Advisor uses task-based characteri-
zations more directly: it directly generates a search engine query from relevant
problem features. Because the role of each component in the query is readily
apparent, the Stamping Advisor also provides the user with the capability to
revise this query before search to re
ect additional information goals that may
not be known to the system.

493Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

9.3 Case Capture

A crucial issue for scaling up CBR applications is knowledge capture. The Stamp-
ing Advisor system is designed to facilitate this through knowledge capture dur-
ing use. Feasibility analysis is a \natural" CBR domain (Mark et al., 1996),
in that the manual feasibility analysis process includes extensive paper docu-
mentation for each design case. However, the primary case acquisition mode we
envision is from system use itself. Even if no cases were available in the system
case library, the system would be useful as a convenient interface for recording
feasibility information (now recorded on paper) and aiding search through on-
line resources. Thus feasibility engineers have the incentive to use the system,
and their use provides cases that will increase its usefulness as su�cient data is
gathered to take full advantage of the CBR component.

10 Conclusions

The Stamping Advisor project illustrates a set of principles for integrating case-
based reasoning systems into the larger task context. The system was designed
to provide an open architecture for case and other information retrieval based on
features of the current design, and to exploit and support the
ow of information
from successive steps of the design process. To make the system natural to use,
the interaction is designed to parallel the feasibility engineer's own problem-
solving process and to automatically provide just-in-time access to the right
cases, rather than placing the burden on the user to formulate requests. The
system uses its task model to generate focused IR queries to access additional
knowledge sources, retaining the capability for the user to adjust those queries
to explore additional topics. The system does automatic knowledge capture,
gathering information about each interaction and using it for a dual purpose: to
provide the information needed downstream of the reasoning task and package
new cases for future use.

The central lesson of this work is that the development of successful case-
based design aids must depend not only on the CBR processes themselves but on
crucial questions of integrating CBR system into the larger task context: making
the system automatically provide information when it is needed and in the right
form, accessing relevant information from additional information sources, and
communicating and capturing information. We are continuing to strengthen this
integration as the current system is re�ned. One goal, for example, is to fully
integrate the Stamping Advisor into the initial CAD design process, to immedi-
ately warn the original designer of potential problems while the design is being
generated. We believe that CBR �ts naturally into a new mode of knowledge
management that not only tracks where documents are, but tracks how they are

used and where they are needed to access multiple information sources to provide
the right information at the right time.

494 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

References

[Coulon and Ste�ens, 1994] C.-H. Coulon and R. Ste�ens. Comparing fragments by
their images. FABEL Report 13, Gesellschaft f�ur Mathematik und Datenverarbeitung
mbH, 1994. Pages 36{44.

[Domeshek et al., 1994] E. Domeshek, M. Herndon, A. Bennett, and J. Kolodner. A
case-based design aid for conceptual design of aircraft subsystems. In Proceedings of

the Tenth IEEE Conference on Arti�cial Intelligence for Applications, pages 63{69,
Washington, 1994. IEEE Computer Society Press.

[Gebhardt et al., 1997] Friedrich Gebhardt, Angi Vo�, Wolfgang Gr�ather, and Barbara
Schmidt-Belz. Reasoning with complex cases. Kluwer Academic Publishers, Boston,
1997.

[Goel et al., 1991] A. Goel, J. Kolodner, M. Pearce, and R. Billington. Towards a
case-based tool for aiding conceptual design problem solving. In R. Bareiss, editor,
Proceedings of the DARPA Case-Based Reasoning Workshop, pages 109{120, San
Mateo, 1991. DARPA, Morgan Kaufmann.

[Goel, 1989] A. Goel. Integration of Case-Based Reasoning and Model-Based Reasoning

for Adaptive Design Problem Solving. PhD thesis, The Ohio State University, 1989.
[Hinkle and Toomey, 1995] D. Hinkle and C. Toomey. Applying case-based reasoning
to manufacturing. AI Magazine, 16(1):65{73, Spring 1995.

[Hua and Faltings, 1993] K. Hua and B. Faltings. Exploring case-based design -
CADRE. Arti�cial Intelligence in Engineering Design, Analysis and Manufactur-

ing, 7(2):135{144, 1993.
[Hua et al., 1996] K. Hua, B. Faltings, and I. Smith. CADRE: Case-based geometric
design. Arti�cial Intelligence in Engineering, 10:171{183, 1996.

[Knoblock and Levy, 1998] K. Knoblock and A. Levy, editors. Proceedings of the

AAAI-98 workshop on AI and information integration. AAAI Press, Menlo Park,
CA, 1998.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo,
CA, 1993.

[Kolodner, 1994] J. Kolodner. From natural language understanding to case-based rea-
soning and beyond: A perspective on the cognitive model that ties it all together. In
R. Schank and E. Langer, editors, Beliefs, Reasoning, and Decision Making: Psycho-

Logic in Honor of Bob Abelson, pages 55{110. Lawrence Erlbaum, Hillsdale, NJ,
1994.

[Leake and Wilson, 1999] D. Leake and D. Wilson. Integrating CBR with interactive
tools for acquiring, manipulating and reusing design knowledge. In Proceedings of

the Third International Conference on Case-Based Reasoning, Berlin, 1999. Springer
Verlag. In press.

[Leake, 1998] D. Leake. Cognition as case-based reasoning. In W. Bechtel and G. Gra-
ham, editors, A Companion to Cognitive Science, pages 465{476. Blackwell, Oxford,
1998.

[Lenz and Ashley, 1998] M. Lenz and K. Ashley, editors. Proceedings of the AAAI-98

workshop on textual case-based reasoning. AAAI Press, Menlo Park, CA, 1998.
[Maher et al., 1995] M. Maher, B. Balachandran, and D. Zhang. Case-based reasoning

in design. Erlbaum, Hillsdale, NJ, 1995.
[Mark et al., 1996] William Mark, Evangelos Simoudis, and David Hinkle. Case-based
reasoning: Expectations and results. In D. Leake, editor, Case-Based Reasoning:

Experiences, Lessons, and Future Directions, pages 269{294. AAAI Press, Menlo
Park, CA, 1996.

495Integrating Information Resources: A Case Study of Engineering Design Support

althoff@iis.uni-hildesheim.de

[Rissland and Daniels, 1996] E. Rissland and J. Daniels. The synergistic application
of CBR to IR. Arti�cial Intelligence Review, 10:441{475, 1996.

[Schank, 1982] R.C. Schank. Dynamic Memory: A Theory of Learning in Computers

and People. Cambridge University Press, Cambridge, England, 1982.
[Smith et al., 1995] I. Smith, C. Lottaz, and B. Faltings. Spatial composition using
cases: IDIOM. In Proceedings of First International Conference on Case-Based Rea-

soning, pages 88{97, Berlin, October 1995. Springer Verlag.
[Sycara et al., 1991] K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navin-
chandra. CADET: a case-based synthesis tool for engineering design. International
Journal of Expert Systems, 4(2):157{188, 1991.

[Vollrath, 1998] I. Vollrath. Reuse of complex electronic designs: Requirements anal-
ysis for a CBR application. In P. Cunningham, B. Smyth, and M. Keane, editors,
Proceedings of the Fourth European Workshop on Case-Based Reasoning, pages 136{
147, Berlin, 1998. Springer Verlag.

496 D.B. Leake et al.

althoff@iis.uni-hildesheim.de

A Hybrid Case-Based Reasoner for Footwear
Design

Julie Main and Tharam S. Dillon

Dept of Computer Science and Computer Engineering

La Trobe University, Bundoora 3083, Australia.

Ph: +61 3 9479-2393, Fax: +61 3 9479-3060

and Expert and Intelligent Systems Laboratory,

Applied Computing Research Institute

Email: main@cs.latrobe.edu.au

Abstract. This paper details the way case-based reasoning has been

used to aid footwear designers in creating new designs while maximizing

component reuse. A hybrid system was created which uses an object-

oriented memory model, neural networks for retrieval and fuzzy feature

vectors to augment the basic case-based reasoning model. One of the

main tasks involved in the design of any case-based system is determining

the features that make up a case and �nding a way to index these cases

in a case-base for e�cient and correct retrieval. This paper looks at the

components of this footwear design system and how the various elements

join together to create a useful system, in particular, how the use of

fuzzy feature vectors and neural networks can improve the indexing and

retrieval steps in case-based systems.

Background

As early as 3700 BC the ancient Egyptians wore sandals made of plant �bers
or leather. Most civilizations since then have made and worn some type of foot
covering either as protection or decoration. Although people have made footwear
for thousands of years, it was only in the mid 1800s with the invention of Howe's
sewing machine and more specialist footwear manufacturing equipment that the
mass production of shoes in factories started. From this time on there has been
a growing desire to reduce the cost of manufacture by using components across
various styles and streamlining production. Starting with the move away from
be-spoke footwear (the individual making of a pair of shoes where a person would
order a pair of shoes for themselves and an individual last1 would be made on
which to create this shoe) to the use of standardized lasts (to make multiple
pairs of the same style for the general public), component and tool reuse has
now become essential for today's mass production.

It is not hard to understand why. Looking at some of the development costs
of shoes it becomes obvious why there is a need to minimize pre-production and
tooling-up costs. In creating a ladies' fashion shoe in the late 20th century there

1 A last is a form, shaped like a foot, on which shoes are made.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 497-509, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

are many costs involved in creating a new design, even before reaching the stage
of volume production (see Appendix A).

To give an estimate of how much these pre-production or tooling-up costs
contribute to the cost of an item we can specify the minimum number of pairs
needed, using each tool, to make it worthwhile producing it. To make it cost
e�ective the tooling-up costs need to be no more than 10% of the wholesale cost
of the shoe. The minimum pairing to be sold before creating the following tools
is shown in Table 1.

Table 1. Pairages to justify volume production

Sole moulds:

Injection moulded PVC-nitrile rubber - 200,000 pair over 2-3 years

Thermoplastic rubber - 20,000 pair over 1 season

Polyurethane - 10,000 pair over 1 season

lasts:

Minimum run of 30 pair of lasts - 2,000 pair over 1 season

knives:

minimum set of metal clicking knives - 1,000 pair over 1 season

These �gures are hard to achieve especially in an isolated country such as
Australia where the consumer base is small. As soon as large runs of any item
occur it becomes cheaper to source the goods in a country with a lower labor
rate. Therefore, if large pairages are needed but cannot be obtained on individual
items, tool and mould reuse becomes vital.

Component and Tool Sharing

There are many di�erent ways that components and tools can be shared between
styles in the footwear manufacturing area (Figure 1 shows some of these).

Increasing the drive for component reuse in the ladies fashion footwear do-
main is the way fashions change from season to season, and even mid-season.
Fashion trends tend to have a cyclic behavior, in that a fashion `look' will often
go `out' and a number of years later make another appearance. Another factor in
women's fashion is its diversity. Even within a single trend, there are a multitude
of variations. Customers usually want something that is up to date, but a little
di�erent, or a little better than the other shoes on the market.

498 J. Main and T.S. Dillon

althoff@iis.uni-hildesheim.de

Fig. 1. Some types of component and tool reuse in footwear designs

499A Hybrid Case-Based Reasoner for Footwear Design

althoff@iis.uni-hildesheim.de

In a company that produces women's fashion shoes there are hundreds of
designs produced each year and a designer forgets all but a few of the key designs
in a relatively short span of time. Thus, when a fashion trend makes a second (or
third) appearance, or when a designer wants to reuse parts of existing designs,
the previous designs have been forgotten and the new shoes are re-designed
from scratch. This forgetting and starting over procedure is a problem that, if
overcome, could not only increase the number of parts reused, but could lead to
a faster design stage and also to the input of a wider variety of ideas than the
designer has access to at that time.

To address this problem we designed a case-based reasoning system that
stores the past shoe designs and retrieves a number of designs that are close to
a design speci�cation that the designer inputs. The output from this system is a
set of previous designs that most closely approximate the desired design. From
these designs most importantly we can determine as many components for reuse
as possible and through adaptation adapt the design to use components from
other designs to make up for any discrepancies between the retrieved designs
and the desired designs.

It is of course impossible to always adapt and reuse. Fashion styling is such
that new parts frequently have to be made but there are also often parts that are
able to be reused. The more components and tools that can be shared between
styles, the lower the tooling-up costs. While it was indicated above that the
maximum that tooling-up costs should contribute to the cost of a shoe was 10%
of the wholesale cost, sharing parts can push down the tooling-up costs to a
more desirable 0.5%.

A CBR to Maximize Reuse

The type of system we set out to create was an intelligent knowledge-based sys-
tem, that would retrieve design speci�cations and provide lists of the components
that could be reused and adaptation suggestions. It is primarily for standardizing
components across styles and reducing pre-production costs. What we were not
trying to achieve was a CAD/CAM design package. There are other excellent
footwear speci�c systems for doing that. We are not providing a tool for design-
ing at the lower level of patterns, lasts and moulds, such as these, but rather a
complementary pre-manufacturing system for the higher level design including
the identi�cation of possible common or standard parts.

Case Base Creation

There were two very distinct components of knowledge available to create a case
based reasoner, both of which had to be used together to determine the required
solution. These were:

1. The large collection of previously existing designs. To create a case base
for Main Jenkin Pty. Ltd, a Melbourne-based footwear manufacturer, we

500 J. Main and T.S. Dillon

althoff@iis.uni-hildesheim.de

needed their previous designs with descriptive attributes as well as the lists
of components composing each design.

2. The expertise of footwear designers to classify, analyze and provide adapta-
tion rules.

Cases include two components:

1. Their design feature description by which they are indexed and retrieved.
2. Their technical description including the components and manufacturing

techniques needed for production.

An Object-Oriented Memory Model

The initial structuring of the domain was carried out manually. Some designs
were so similar that we felt it was best to group these designs together. Further
combining of similar groups created a hierarchical structure incorporating all
designs. Although the hand grouping of cases is not really desirable for large
case bases it was an initial solution that has worked well. To apply this system
to other manufacturers or other types of goods, it would be better to apply an
automated solution. The best way of determining the structure of the domain is
still being re�ned.

When it came to determining how cases would be represented for storage
and organized in memory, a number of factors had to be taken into account.
As the shoes are divided into larger and smaller groups in a hierarchy and the
lowest level groups consist of individual designs, it emerged that an object-
oriented representation was a possible solution. Particular shoe designs could be
represented as objects, being instances of particular classes. Groupings such as
`sandals' could be represented as subclasses with every subclass or individual
object as a division of the superclass of shoes.

Individual shoes could then be attached statically to the lowest level classes
in the hierarchy to be easily retrieved when the lowest sub-class to which the
current input can be associated has been determined. The possible number of
objects that can be attached to a sub-class is large, but it needs to be limited to
a small number so that only the most relevant cases are retrieved. Each sub-class
can have varying numbers of instance objects associated with it depending on
how many cases are associated with it. This may range from as little as 1 to as
many as 20 depending on the popularity of the type of design.

The actual creation of the hierarchy of classes was a signi�cant task. Each
class (except the lowest level) had to be divided into component sub-classes,
and at the lowest level, instances (particular designs) had to be attached to the
appropriate sub-classes.

In each layer of classi�cation, the division is not clear cut. For each class
there is more than one way of sub-dividing that class. The super class can be
said to consist of the union of the instances contained in its subclasses. This
corresponds to Union type of inheritance [9].

501A Hybrid Case-Based Reasoner for Footwear Design

althoff@iis.uni-hildesheim.de

The desired classi�cation was the one in which the cases that are retrieved
most closely match the problem speci�cation and in which those retrieved cases
in the class will be useful in the new shoe design. Therefore, design of the class
structure for the system was carried out in a way that divided cases into groups
that are similar from a design and conceptual perspective.

It is not possible in a domain such as footwear to arrive at a de�nitive solu-
tion. However it is possible that in the majority of cases the class hierarchy will
group the cases in a useful way.

Neural Networks in Retrieval

After considering numerous retrieval methods from the nearest neighbor, induc-
tive and knowledge guided approaches to case retrieval, and comparing them to
the retrieval capabilities of neural networks, we decided that neural networks
would best satisfy the retrieval problem in our system.

The bene�ts of neural networks for retrieval include the following: essentially
Case Retrieval is the matching of patterns, a current input patterns (case) with
one or more stored patterns or cases. Neural networks are very good at matching
patterns. They cope very well with incomplete data and the imprecision of inputs
which is of bene�t in the footwear design domain, as sometimes some portion of
a footwear design is important for a new case while some other part is of little
relevance.

The use of neural networks for case retrieval presents some problems of its
own. In the system described shortly, over 400 cases are contained in the case
base. It is impractical that a single neural network be expected to retrieve a
single case from hundreds of possible cases. As a hierarchy of cases has already
been created, grouping similar designs together, we can use a number of neural
networks to determine at each level in which sub-class it is most likely that we
would �nd a case similar to the current input. Therefore one neural network can
be used to classify all the cases into the highest level classes. For each of those
high level classes, a further neural network will be used to divide the cases in
that class into its sub-classes. This is repeated for each sub-class until the lowest
level sub-classes are reached.

Domains that use the case-based reasoning technique are usually complex.
This means that the classi�cation of cases at each level is normally non-linear
and hence, for each classi�cation a single-layer network is insu�cient and a
multi-layered network is required. Therefore, for the footwear design system,
three layered networks (i.e. with one hidden layer) were used at each level to
determine the classi�cation. The use of a three layered network allowed the
networks to build their own internal representation of the inputs and determine
the best weightings.

As it is was known how each particular case was classi�ed into its classes and
sub-classes, supervised learning was to take place. In other words because the
input features and the output goals were provided, a teacher can be said to be

502 J. Main and T.S. Dillon

althoff@iis.uni-hildesheim.de

training the network, hence `supervised' as opposed to `unsupervised' learning

is taking place.

The next step was to de�ne the learning algorithm that was used to determine

changes in weights during training. Taking into account the use of multi-layer

networks and supervised learning, we chose to use the back-propagation algo-

rithm for training the neural networks.

Features as Inputs to the Neural Networks

The determination of the features that are important in the classi�cation of

cases into each class was a major knowledge engineering task. For example, to

determine the features that should be used as inputs into the highest level neural

network we had to look at the classes into which the super-class was divided,

and how the cases in each of those sub-classes di�ered from each other.

Distinguishing these features is not easy. If it were, we could easily construct

rules to do the classi�cation. Determining the correct features involved looking at

the cases, seeing the major di�erences between them, and using these features

to attempt to successfully train a network. When a network learnt the input

patterns to give a low sum of squared error, then the features we had determined

were correct. If there were patterns that this network could not classify, we

needed to add new features that would distinguish between these cases. For

example, sometimes the inputs to a neural network were the same for cases in

more than one output class. When this occurred, obviously there was a di�erence

between these cases that the attributes de�ned had not captured.

It was still helpful when the networks did not train successfully as the cases

that were not learnt led us to distinguishing important features that were previ-

ously undetected. Once the additional features had been determined, the input

patterns for the neural network needed to be modi�ed to include the additional

attributes and the networks retrained. This training and testing cycle continued

until all the networks had negligible error rates. While it would be possible to

input all features into each network and let the neural network dismiss some

features by giving them a low rating, we agreed it was better to eliminate those

features of little importance. This was to minimize the number of case descrip-

tors that had to be input by the user, and reduce the number of input nodes

and therefore the size of the network.

Representation of Features

The features that de�ne a case and index that case in a case base can be of a

number of di�erent types which all must be represented in di�erent ways. What

follows is a number of actual features that had to be represented and what types

they were:

Does the shoe have an open toe?

503A Hybrid Case-Based Reasoner for Footwear Design

althoff@iis.uni-hildesheim.de

This can only be true or false so it was represented as a Boolean type. Boolean
data values are needed to represent factors of a case that can be present or absent,
true or false.

How much is the shoe open or cut out?

As this is best de�ned as a percentage it is represented as a continuous type.
Such a value could be 7%, 8% or 9%. It can be 8.5%, 7.11% or 6.976%. Hence,
the representation of this type of data will be a decimal number with any number
of decimal places.

What is the toe shape? What degree of toe shape does this shoe have?

Multi-valued data can have several di�erent yet deterministic values. There
are a number of di�erent types of multi-valued variables that can be distin-
guished.

The �rst of these types is interval data. Interval data can take a number of
di�erent values, for instance w; x; y; z and these values have two conditions upon
them; that w < x < y < z and that the intervals between the values are the
same, i.e. that x�w = y � x = z � y.

Ordinal data is similar but has only one of the above conditions. The data
must still be ordered: w < x < y < z, however x�w does not necessarily equal
z� y. Degree of toe shape is an example of ordinal data as it can take the valuse
minimal, average, large and extreme.

Finally nominal data values have no relationships between them. Toe shape
above is an example of a nominal data type as we do not say for example that
round < chiselled < square.

How high is the shoe? Is the footwear item a sandal, shoe, short boot or long

boot?

This was represented as a Fuzzy data type: perhaps the most interesting type of
data encountered in the footwear domain. It is best explained by our example.
The height of a shoe can be small (sandal), medium (shoe), high (short boot) or
very high (long boot). If we have to classify actual data into these four ranges
of values, we have to determine which values �t into each category. This is a
problem as values can be considered to be between groups or in more than one
group. A pair with an inside back height of 30 cm would be considered very high
(a long boot) and likewise a pair with an inside back height of 5 cm would be
considered medium (a shoe), and 10 cm high (a short boot). When it comes to
a value of 7 cm, is that average or high? What about 8 cm or 9 cm? What is
the boundary between a shoe and a short boot? A large number of the features
that characterize cases frequently consist of linguistic variables which are best
represented using fuzzy feature vectors.

When determining the features and the type of features of the cases we
had the following criteria. Firstly, as far as the user is concerned, the number
of properties that had to be de�ned should not be large, and the values of the
properties were relevant to the shoe domain, not requiring any conversion for the
computer to accept them. For example, values for toe shape are `pointed', and
`chiseled'. These are both the terms used by the designers and also what is input
into the system making the system accessible for designers. Most importantly the

504 J. Main and T.S. Dillon

althoff@iis.uni-hildesheim.de

features and their characterization had to be accurate and produce the desired
outcomes of retrieving cases that were similar to the desired case.

Fuzzy Representation

As was detailed above the inside-back height of a shoe can be classi�ed as very
high (a long boot), high (a short boot), medium (a shoe) or low (a type of
sandal), but some shoes will not �t into the crisp separations of categories. If
a shoe has a height of 7 cm we want to represent that it is partly a shoe and
partly a boot.

Fig. 2. A Footwear item between height categories

This can be represented for input to the neural network by using 4 attributes:
`low', `medium', `high' and `very high'. Each shoe would have a value for each of
these four variables. A low shoe (e.g. a mule) would have attributes with these
values:

low : 1medium : 0 high : 0 veryhigh : 0

A long boot with a large inside-back height would have the following:

low : 0medium : 0 high : 0 veryhigh : 1

505A Hybrid Case-Based Reasoner for Footwear Design

althoff@iis.uni-hildesheim.de

A traditional shoe (of 5 cm) would have the following values:

low : 0medium : 1 high : 0 veryhigh : 0

This is straightforward for the instances that fall exactly into one of the main
categories. However, for those cases that do not �t so nicely (e.g. the 7 cm case),
we needed to de�ne a function that determines the value for in-between cases.

This function can take many forms, but as an initial function we used straight
line functions. The actual function to determine the values associated with the
height of the shoe is shown in Figure 3. In this case the values for the shoe with
height 7 cm can be seen to be:

low : 0medium : 0:6 high : 0:4 veryhigh : 0

Fuzzy data can be represented using two or more functions. They do not have
to be straight or continuous functions.

Fig. 3. Fuzzy representation of shoe height

Case Adaptation

After retrieval of the best case we can modify the design (or do case adaptation)
by searching individually for components to see if we can make up the parts
where the retrieved design does not meet the required design from components
from other designs.

506 J. Main and T.S. Dillon

althoff@iis.uni-hildesheim.de

Learning

Every time a new design was created, whether through the CBR system or
completely independently by a footwear designer, the new design (assuming it is
successful) had to be added to the case base as every design that can be made
increases the likelihood of �nding components to reuse. Every time a case is
added, the system `learns' a little. By adding a case the CBR system may now
be able to retrieve a design with more components to reuse than it could before
the case was added.

To add a new case to the footwear design system, the case must �rst be
classi�ed or grouped as best possible with similar designs. This may involve
some change to the hierarchical structure of the case base. Once the case has
been classi�ed, the neural networks used in its classi�cation must be retrained.
This is a simple matter assuming the normal case where new features are not
needed for the classi�cation. If the addition of a new case requires the addition
of some new input to a neural network then a new neural network has to be
created and trained.

Application to Other Industries

The problems encountered in the manufacture of footwear, as outlined in the
Background section, are found in many other industries. Other fashion indus-
tries, such as clothing, would have similar tooling-up costs, similar problems
and similar numbers of styles in a season. We believe the techniques we applied
to obtain our solution for Main Jenkin could easily be applied to these other
industries with comparable results.

Conclusion

This paper describes the development of a case based reasoning system for shoe
design that maximizes reuse. The special features of the system include an object
memory model, use of several genre of features including binary, continuous,
discrete ordinal, discrete categoric, discrete interval and fuzzy linguistic. To carry
out case retrieval, multi-level supervised neural nets were used.

The use of neural networks and fuzzy logic was found to be a useful means
of retrieval. In testing, the retrieved cases were the closest match of the cases in
the case base in 95% of tests carried out. In the other 5% the retrieved case was
still useful for adaptation, though not the closest possible match.

Acknowledgments

The management and sta� of Main Jenkin Pty. Ltd. provided essential domain
expertise for which we would like to thank them.

507A Hybrid Case-Based Reasoner for Footwear Design

althoff@iis.uni-hildesheim.de

References

1. Ashley, K.D.: Modeling Legal Argument: Reasoning with Cases and Hypotheticals.
MA, MIT Press, 1990.

2. Beale, R. and Jackson, T.: Neural Computing: An Introduction. Hilger, Bristol, 1990

3. Dillon, T.S. and Tan, P.L.: Object-Oriented Conceptual Modeling. Australia, Pren-
tice Hall, 1993.

4. Hammond, K.J.: CHEF: A Model of Case-Based Planning. Proc. Fifth National
Conference. on Arti�cial Intelligence (AAAI-86). 1986:267-271.

5. Hennessey, D. and Hinkle, D.: Applying Case-Based Reasoning to Autoclave Load-
ing. IEEE Expert. 7(5):21-26, October 1992.

6. Kolodner, J.: Case Based Reasoning. CA, Morgan Kaufmann, 1993.

7. Main, J., Dillon T.S. and Khosla R.: Use of Neural Networks for Case-Retrieval in
a System For Fashion Shoe Design. Proc. Eighth International Conference on In-
dustrial and Engineering Applications of Arti�cial Intelligence and Expert Systems
(IEA/AIE 95: Melbourne, Australia; June 1995). Gordon and Breach, pp. 151-158.

8. Riesbeck, C. K. and Schank, R.C.: Inside Case-based Reasoning. New Jersey,
Lawrence Erlbaum, 1989.

9. Rahayu, W. and Chang E.: A Methodology for Transforming an Object-Oriented
Data Model into a Relational Database Design. Proceedings of the 12th Interna-
tional Conference on Technology Object-Oriented Languages and Systems, Mel-
bourne, 1993, pp 99 - 115.

508 J. Main and T.S. Dillon

althoff@iis.uni-hildesheim.de

Appendix A

Table 2. Tooling up and Other Pre-production costs

Costs from the conception of design to creation of pullovers (trials)

consultation - stylist's time and labor

styling costs - pattern design and cutting
manufacture of pullovers - making of initial trials

Costs from the pullover to sample stage (for sales department)
designer - time and labor for the development of

speci�cations
sample lasts - single sample size last creation
sample patterns - usually a metal pattern for hand cutting samples
sample materials - samples are tried in various materials
sample soles or heels - may include creation of sole or heel moulds
costings - for establishing wholesale and retail pricing

Selling in of the range

mass samples - creation of mass samples for sales
representatives

presentation of range - sales representative's time and labor
taking orders - reception and entry of orders
order compilation - collation of orders and determination of

su�cient sales volume of styles to justify
their production

Costs for tooling-up for volume production
production lasts - right and left foot lasts for each size and

half size and width �tting(s) required
grAding for knives and soles - professional scaling up and down from sample

to all sizes required
production knives - metal knives for each pattern piece in every size
production sole or heel moulds - left and right foot sole/heel moulds for each

size required
production dies and punches - metal punches and cut out knives if required
sourcing of materials - materials must be sourced at required costs

and be available to meet delivery requirements

This article was processed using the LaTEX macro package with LLNCS style

509A Hybrid Case-Based Reasoner for Footwear Design

althoff@iis.uni-hildesheim.de

Fault Management in Computer Networks Using
Case-Based Reasoning: DUMBO System

Cristina Melchiors and Liane M. R. Tarouco

PPGC, Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500. Bloco IV. Porto Alegre, Brazil

cristina@inf.ufrgs.br, liane@penta.ufrgs.br

Abstract. Nowadays, the complexity involved in computer network fault
management demands a great amount of information about the involved
technologies and their associated problems. Besides, Trouble Ticket Systems
have been used to store the occurred problems, actuating as an historical
memory of the network. Thus, a correct approach to consolidate the network
historic memory is the development of an expert system that takes in account
the knowledge accumulated in the Trouble Ticket Systems to propose
solutions for an average problem. This work presents a system that uses Case-
Based Reasoning paradigm applied to a Trouble Ticket System to suggest
solutions for a new problem occurred. This system aims to aid diagnosis and
resolution stages of network management problems. Typical problems of this
domain, the proposed solution and results reached with the developed
prototype are described.

1 Introduction

With the growth of the number and heterogeneity of equipments and involved
technologies in computer networks, the number of potential problems and the
complexity required in the diagnosis of them become critical. Because of that, the
networks are usually controlled by experts entrusted with maintaining the
availability and the quality of the network services through network management.

In order to aid the management of faults occurred in the network, Trouble Ticket
Systems (TTS) have been used in the network management [15]. Such systems aid
the managers in the task of monitoring problems occurring in a network,
maintaining a registration of their life cycle and storing the historical memory of the
faults of network.

In view of the knowledge accumulated in such systems, derived from the
troubleshooting of the previous problems, these systems can be used to aid the
diagnosis of a new problem. Thus, a correct solution to consolidate the network
historical memory is the development of an expert system that uses the knowledge
stored in a TTS to help the managers in the diagnosis of a new similar situation,
proposing solutions using the stored tickets.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 510-524, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

This paper presents a system that incorporates Case-Based Reasoning (CBR)
paradigm in a traditional TTS, aiming to use the knowledge stored
in these tickets to propose solutions for a new problem. This system is
called DUMBO [10].

2 Using Case-Based Reasoning in Network Management

There are several paradigms that have been used in the development of expert
systems in network management field, being Rule-Based Reasoning the more
used [5]. Systems with this paradigm, however, can show some drawbacks [8], such
as (i) the bottleneck in knowledge acquisition [5] and (ii) the brittleness when
a novel situation is presented. These drawbacks are intensified when
applied for the network management domain, in which just a little number of tasks
involve a well understood and relatively steady situation — the networks are
constantly incorporating new technologies, what imposes an overload to the
managers and increases the difficulty of building expert systems using
rules for network problem diagnosis, since these systems may become obsolete
quickly [9].

Another paradigm that can be used for the diagnosis of such problems is
Model-Based Reasoning. This use for network management domain suffers,
however, for the difficulty in modeling a complete network, with its interactions in
an application [5].

Thus, an interesting approach for expert systems in network management is
Case-Based Reasoning, that brings benefits as the capacity to learn naturally with
the experience and to avoid the excessive maintenance [8]. When, however, it is
used with TTS, where the ticket structure is already similar the one of a case, it is
added to these advantages the fact of trouble ticket systems already represent
a consolidated technology in the area and are usually used in network
operation centers. This provides a more natural use and learning of the system,
since the paradigm is integrated into the collaboratives features inherent of ticket
systems.

3 DUMBO System

DUMBO System [10] consists in a case-based reasoning system that was developed
upon the architecture and technology of traditional TTS. A trouble ticket can be
easily conceived as a case and the trouble ticket base conceived as the case base of
the system. It remains, so, to add to the architecture of such systems the reasoning
processes, and to add about the additional information in traditional tickets, so that,
these processes can be performed. These topics will be commented in the next
sections.

511Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

3.1 Particularities about Domain

The knowledge acquisition of the system was accomplished using interviews with
experts, analysis of trouble tickets stored in the base used by the network operation
center POP/RS (CINEMA [14]), and bibliography (troubleshooting books and
network equipments manuals, network computer theoretical references and projects
of expert systems developed to the domain, such as [3], [6], [11], [15]). The network
environment, for which, the model was conceived and validated is characterized
by TCP/IP network in Unix environment, with presence of Ethernet and serial
lines.

From analysis performed over the domain, the problems found were classified as
(i) for network connection problems: connectivity, communication performance and
high traffic in the channels; (ii) user application; (iii) for system services: naming
resolution, authentication and file sharing. By virtue of the manifold situations of
connectivity problems, it was still identified two different subtypes: problems of
physical connectivity and hardware configuration and problems of addressing and
routing. These problems are not mutually exclusive: some problems found in
networks can be in more than one of the types presented [10].

The knowledge derived from the knowledge acquisition was represented in this
system through semantic nets [13].

Besides the problem classification and features related to them, the analysis
allowed to identify the relation between features and probable problem types, the
relation between some features and relevance of others, and the relation of some
features to the automatic elaboration of other important features in order to better
describe the problem. From these relations, production rules were manually
developed to be used in the reasoning processes.

3.2 System Architecture

DUMBO System was structured in order to maintain the functions of traditional
TTS, inserting the reasoning procedures in the stages of creation, closing and
appending the notes of a ticket [10]. DUMBO architecture can be seen in fig. 1.

At the moment of ticket’s creation, context setting module is activated and it
obtains problem description information. The problem type and other features
reported are used to identify some additional information that should be acquired.

Then the trouble ticket/case goes trough the search module. This module retrieves
in the library the cases whose problem type matches some of those types selected for
search. The retrieved cases are ranked by the selector module and the best cases are
shown to the user.

The user can accept these cases directly or request a refine process. For that, he
provides all or some of the requested information (specific features), and the
retrieval process is restarted using now also these information. Situations where the
system was not able to propose similar cases are learned by the system at the
moment of ticket’s closing. These procedures are controlled by the learner module.

512 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

Retrieval

Search

Selector

Reuse
Reviewer

Context Setting

User
 Interface

Learner

− addition features consultation
using problem type

− problem types historic relation
− redirect features

problem index

− relevance

− similarity

problem description
elaboration of case

relevant features

− addition of similarities

− alteration % relation
problem types

critic-based adaptation
situation assessment
review if necessary

similarities insertion
new case definition

Ticket Creation

Ticket Closing

Fig. 1. DUMBO Architecture

3.3 Knowledge Base

For a traditional trouble ticket to be conceived as a case, it is necessary some
additional information about the problem so that it can be used in an efficient way in
reasoning processes. These information represent important aspects about the
problem, that are identified for the expert as features that can contribute to the
problem solution, indicating a specific symptom or indicating a condition of the
network environment that can be related to the problem.

From the knowledge acquisition stage, it was noted that different problem types
show different symptoms and they own different relevant information to solve the
problem. To cope with this, a list of typical problems types of the domain was
elaborated (commented previously), as proposed in [9], and for each problem type it
was identified a roll of information that contributes to reach the problem solution,
being called additional features.

However, gaps would remain in the system if just these information was used. In
first place, there are a large variation and complexity in the problems of the domain.
If each problem had all its important data used in this stage, this would carry to a
very extensive and exhaustive questionnaire. Besides, a case structure just composed
by the additional features would become excessively structured, and it wouldn’t
allow, neither any other way to report additional data, nor the evolution of the
language. Finally, a third gap says respect to the absence of manners of
incorporating in the system information originated from the diagnosis actions
performed for the insulation of a problem. Such action are chosen for the experts

513Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

using the problem initial description and they are fundamental for the evolution of
the diagnosis. Therefore, it is very important that the system could represent the
obtained results of these actions so that these one can be used for the reasoning
processes.

It was conceived, so, a refine process applied after first retrieval. This approach
uses the content of information presented in the retrieved cases to identify new
important information for the current case, denominated specific features. With such
features, new important additional information can be registered in the cases and
used in the retrieval to identify a subset of cases more similar among the selected
cases, letting the result of diagnosis actions be used in this stage. Besides, they
contribute to the increase of the system knowledge and they make the case language
flexible, since now new features can be added to the system in the moment of case
learning.

The system cases are formed by two main parts: the description part and the
solution part, as shown in fig. 2.

Trouble Ticket - Case

 Problem Description
Ticket Creation Information

Initial Information (problem type, short description, message, probable causes, data
with only management purpose)
Addition Information, in agreement with context situation (problem type, problem
location, what the problem includes, network interface, application,...)

Information Through Specific Features
Each Feature: name and value

Notes
Each Note: data with only management purpose, relation with specific features

 Problem Solution
Information with only management purpose (closing date, user, ...)
Causes, Affected Component, Component Fault
End Problem Type
Adopt Solution

Fig. 2. Trouble Ticket/Case Components

Further the cases, the knowledge base of DUMBO system also includes a general
knowledge model of the domain. This general model comprehends several kinds of
information: historical relation among the problem types, relation among some
characteristics with the probable problem types, similarity of the features, the
influence of some features over the relevance of others.

3.4 Reasoning Cycle Processes

3.4.1 Context Setting. The context setting process is sensitive to the context, being
suitable for the different problem types so that the features elaborated for each one

514 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

of them are important for the situation. Further problem type, another information,
such as the problem location (i.e., if the problem occurs in a serial line, among hosts
of the same IP subnet, etc) and what the problem includes, are also used for define
the situation better.

After discovering which are the additional features that should be elaborated in
the situation, the system implements mechanisms to obtain these information. This
mechanism can be automatic or not (requesting to user). The automatic ways
are done (i) using a combination of features already elaborated and the
domain knowledge present in system (such as the probable components with
physical fault), (ii) using the network topologic knowledge obtained with the
 use of the system and (iii) using operations over SNMP objects or data from
integrated network management platforms (such as rate of collisions in a Ethernet
network).

Among the features elaborated automatically by the system, two of them deserve
special attention: the probable components with physical faults and the probable
problem types.

The feature probable components with physical faults was conceived so that the
affected component feature of the solution part of the case could be used in the
matching of the stored cases whose faults were physical. As this information is part
of the case solution, when the situation is well understood, its comparison can
contribute in a special way to the similarity of the current case. Furthermore, the
occurrence of a certain element in this feature can help to better define the relevance
of another information in the current context.

The elements defined for this feature were: cabling, data link interconnection
equipments, network interconnection equipments and source and destination hosts.
The elaboration of the probable components is made by the exclusion of those
elements that, in agreement with the information already supplied for the problem,
cannot be involved with physical faults. This elaboration is made through
production rules (11 rules), like show fig. 3.

 IF ‘problem_location’ = ‘among_host_of_the_same_IP_subnet’ AND
 ‘what_problem_includes_in_source_hosts_of_involved_segments’ = ‘all’ AND
 ‘what_problem_includes_in_destination_hosts_of_involved_segments’ = ‘all’ AND
 ‘alteration’ = ‘worked_previously_without_recent_alteration’
 THEN ‘probable_component_with_physical_fault’ don’t own
 ‘source_and_destinantion_hosts’

Fig. 3. Example of rule to elaboration of probable components with physical faults feature

The feature regarding to probable problem types, for its time, aid to identify
which of the other types are related to the situation and should be used during the
search. That is necessary by virtue of the division of problems in types, it demands
that two cases are classified in the same category to be matched. However, the
problems in networks are sometimes extremely complex, and a problem that is
detected initially as a type can be caused, in fact, for a problem type correlate. With
that, depending of development stage of the situation when the ticket is created, this

515Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

feature can be reported as different classifications, what would prevent the retrieval
of a similar case registered in a different development stage.

Thus, not just the problem type used in the ticket creation must be considered but,
also, the problem type identified after its closing (using this information to identify
the other related problem types). That is reached through the feature probable
problem types, whose elaboration is made automatically based on the combination
of two different points: (i) rules associated to the features already elaborated that aid
address the case for another probable types and (ii) the historical relationship among
the problem types.

The first point helps the analysis of the situation using the information already
available, in order to elaborate other problem types that should be used also for
search. It is implemented through production rules. Two rules of the system are
presented in fig. 4.

 IF ‘problem_maintains_using_IP’ = ‘no’
 THEN problem_type ‘servers-resolution of names’ grade 3
 IF ‘lack_of_access’ = ‘intermittent’ AND ‘problem_type’ is not ‘performance’
 THEN problem_type ‘performance’ grade 3

Fig. 4. Example of system rules to elaboration of probable problem types feature

The second point, for its time, aids to attain of those cases where the real problem
type of the situation will only be identified in the final stage of diagnosis, where its
initial data point to a superficial problem type that is, in fact, caused by another. An
example of that is a situation where a problem with file sharing in a host went, at the
end stage, diagnosed as an authentication problem, or a situation where a high
traffic in communication channels is caused in fact by routing problems.

The historical relationship is processed using the relation of previous cases
between the problem type reported in the moment of ticket creation and the real
problem type identified after the solution, showing the percentile of times that each
initially reported type was caused in fact by another one. These relationships are
updated for each learned case. The system can thus improve its knowledge for each
particular network.

The final probability of each problem type is accomplished using both mentioned
points, giving, however, larger importance to the historical relationship (at the
moment, degree 3). Finally, it’s selected as probable problem types, that will be used
for the search, those whose probability to exceed a predefined threshold (0,2).

3.4.2 Retrieval: Search and Ranking. The retrieval process begins with the
search in the knowledge base for the cases that belong to each one of the types
identified as probable in context setting. Those cases are then submitted to a
detailed evaluation of the degree of matching with the current, through the ranking
process, that involves two main stages: (i) the determination of the similarity type
being considered for the matching among each feature that should be compared and,
(ii) the identification of the relevance of each feature in the final calculation.

516 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

The DUMBO similarity evaluation supports six types of features and similarity,
that can assume the following degrees of matching total (1,0), high (0,75), medium
(0,5), low (0,3) and no matching (0) (table 1).

Table 1. System Features Similarity Types

Similarity
 Type

Possible
Values

Partial Matching
Calculation

Examples

numeric positive real
numbers

attribution for areas,
calculation using the

number of areas among
values

collision rate, rate of
network load

boolean yes, no allow only exact matching is many traffic,
environment has
many protocols

qualitative to
fixed terms

pre defined
terms to the

feature

similarity of terms pre
defined

what problem
includes in source
network segment

qualitative to
variable

terms

registered
terms, with

possibility of
new terms

similarity of terms
registered, with possibility
of aid new relations to new

terms

operation system,
product

exact to
variable

terms

registered
terms, with

possibility of
new terms

allow only exact matching equipment IP number

textual free text matching of expressions
registered

short problem
description

The assignment of relevance degrees, for its time, is accomplished for each one
of the features, in order to emphasize those information that own better potential to
indicate similar cases. In the presented system, was established five degrees of
importance for the case features: (i) filter (degree 5 in ranking); (ii) with excessive
importance (degree 5, without filter); (iii) very important (degree 3); (iv) important
(degree 1) and (v) without importance (degree 0).

However, the attribution of a simple static degree for all case features is not
suitable for this system, seeing that, depending of the current situation, the
importance of some information have large variability. So, it was necessary to
assign to some of them (additional features) the degrees of importance that are
relative to the context of the current situation.

This particularity was implemented in two ways, depending on the information
being considered. The first of them assigns different degrees of relevance in
agreement with the problem type — used for features as lack of access, there is high
traffic. The second way was conceived because it was noted that the combination of
some values for certain features influences the relevance for others. These

517Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

relationships among features were implemented through production rules, as shows
the example in the figure below.

 IF ‘problem_type’ = ‘connectivity-generic’ OR ‘problem_type’ = ‘high traffic’ OR
 ‘problem_type’ = ‘connectivity-physical and config HW’ OR
 ‘problem_type’ = ‘performance’ AND
 ‘probable_component_with_physical_fault’ own ‘cabling’
 THEN ‘interface_network_type’ grade 5

Fig. 5. Example of rule to attribution of relevance

The process of similarity’s degree evaluation between two cases begins with the
matching of the specific features of the current case and of the retrieved cases, being
eliminated from the group if they own a common specific feature that has essential
degree, and the similarity among them is inferior to the minimum defined for it. The
following stage consists in the calculation of the similarity degree among the cases
using all the important features, as it shows the formula (1).

()
Similarity(,)

,

Cr R

simi i
C

i
R

i
i

n

i ii
n

W f f C

W C
=

× ×

×
=

=

∑

∑
1

1

 .
(1)

Reliability(,)Cr R
i

i

n

i

ii
n

W C

W
=

×
=

=

∑

∑
1

1

 .
(2)

OrderingFactor()
Similarity(,) Reliability(,)

R
I Cr R Cr R

I
=

× +
+1

 .

Similarity(Cr,R) similarity between cases
Reliability(Cr,R) reliability in the matching
Wi relevance of feature i
sim() similarity function to feature i
Ci confidence in the similarity of feature i
I importance of similarity upon reliability
fi

C, fi

R values to feature i in current and retrieved case

(3)

When a feature was not elaborated, it's not used in the calculation of case
similarity degree, that takes in account just those features that can be compared. By
virtue of that, it was created another factor that takes into account how much of
similarity calculated between two cases is reliable, that was called reliability. The
reliability function can be seen in formula (2).

Finally, it is done an ordering of cases (3) considering the result of similarity and
reliability of each one. In this, the similarity is twice more important than the
reliability.

518 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

3.4.3 Reuse and Review. After the best cases be selected among the ones retrieved
from base, the experience of those cases can be reused in the current situation or the
user can requested a refine process.

The refine process takes place in a dynamic way, defining new useful
elaborations based on the content of the retrieved cases. For that, is extracted from
the retrieved cases the features (specific features) that contributed in the previous
situation for the evolution of the problem diagnosis. The selection about what
features should be elaborated and in which order among the whole group of
extracted features is accomplished according four factors: (i) the cost of obtaining
the information by user; (ii) the probability of this feature to contribute in the
problem, identified by the degree of similarity of the best retrieved case that
contains it; (iii) the possibilities of this feature to influence a larger number of cases,
obtained by the number of times that it appears in the selected cases and (iv) the
order in which this information was stored in the previous case.

Once elaborated the specific features, the current case description is refined with
the new features and a new retrieval is done. With these new features, the solutions
proposed previously through the retrieved cases can be validated or not by the
system, selecting new cases and be eliminated cases selected previously or changes
the degree of similarity of the cases already retrieved.

3.4.4 Learning. A case is learned by system when it represents a new experience,
for which the system was not able to propose an appropriate solution. If, however,
the proposal solution was correct, it is stored as a simple ticket, so that, the functions
of traditional TTS are still maintained in the system (such as statistical analysis of
the network equipments, etc), and it won’t be used in the next retrieval. The only
update executed in the system is concerning to the historical relationship among
the types of problems.

The closing of a ticket that will be learned, however, demands some additional
stages, such as, the elaboration of the additional features related to the final problem
type that were not still elaborated and the learning of new terms still not registered
(such as a new operating system or application). The definition of what additional
features should be elaborated is accomplished by the system using the final problem
type and problem description information. The defined features are requested to
user, as well as some information about the terms not registered informed previously
(such as operation system family and group). This approach allows an increasing of
the domain’s knowledge. However, if it was not used, the system would present a
gradual loss of performance, even with the adding of new cases, since the system
would not allow the computation of the similarity of its terms.

The second stage in learning consists in the indication of which specific features
among the ones already reported wouldn’t be necessary to diagnosis. Those features
will be marked in order of not be considered in the refine process. Besides, this
stage allows that new important information be supplied that are not still registered
in case. This can be done adding in the case specific features already registered in
system, or registering this new features in the system.

519Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

4 Results

The developed prototype was implemented in Unix environment, using the C
language and the POSTGRES database, with interface through WWW.

For the evaluation of the prototype, was inserted in the system the group of cases
collected and defined during the modeling of system. In this version of prototype,
only the problems that involve faults in the connection were focused — problems in
applications and services were treated in the model but they were not implemented
in this version.

The inserted cases represent faults stored in CINEMA TTS [14] (10 cases). These
faults occurred in the real environment acquired from the interviews with experts (6
cases) and faults extracted of the bibliography (8 cases). These cases are distributed
in the following way: Connectivity - Physical and HW Config, 11 cases; Routing
and Addressing, 12 cases; High Traffic, 1 case.

Initially, a first stage of tests aimed a tuning in the relevance and similarity
degree of the system features conceived during modeling stage. For that, several
retrievals were performed in the system, and the analysis of the relevance defined
for each feature in agreement with the current situation context was accomplished as
well as, the analysis of the equivalence among the values attributed in the similarity
for the several features.

The second test stage had as goal to evaluate if the retrieved cases own
information with potential to contribute in the problem’s solution, including the own
retrieved cases and the specific features selected by the system. Thus, several
retrievals were performed in the system, using as new situations (current) some
cases removed from the system or adapted cases from situations mentioned in
interviews and that had not still been included in the case base.

In follow, an example of a retrieval performed for a problem in a serial line is
shown. Initially, some information of the ticket creation can be visualized, and soon
after, the performed retrievals are presented (formed by the retrieved cases and by
the specific information requested by the system). The specific information
answered are shown, as well as the results of the new retrieval. Finally, it is shown
the solution data, the specific features registered and the specific features
maintained after the case learning.

Case 134
Initial Problem Type: Performance
Short Description: High error rate in the communication
between POA-SP, POA-DF.
No Access: Intermittent Bad Performance: Intermittent

Case 134 - First Retrieval Results
Search: Connectivity-Generic. Connectivity-Physical and HW
Config. Performance
[0.69] Similarity [0.63], Reliability [0.82] - Case 103
Description: The 64kb line from Unisinos isn’t working well,
big datagrams are lost.

520 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

[0.64] Similarity [0.56], Reliability [0.80] - Case 108
Description: User can’t access extern network.
[0.63] Similarity [0.54], Reliability [0.82] - Case 102
Description: The UCS have not access to world network.

Addition Information Requested:
[0.63] (Id 3) Contact telecommunication line provider
company.
[0.56] (Id 6) Is there lose of big datagrams in ping test?
[0.45] (Id 1) Putting remote interface in loop (in the
remote router), what is the local interface status?

Answered Information:
(Id 3) Contact telecommunication line provider company.
(Id 6) Is there lose of big datagrams in ping test? Answer:
YES

Case 134 - Second Retrieval Results
[0.73] Similarity [0.67], Reliability [0.84] - Case 103
[0.64] Similarity [0.56], Reliability [0.80] - Case 108
[0.63] Similarity [0.54], Reliability [0.82] - Case 102

Addition Information Requested:
[0.45] (Id 1) Putting remote interface in loop (in the
remote router), what is the local interface status?
[0.45] (Id 8) Use show interfaces command in the remote
router. Is the configuration ok?
[0.45] (Id 2) Doing loop test to intermediary node of link,
what is the local interface status?

Case 134 Solution:
Causes: Link 34, that interconnect CRC equipments inside
Embratel building was defective.
Adopted Solution: CRT correct fault.
Final Problem Type: Connectivity - Physical and HW Config

Specific Features Registered in System:
Id: 22 Description: Is there high CRC error rate? Degree: 5
Type: boolean
Id: 5 Description: Contact remote node. Are in this center
another links with problems? Degree: 5 Type: boolean

Final Specific Features of Case 134:
Id: 6 Value: “YES”, Order: 1
Id: 5 Value: “NO”, Order: 1
Id: 3
Id: 22 Value: “YES”, Order: 1

Fig. 6. Retrieval Example

The example above presents a problem caused by an intermittent fault in a link
provided by the telecommunication company. Immediately in the first retrieval, the
first selected case (case 103) represents a similar problem that can be reused for the

521Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

solution of the current. The first two specific features proposed are also important
for some problems like this: they suggest to contact the telecommunications
company (Id 3), and they suggest a ping test asking if there is a big lose of
packets (Id 6). In fact, in the original trouble ticket registered in CINEMA TTS [14]
that gave origin to the case 103, these actions had been really used by the experts,
and the result of the ping test was already described in the remarks of the ticket, so
the system was able to propose appropriate actions.

One of the drawbacks found in this stage for the evaluation of the system
accuracy in the several contexts was caused by the number of registered cases
represent just a initial collected group and don’t correspond to the learning with the
normal use of the system. Thus, sometimes, the cases selected in a retrieval are the
best cases among the cases of base, although they don’t represent the most similar
situation inside all the possible situations of the management domain.

However, the performed tests allowed to verify that the system has the ability of
retrieval similar cases for a current situation, and it is able to be applied to a wider
real environment. In this environment, the system learning — through new cases
learned and through the improvement of the historical relationship — will increase
its knowledge for the specific management domain for which it is applied and will
allow that situations more and more similar to the current can be retrieved.

The search of another case-based reasoning approaches applied to network
management resulted in just a little number of references found: some systems
applied to the telecommunications domain (3 approaches); a system applied for
routing; and the systems CRITTER [8], [9] and MASTER [4] applied for fault
management in computer networks, also using association of CBR in trouble ticket
systems.

In relation to these, DUMBO system interface for ticket creation is quite difficult
and complex when compared the one of MASTER. Besides, its way of request
actions and present solutions is less structured than CRITTER, and its adaptation is
based on the mechanism of context refinement, while in CRITTER it acquires
adaptation strategies for the exactly solution. Among the positive points of
DUMBO, we can point out its flexibility, whose problem types were defined in
order to include most of the situations that can be found in the domain, besides the
maintenance and learning simplified, what makes possible the system being applied
in several management domains. A comparison of the results among the systems
was not able by the absence of information in the references that allow the
comparison with the results obtained in the DUMBO tests.

5 Conclusion and Future Work

The presented approach was developed aiming to help network managers in fault
diagnosis, being defined a model to the system, implemented a prototype and
performed groups of tests for the approach evaluation, seeking to treat the wide
range of problems from the network management domain.

522 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

The best results were obtained with physical and hardware configuration faults.
The routing and addressing faults presented results less exact in the first retrieval.
That was caused by the small number of additional features in the system with
specific information of routing. This aspect was outlined by the use of specific
features for these data.

Characteristic of the developed approach include treatment to an environment
with large variety of problems with different singularities, that can be confused one
with the other ones in the initial problem stages. Besides, the possibility to identify
diagnosis actions further the cases is also part of the positive aspects. In
troubleshooting activities, the use of diagnosis actions is indispensable in the several
stages of the problem, and the integration of its results in the system contributes to
improve situation assessment dynamically.

The proposal approach can also be applied for other domains where there is the
need of treatment of a large diversity of situations, and where information along the
evolution of the problem can contribute to best to describe it, including medical
diagnosis and troubleshooting activities of engineering domain and of another fields
of computer science.

Among the goals established for future development, can be mentioned the
implementation of the additional features modeled but still not included in the
prototype and the integration of the system in management platforms (just as HP
OpenView, of Hewlett Packard), in order to supply more specific and automatic data
for the additional and specific features. Besides, would be desired the identification
of ways in implanting automatic adaptation techniques to the reasoning cycle, as
well as means of integrating to the system applications that have free text
interpretation capacities, in a similar way of the used in MASTER [4]. This
applications could, using the problem description in free text, to fill some of the
features that are requested to the user.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications, Vol.7(1) (1994) 39-59

2. Brandau, R., Lemmon, A., Lafond, C.: Experience with Extended Episodes: Cases with
Complex Temporal Structure In: Bareiss, E. R. (ed.): Proceedings DARPA Workshop on
Case-Based Reasoning. Morgan Kaufmann, San Francisco (1991)

3. Cisco Systems, Inc: Internetwork Troubleshooting Guide. 1997. Reference available in
http://www.cisco.com/univercd/cc/td/doc/cisintwk/itg_v1/index.htm.

4. Dreo, G., Valta, R.: Using master tickets as a storage for problem-solving expertise. In:
Sethi, A., Raynaud, Y., Faure-Vincent, F. (eds.) Proceedings of Integrated Network
Management IV Chapman & Hall, London (1995) 328-340

5. Goyal, S.: Knowledge technologies for evolving networks. In: Krishnan, I.,
Zimmer, W. (eds.): Proceedings of Integrated Network Management II. Elsevier Science,
Amsterdam (1991)

6. Hunt, C.: TCP/IP Network Administration. 2nd edn. O’Reilly, Sebastopol (1998)
7. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)

523Fault Management in Computer Networks Using CBR: DUMBO System

althoff@iis.uni-hildesheim.de

8. Lewis, L.: A Case-Based Reasoning Approach to the Management of Faults in
Communications Networks. Conference on Computer Communications. IEEE, San
Francisco, Vol 3 (1993) 1422-1429

9. Lewis, L.: Managing Computer Networks: A Case-Based Reasoning Approach. Artech
House, Norwood (1995)

10. Melchiors, C.: Raciocínio Baseado em Casos Aplicado ao Gerenciamento de Falhas
em Redes de Computadores. Master of Science Thesis PGCC/UFRGS (1999). In
evaluation stage.

11. Miller, M.: Troubleshooting TCP/IP. M&T Books, New York (1996)
12. Simoudis, E.: Using Case-Based Retrieval for Customer Technical Support. IEEE Expert,

Vol.7(5) (1992) 7-12
13. Stefik, M.: Introduction to Knowledge Systems. Morgan Kaufmann, San Francisco (1995)
14. Tarouco, L. et al.: Um ambiente para gerenciamento integrado e cooperativo. In:

Proceedings of Workshop sobre Administração e Integração de Sistemas. UFC, Fortaleza
(1996) 235-246

15. Udupa, D.: Network Management Systems Essentials. McGraw-Hill, New York (1996)
16. Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan

Kaufmann, San Francisco (1997)

524 C. Melchiors and L.M.R. Tarouco

althoff@iis.uni-hildesheim.de

An Architecture for a CBR Image Segmentation
System

Petra Perner

Institute of Computer Vision and Applied Computer Sciences
Arno-Nitzsche-Str. 45, 04277 Leipzig, Germany

e-mail: ibaiperner@aol.com fax: +49 341 8665 636

Abstract. Image Segmentation is a crucial step if extracting information from a
digital image. It is not easy to set up the segmentation parameter so that it fits
best over the entire set of images, which should be segmented. In the paper, we
propose a novel architecture for image segmentation method based on CBR,
which can adapt to changing image qualities and environmental conditions. We
describe the whole architecture, the methods used for the various components
of the systems and show how it performs on medical images.

1 Introduction

Image Segmentation is a crucial step in extracting information from a digital image. It
is not easy to set up the segmentation parameter so that it fits best over the entire set
of images. Most segmentation techniques contain numerous control parameters,
which must be adjusted to obtain optimal segmentation performance. The parameter
selection is usually done on a large enough test data set, which should represent the
entire domain well enough in order to be able to built up a general model for the
segmentation. However, often it is not possible to obtain a large enough data set so
that the segmentation model doesn't fit well to the data and needs to be adjusted to
new data. Besides that, a general model doesn't guarantee the best segmentation for
each image rather than it guarantees an average best fit over the entire set of images.

Another aspect goes along with changes in image quality caused by variations in
environmental conditions, image devices, etc. Then the segmentation performance
needs to be adapted to these changes in image quality. All that suggests using CBR
for image segmentation. We already successfully used CBR framework for the high-
level unit of an image interpretation system [1][2] and could show the extraordinary
good performance of this approach for image interpretation compared to other
approaches.

In the paper, we propose a novel image segmentation scheme based on case-based
reasoning. CBR is used to select the segmentation parameter according to the current
image characteristics. By taking into account the non-image and image information
we break down our complex solution space to a subspace of relevant cases where the
variation among the cases is limited. It is assumed that images having similar image
characteristics will show similar good segmentation results when the same
segmentation parameters were applied to these images.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 525-534, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

We evaluate our method on a set of medical images (CT scans of the brain) where
the variations among the images and objects in the images are naturally very high.
The complexity of the brain CT-scans is due to partial volume effects, which disturb
the edges and produce contrast degradation by spatial averaging, and to the typical
problems such as patient movements, beam hardening, and reconstruction artifacts.
These image characteristics are responsible for the over- and undersegemented results
observed when unsupervised segmentation is applied.

We use the proposed method for labeling brain and liquor areas in CT slices.
Based on this we calculate brain/liquor ration which is a parameter to determine the
degree of degenerative brain disease [3].

In Section 2 of the paper, we describe the overall architecture. The case
description is presented in Section 3. The similarity measure for the non-image
information and the image information is described in Section 4. Results are given in
Section 5. Finally, we give conclusions in Section 6.

2 Overall Architecture

We will divide the overall architecture into the image segmentation unit based on
case-based reasoning (see Fig. 1) and in the unit for the casebase management part
(see Fig.2).

2.1 Case-Based Reasoning Unit

The case-based reasoning unit for image segmentation consists of a case base, in
which formerly processed cases are stored by their original images, their non-image
information (e.g. image acquisition parameters, object characteristics and so on), and
their image segmentation parameters. The task is now to find the best segmentation
for the current image by looking up the case base for similar cases. Similarity
determination is done based on non-image information and image information. The
evaluation unit will take the case with the highest similarity score for further
processing. In case there are two or more cases with the same similarity score the first
appeared case will be taken. After the closest case has been chosen, the image
segmentation parameter associated with the selected case will be given to the image
segmentation unit and the current image will be segmented, see Fig. 1. It is assumed
that images having similar image characteristics will show similar good segmentation
results when the same segmentation parameters were applied to these images.

In the following we will understand for segmentation: the definition of regions
based on constant local image features, and for labeling: the classification of regions
into the object classes: brain and liquor.

526 P. Perner

althoff@iis.uni-hildesheim.de

Fig. 1. Case-Based Reasoning Unit

Fig. 2. Management of Casebase

CBR
Evaluation
(visual or

automatic)
Good?

Off-line
Segmentation

and Processing of
Image Characteristics

Case Base
Selective

Case Registration

Case
Generalization

Input Image Segmented
Image yes

no

S-Parameter
Case Attributes

527An Architecture for a CBR Image Segmentation System

althoff@iis.uni-hildesheim.de

2.2 Management of Casebase

The result of the segmentation process is observed by the user. He compares the
original image with the labeled image on display. If he detects deviations of the
marked areas in the segmented image from the objects area in the original image,
which should be labeled than he will evaluate the result as bad result and casebase
management will start. This will also be done if no similar case is available in the
casebase.

The evaluation procedure can also be done automatically [4]. However, the
drawback is that there is no general procedure available. It can only be done domain
dependent. Therefore, an automatic evaluation procedure would constrain the usage
of the system.

In an off-line phase, the best segmentation parameters for the image are
determined and the attributes, which are necessary for similarity determination, are
calculated from the image. Both, the segmentation parameters and the attributes
calculated from the image, are stored into the casebase as new case. During storage,
case generalization will be done to ensure that the casebase will not become too large.

3. Case Structure and Case Base

A case consists of non-image information, parameters describing the image
characteristics itself, and the solution (the segmentation parameters).

3.1 Non-Image Information

The non-image information's described here are necessary to describe our medical
application. If we deal with other applications, then other non-image information are
contained in the case. For example, motion analysis [5], where we have camera
position, relative movement of the camera and the object category itself as non-image
information.

For our brain/liquor determination in CT-images, we use patient specific
parameter, slice thickness and scanning sequence. This information is contained in the
header of the CT image file so that we can automatic access these parameters.

3.2 Image Information

Each image is described by statistical measures of the gray level like: mean, variance,
skewness, kurtosis, variation coefficient, energy, entropy, and centroid [6]. This
information together with the non-image information and segmentation parameters
comprises a case.

528 P. Perner

althoff@iis.uni-hildesheim.de

4. Segmentation Algorithm

The gray level histogram is calculated from the original image. This histogram is
smoothed by some numerical functions and heuristic rules [7][8][9] to find the cut
points for the liquor and brain gray level area. The parameters of the function and
rules are stored with the cases and given to the segmentation unit if the associated
case is selected.

The following steps are performed: The histogram is smoothed by a numerical
function. There are two parameters to select: the complexity of the interpolation
function and the interpolation width. Then the histogram is segmented into intervals
such that each begins with a valley, contains a peak and ends with a valley. The peak
to shoulder ratio of each interval is tested first: An interval is merged with the
neighbor sharing the higher of its two shoulders if the ratio of peak height to the
height of it’s higher shoulder, is greater than or equal to a threshold. Finally, the
number of the remaining intervals is compared to a predefined number of intervals. If
more than this have survived, the intervals with the highest peaks are selected. The
number of intervals depends on the number of classes the image should be segmented.
The cut points are calculated and then applied to the image. Fig. 3 shows a histogram
for an original image and the histogram after it was processed by the algorithm. The
original image and the resulting labeled images are shown in Fig. 4.

Fig. 3. Histogram of a CT-Image and refined Histogram

529An Architecture for a CBR Image Segmentation System

althoff@iis.uni-hildesheim.de

Fig. 4. Original Image, Labeled Images for Brain, and Labeled Image for Liquor

5 Similarity Determination

5.1 Similarity Measure for Non-Image Information

We use Tversky´s similarity measure for the non-image information [10]. The
similarity between a Case iC and a new case b presented to the system is:

2

1
,,1

),(

==

++
=

γβα

γβα MDA

C
bCS i

i

(1)

where
iC is the set of attributes in case Ci , A is the set of corresponding attributes in

case Ci and b, D is the set of attributes having different values, and M is the set of

attributes having missing values.

5.2 Similarity Measure for Image Information

For the numerical data, we use:

iMINiMAX

iMINiB

iMINiMAX

iMINiAJI

i iAB CC

CC

CC

CC
Wdist

−
−−

−
−= ∑ +

=1

(2)

530 P. Perner

althoff@iis.uni-hildesheim.de

 CIA and CIB are ith feature values of image A and B, respectively. CiMIN is the

minimum value of the ith numeric or symbolic feature. CiMAX is the maximum value

of the ith feature, and Wi is the weight attached to the ith feature. For the first run, Wi

is set to one. Further studies will deal with learning of feature weights.

6 Results

A hardcopy of the recent system is shown in Fig. 5. The original images are shown at
the top of the display and the labeled images are shown at the bottom of the display,
so that the user can also compare the images visually. The system is used in practical
use by the medical department at the university of Halle. The system contains 130
cases in casebase.

We compared the performance of the system with manual labeled images by the
physicians and automatic labeled images by our system. Some of these images are
contained in the casebase others are not contained. In a BMFT study [11], one
physician from the university of Leipzig labeled the images of 30 patients by hand.
For each patient we have approx. 20 images that give a total of 600 images for
evaluation. We also used images labeled by another physician from the university of
Halle. This physician labeled the images twice so that we got an understanding of
measurement error done by a human.

Case in
CaseBase

Brain
(ccm)

Liquor (ccm) Brain/Liquor Ratio

manual autom. manual autom. manual autom.

NNA contain 1331,5 1197,89 287,76 316,98 4,63 3,78

WFH contain 1211,2 1123,75 201,2 243,58 6,02 4,91

MRG contain 1381,5 1078,2 314,51 346,13 4,39 3,12

HNH part_cont 1097,3 1080,48 213,51 274,5 5,14 3,94

MRR part_cont 1152,8 1212,08 144,92 145,01 7,95 8,36

TRM part_cont 1420 1232,88 248,34 284,45 5,72 4,33

MEI not_cont 983 986,31 147,95 180,27 6,64 5,47

MNH not_cont 846,7 833,23 165 189,22 5,13 4,4

....

Table 1. Manual and Automatic Measures for Brain/Liquor for 9 Patients

531An Architecture for a CBR Image Segmentation System

althoff@iis.uni-hildesheim.de

Fig. 5. Hardcopy of the Case-based Brain/Liquor System

Comparision between Manual and Automatic Brain/Liquor Determination

0

5

10

15

20

25

30

0 5 10 15 20 25 30

manual

au
to

m
at

ic

Reihe1

Fig. 6. Diagram Manual versus Automatic Results

532 P. Perner

althoff@iis.uni-hildesheim.de

Table 1 compares the manual results and the automatic results. Our algorithm labels
more liquor area than a human expert does. However, Figure 6 shows a strong linear
correlation between our results and the results of a human expert (r=0,85). This is a
very good result.

For the first time, a system automatically delivers to the physicians a measure for
the brain/liquor ratio. The only thing what the physician has to do is that he tells the
systems what images should be examined. No human interaction is necessary like it is
required for other volumetric image analysis systems [12]. The system automatically
delivers a measure back to the physician. In opposition to the recent qualitative
examination of the CT images, a quantitative examination is possible which gives a
valid measure and allows a graduation between different stages of a disease and a
control of a patient over time.

7 Conclusion

We have presented our concept for a CBR based image segmentation system. The
system performs image segmentation by looking up a case base for similar formerly
processed images and takes the segmentation parameters associated to the similar
image in order to do segmentation of the current image. We examined our system by
comparing manually labeled images with automatic labeled images. The results show
that by our method good results for the brain/liquor ratio can be obtained. Since it is
well know that also a physician doesn't always know what he should take as brain and
liquor object we are not seriously concerned about the difference in labeling between
a human and the system. A good evaluation of the system would only be possible if
there would exists a true gold standard which might be available if the work on
simulation of the brain CT-images will show good results.

With our system, we have given to the user a fully automatic system, which needs
no user interaction when calculating the brain/liquor ratio. Such a system gives the
opportunity to overcome the qualitative measure based on a subjective judgement to a
quantitative measure, which is reproducible.

Further work will be done on generalizing cases and segmentation parameters and
how to learn feature weights.

Acknowledgment

We like to thank Prof. Heywang-Köbrunner and Dr. Beck from the medical
department of the university of Halle for the cooperation on this work. For providing
us the results of the BMFT study, we like to thank Prof. Dietrich from the medical
department of the university of Leipzig. For technical help, we thank Mr. Kraft.

533An Architecture for a CBR Image Segmentation System

althoff@iis.uni-hildesheim.de

References

1. P. Perner, Different Learning Strategies in a Case-Based Reasoning System for
Image Interpretation, Advances in Case-Based Reasoning, B. Smith and P.
Cunningham (Eds.), LNAI 1488, Springer Verlag 1998, S. 251-261.

2. P. Perner, Case-Based Reasoning For Image Interpretation in Non-destructive
Testing, 1st European Workshop on Case-Based Reasoning, Otzenhausen Nov.
1993, Proc. SFB 314 Univ. Kaiserslautern, Hrsg. M. Richter, vol. II, pp. 403-410

3. Bettin, J. Dietrich, C. Dannenberg, H. Barthel, D. Zedlick, K. Jobst, W.H. Knapp,
“Früherkennung von Hirnleistungstörungen – Vergleich linearer und
volumetrischer Parameter (CT) mit Ergebnissen der Perfusions-SPET,” 78.
Deutscher Röntgenkongreß Wiesbaden 1997

4. S. Zhang, "Evaluation and Comparision of different Segmentation Algorithm,"
Pattern Recognition Letters, v. 18, No. 10, pp. 963-968, 1997.

5. G. Kummer and P. Perner, Motion Analysis, IBaI Report January 1999, ISSN
1431-2360

6. H. Dreyer and W. Sauer, Prozeßanalyse, Verlag Technik Berlin 1982
7. R. Ohlander, K. Price, and D.R. Reddy, “Picture Segmentation using recursive

region splitting method,” Comput. Graphics and Image Processing, 8: 313-333,
1978

8. C.H. Lee, “Recursive region splitting at the hierarchical scope views,” Computer
Vision Graphics, and Image Processing, 33, 237-259, 1986

9. P. Perner, Similarity-Based Image Segmentation, IBaI Report 1996 ISSN 1431-
2360

10. A. Tversky, „Feature of Similarity“, Psychological Review, vol. 84, No. 4, pp.
327-350, 1977.

11. Alzheimer Study "Degenerative Erkrankungen des zentralen und peripheren
Nervensystems - Klinik und Grundlage", BMFT Study, Abschlußbericht der
medizinische Fakultät der Uni Leipzig 1996

12. A. Tschammler et. al,"Computerized tomography volumetry of cerebrospinal fluid
by semiautomatic contour recognition and gray value histogram analysis", Rofo
Fortschr. Geb. Roentgenstr. Neue Bildgeb. Verfahren 1996, Jan: 164(1): 13-1

534 P. Perner

althoff@iis.uni-hildesheim.de

Supporting Reusability in a System Design
Environment by Case-Based Reasoning Techniques 1

Herbert Praehofer and Josef Kerschbaummayr

Johannes Kepler University Linz
Department of Systems Theory and Information Technology

A-4040 Linz, Austria
{hpkj}@cast.uni-linz.ac.at

Abstract. CASA (computer aided systems architecting) is a methodology and
tool to support the design of complex technical systems. It combines approaches
from systems and requirement engineering and AI. System design in CASA is
requirement-driven and works by a hierarchical stepwise top-down refinement
of designs and a hierarchical decision making process. One important task in
CASA deals with reusability of existing design artifacts and is supported by
case-based reasoning techniques. Based on given structural specifications and
formal requirements, a search procedure finds the best inexact match in a design
base and computes an estimated degree of fulfillment for requirements. The ap-
proach employs efficient graph matching and indexing scheme for case retrieval
and structural similarities and has adapted usual similarity measures to compute
degree of fulfillment of requirements. It has been show by different example
projects that the developed methods can be of great practical assistance for a de-
signer.

Keywords. case-based design, system design, requirement engineering, struc-
tural similarity, graph matching algorithm

1. Introduction

Systems analysis and design is gaining increasing importance in the development of
complex technical systems. On one side systems‘ complexity is increasing constantly,
on the other side development time (time to market) has to be lowered in order to be
competitive. Requirements on technical systems become harder and not only concern
function, performance, and realizations costs, but also other aspects such as user
friendliness, maintainability, security, environmental issues, disposal and so on.

CASA (computer aided systems architecting) [16, 17, 12, 13, 14] is a methodology
and tool, which supports the design of complex technical systems. The method com-
bines approaches from systems and requirement engineering and AI. Essential tasks in
CASA are (1) the formal specification of functional and non-functional requirements,

1 Work supported by Siemens AG Munich, ZT SE 2, application for patent submitted

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 535-549, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

(2) the refinement of the system design by a hierarchical, multi-level approach [9], (3)
a strict separation of functional specification and physical design (4) the traceability of
the requirements over the entire design process, (5) the automatic verification of the
requirements, and (6) the reuse of design artifacts from earlier designs.

System design in CASA is requirement-driven and works by hierarchical stepwise
top-down refinement and a hierarchical decision process. Design starts with initial
user requirements in user documents and proceeds by extracting, classifying, breaking
up, formulating, and assigning requirements to design components. Requirements
assigned to design components guide their design. The design of a component should
occur so that all the requirements assigned to it are fulfilled. Evaluation of require-
ments is done automatically by a hierarchical decision making process where proper-
ties in architectures are computed based on properties of their subcomponents and
checked against requirements.

One important task in CASA deals with the reuse of existing design artifacts and is
supported by case-based reasoning techniques. When requirements are assigned to
components and a refinement of the component is desired, one preferable approach is
to look if an appropriate artifact already exists which fulfills the requirements at least
partly. We have developed and realized case-based reasoning techniques to search and
check for design artifacts in an design database and compute inexact measures for
fulfillment of requirements. This paper presents the principal approach and the meth-
ods developed as well as prototypical applications of those techniques in CASA.

In sections 2 and 3 we review the principal concepts of CASA – the design repre-
sentations and the design process. In chapter 4 and 5 we present the methods devel-
oped to support reusability. In chapter 6 and 7 we show application of the approach by
two test projects.

Many projects investigated usage of CBR techniques in design, e.g. [4, 18, 15, 3, 1,
2, 8, 5, 20] and others. Our work has been stimulated by many of them, in particular
by KRITIK [4] which uses a model-based approach with functional specifications of
designs, Julia [7] with its hierarchical structuring concepts for cases, KDSA [20]
which is outstanding for its multilayer design representation, and FABEL [3] which
employs structural similarity concepts.

Our work differs from those approaches as follows:
- CASA first of all is not a CBR system but a system design environment. CBR

techniques are integrated as a fundamental mechanisms in an overall design proc-
ess to support reusability.

- CASA adopts a requirement driven design approach. Therefore, usual similarity
concepts are adapted to estimate the fulfillment of requirements by design arti-
facts.

- CASA’s search for reusable cases not only is done based on functional specifica-
tions but also is able to care for non-functional requirements.

- In our system structural comparison plays a dominant role not only in computing
similarity but also for indexing.

536 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

2. Capturing Designs in CASA

In the following we want to give a review of the main design representations in
CASA. These representations serve as a basis to introduce our reusability approach in
the following sections.

Architectures
An architecture in CASA is the means to represents any design artifact at different
levels of granularity and from different aspects (called strata) [9]. Architectures are
used to capture the functional specification of the system (functional stratum) and the
physical design (physical stratum). Architectures are configured hierarchically, i.e.,
components of an architectures can be configured by subarchitectures to support a
design with stepwise refinement.

An architecture in CASA as depicted in Fig. 1 consists of [17]:
• a set of ports for the architecture to be coupled in a superior architecture
• a set of properties of the architecture
• a set of component specifications
• coupling structure in the form of port to port connections
• property calculators to compute property values based on the values of its compo-

nents
• causality rules to define dependencies between components in the form of con-

straints.

C1

C3

C2

p1

Property Calculators

weight = C1.weight + C2.weight + C3.weight

Causality Rules

C1.weight < C2.weight + C3.weight

p2

p3

p2

p1

p1

p1 p2

p2

architecture-ports

component-portscomponents

couplings

architecture 1

R1: weight < 40 t
R2: height < 50 m
R3: cost < 86 euro
R5: ...

requirements for
component C3

Fig. 1. CASA architecture

An architecture represents a design artifact with some degree of freedom. The
unique and essential feature in CASA is that a component of an architecture is a
specification for the subarchitectures which can serve as realizations (called configu-
rations) of this component [17]. It specifies which ports and properties the subarchi-
tecture must have and which requirements it has to fulfill. The set of allowed subar-
chitectures is principally open. Therefore, each component specification defines the
• ports to be used in the coupling of the architecture
• properties used in the component
• requirements which the architectures for this component have to fulfill.

537Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

Properties, property definitions, and property calculators
An architecture property is used to describe any relevant property of an architecture,
e.g., physical properties, costs, performance, etc. Properties are also used for the for-
mal definition of non-functional requirements. Non-functional requirements are
checked against architectures’ properties to determine if an architecture fulfills the
requirement (see below).

Property definitions are used to define the types of properties in use in a particular
application domain. Any architecture property must be derived from an associated
property definition. A property definition defines:
• the name for the property, e.g. total weight,
• the range of property values, e.g. 10 to 1000,
• the unit of measurement, e.g. kg of m2.

A property in architectures then is an instantiation of a property definition in the
domain and can define
• the value of the property if known exactly,
• a property calculator to compute the value of the property from values of the ar-

chitectures’ components,
• a subset or range of feasible values for the properties.

An important feature for reusability are feasible values of properties. Architectures
allow for some degree of freedom in that their components are not fixed but configur-
able. Depending on the concrete configuration the property value may vary, but possi-
bly in certain bounds. For example, a total weight of an architecture computes as the
sum of the weight of its components. Requirements in components may constraint the
weight to be within certain bounds. So the architecture knows in advance that its
weight will lay in certain bounds. To express this is the purpose of feasible values and
important feature to support reusability.

Requirements
Requirements in CASA are formulated based on property definitions as logical ex-

pressions. A grammar has been defined which contains the usual arithmetic, relational
and logical operators [12]. An interactive syntax editor then is available as a user in-
terface to support the application engineer in requirement formulation in a convenient
way.

3. Design Process and Reusability in CASA

Design process:
System design in CASA [17] proceeds by formulating and assigning requirements to
existing design components. In each phase of the hierarchical stepwise top-down re-
finement process, the goal is to find an architecture for a component which fits best
the assigned requirements. In a refinement step the designer has several possibilities:
• he can design a new architecture from scratch,
• he can reuse an existing architecture from the architecture base,

538 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

• a combination of both, where an existing architecture is selected and adapted to the
new needs, and

• making a sketch of an architecture by fixing some essential components and cou-
plings and searching for an existing one which best matches this structure.
As a next step, the component is configured with the designed architecture (Figure

2), that means, that ports of the architecture are assigned to ports of the component
and properties of the architecture are matched with those in the component. After
configuration of a component the design process can proceed with the next level in the
hierarchy to design and configure the components of the just configured architecture.

C1

weight
C3

weight
C2

weight

p1

p2

p3

p2

p1

p1

p1 p2

p2

C1

weight

p1

Property Calculators

weight = C1.weight + C2.weight

p2

configuration

p2p1

architecture 1

architecture 2

C2

weight
p2p1

Fig. 2. Configuration of component by a subarchitecture

In course of configuration of a component, two steps are important. First, when the
architecture has defined values or feasible values for properties, it is possible to test
the requirement for fulfillment. Thereby, an exact property value will allow to defi-
nitely determine if a requirement is fulfilled, whereas a feasible value will only allow
to estimate an inexact degree of fulfillment. We use methods similar to similarity
measures [7, 19] to compute degree of fulfillment as explained in the following sec-
tion.

Second, by availability of property values or feasible values of components’ archi-
tectures, property calculators can compute property values or feasible subsets for the
architecture itself. Those values will facilitate checking of requirements posted on the
architecture. Therefore, hierarchical configuration of components in architectures will
successively fix property values allowing to check more and more requirements in
upper architectures of the hierarchy enabling the hierarchical decision making process.

Search procedure
Reusability works by finding an architecture which matches best the component speci-
fication. Searching for a configurable architecture for a component is accomplished in
the following steps:

539Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

• Starting with the component specification which contains properties and ports of
the components, requirements assigned to the component, and, eventually, partly
specified component and coupling structure,

• an index structure is employed to make a first search for feasible architectures in
the architecture base,

• a structural similarity is computed based on a match of the structural elements, that
is, the properties, ports and partly given component and coupling structure,

• then, if possible, the degrees of fulfillment for the requirements are computed,
• the found architectures are ranked based on structural similarity and degree of ful-

fillment, and, finally,
• the architectures together with structural similarities and degree of fulfillment are

presented to the designer for further investigation and final selection, configuration,
and adaption.
In the following sections we present the techniques employed. We first show the

methods we have developed to compute inexact degree of fulfillment of requirements,
then we show the method for computing structural similarities for which we employed
a graph matching algorithm developed by [10]. It is further shown how the same graph
matching approach is beneficially used for hierarchical index structures.

4. Determining Degree of Fulfillment (DOF)

Recall that requirements are logical expressions (Fig 3) formulated based on property
definitions and arithmetic, relational and logical operators. Requirement serve the
purpose to restrict the values of an architectures’ properties. In evaluating an archi-
tecture against a requirement, exact property values will result in a Boolean decision
saying that the requirement is fulfilled or not. However, this statement is often unsatis-
factory for a designer. He might also want to know how far the value is from the re-
quired. Also recall that, besides exact values, properties in architectures may alterna-
tively define a subset of feasible values for that architecture. Feasible values, however,
represent an uncertainty and no definite statement about the fulfillment can be made.
We express both, distance of a value from a required and the uncertainty in require-
ment fulfillment due to feasible values by a degree of fulfillment (DOF) measure
similar to similarity measures.
In our approach the DOF for a requirement is a value between -1 and 1 with the fol-
lowing interpretation:
• A DOF equal to 1 means that the requirement is definitely fulfilled.
• a positive DOF value (]0 .. 1[) means that it is possible that the requirement can

eventually be fulfilled when the architecture is configured appropriately. A higher
value thereby gives estimate that it is more likely that an architecture can be found
which fulfills the requirement.

• A negative DOF ([-1 .. 0]) means that the requirement cannot be fulfilled. The
value gives estimate of the distance for fulfillment of the requirement, i.e., a value
close to 0 means that the requirement is almost fulfilled whereas a value of –0.5
and less says that architecture is far from fulfilling the requirement.

540 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

&weight red< 10 kg and &color ==

PropDef Num PropDef Enum

LogicOp

EnumRelOpNumRelOp

Unit

Fig. 3. Requirement expression

Parsing logical expressions
A requirement expression is formulated based on property definitions defined in the
domain, constant expressions, and arithmetic, relational, and logical operators. Fig 3
shows a requirement expression together with its syntax tree. The leaf nodes of a re-
quirement expression are properties and constant expressions. They may be combined
first by arithmetic operators, then relational operators, and finally logical operators.

Determining the DOF for a requirement expression is done in the following steps:
• The property in the expression is matched with the properties in the architecture.

This is accomplished through the common property definition.
• Values and feasible value ranges of properties in the architecture are combined by

the arithmetic expressions and lead to new values or feasible value ranges.
• A DOF is computed for each relational expression based on the formula presented

below.
• The DOFs from the relational operators are combined for the logical expressions as

shown below.

Computing DOF for relational operators
Feasible value subsets of properties are interpreted to emerge from the union of the
property values of all possible configurations of this architecture. As a simplification
we assume that obtaining a particular property value by a specific configuration is
uniformly distributed. Positive values for degree of fulfillment then are computed as
the probability to select a configuration which fulfills the requirement. It computes as
the number of feasible values which fulfill the requirement divided by the whole num-
ber of feasible values. Formula (1) depicts the computation of positive DOF based on
subsets of feasible property values p and the subset r defined by the requirement. Is
the intersection of p and r not-empty, then we will obtain a positive degree by the size
of the intersection of p and r divided by the size of subset p.

∅≠∩
∩

= rpif
p

rp
rpDOF),((1)

In case that the intersection of p and r is empty the requirement cannot be fulfilled
and we are supposed to obtain a negative DOF (2). We compute the minimal distance
of values in p and r and divide this by a normative scaling factor n. The scaling factor
n is computed based on the requirement subset r and differs if the subset is bounded or
not as follows

541Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

• r has finite lower bound and upper bound : n = upper bound – lower bound
• r has finite lower bound only: n = max{x | x ∈ p ∪ r} – lower bound
• r has finite upper bound only: n = upper bound – min{x | x ∈ p ∪ r}.

∅=∩
∈∈−

−= rpif
n

rypxyx
rpDOF

,,min
),((2)

Combining DOFs for logical operators
DOFs obtained through the relational operators have to be combined by the logical
operators to obtain total estimates. As we have interpreted positive degrees as prob-
abilities we can use the usual combination of probabilities, that is the sum of inde-
pendent events for the disjunction (2), the multiplication of independent events for the
conjunction (3) and the complement for the negation (4). For negative probabilities we
take the obvious choice to take the minimal distance (greater negative value) for the
disjunction (2) and the maximal distance for the conjunction. The negation needs
special treatment. The negation of a not-fulfilled requirement always becomes ful-
filled. Therefore, a negative DOF becomes 1. A fully fulfilled requirement (DOF = 1)
might still be fulfilled to some extend after negation. Therefore we compute the nega-
tion of a DOF by computing the DOF of the complement r’ of the requirement r (4).





<<
≥≥−+

=
00),max(

0,0*
)(

yorxifyx

yxifyxyx
yorxDOF

(3)

00

0,0

),min(

*
)(

<<
≥≥





=
yorx

yx

ifyx

ifyx
yandxDOF

(4)

rsubset of complement :r’

01

1)’,(

101

),()(






<
=

<≤−
==

xif

xifrpDOF

xifx

rpDOFnotxnotDOF

(5)

5. Structural Similarity and Indexing

Structural similarity measures are used to determine the match between properties and
ports defined in a component to those defined in the architecture, the match between
partly specified architectures and architectures in the architecture base, and the match
between two architectures, here especially between functional specifications (see
chapter 7). We use graph matching algorithms to determine structural similarity. We
represent properties, ports, and components as nodes and couplings as edges. Our
graph matching algorithm is based on the concepts and we use the implementation of
Messmer [10].

Graph matching algorithms in general work by transforming one graph into the
other until they are isomorphic. For transformation different operations – like adding
and removing nodes and links and transforming dissimilar nodes and links – are used.

542 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

Different costs can be associated with different operations. The total of the costs for
the operations needed to transform one graph into the other represents a similarity
measure for the graphs.

Graph matching algorithms can be adapted to different needs by defining different
costs for the different operations. For example, a transformation of a node into a
similar node should cost less than transforming it into a completely different one. In
some applications, adding a node should cost nothing but deleting one should cost. For
example, when matching an architecture against a component specification, the archi-
tecture should at least have the ports and properties of the component specification but
can and normally will have much more. Therefore, adding a node should cost but
deleting should not.

The graph matching algorithm presented in [10, 11] use a hierarchical lattice of
subgraphs to find fast matches. The graphs – in our application the architectures – are
inserted as leaves into a hierarchical lattice of subgraphs. The lattice is organized that
at the top there are all most primitive subgraphs, i.e., those with one node, and that
descendents of a lattice element are the graphs which contain this element as sub-
graph. At the bottom are the leaves of the lattice which represent the architectures. In
that, the lattice of subgraphs very much functions like a hierarchical index structure in
the sense of CBR [7].

For more detail of the algorithm the reader is referred to [10]. We adopted the GUB
implementation of the approach of [10] for indexing and determining structural simi-
larity. Currently we are investigating how those CBR-techniques are best applied in
CASA. We have identified two basic qualities of application:
1. Searching for configurable architectures based on properties and ports. This is a

general form of search which can be applied in all stages and all strata of a design.
2. Searching for reusable architectures based on functional specifications and non-

functional requirements.
In the following two sections we will illustrate those approaches by two test appli-

cations.

6. Searching in CASA based on Structural Similarity

In CASA we use the above described indexing mechanism to efficiently search for
architectures similar to an initial component specification. Architectures are ranked
based on a structural match. The fulfillment of non-functional requirements will be
used to rank architectures with the same structural similarity.

Figure 4 shows a component with two ports, four properties and one non-functional
requirement. This component serves as an initial specification for the subsequent
search.

The result of a search for suitable architectures can be seen in Figure 5. Two archi-
tectures have the same ports and properties indicated by a structural error 0. The sec-
ond value shows the DOF of the non-functional requirements. The value of property
Weight of GearUnit is 17,6 and therefore fulfills requirement R2, while property
Weight of architecture PlanetaryGear has a value of 22,1 kg resulting in a negative

543Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

DOF, however, the value is close to 0 and therefore the designer sees that the require-
ment is almost fulfilled.

Figure 4 Component specification

Figure 5 Result of the search with ranked architectures

Figure 6 Architecture SimpleAxis with error 4

Comparison of the structure of architecture SimpleAxis shown in Figure 6 with the
search specification results in an structural error of 4, which represents the costs to
insert the properties Torque and Mech_Effectivness into architecture SimpleAxis.

544 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

7. Prototypical Application in the Transportation Domain

Transportation and material handling system design [6] is our favorable application
domain to test our approach. Transportation system design is mainly based on standard
components and therefore is suitable for a reuse-based approach.

In the transportation and material handling domain it is common to use function
plans for functional specification of transportation systems. CASA provides architec-
tures with components and couplings as a means for functional specification. The most
important indicator for reusability of components in a specific design situation is the
fulfillment of a desired function. So we use functional specifications to guide the
search for reusable components.

Reusable Architecture – Case representation
In Figure 7 you see an example of a reusable architecture. A reusable architecture not
only contains the component and coupling but also specifies functional services it can
fulfill. Its description is divided into two strata, namely function and topology. Map-
pings from strata function to strata topology are called realize-mappings and assign
functions to physical components. In the example component BC1 has two functions
assigned, transmit and store, which represent the functional services of BC1. The
architecture BC1 is further described by a set of properties. Next to the property name
you can see the exact value (? if not known), its unit of measurement, and its feasible
value range. For example, PR: TotalWeight : ? kg – [1200 kg; 1500 kg] has the
meaning property TotalWeight has no exact value, has unit kg, and the feasible values
are known to lie within 1200 kg and 1500 kg.

Figure 7 Reusable architecture with functional services and properties

System design typically proceeds by first defining a functional specification, then
defining an initial physical structure, and then assigning functional components to
physical components, meaning that physical component should overtake this func-
tions. Figure 8 shows a design situation with a functional specification at the top, an

545Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

initial physical structure at the bottom part and realize-mappings from functions to
physical components (crosslinks, e.g., transmit and collect to component Collector).

Besides functional requirements for a component you will have assigned a set of
non-functional requirements and define a set of properties and ports. Figure 9 depicts a
detailed specification of component InpConvey1 with its 11 properties (PR) and 10
non-functional requirements (R1 to R10).

In this design situation, the designer will preferable search in the database for reus-
able architectures to fulfill the assigned functions and non-functional requirements.

Figure 8 Design situation with functional requirement specification and initial physical
structure

Retrieve
We see in the functional requirements the primary indicator to reusable architectures.
We use the described graph-matching and indexing schemes to compare functional
specifications and functional services defined by reusable architectures. A first match
is done based on fulfillment of functional requirements. Afterwards fulfillment of non-
functional requirements is computed. Figure 10 shows the result of a search for com-
ponent specification InpConvey1 of Figure 8 and 9. Three architectures fulfill (func-
tional error 0) the functional requirements. Belt_Conveyer3 has the best DOF for the
non-functional requirements.

In the next step the designer can do a detailed investigation of each architecture and
see which of the requirements are fulfilled, configure the component with the archi-
tecture of his choice, and adapt it to its special needs.

546 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

Figure 9 Details of component specification InpConvey1 with properties and requirements

Figure 10 Result of search for InpConvey1 with ranking of found architectures

8. Summary

In this paper we have shown how CBR techniques can successfully be applied to sup-
port reusability in a system design environment. The approach is based on a formal
specification and verification of functional and non-functional requirements and a
hierarchical design representation in form of configurable architecture specifications.

547Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

The CBR techniques adopted and developed are a method to determine an inexact
degree of fulfillment of requirements and an efficient graph matching algorithm and
hierarchical indexing structure based on lattices of subgraphs.

The reusability approach and CBR methods have been tested by two different ex-
ample design projects. The first, using a basic reusability approach, dealt with the
design of a mobile robot, the second dealt with transportation and material handling
systems. It has shown that, although the projects and number or reusable architectures
are still small, the search procedure works very well and is a very helpful feature for a
designer.

Performance of the search algorithms have been tested with an artificial database
with a size of 500 architectures which we regard as a reasonable size of an architec-
ture base for a medium sized application domain, e.g., transportation and material
handling systems. The index structure for the 500 architectures has a size of 4000
subgraphs. Finding a best match is within a few seconds and therefore acceptable for a
designer (looking up product catalogs certainly takes longer). Further matches only
take a fraction of the first search.

The next step in the project will be to look for an design domain and industrial
partners to test our environment in a real world application.

References

1. Börner, K. (Ed.): Modules for Design Support, FABEL-Report 35, GMD, St. Augustin
(1995)

2. Flemming, U.: Case-based Design in the SEED System, Automation and Construction,
(1994)

3. Gebhardt, F.: Methods and systems for case retrieval exploiting the case structure, FA-
BEL-Report 39, GMD, St. Augustin, Germany (1995)

4. Goel, A. K.: Integration of case-based and model-based reasoning for adaptive problem
solving, PhD Thesis, The Ohio State University (1989)

5. Hua, K., Falting, B., Smith, I.: CADRE: case-based geometric design, Artificial Intelli-
gence in Engineering 10 (1996)171-183.

6. Kettner, H., Schmidt, J., Greim, H.R.: Guidelines for a systematic manufacturing system
planning, Hanser Verlag (1984) (in German)

7. Kolodner, J.: Case-Based Reasoning, Morgan Kaufmann (1993)
8. Maher, M.L., de Silva Garza, G.:Developing CaseBased Reasoning for Structural Design,

IEEE Expert. Vol. 11 (1996)
9. Mesarovic, M.D., Macko, D., Takahara, Y.: Theory of Hierarchical, Multilevel, Systems,

Academic Press, New York (1970)
10. Messmer, B.T.: Efficient Graph Matching Algorithms for Preprocessed Model Graphs,

Dissertation, University Bern, Switzerland (1996)
11. Messmer, B.T., Bunke, H.: A network based approach to exact and inexact graph match-

ing, Institut für Informatik und angewandte Mathematik, University Bern, Switzerland
(1993)

12. Mittelmann, R., Kogler, M.: CASA-TE: Representation of Requirements, Technical Re-
port 154-97, Johannes Kepler University, Dept of Systems Theory and Information Tech-
nology, Linz, Austria (1997) (in German)

548 H. Praehofer and J. Kerschbaummayr

althoff@iis.uni-hildesheim.de

13. Praehofer, H.: Reusability in CASA, Technical Report 144-96, Johannes Kepler Univer-
sity, Dept of Systems Theory and Information Technology, Linz, Austria, (1997) (in Ger-
man)

14. Praehofer, H. and Kerschbaummayr, J.: Concepts for Reusability in CASA, Technical
Report 160-97, Johannes Kepler University, Dept. Systems Theory, Linz, Austria (1997)
(in German)

15. Reich, Y.: The Development of Bridger: A Methodological Study of Research on Machine
Learning in Design, Artificial Intelligence in Engineering, 8 (1993) 217-231

16. Schaffer, C.: CASA – Computer Aided Systems Architecting, Technical Report 141-96,
Johannes Kepler University, Dept of Systems Theory and Information Technology, Linz,
Austria (1997) (in German).

17. Schaffer, C.: Computer Aided System Architecting (CASA): Requirement-Driven Design
of Multi-Disciplinary Systems, PhD Thesis, Johannes Kepler University, Linz, Austria
(1999) (in German).

18. Sycara, K. Guttal, R., Koning, J., Narasimhan, S., Navinchandra, D.: CADET: A Case-
based Synthesis Tool for Engineering Design, International Journal of Expert Systems,
Vol. 4 (1992)

19. Voß A. (Ed.): Similarity concepts and retrieval methods, FABEL-Report 13, GMD, St.
Augustin, Germany (1994)

20. Wolverton, M., Hayes-Roth, B.: Finding analogues for innovative design, Techn. report
KSL 95-32, Knowledge System Laboratory, Stanford University, CA (1995)

549Supporting Reusability in a System Design Environment by CBR Techniques

althoff@iis.uni-hildesheim.de

Case-Based Reasoning for Antibiotics Therapy Advice

Rainer Schmidt a), Bernhard Pollwein b), Lothar Gierl a)

 a) Institut für Medizinische Informatik und Biometrie, Universität Rostock
 Rembrandtstr. 16 / 17, D-18055 Rostock, Germany
 Email: {rainer.schmidt , lothar.gierl} @medizin.uni-rostock.de
 b) Institut für Anästhesiologie, Ludwig-Maximilians Universität München
 Marchioninistr. 15, D-81377 München, Germany

Abstract
In this paper, we describe case-based techniques in a medical application. We
have developed a prototype of an antibiotics therapy adviser within the ICONS
project, where the main advantage of applying CBR techniques is to speed-up
the process of computing advisable therapies. However, some adaptations do
not really belong to the Case-Based Reasoning paradigm though information
from former cases is considered. They deal with rather typical medical tasks,
namely modifications due to information updates. In our incrementally working
system we have attempted to solve the problem of the continuously increasing
number of stored cases by generalising from specific single cases to more
general prototypes and by subsequently erasing redundant cases. Here we present
results of experiments with threshold settings for our prototype architecture.
The results show that the chosen design, which has mainly been founded on
experiences with diagnostic applications, is not only advantageous for this
therapeutic task, but that it contains a slight drawback as well.

1. Introduction

Severe bacterial infections are still a life threatening complication in intensive care
medicine correlated with a high mortality [1]. Identification of bacterial pathogens is often
difficult. It normally requires at least 24 hours to identify the pathogen that is responsible
for an infection and at least another 24 hours to find out which antibiotics have
therapeutic effects against the identified pathogen. To not endanger the patient, physicians
often have to start an antimicrobial therapy before the responsible pathogen and its
sensitivities are determined. This sort of antibiotic therapy is called "calculated" in
contrast to a "selective" therapy, which is used when microbiological results are already
available.

The main task of our adviser is to present suitable calculated antibiotics therapy advice
(Fig. 4.) for intensive care patients, who have developed a bacterial infection as an
additional complication. As for such critical patients physicians cannot wait for the
laboratory results, we use an expected pathogen spectrum based on medical background

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 550-560, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

knowledge. This spectrum should be completely covered by each advisable antibiotics
therapy. Furthermore, as advice is needed very quickly we speed-up the process of
computing advisable antibiotics therapies by using Case-Based Reasoning methods (the
right path in Fig. 1.). We search for a similar previous patient and transfer the suggested
therapies made for his situation to the current patient. These previous suggestions are
adapted to be applicable to the new medical situation of the current patient.

Expected Pathogen Spectrum

First List of Antibiotics

Second List of Antibiotics

Third List of Antibiotics

Combination Rules
and Resistences

Therapy Advice

Adaptation

Dosage

Group of Patients +
Affected Organ

Susceptibility Relation

Constraints:
Sphere of Activity
Contraindications

Retrieval of a Similar Case

Physicians Decision

Current Case

Results of the
Laboratory

Antibiogram
Identification of
the Pathogens

 Knowledge Base

Fig. 1. Overview of ICONS

551Case-Based Reasoning for Antibiotics Therapy Advice

althoff@iis.uni-hildesheim.de

1.1. Strategy for Selecting Advisable Antibiotic Therapies

As ICONS is not a diagnostic system, we do not attempt to deduce evidence for
diagnoses based on symptoms, frequencies or probabilities, but instead pursue a strategy
that can be characterised as follows (Fig. 2.): Find all possible solutions and reduce them
using the patient's contraindications and the complete coverage of the calculated pathogen
spectrum (establish-refine strategy).

Pathogen-Spectrum

A1

A2

A3

Available Antibiotics
List-1

List-2

Antibiotics-Combinations:
 e.g.: A3 + A-i + A-j

Advisable
Antibiotics
Combinations

Combination Rules

Fig. 2. Antibiotics Selection Strategy

552 R. Schmidt, B. Pollwein, and L. Gierl

althoff@iis.uni-hildesheim.de

First, we distinguish among different groups of patients (infection acquired in- or
outside the ward resp. the hospital, immuncompromised patients). A first list of
antibiotics is generated by a susceptibility relation, that for each group of pathogens
provides all antibiotics which usually have therapeutic effects. This list contains all those
antibiotics that can control at least a part of the potential pathogen spectrum. We obtain
a second list of antibiotics by reducing the first one by applying two constraints: The
patient's contraindications and the desired sphere of activity. Using the antibiotics of this
second list, we try to find antibiotics which under consideration of the expected
susceptibility cover the whole pathogen spectrum individually.

Except for some community acquired infections, monotherapies have to be combined
with synergistic or additive effecting antibiotics. If no adequate single therapy can be
found, we use combination rules to generate combinations of antibiotics. Each possible
combination must be tested for the ability to cover the whole expected spectrum.

2. Retrieval

In this application the main argument for using CBR methods is to speed-up the
process of finding adequate therapies. We shorten the above described strategy of selecting
advisable antibiotic therapies by searching for a similar case, retrieving it's suggested
therapies and by adapting them concerning the contraindications of the current patient. The
retrieval consists of three steps (Fig. 3.).

Selection of a
Prototype Tree

Search for a Similar Prototype

Search for a Similar Case

Adaptability Criterion

Fine Selection

Fig. 3. Retrieval steps in ICONS

553Case-Based Reasoning for Antibiotics Therapy Advice

althoff@iis.uni-hildesheim.de

First we select that part of the case base, in which all cases share two attributes with
the current patient: The group of patients and the infected organ system. This means a
selection of the appropriate prototype tree (see chapter 4.1.). Subsequently, we apply the
Hash-Tree-Retrieval-Algorithm of Stottler, Henke, and King [2] for nominal valued
contraindications and the similarity measure of Tversky [3] for few integer valued
contraindications. Furthermore, we use an adaptability criterion, because not every case is
adaptable [4]. As the attributes used for the retrieval are the contraindications, which work
as constraints for the set of possible antibiotics suggestions, it is obvious, that a former
case who has contraindications which the current patient does not share should not be
used. To guarantee this condition the adaptability criterion has to be checked during the
retrieval. This can be considered as an example to support the ideas of Smyth and Keane
that the similarity assumption alone is often inappropriate and that the retrieval should
take the adaptation into account [5].

3. Adaptations

In the antibiotics therapy adviser three different sorts of adaptations occur: A CBR
adaptation to obtain sets of calculated advisable therapies for current patients (Fig. 4.
shows the presentation of such a set), an adaptation of chosen therapies to laboratory
findings and a periodical update of laboratory information used by the system.

Fig. 4. Presentation of advisable antibiotics combinations

554 R. Schmidt, B. Pollwein, and L. Gierl

althoff@iis.uni-hildesheim.de

3.1. Case-Based Reasoning Adaptation

Each contraindication restricts the set of advisable therapies. As already mentioned
above we use a criterion during the retrieval which guarantees that the retrieved case does
not have any additional contraindications in comparison to the current case. Otherwise the
solution set for the current case would be inadmissibly reduced by additional
contraindications of a previous case.

The adaptation of a previous similar case is rather simple. It is just a transfer of the
set of advisable therapies and if necessary a subsequent reduction of this set by additional
contraindications of the current case.

3.2. Adaptations of Chosen Therapies to Laboratory Findings

Adaptations of laboratory findings do not really belong to the Case-Based Reasoning
paradigm, but they are based on information about cases. The goal of the main part of the
therapy adviser is to present advisable therapies before the results of the laboratory are
known. When later on these results are known, the already started therapy has to be
adapted to them. There are two sorts of findings, after 24 hours the identification of the
pathogen which is responsible for the infection and after another 24 hours the sensitivity
test results (antibiogram) of this pathogen against the various antibiotics. If the identified
pathogen does not belong to the considered calculated pathogen spectrum and if this
pathogen is according to the systems sensitivity information not sensitive against the
already started therapy, new specific advisable therapies against this pathogen have to be
computed. If the laboratory sensitivity test results show that the identified pathogen is in
contrast to the systems sensitivity information not sensitive against the already started
therapy, it leads to the same task: New "selective" advisable therapies which have
therapeutic effects against the identified pathogen have to be computed.

It might seem to be a contradiction that laboratory tests can show that a pathogen is
not sensitive against an antibiotic although the current sensitivity information says it
should be. However, as pathogens are never exactly alike, but always slight mutations,
the sensitivity information is based on a percentage value. For example, most of the
problematic pathogens are nowadays only in slightly more than 80% of the cases
sensitive against the strongest antibiotics. So an observed sensitivity higher than 66% is
usually already considered as sensitive.

When new cases are incorporated into the system, the sensitivity information has to be
updated, the laboratory findings for these new cases must be taken into account.
Additionally, the used expected pathogen spectra might change on time too. For both
laboratory information sources used by the system we have implemented a periodical
update. This can be seen as another form of adaptation which is not founded on single
cases, but on statistical evaluation of specific information of a number of cases.

555Case-Based Reasoning for Antibiotics Therapy Advice

althoff@iis.uni-hildesheim.de

4. Prototypes

As in an incrementally working system the number of cases increases continuously,
storing each case would slow down the retrieval time and exceed any space limitations. So
we decided to structure the case base by prototypes and to store only those cases that differ
from their prototype significantly. Though the general use of prototypes was early
introduced in the CBR field [6, 7], it is still mainly applied in the medical domain [e.g. 8,
9, 10, 11]. Our prototype architecture is mainly based on experience with a diagnostic
application [12], where we create prototypes that share most features with most of their
cases. This idea is founded on empirical research [13], which indicates that people consider
cases to be more "typical" when the number of features between the presented case and the
"normal" case increases.

In diagnostic applications prototypes correspond to typical diseases or diagnoses. So,
for antibiotic therapies prototypes are expected to correspond to typical antibiotic
treatments associated with typical clinical features of patients. However, as the attributes
are contraindications which are not responsible for the generation but the restriction of the
solution set, this is only partly true. We have investigated the growth of a hierarchical
prototype structure built up from a randomly ordered stream of cases.

4.1. Selection of a Prototype Tree

We do not have just one prototype tree, but a wood of trees which are independent
from each other. For each affected organ combined with each group of patients an own tree
can be generated. That means, for nearly 20 organ systems and 5 patient groups nearly
100 prototype trees are possible. We generate them only if required dynamically. For
example a tree for "community acquired kidney infections" will be generated as soon as
the first data input of a patient occurs who has a kidney infection which he acquired
outside the hospital.

So, all cases within the same prototype tree belong to the same group of patients, the
same organ system is affected and therefore the same expected pathogen spectrum deduced
from background knowledge has to be covered. The cases within a prototype tree are only
discriminated from each other by their different contraindications. These are antibiotic
allergies, reduced organ functions (e.g. kidney and liver), specific diagnoses (e.g. acoustic
distortion or diseases of the central nervous system), special blood diseases, pregnancy and
the patient's age.

4.2. Generating Prototypes

First, all cases are stored below the prototypes they belong to. If after storing a new
case below a prototype the threshold "number of cases" is reached, the prototype will be
"filled". This means, that every contraindication which occurs in the cases belonging to
this prototype at least as often as the second threshold "minimum frequency" will be
included into the prototype. Subsequently, the "filled" prototype can be treated like a case.
The same as for cases holds for prototypes: Each contraindication restricts the set of
advisable therapies. The contraindications of a prototype are those that occur most often
within its cases. So from the viewpoint of frequency they are the typical ones. Those

556 R. Schmidt, B. Pollwein, and L. Gierl

althoff@iis.uni-hildesheim.de

cases that have no additional contraindications in comparison with their prototypes are
erased. Only information about their occurred contraindications are saved in the frequency
table of their prototype.

When later on a new case is added to an already filled prototype, its frequency table,
which contains information about the frequency of the contraindications of its cases, has
to be updated and if necessary the contraindications of the prototype have to be
recomputed. If the (re-) computed contraindications of the prototype change, the suggested
antibiotic therapies have to be recomputed too. All cases must be inspected again for their
need to be stored.

Below an already existing prototype we create an "alternative" prototype if for the
latter enough cases exist (that means the threshold "number of cases" is reached), that have
at least one contraindication in common which the already existing prototype does not
include. We construct this new alternative prototype from those cases that share at least
one from the already existing prototype deviating contraindication. We place this new
prototype in the hierarchy directly below the existing prototype (a part of a possible
prototype hierarchy is shown in Fig. 5.). New "alternative" prototypes differ from their
superior prototypes by their contraindications and therefore by their sets of advisable
antibiotic therapies too.

Case - 1 Case - n

Prototype - J

Prototype - J , 1 Prototype - J, m

Cases and
Prototypes

Cases and
Prototypes

Fig. 5. Possible relationships of a prototype

Even the adaptation of an "empty case", that is a case without any contraindication and
therefore with an unrestricted set of advisable therapies, works faster than the normal
program flow. The most time-consuming step of the program flow without CBR is the
computation of advisable antibiotic combinations, because a lot of conditions have to be
checked, e.g. the current sensitivity situation for each pathogen in the expected pathogen
spectrum has to be considered for each antibiotic of each possible therapy combination.
So, when the first prototype of a tree is filled, we additionally generate an artificial
"empty case", which can be retrieved if no adaptable case can be found in this tree.

557Case-Based Reasoning for Antibiotics Therapy Advice

althoff@iis.uni-hildesheim.de

4.3. Results of our Experiments with Threshold Settings

For testing our prototype design, we used data of 21 postoperative lung infected
patients who on average had almost 1.5 contraindications. We varied the two threshold
parameters. For each variation the cases were entered in the same randomly chosen order.
Each time after entering all 21 cases we inspected the current system state. We looked at
the number of created prototypes, stored cases and realised adaptations of previous cases or
of prototypes. Though it must be considered that the state of our system is always subject
to the influence of random patient data, the sequence of their data input into the system,
and the choice of the inspection time, we believe that it is possible to make some general
statements on favourable settings of the two threshold parameters from the results of our
tests (Table 1.). Of course these statements depend on two desired goals: To increase the
number of adaptations and to decrease the number of stored cases and prototypes. As the
number of possible adaptations obviously increases with the number of stored cases and
prototypes, both goals are contrasting.

Table 1. Settings and consequences of threshold parameters

"minimum

 frequency"

(in %)

"number of

cases"

created

prototypes

stored cases realised

adaptations

33 2 5 7 3

33 3 5 14 7

33 4 4 15 7

33 5 2 17 6

25 2 4 3 1

25 3 3 8 4

25 4 3 15 6

25 5 1 18 4

20 3 2 5 2

20 4 1 10 2

20 5 1 14 4

- > 21 - 21 6

558 R. Schmidt, B. Pollwein, and L. Gierl

althoff@iis.uni-hildesheim.de

The effects of the two threshold parameters are as follows:

(1) The parameter "minimum frequency" determines how (relatively) often a
contraindication has to occur in the set of cases to be incorporated into the
prototype. Should for example just three cases form a prototype, then a "minimum
frequency" of 34% means, that only those contraindications are included in the
prototype, which exist in more than one case, while a lower "minimum frequency"
value would lead to the effect of "initial amnesia": All contraindications of the three
cases are included in the prototype, none of the three cases still shows any
additional contraindication in comparison with the prototype, and all three cases
will therefore be erased.

(2) The parameter "number of cases" determines the required number of cases that are
necessary to fill a prototype or to create an alternative prototype. The lower this
threshold the more prototypes are created and the less cases are stored.

When new cases are added to an already filled prototype, the observed contraindication
frequencies and therefore the filling of the prototype might change. One underlying idea is
to update the prototype, another idea is that a prototype should contain the typical (most
frequent) attributes of its cases. As a case forgotten once is lost forever, it may happen
that a case is assimilated (with the consequence of getting lost) by a prototype, but that
this prototype later changes in such a manner, that the case would have at least one
additional contraindication and would therefore be kept.

It can be seen, that the goal of increasing the number of adaptations can mainly be
achieved by a high "number of cases" value (so, many cases will be stored) and
additionally by a high "minimum frequency" percentage value. The goal of reducing the
number of stored cases can be achieved by the opposite strategy. And for a well balanced
compromise both parameter values should be set to a moderate intermediate value.

5. Conclusions

We have presented case-based techniques that are used in our antibiotics therapy
adviser. Some of them do not really belong to the CBR paradigm, but are rather typical
for the medical domain where information about diseases, pathogens, resistances etc. often
changes on time.

To solve the problem of the incremental growth of the case base we adopted ideas for
the prototype design from our diagnostic experiences. However, for this therapeutic
application they are not only advantageous, but have a slight drawback. Because on the
one hand, we accumulate typical characteristics of several cases into one single general
prototype, and on the other hand, we reduce the number of solutions using constraints, we
are confronted with two conflicting goals. A case is well adaptable if it shows as few
contraindications as possible. However, a case is deleted when it does not show additional
contraindications with respect to its prototype. Both opposing goals to increase the

559Case-Based Reasoning for Antibiotics Therapy Advice

althoff@iis.uni-hildesheim.de

number of adaptations and to decrease the storage amount can individually be achieved by
strategies to set the threshold parameter values.

So far only few CBR approaches to therapeutic tasks are known. Some of them use
prototypes as well [e.g. 10], some apply schemata [e.g. 14]. However, the uniqueness of
our prototype architecture results from the fact that the attributes, which are used to
determine similarity, are not responsible for the generation, but the restriction of
solutions.

5.1. Evaluation

First, we have evaluated the expected pathogen spectra and the resistance situation the
system starts with. We analysed the microbiological results of the last two years provided
by the microbiological laboratory. In addition to the information from literature and
publications only few pathogens had become resistant against some antibiotics. So a few
resistances had to be added. For testing the correctness and the quality of the proposed
therapies, we asked some experienced intensive care physicians to assess ICONS's
proposals. As the interobserver variability among the physicians concerning the
assessments of ICONS's therapy advice and concerning their own proposed therapies was
tremendous (some physicians thought very highly of ICONS's advice while others
assessed some proposed therapies as unsuitable), it is impossible to define any "golden
standard".

5.2. Future Work

In a new project we are going to improve the antibiotic therapy adviser mainly
concerning the visualisation of additional information such as the current sensitivity drift
on time. Furthermore, we will extend the system by a pharmacological component, which
should use CBR methods too, to optimise the individual dosage recommendation during
the whole therapy. So far ICONS provides only general initial dosage guidelines.

References
 1. Bueno-Cavanillas, A., Delgado-Rodriguez, M., Lopez-Luque, A., Schaffino-Cano, S.,

Galvez-Vargas, R.: Influence of nosocomial infection on mortality rate in an intensive
care unit. Crit Care Med 22 (1994) 55-60

 2. Stottler, R.H., Henke, A.L., King, J.A.: Rapid Retrieval Algorithms for Case-Based
Reasoning. International Joint Conference on Artificial Intelligence 11 (1989) 233-237

 3. Tversky, A.: Features of Similarity. Psychological Review 84 (1977) 327-352
 4. Smyth, B., Keane, M.T.: Retrieving Adaptable Cases: The Role of Adaptation Knowledge

in Case Retrieval. In: Richter, M.M., Wess, S., Althoff, K.-D., Maurer, F. (eds.): First
European Workshop on Case-Based Reasoning, University of Kaiserslautern (1993) 76-
81

 5. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity
assumption in reasoning. Artificial Intelligence 102 (1998) 249-293

 6. Schank, R.C.: Dynamic Memory: A Theory of Learning in Computer and People.
Cambridge University Press, New York (1982)

 7. Bareiss, R.: Exemplar-based Knowledge Acquisition. Academic Press, San Diego (1989)

560 R. Schmidt, B. Pollwein, and L. Gierl

althoff@iis.uni-hildesheim.de

 8. Evans, C.D.: A case-based for diagnosis and avalying of dysmorphic syndromes. In: van
Bemmel, J.H., McCray, A.T. (eds.): Yearbook of Medical informatics, Schattauer-Verlag,
Stuttgart (1996), 473-483

 9. Turner, R.: Organizing and Using Schematic Konwledge for Medical Diagnosis. In:
Kolodner J.L. (ed.): Proceedings Case-Based Reasoning Workshop, Morgan Kaufmann
Publishers, San Mateo (1988) 435-446

10. Bichindaritz, I.: From Cases to Classes: Focusing on Abstraction in Case-Based
Reasoning. In: Burkhard, H.-D., Lenz, M. (eds.): 4th German Workshop on Case-Based
Reasoning, Humboldt University Berlin (1996) 62-69

11. Bellazzi, R., Montani, S., Portinale, L.: Retrieval in a Prototype-Based Case Library: A
Case Study in Diabetes Therapy Revision. In: Smyth, B., Cunningham, P. (eds.): 4th
European Workshop on Case-Based Reasoning, Lecture Notes in Artificial Intelligence
Vol. 1488, Springer Verlag, Berlin Heidelberg New York (1998) 64-75

12. Gierl, L., Stengel-Rutkowski, S.: Integrating Consultation and Semi-automatic
Knowledge Acquisition in a Prototype-based Architecture: Experiences with Dysmorphic
Syndromes. Artificial Intelligence in Medicine 6 (1994) 29-49

13. Rosch, E., Mervis, C.B.: Family resemblances: studies in the structure of categories.
Cognitive Psychologie 7 (1975) 573-605

14. Schwartz, A.B., Barcia, R.M., Martins, A., Weber-Lee, R.: PSIQ - A CBR Approach to the
Mental Health Area. In: Bergmann, R., Wilke, W. (eds.): 5th German Workshop on Case-
Based Reasoning, University of Kaiserslautern (1997) 217-223

561Case-Based Reasoning for Antibiotics Therapy Advice

althoff@iis.uni-hildesheim.de

Surfing the Digital Wave

Generating Personalised TV Listings
using Collaborative, Case-Based Recommendation

Barry Smyth & Paul Cotter

Department of Computer Science
University College Dublin
Belfield, Dublin 4, Ireland

{Barry.Smyth, Paul.Cotter}@ucd.ie

Abstract. In the future digital TV will offer an unprecedented level of
programme choice. We are told that this will lead to dramatic increases in
viewer satisfaction as all viewing tastes are catered for all of the time. However,
the reality may be somewhat different. We have not yet developed the tools to
deal with this increased level of choice (for example, conventional TV guides
will be virtually useless), and viewers will face a significant and frustrating
information overload problem. This paper describes a solution in the form of
the PTV system. PTV employs user profiling and information filtering
techniques to generate web-based TV viewing guides that are personalised for
the viewing preferences of individual users. The paper explains how PTV
constructs graded user profiles to drive a hybrid recommendation technique,
combining case-based and collaborative information filtering methods. The
results of an extensive empirical study to evaluate the quality of PTV’s case-
based and collaborative filtering strategies are also described.

1 Introduction

With the advent of new cable and satellite services, and the next generation of digital
TV systems, we will soon be faced with an unprecedented level of programme choice.
Where we have tens of TV channels today, tomorrow we will have hundreds, and
soon after that it will be thousands. If we believe the hype, we are entering a new age
of television viewing, an age of incredible choice and unprecedented viewing
satisfaction. However, while increased programme choice does offer the potential for
improved viewing satisfaction, the reality may be somewhat different. We have not
yet developed the tools to deal with this new level of choice, and it will become
increasingly difficult to find out what programmes are on in a given week, never mind
locating a small set of relevant programmes for a quiet evening’s viewing.

Consider for example the traditional TV guide, listing programming information
on local channels for up to a week in advance. The days of a slim, easy to digest 30
page volume are essentially gone. Looking to the US for a sign of things to come we

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 561-571, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

notice, with some consternation, that the current issue of the TV Guide (that weekly
bible for American channel surfers) runs to nearly 400 pages of indigestible schedule
charts. Moreover, the way that we interact with our TV sets will also have to change.
Those rapid “remote-controlled surfs”, that prove so effective (and so irritating to
your partner) for 10 or 20 channels, will no longer be a viable means of finding out
what is on at a given time. A 10 second per channel surf over even a modest 200
channel service will take about 35 minutes to complete! The digital TV vendors do
recognise this as a serious information overload problem, and in response they are
now offering electronic programme guides to help users to navigate this digital maze.
However, these guides are relatively crude and offer little more than a static category
based view of the evenings programming; the burden of search remains with the user.

This paper describes the PTV system (http://ptv.ucd.ie), which offers a working
solution to the problem of locating relevant programme information quickly and
easily. PTV combines user profiling and case-based reasoning (CBR) techniques to
generate electronic TV viewing guides that are carefully personalised for the viewing
preferences of individual users ([2, 6, 7]). At the present time, these electronic guides
are Web based and delivered over the Internet to desktop PCs, but of course the
advent of WebTV and cable-internet services will allow PTV to deliver personalised
programme information directly to the TV set.

The remainder of this paper is organised in the following way. The next section
provides an overview of the PTV system, describing its various sources of knowledge
and main functional components. Section 3 focuses on PTV’s user profiling and case-
based recommendation strategy. Before concluding, section 4 reports the results of an
extensive empirical study to evaluate the quality of the personalised programme
guides that are produced, and the effectiveness of the case-based and collaborative
recommendation strategies. Finally, a new appendix has been added to indicate the
current state of the PTV system including the results of a recent online survey that add
further support to the PTV concept and, we believe, paves the way for the use of
collaborative, case-based recommendation methods in a wide range of personalised
media service in the future.

2 The PTV System

PTV is a client-server system operating over the Web, allowing users to register,
login, and view their personalised TV guides as specially customised Web pages. The
architecture of PTV is shown in Figure 1. A standard Web browser provides the
required client functionality, and all user interaction is handled via the HTML Forms
interface. The heart of PTV lies with its server-side components, which handle all the
main information processing functions such as user registration and authentication,
user profiling, guide compilation, and the all-important programme recommendation
and grading.

In the following sections we will concentrate on user profiling in PTV, focusing on
how these profiles are used to deliver personalised content and, in particular, how
PTV can make intelligent recommendations to PTV subscribers. However, in this

562 B. Smyth and P. Cotter

althoff@iis.uni-hildesheim.de

section we will provide a suitable backdrop for these future discussions by taking a
broad look at the form and function of PTV’s main components.
Profile Database & Profiler: The key to PTV’s personalisation facility is an accurate
database of user profiles. Each user profile encodes the TV preferences of a given
user, listing channel information, preferred viewing time, liked and disliked
programmes, subject preferences, etc (see Figure 1). Preliminary profile information
is collected from the user at registration time in order to bootstrap the personalisation
process. However, the majority of information is learned from grading feedback
provided by the user; each recommended programme is accompanied with grading
icons allowing the user to explicitly evaluate the proposed recommendation (see also
section 3.1).

Programme
Case-Base

User
Profiles

Schedule
Database

Recommender

Guide Compiler

P T V G U I D E G E N E R A T O R

P T V S E R V E R

Guide Server

Selected
Programmes

Web-Based
Schedule
Databases

FRIENDS

Genre

Country
Language
Cast

 :

Comedy
Drama
USA
English
Jennifer Aniston
Courtney Cox
 : :

USER #1762

Channels

+Progs
-Progs

Keywords
Times

 :

BBC1, BBC2,...

Friends, ER, …
Eastenders, ...

Comedy, Science
PrimeTime
 : :

Schedule Entry # 1276

Prog
Channel
Date
Start
End

Text

Friends
RTE 1 …
18/5/98
20:25
20:55

Comedy from
the makers of ...

Profiler

P T V C L I E N T

Fig. 1. An overview of the PTV system.

Programme Case-Base: This database contains the programme content descriptions
(programme cases). Each entry describes a particular programme using features such
as the programme title, genre information, the creator and director, cast or presenters,
the country of origin, and the language; an example programme case for the comedy

563Surfing the Digital Wave

althoff@iis.uni-hildesheim.de

‘Friends’ is shown in Figure 1. This information repository is crucial for the case-
based recommendation component of PTV (see Section 3.2).
Schedule Database: This database contains TV listings for all supported channels.
Each listing entry includes details such as the programme name, the viewing channel,
the start and end time, and typically some text describing the programme in question
(see the schedule entry example in Figure 1). The schedule database is constructed
automatically from online schedule resources (e.g., online teletext pages and static
entertainment guides) by PTV’s schedule agents. Each agent is designed to mine a
particular online resource for relevant schedule information and the results of these
many parallel searches is the compilation of a rich schedule database.

Recommender: The recommendation component is the intelligent core of PTV. Its
job is to take user profile information and to select new programmes for
recommendation to a user. In the next section we will explain how PTV uses a hybrid
recommendation approach that combines case-based and collaborative
recommendation strategies (see section 3.2 and 3.3).

Guide Compiler: To compile a personalised TV guide for a given date and user,
PTV constructs two programme lists: (1) a list consisting of those programmes listed
as positive in the user’s profile, along with those programmes selected for
recommendation (which of course do not occur in the profile); (2) a list of all
programmes to be aired on the specified date by a channel listed in the user’s profile.
The intersection of these two lists is the set of programmes that will be used to
compile the user’s personalised guide. The guide itself is a HTML page that is
dynamically produced by drawing on programme and schedule information from the
appropriate databases.

3 A Hybrid Information Filter

Ultimately the success of PTV will be measured in terms of the quality of its
personalised guides, and this in turn depends on the quality of the user profiles and
recommendation strategies that drive the guide compilation process. PTV harnesses
two recommendation strategies to base its recommendations on the programmes that a
given user has liked in the past (case-based or content-based) and on the programmes
that similar users like (collaborative). In this section we look at PTV’s profiling and
recommendation components in more detail.

3.1 User Profiling for Programme Recommendation

In PTV each user profile contains two types of information, domain preferences and
programme preferences. The former describe general user preferences such as a list of
available channels, preferred viewing times, subject keywords, in addition to guide
preferences such as whether guide programmes are to be sorted according to viewing
time or channel. Programme preferences are represented as two lists of programme
titles, a positive list containing programmes that the user has liked in the past, and a
negative list containing programmes that the user has disliked.

564 B. Smyth and P. Cotter

althoff@iis.uni-hildesheim.de

At registration time a new user is invited to provide basic information including
domain and programme preferences. This initial profile is needed to bootstrap the
recommendation process, but usually only constitutes a restricted snapshot of a user’s
preferences. The left-hand screen shot of Figure 2 shows part of the user profile input
screen used to gather explicit user information during registration time; indeed users
can also use this facility to display and manually edit their own profile.

Grading
Icons

P
ro

fi
le

 A
da

pt
er

Channel/Time
Updates

Programme
Updates

+

Registration PTV Guide Server

Personalised GuidePreferences Input

Fig. 2. User profiles and feedback

Of course while manual profile editing has its advantages (usually in terms of profile
accuracy) it is a burden for users. In particular, we have found that users are happy to
provide complete domain preferences but tend to provide only limited programme
preferences. For this reason, PTV includes an automatic profile update facility that is
driven by direct user feedback through a set of grading icons listed beside
recommended guide programmes. PTV’s profiler can use this feedback information to
automatically alter a user’s profile in a number of ways. The simplest modification is
to update the programme preference lists by adding positively or negatively graded
programmes to the appropriate list. However, the domain preferences can also be
altered. For example, viewing time preferences can be adjusted if a user frequently
prefers prime-time programmes to morning shows. This long-term feedback
connection between user and system is vital if PTV is to maintain an accurate picture
of each user over time.

565Surfing the Digital Wave

althoff@iis.uni-hildesheim.de

3.2 Case-Based Recommendation

The basic philosophy in case-based recommendation is to recommend items that are
similar to those items that the user has liked in the past (see also [1, 5, 11]). For PTV,
this means recommending programmes that are similar to the programmes in the
positive programme list and dissimilar to those in the negative programme list. Three
components are needed for case-based-recommendation: (1) content descriptions for
all TV programmes (see the programme case-base in section 2 and Figure 1); (2) a
compatible content description of each user’s profile; (3) a procedure for measuring
the similarity between a programme and a user.

PTV’s programme case-base has already been outlined in section 2 and an example
case is shown in Figure 1. Each case is described as a set of features and the similarity
between two cases can be defined as the weight sum of the similarity between
corresponding case features. However, there is no direct means of computing the
similarity between a case and a user profile, as user profiles are not described as a set
of case features. Instead each raw user profile is converted into a feature-based
representation called a profile schema. Basically, the profile schema corresponds to a
content summary of the programme preferences contained in a user profile, encoded
in the same features as the programme cases. The similarity between a profile and a
given programme case can then be computed using the standard weighted-sum
similarity metric as shown in equation 1; Where fi

Schema(u) and fi
p are the ith features of

the schema and the programme case respectively.

()() () f ,fsimw,puSchemagSimPr .1 p
i

Schema(u)
ii∑ •=

The main problem associated with case-based methods is the knowledge-engineering
effort required to develop case representations and sophisticated similarity models. In
addition, because case-based methods make recommendations based on item
similarity, the newly recommended items tend to be similar to the past items leading
to reduced diversity. In the TV domain this can be a significant problem as we may
find that all a user’s recommendations are, for example, comedies if the majority of
profile programmes are comedies.

3.3 Collaborative Recommendation

Collaborative recommendation methods such as automated collaborated filtering are
an alternative to case-based techniques. Instead of recommending new programmes
that are similar to the ones that the user has liked in the past, we recommend
programmes that other similar users have liked ([1, 3, 4, 8 ,9, 10]). Rather than
compute the similarity between items, we compute the similarity between users, or
more precisely the similarity between user profiles. Note that we have opted for a
lazy-approach to collaborative filtering rather than the more traditional eager
approach where the user-base is pre-processed in to virtual communities prior to
recommendation. So the recommendations for a target user are based on the viewing
preferences of k similar users.

566 B. Smyth and P. Cotter

althoff@iis.uni-hildesheim.de

PTV computes user similarity by using a simple graded difference metric shown in
equation 2; where p(u) and p(u’) are the ranked programmes in each user’s profile,

and)p(r u
i is the rank of programme pi in profile u. The possible grades range from –2

to +2 and missing programmes are given a default grade of 0. Of course this is just
one possible similarity technique that has proved useful in PTV, and any number of
techniques could have been used, for example statistical correlation techniques such
as Pearson’s correlation coefficient (see eg., [3, 10]).

() ()
() ()

() ()’upup4

prpr

)’u,u(fSimPr 2. ’upup

’u
i

u
i

∪•

−

=
∑
∪

() ()∑
∈

=
U’u

’u,ufSimPru,pgRankPr 3.

Once PTV has selected k similar user profiles for a given target user, a
recommendation list is formed from the programmes in these similar profiles that are
absent from the target profile. This list is then ranked and the top r programmes are
selected for recommendation. The ranking metric is shown in equation 3; U is the
subset of k nearest profiles to the target that contain a programme p. This metric
biases programmes according to their frequency in the similar profiles and the
similarity of their recommending user. In this way popular programmes that are
suggested by very similar users tend to be recommended.

Collaborative filtering is a powerful technique that solves many of the problems
associated with case-based methods. For example, there is no need for content
descriptions or sophisticated case similarity metrics. In fact, high quality
recommendations, that would ordinarily demand a rich content representation, are
possible. Moreover, recommendation diversity is maintained as relevant items that are
dissimilar to the items in a user profile can be suggested.

Collaborative filtering does suffer from a number of shortcomings. There is a
startup cost associated with gathering enough profile information to make accurate
user similarity measurements. There is also a latency problem in that new items will
not be recommended until these items have found their way into sufficiently many
user profiles. This is particularly problematic in the TV domain because new and one-
off programmes occur regularly and do need to be considered for recommendation
even though these programmes will not have made it into any user profiles.

The key to PTV’s success is the use of a combined recommendation approach. For
a given guide, a selection of programmes is suggested, some are case-based
recommendations (including new or one-off programmes) while others are
collaborative recommendations. In particular, recommendation diversity is ensured
through the use of collaborative filtering and the latency problem can be solved by
using case-based methods to recommend new or one-off programmes.

567Surfing the Digital Wave

althoff@iis.uni-hildesheim.de

4 Experimental Studies

PTV’s normal mode of operation involves the generation of daily personalised TV
guides containing a list of programme recommendations predicted to be of interest to
each user. Guides contain, on average, 3 new recommendations per day. The hope is
that all of these recommendations will be relevant, but of course the reality will
inevitably be somewhat different. In this experiment we look at the gradings that
users provided for the programme recommendations that they received in their daily
guides. The primary question to be answered is whether or not users consider PTV’s
recommendations to be useful; that is, how often are the recommendations graded as
relevant? In addition we are interested in comparing the recommendation quality of
collaborative and case-based techniques.

4.1 Setup

The following results are based on an online evaluation by PTV users (mostly
students and staff from University College Dublin and Trinity College Dublin) during
March 1998. At this time the PTV system contained a population of approximately
200 users and a case-base of 400 programmes, which provided about 30% coverage
of a typical week of television, and about 60% coverage of the prime-time viewing
slots. During the experimental period a total of 2000 individual programme guides
were requested. Each guide contained 3 new programme suggestions generated using
either a collaborative approach or a case-based approach. This allows us to
independently assess the relative competence of the collaborative filtering and case-
based approaches. In addition, we generated guides by picking programme
suggestions at random. These guides provide us with a basic benchmark against
which to judge the quality of our two recommendation strategies.

4.2 Method

Each time a new programme is recommended as part of a personalised guide, the user
is invited to grade the recommendation on a 5 point scale ranging from –2 (terrible)
through 0 (no comment) to +2 (an excellent suggestion). These gradings are the raw
data for the experiment; each grading encodes the username, the programme name,
the date, the grade itself, and whether the recommendation was a case-based one or a
collaborative filtering one. Over the experimental period a total of approximately
1000 individual gradings were saved from 100 different users; on average each user
was submitting 10 grades over the test period. This provided us with three sets of
data: (1) the grades associated with case-based recommendations; (2) the grades
associated with collaborative filtering recommendations; (3) the grades associated
with random recommendations.

568 B. Smyth and P. Cotter

althoff@iis.uni-hildesheim.de

4.3 Results

The quality of PTV’s suggestions could be measured in any number of ways. For
example, we could simply calculate the average grade assigned to collaborative, case-
based, and random recommendations. However, we feel a better approach is to look at
recommendation quality in the context of individually generated guides. For this
reason our approach is to take each guide in turn, and to count the percentage of users
that received ‘n’ or more good recommendations per day. This allows us to count the
number of users that received at least 1, 2, or 3 good recommendations per day, which
to our minds is a far better way of evaluating recommendation success in this setting.
The results are displayed in Figure 3. Clearly, the results for PTV are very positive
with 96% and 78% of users receiving at least one good new programme suggestion
per day, depending on whether the guide was generated using collaborative filtering
techniques or case-based methods. By comparison only 27% of users found one of the
random recommendations to be worth watching. In fact, the results show that PTV
recommended 3 good programmes a day more often than the random method
recommended 1 good programme (42% or 32% versus 27%).

78

27

51

32

3
0

0

10

20

30

40

50

60

70

80

90

100

1 2 3

>= n Good Recommendations per Guide

P
er

ce
nt

ag
e

of
 U

se
rs

Content
Random

Collab.

96

64

42

Fig. 3. PTV Guide Quality Results

TV programme recommendation is a difficult task. Viewers display extremely varied,
and often inconsistent, viewing preferences and patterns. In addition,
recommendations for a given guide on a given day are drawn from a limited set.
There may be very few programmes scheduled for a particular day that suit a given
user. Therefore, the results presented here bode extremely well for PTV’s long-term
recommendation prospects. Both collaborative and case-based methods have been
shown to perform extremely well, and form an ideal partnership in PTV to ensure the
recommendation of a diverse range of regular and new programmes.

569Surfing the Digital Wave

althoff@iis.uni-hildesheim.de

These experiments represent an initial attempt at evaluation and admittedly the use of
random recommendations as an evaluation benchmark is quite limited – it is easy to
imagine more sophisticated benchmarks. However, in the Appendix we provide
additional support in favour of PTV compiled from an extended user trial during
March 1999.

5 Conclusions

As the latest satellite and digital TV services beam hundreds (and soon, thousands) of
TV channels into our homes, we are faced with a significant choice problem, and the
job of finding the right TV programme at the right time becomes increasingly
difficult. In fact, instead of witnessing an increase in viewer satisfaction, some
commentators have predicted quite the opposite, as viewers fail to come to grips with
the new range of channels and fall into channel-hopping oblivion. In this paper we
have described one possible solution to the problem, a solution that involves
automatically generating personalised TV guides for individuals based on their
learned viewing preferences, each guide containing information about a select set of
programmes that are relevant to a particular user.

We have explained how the PTV system uses a hybrid approach to
recommendation, which combines collaborative and case-based techniques to make
high quality and diverse programme recommendations, and encompassing the
recommendation of new or one-off programmes as well as regular programmes. We
have also presented an evaluation of the system to demonstrate the effectiveness of
PTV’s recommendation components and to examine the separate contributions of the
collaborative filtering and the case-based strategies.

Recently the AI community has been challenged to solve the task of automatically
producing dynamic and personalised Web content (IJCAI-1997 Challenge). PTV’s
hybrid recommendation approach represents a direct response to this challenge. The
initial results in the TV domain suggest a promising future for this approach in a wide
range of information filtering and personalisation tasks.

Appendix

Initially the PTV project started life as a demonstration of what we saw as an
important idea, namely that, in general, Internet content could be effectively
personalised for the needs of individuals, and more specifically that users could
receive accurate personalised TV guides to help them cope with the onslaught of
digital TV. Since going live, and without significant advertising or marketing, the
PTV system has attracted and profiled over 5000 registered users (growing by 500 -
1000 users per month) and over 15,000 personalised TV guides per month.

The following charts summarise the relevant results of a recent user survey carried
out during March 1999. In particular they indicate that the recommendation approach
is producing good quality guides at an acceptable speed thus supporting the claim that

570 B. Smyth and P. Cotter

althoff@iis.uni-hildesheim.de

collaborative, case-based recommendation provides an effective and efficient
personalisation technique.

Good
57%

Satisfactory
36%

Poor
7%

Good
52%Satisfactory

36%

Poor
12%

Guide Quality Speed

References

1. Balabanovic M., Shoham Y.: FAB: Content-Based Collaborative Recommender.
Communications of the ACM, 40(3) (1997) 66-72

2. Baudisch, P.: Recommending TV Programs: How far can we get at zero effort. In:
Proceedings of the AAAI-98 Workshop on Recommender Systems, Wisconsin, USA,
(1998) 16-19

3. Billsus, D. & Pazzani, M. J.: Learning collaborative Information Filters. In: Proceedings of
the International Conference on Machine Learning, Wisconsin, USA, (1998)

4. Goldberg D., Nichols D., Oki B. M., Terry D.: Using Collaborative Filtering to Weave an
Information Tapestry. Communications of the ACM, 35(12) (1992) 61-70

5. Hammond, K. J., Burke, R., and Schmitt, K.: A Case-Based Approach to Knowledge
Navigation. In: (Leake, D.B, ed.) Case-Based Reasoning Experiences Lessons and Future
Directions, MIT Press, (1996) 125-136

6. Jennings, A. & Higuchi, H.: A user model neural network for a personal news service. User
Modeling and User-Adapted Information, 3(1) (1993).1-25

7. Kay J.: Vive la Difference! Individualised Interaction with Users. In: Proceedings IJCAI
’95, Montréal, Canada, (1995). 978-984

8. Konstan J. A., Miller B. N., Maltz D., Herlocker J. L., Gordan L. R., Riedl J.: Grouplens:
Applying Collaborative Filtering to Usenet News. Communications of the ACM, 40(3)
(1997) 77-87

9. Maltz D., Ehrlich K.: Pointing the Way: Active Collaborative Filtering. In: Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI ’95) ACM Press, New
York, N.Y., (1995). 202-209

10.Shardanand, U. & Maes, P.: Social Information Filtering:Algorithms for Automating ‘Word
of Mouth’. In: Proceedings of the Conference on Human Factors in Computing Systems
(CHI95), ACM Press, New York, N.Y., (1995). 210-217

11.Watson, I., Applying Case-Based Reasoning: Techniques for Enterprise Systems, Morgan-
Kaufmann, (1997)

571Surfing the Digital Wave

althoff@iis.uni-hildesheim.de

&DVH�%DVHG 4XDOLW\ 0DQDJHPHQW 6\VWHP XVLQJ

([SHFWDWLRQ 9DOXHV

+LURND]X 7DNL
�� 6DWRVKL +RUL�� DQG 1RULKLUR $EH�

�:DND\DPD 8QLYHUVLW\� 6\VWHPV (QJLQHHULQJ 'HSDUWPHQW� ��� 6DNDH�GDQL�
:DND\DPD� -DSDQ

WDNL#V\V�ZDND\DPD�X�DF�MS
�0LWVXELVKL (OHFWULF &RUSRUDWLRQ� 0DQXIDFWXULQJ 7HFKQRORJ\ &HQWHU�

����� 7VXNDJXFKL�+RQPDFKL� $PDJDVDNL +\RJR� -DSDQ
KRUL#LQW�PGO�PHOFR�FR�MS

�.\XVKX ,QVWLWXWH RI 7HFKQRORJ\� ,QIRUPDWLRQ (QJLQHHULQJ 'HSDUWPHQW�

����� .DZD]X� ,L]XND�6KL�)XNXRND� -DSDQ
DEH#VHLQ�PVH�N\XWHFK�DF�MS

$EVWUDFW� 7KLV SDSHU GHVFULEHV D TXDOLW\ PDQDJHPHQW V\VWHP �FDOOHG &%40� &DVH�

%DVHG 4XDOLW\ 0DQDJHPHQW� XVLQJ WKH FDVH�EDVHG UHDVRQLQJ PHFKDQLVP ZKLFK LV

EDVHG RQ D FRVW H[SHFWDWLRQ YDOXH� 7KH FRVW H[SHFWDWLRQ YDOXH LV FDOFXODWHG IURP

REMHFWLYH DQG VXEMHFWLYH YDOXHV� :H GHYHORSHG D TXDOLW\ PDQDJHPHQW V\VWHP WKDW

HPSOR\V D VWRFKDVWLF PHWKRG� +RZHYHU� LQ VRPH FDVHV� WKLV VWRFKDVWLF�EDVHG V\VWHP

IDLOHG WR VHOHFW JRRG FDVHV� 7KHUHIRUH� ZH KDYH LQWHJUDWHG VRPH H[SHFWDWLRQ YDOXHV

LQWR WKH FDVH VHOHFWLRQ PHFKDQLVP� 7KH &%40 KDV DQ H[SHFWDWLRQ PHDVXUHPHQW� ,WV

FDVH VHOHFWLRQ FULWHULD XVH QRW RQO\ VLPLODULW\� EXW DOVR VRPH H[SHFWDWLRQ YDOXHV� ,I

XQIRUHVHHQ PDOIXQFWLRQV PD\ RFFXU GXH WR LQDSSURSULDWH GHVLJQ� PDQXIDFWXULQJ

FRQGLWLRQ DQG�RU XQVXLWDEOH XVDJH� WKH VLPLODULW\ LV QRW HQRXJK WR VHOHFW XVHIXO FDVHV
IURP D FDVHEDVH� 7KDW LV EHFDXVH WKH VLPLODULW\ LV PDLQO\ EDVHG RQ SURGXFWV

WKHPVHOYHV� 7KH &%40 DGRSWV WKH FRVW H[SHFWDWLRQ YDOXH LQ RUGHU WR SLFN XS XVHIXO

FDVHV� 7KH &%40©V VHOHFWLRQ FULWHULD LV EDVHG RQ WKH TXDOLW\ RI FDVHV� ZKLFK FRQVLGHUV

UHSDLU WLPH� UHSDLU SDUW FRVW� WURXEOH UHFXUUHQFH� WKH FRQILGHQFH RI GLDJQRVLV DQG UHSDLU

GLIILFXOW\� :H YDOLGDWHG WKLV V\VWHP LQ UHDO SURGXFW UHSDLU SUREOHPV ZKLFK ILHOG VHUYLFH

HQJLQHHUV UHSDLU KRPH DSSOLDQFHV�

� ,QWURGXFWLRQ

7KH FDVH�EDVHG UHDVRQLQJ� &%5� LV YHU\ VXLWDEOH IRU GLDJQRVLV RI KRPH DSSOLDQFHV�

+RZHYHU� WKH VLPLODULW\ IXQFWLRQ RI WKH FRQYHQWLRQDO &%5 LV QRW HQRXJK LQ RUGHU WR

VHOHFW DSSURSULDWH UHSDLU FDVHV IURP D FDVHEDVH� ,W LV QHFHVVDU\ WR HQDEOH WKH FDVH

VHOHFWLRQ PHFKDQLVP WR FRQVLGHU QRW RQO\ WKH V\PSWRP VLPLODULW\ EXW DOVR UHSDLU WLPH�

WURXEOH UHFXUUHQFH DQG VR RQ� 7KLV VHFWLRQ GHVFULEHV ZK\ WKH &%5 LV XVHIXO IRU WKH

ILHOG VHUYLFH GRPDLQ DQG WKH QHFHVVLW\ RI LQWURGXFLQJ WKH FRVW H[SHFWDWLRQ YDOXH�

���)LHOG VHUYLFH DQG &%5

)LHOG VHUYLFH LV QRZ UHFRJQL]HG DV RQH RI WKH PRVW LPSRUWDQW FRUSRUDWH DFWLYLWLHV

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 572-580, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

IRU PDQXIDFWXULQJ LQGXVWULHV LQ RUGHU WR LPSURYH FXVWRPHU VDWLVIDFWLRQ DQG WR

VXFFHVVIXOO\ WDNH RQ JOREDO FRPSHWLWLRQ>�@>�@� &RPSHWLWLYH ILHOG VHUYLFH RXJKW WR KDYH

ZHOO�WUDLQHG VHUYLFH WHFKQLFLDQV� VHUYLFH SDUWV� DQG WHFKQLFDO LQIRUPDWLRQ� 7KH GHPDQG

IRU WHFKQLFDO LQIRUPDWLRQ� ZLWK ZKLFK VHUYLFH WHFKQLFLDQV WURXEOHVKRRW DQG UHSDLU� KDV

HVSHFLDOO\ EHHQ LQFUHDVLQJ EHFDXVH KRPH HOHFWULFDO DSSOLDQFHV DUH EHFRPLQJ PRUH

FRPSOLFDWHG LQ WKHLU IXQFWLRQV DQG WKH QXPEHU RI PRGHOV LV LQFUHDVLQJ� 7KHUHIRUH DQ

LQWHOOLJHQW LQIRUPDWLRQ V\VWHP WKDW FDQ VXSSRUW VHUYLFH WHFKQLFLDQV WR GLDJQRVH DQG
UHSDLU HIILFLHQWO\ KDV EHHQ NHHQO\ GHPDQGHG� :H GHYHORSHG D GLDJQRVWLF LQWHOOLJHQW

V\VWHP>��@ � ZKLFK LQIHUV SRVVLEOH GHIHFWV LQ D KRPH HOHFWULFDO DSSOLDQFH DQG OLVWV XS

QHFHVVDU\ VHUYLFH SDUWV� 7KLV V\VWHP HPSOR\HG &%5� FDVH�EDVHG UHDVRQLQJ

PHFKDQLVP� 7KH FDVH VHOHFWLRQ PHFKDQLVP RI LWV &%5 LV EDVHG RQ WKH VLPLODULW\ RI

V\PSWRPV DQG WKH FDVH IUHTXHQF\� L�H�� KRZ PDQ\ WLPHV WKLV FDVH RFFXUUHG>��@>��@�

7KH &%5 LV VXLWDEOH WR EXLOG D GLDJQRVWLF V\VWHP IRU ILHOG VHUYLFH EHFDXVH WKH &%5

LPLWDWHV KRZ D H[SHULHQFHG VHUYLFH WHFKQLFLDQ LQIHUV DQG LV DEOH WR OHDUQ GHIHFW WUHQGV

DQG QRYHO UHSDLU FDVHV IURP WKH GDWDEDVH RI VHUYLFH UHSRUWV�

��� %HQHILWV RI XVLQJ &%5 WHFKQLTXHV
$ FRPSOHWH� DFFXUDWH DQG XSGDWHG NQRZOHGJH EDVH LV HVVHQWLDO IRU DQ H[SHUW V\VWHP

WR FRQGXFW DFFXUDWH GLDJQRVLV� +RZHYHU PDNLQJ D JRRG NQRZOHGJH EDVH LV D WLPH

FRQVXPLQJ DQG GLIILFXOW SURFHVV� 7KHUHIRUH WKH NQRZOHGJH DFTXLVLWLRQ KDV EHHQ

UHFRJQL]HG DV D ERWWOHQHFN RI FRQYHQWLRQDO H[SHUW V\VWHPV ZKLFK DGRSW D SURGXFWLRQ

UXOH EDVH� 0RGHO�EDVHG UHDVRQLQJ>�@� UXOH LQGXFWLRQ>�@DQG FDVH�EDVHG UHDVRQLQJ >�@
KDYH EHHQ SURSRVHG WR RYHUFRPH WKLV ERWWOHQHFN� 7KH &%5 KDV EHHQ HPSOR\HG IRU

VHYHUDO GLDJQRVWLF V\VWHPV>�@>�@� EHFDXVH SUHYLRXV WURXEOHVKRRWLQJ H[SHULHQFH LV

RIWHQ DYDLODEOH LQ WKH ILHOG RI GLDJQRVLV�

7KH PDMRU DGYDQWDJHV RI HPSOR\LQJ WKH &%5 WR WKH ILHOG VHUYLFH GLDJQRVLV DUH�

�� $YRLG WKH NQRZOHGJH DFTXLVLWLRQ ERWWOHQHFN RI WKH UXOH�EDVHG H[SHUW V\VWHPV�

�� 0LPLF WKH GLDJQRVWLF DELOLW\ RI H[SHULHQFHG VHUYLFH WHFKQLFLDQV ZKR FDQ LQIHU D

PDOIXQFWLRQ FDXVH DFFXUDWHO\ IURP WKHLU GLDJQRVWLF NQRZOHGJH DQG H[SHULHQFH�

�� ([SORLW FRPSXWHU ILOHV RI WHQV RI WKRXVDQGV RI UHSDLU UHSRUWV� :H FDQ OHDUQ GHIHFW

WUHQGV DQG QRYHO UHSDLU FDVHV IURP WKH UHSDLU UHSRUW GDWDEDVH�

��� &RVW ([SHFWDWLRQ 9DOXH IRU &%5
7KHUH DUH VRPH VXFFHVVIXO &%5 V\VWHPV>��@>��@>��@ WKDW HPSOR\V D VWRFKDVWLF

PHWKRG� 7KH VWRFKDVWLF PHWKRG XWLOL]HV WKH VLPLODULW\ DQG SUREDELOLVWLF PHDVXUHPHQWV

LQ WKH FDVH VHOHFWLRQ� +RZHYHU� LW KDV WXUQHG WR EH QHFHVVDU\ WR XWLOL]H EDFNJURXQG

NQRZOHGJH� H�J�� UHSDLU FRVW� ORVV FRVW RI D EURNHQ SURGXFW� 7KHVH IDFWRUV DUH

FRQVLGHUHG LQ D FRVW H[SHFWDWLRQ YDOXH LQ RXU QHZ TXDOLW\ PDQDJHPHQW V\VWHP �FDOOHG

&%40� &DVH�%DVHG 4XDOLW\ 0DQDJHPHQW�� 7KH &%40 DGRSWV WKH FRVW H[SHFWDWLRQ

YDOXH LQ RUGHU WR SLFN XS XVHIXO FDVHV� :H KDYH LQWHJUDWHG VRPH H[SHFWDWLRQ YDOXHV

LQWR WKH FDVH VHOHFWLRQ PHFKDQLVP� ,WV FDVH VHOHFWLRQ FULWHULD XVH QRW RQO\ VLPLODULW\�

EXW DOVR VRPH H[SHFWDWLRQ YDOXHV� ,I XQIRUHVHHQ PDOIXQFWLRQV PD\ RFFXU GXH WR

LQDSSURSULDWH GHVLJQ� PDQXIDFWXULQJ FRQGLWLRQ DQG�RU XQVXLWDEOH XVDJH� WKH VLPLODULW\

LV QRW HQRXJK WR VHOHFW XVHIXO FDVHV IURP D FDVHEDVH� 7KDW LV EHFDXVH WKH VLPLODULW\ LV

EDVHG PDLQO\ RQ SURGXFW GHVLJQ� 7KH &%40 DGRSWV WKH FRVW H[SHFWDWLRQ YDOXH LQ
RUGHU WR SLFN XS XVHIXO FDVHV� 7KH &%40©V VHOHFWLRQ FULWHULD LV EDVHG RQ WKH TXDOLW\ RI

573Case-Based Quality Management System Using Expectation Values

althoff@iis.uni-hildesheim.de

FDVHV� ZKLFK FRQVLGHUV UHSDLU WLPH� UHSDLU SDUW FRVW� WURXEOH UHFXUUHQFH� WKH FRQILGHQFH

RI GLDJQRVLV DQG UHSDLU GLIILFXOW\�

� 2YHUYLHZ RI &%40

7KH &%40� &DVH�EDVHG 4XDOLW\ 0DQDJHPHQW� UHWULHYHV WKH PRVW VXLWDEOH UHSDLU

FDVHV IURP D FDVHEDVH WKDW VWRUHV SUHYLRXV VHUYLFH LQFLGHQWV� ,WV UHWULHYDO PHFKDQLVP LV

WKH &%5 LQWHJUDWLQJ ZLWK WKH FRVW H[SHFWDWLRQ YDOXHV� 'LDJQRVWLF &%5 V\VWHPV

XVXDOO\ FRPSXWHV WKH VLPLODULW\ RI V\PSWRPV DQG WDUJHW SURGXFWV� 5HWULHYHG FDVHV DUH

OLVWHG XS DFFRUGLQJ WR WKH VLPLODULW\ DQG WKH FDVH IUHTXHQF\� +RZHYHU� WKH ILUVW FDVH LV

QRW QHFHVVDULO\ WKH PRVW DSSURSULDWH VROXWLRQ IRU D VHUYLFH WHFKQLFLDQ WR FDUU\ RXW� 7KH

ILUVW FDVH LV RIWHQ D PRUH H[SHQVLYH VROXWLRQ RU UHVXOWV LQ WURXEOH UHFXUUHQFH� 7KLV LV

EHFDXVH WKH &%5 LJQRUHV WKH OLNHOLKRRG RI WURXEOH UHFXUUHQFH� UHSDLU IHH� DQG UHSDLU

GLIILFXOW\� 2XU PHWKRG WDNHV WKHVH IDFWRUV LQWR DFFRXQW DV H[SHFWDWLRQ YDOXHV� 7KH

H[SHFWDWLRQ YDOXHV DUH FODVVLILHG LQWR WZR FDWHJRULHV� REMHFWLYH �TXDQWLWDWLYH� YDOXHV

DQG VXEMHFWLYH �TXDOLWDWLYH� YDOXHV� :H HPSOR\ $+3>��@� $QDO\WLFDO +LHUDUFKLFDO
3URFHVV� D GHFLVLRQ PDNLQJ DOJRULWKP� LQ RUGHU WR FRPELQH WKH VLPLODULW\� IUHTXHQF\�

DQG WKH H[SHFWDWLRQ YDOXHV�

��� &DVH UHSUHVHQWDWLRQ
(DFK VHUYLFH LQFLGHQW KDV WKH IROORZLQJ DWWULEXWHV�

z 6HUYLFH)DFWV� (QG�XVHU©V QDPH 	 DGGUHVV� 6HUYLFH GDWH� 6HUYLFH WHFKQLFLDQ©V

QDPH

z 5HSDLU)DFWV� 3URGXFW PRGHO� 6\PSWRPV� &DXVH RI PDOIXQFWLRQ� 5HSODFHG SDUWV

z 2EMHFWLYH 9DOXHV� 5HSDLU WLPH� 5HSDLU IHH

z 6XEMHFWLYH 9DOXHV� &RQILGHQFH RI GLDJQRVLV� 5HSDLU GLIILFXOW\

'LDJQRVWLF &%5 V\VWHPV JHQHUDOO\ XWLOL]H WKH UHSDLU IDFWV DQG FRPSXWH WKH VLPLODULW\�

$QG WKH UHWULHYHG FDVHV� ZKLFK KDYH WKH KLJKHU VLPLODULW\� DUH OLVWHG XS DV FDQGLGDWHV

WR VROYH WKH WDUJHW FDVH� +RZHYHU� WKH REMHFWLYH DQG VXEMHFWLYH YDOXHV VKRXOG EH

FRQVLGHUHG LQ VHOHFWLQJ WKH PRVW DSSURSULDWH VROXWLRQ IURP WKHVH UHWULHYHG FDVHV�

EHFDXVH WKH ELJJHVW TXDQWLW\ RI WKH REMHFWLYH DQG VXEMHFWLYH YDOXHV PHDQV PD[LPL]LQJ

WKH XVHU©V EHQHILW� 7KH ILUVW WKUHH DWWULEXWHV� VHUYLFH IDFWV� UHSDLU IDFWV� DQG REMHFWLYH

YDOXHV� DUH UHFRUGHG LQ D VHUYLFH UHSRUW� 7KH VXEMHFWLYH YDOXHV QHHG WR EH DIWHUZDUGV

LQSXW E\ D VHUYLFH WHFKQLFLDQ� (DFK VXEMHFWLYH YDOXH LV D FDWHJRU\ DWWULEXWH�)RU
H[DPSOH� WKH FRQILGHQFH RI GLDJQRVLV KDV WKUHH FDWHJRULFDO YDOXHV� ^XQFHUWDLQ� DOPRVW

FHUWDLQ� FHUWDLQ`� DQG WKH UHSDLU GLIILFXOW\ KDV RQH RI ^HDV\� DYHUDJH� GLIILFXOW`�

��� &DVH VHOHFWLRQ

2XU PHWKRG ILUVWO\ VHOHFWV FDVHV WKDW KDYH KLJKHU SRVVLELOLW\ WKDQ D WKUHVKROG� 7KHQ

WKH H[SHFWDWLRQ YDOXHV RI WKH UHWULHYHG FDVHV DUH FRPSXWHG� 7KH FDVH ZLWK WKH KLJKHVW

H[SHFWDWLRQ YDOXH LV SLFNHG XS WR VROYH WKH WDUJHW SUREOHP� 7KH FDVH VHOHFWLRQ

SURFHGXUH LV DV IROORZV�

6WHS��� &RPSXWH WKH VLPLODULW\ RI WKH UHSDLU IDFWV�

574 H. Taki, S. Hori, and N. Abe

althoff@iis.uni-hildesheim.de







=

RWKHUZLVH

YDOXH�H[FOXVLYHDQKDV�
�

LI�

Q
P

L66

6LPLODULW\

6WHS��� &RPSXWH WKH SRVVLELOLW\ IURP WKH VLPLODULW\ DQG FDVH IUHTXHQF\� 7KH
SRVVLELOLW\ GHQRWHV KRZ PXFK SRVVLEOH D FDVH OLNHO\ VROYHV WKH WDUJHW SUREOHP�

L
&

L
& RI)UHT�6LPLODULW\RI\3RVVLELOLW ×=

6WHS��� 6HOHFW FDVHV WKDW KDYH WKH SRVVLELOLW\ ELJJHU WKDQ D WKUHVKROG�

6WHS��� &RPSXWH WKH FRVW H[SHFWDWLRQ YDOXH IRU WKH UHWULHYHG FDVHV� 7KH PD[LPXP

H[SHFWDWLRQ YDOXH GHQRWHV WKH JUHDWHVW FXVWRPHU VDWLVIDFWLRQ� 7KH GHWDLO RI WKH

DOJRULWKP LV GHVFULEHG LQ WKH QH[W VHFWLRQ�

6WHS��� $SSO\ WKH VHOHFWHG FDVH WR WKH WDUJHW SUREOHP�

� ([SHFWDWLRQ 9DOXH 0RGHO

7KLV VHFWLRQ H[SODLQV WKH DOJRULWKP RI FRPSXWLQJ WKH FRVW H[SHFWDWLRQ YDOXH�)LJ� � LV

D W\SLFDO &%5 V\VWHP XVLQJ RQO\ VLPLODULW\ IRU VHOHFWLQJ FDVHV�)LJ� � VKRZV D &%5

V\VWHP WKDW XVHV VLPLODULW\� VWRFKDVWLF LQIRUPDWLRQ DQG REMHFWLYH DQG VXEMHFWLYH

PHDVXUHPHQW IRU VHOHFWLQJ FDVHV� 7KH UXOH EDVH FRQWDLQV TXHVWLRQV RI OLPLWDWLRQV RI

V\PSWRPV DQG H[SHFWDWLRQ YDOXH FULWHULD�)LJ� � GHSLFWV WKH KLHUDUFKLFDO VWUXFWXUH RI

WKH H[SHFWDWLRQ YDOXH PRGHO� 7KLV PRGHO ILUVWO\ FDOFXODWHV WKH H[SHFWHG UHSDLU FRVW

IURP WKH REMHFWLYH YDOXHV� UHSDLU IHH DQG WLPH� DQG VR RQ� 7KHVH DUH FRPELQHG ZLWK WKH

VXEMHFWLYH YDOXHV� $QG WKH FRVW H[SHFWDWLRQ YDOXH RI HDFK FDVH LV ILQDOO\ FRPSXWHG VR

WKDW WKH PD[LPXP H[SHFWDWLRQ YDOXH GHQRWHV WKH JUHDWHVW FXVWRPHU VDWLVIDFWLRQ�

FDVHEDVH�DLQFDVHD&DQGFDVHWDUJHWWKH�&RIIDFWVUHSDLUWKHRIVHWVDUH6��6

O\�UHVSHFWLYH6RILWHPVRIVL]HLVQ

�6DQG�6RIRQHVEHWZHHQLWHPVVDPHRIVL]HLVPZKHUH

LL

L

L

&DVH VHOHFWLRQ6LPLODULW\ &RPSXWDWLRQ

5HSDLU)DFWV� 6\PSWRPV�

3URGXFW PRGHO���

&DVHEDVH

5HWULHYHG FDVH �! 6ROXWLRQ &DQGLGDWH

)LJ� �� &RQYHQWLRQDO &%5 PHFKDQLVP

575Case-Based Quality Management System Using Expectation Values

althoff@iis.uni-hildesheim.de

&RVW ([SHFWDWLRQ 9DOXH

EDVHG�RQ ([SHFWDWLRQ 9DOXH 0RGHO

&DVH 6HOHFWLRQ6LPLODULW\

&DVH)UHTXHQF\

2EMHFWLYH 	 6XEMHFWLYH

0HDVXUHPHQWV

5HSDLU)DFWV� 6\PSWRPV�

3URGXFW PRGHO���

5XOH EDVH

([SHFWDWLRQ 9DOXH &ULWHULD &DVHEDVH

5HWULHYHG FDVH �! 6ROXWLRQ &DQGLGDWH

)LJ� �� &DVH 6HOHFWLRQ 0HFKDQLVP 8VLQJ ([SHFWDWLRQ 9DOXH 0RGHO

&RVW ([SHFWDWLRQ 9DOXH

7URXEOH 5HFXUUHQFH

&RQILGHQFH RI 'LDJQRVLV

5HSDLU 'LIILFXOW\

5HSDLU 7LPH 5HSDLU &RVW

3DUW 3ULFH 	 7HFKQLFDO)HH

6HUYLFH &RVW)UHTXHQF\

6HUYLFH &DVH �

)LJ� �� &RVW ([SHFWDWLRQ 9DOXH 0RGHO

2EMHFWLYH 9DOXHV

6XEMHFWLYH 9DOXHV

6HUYLFH &DVH � 6HUYLFH &DVH �

576 H. Taki, S. Hori, and N. Abe

althoff@iis.uni-hildesheim.de

7KLV HYDOXDWLRQ PHWKRG LV EDVHG RQ WKH $+3 DOJRULWKP� 7DEOH ��D� VKRZV WKH

LPSRUWDQFH FRPSDULVRQ DPRQJ WKH UHSDLU WLPH� IHH� DQG WURXEOH UHFXUUHQFH� ,WV

LPSRUWDQFH PHDVXUHPHQW KDV WKH UDQJH IURP � �HTXDO LPSRUWDQFH� WR � �DEVROXWH

LPSRUWDQFH�� DQG LWV GLDJRQDO HOHPHQW LV UHSUHVHQWHG LQ LWV UHFLSURFDO QXPEHU LQ WKH

PDWUL[RI 7DEOH ��D�� ,WV HOHPHQW� ONH �

GHQRWHV WKH LPSRUWDQFH RI DWWULEXWH N RYHU

DWWULEXWH O�)RU H[DPSOH� ���� =H GHQRWHV WKDW ¦5HSDLU 7LPH§ LV ZHDNO\ LPSRUWDQW

FRPSDUHG ZLWK ¦5HFFXUHQFH§� 7KLV LPSRUWDQFH PDWUL[PD\ YDU\ GHSHQGLQJ RQ WDUJHW

SURGXFWV� 7KH LPSRUWDQFH PDWUL[LV FRQYHUWHG LQWR WKH ZHLJKWLQJ PDWUL[DV VKRZQ LQ

7DEOH ��E� DFFRUGLQJ WR WKH IROORZLQJ VWHSV�

7DEOHÝÝ�D�ÚÚ,PSRUWDQFH &RPSDULVRQ 0DWUL[

5HSDLU 7LPH 5HSDLU)HH 5HFXUUHQFH

5HSDLU 7LPH � ��� ���

5HSDLU)HH � � �

5HFXUUHQFH � ��� �

7DEOHÝÝ�E�ÚÚ:HLJKWLQJ 0DWUL[

5HSDLU 7LPH 5HSDLU)HH 5HFXUUHQFH

5HSDLU 7LPH ����� ����� �����

5HSDLU)HH ����� ����� �����

5HFXUUHQFH ����� ����� �����

6WHS��� 3UHSDUH WKH LPSRUWDQFH PDWUL[0 � ,WV VL]H LV QQ × �
ON

P
�

GHQRWHV DQ

HOHPHQW RI 0 �

6WHS��� &RPSXWH LWV JHRPHWULFDO DYHUDJH Q

Q

N

ONN
P∏=

�

λ IRU HDFK URZ RI WKH

LPSRUWDQW PDWUL[0 �

6WHS��� 1RUPDOL]H WKH DYHUDJH ∑=
Q

T

TNN λλη �

6WHS��� &RPSXWH WKH ZHLJKWLQJ PDWUL[: E\
NONON

PZ η×=
��

�

,Q WKLV FDVH� WKH ZHLJKWLQJ FRHIILFLHQWV RI ¦UHSDLU WLPH§� ¦UHSDLU IHH§� DQG ¦WURXEOH
UHFXUUHQFH§ DUH ������ ������ ����� UHVSHFWLYHO\�

7KH H[SHFWHG UHSDLU FRVW ��
L

&(Y LV FRPSXWHG IURP WKH REMHFWLYH YDOXHV E\ WKH

IROORZLQJ HTXDWLRQ�

��3�&�RI)UHTXHQF\���3

:KHUH

������

L

L∑

∑

=

×=

LL

M

LMMLL

&&

&9U&3&(Y

UM� :HLJKW &RHIILFLHQW

577Case-Based Quality Management System Using Expectation Values

althoff@iis.uni-hildesheim.de

9M�&L
�� 9DOXH RI 5HSDLU IHH� WLPH DQG WURXEOH UHFXUUHQFH� 5DQJH LV ������������

1H[W� WKH VXEMHFWLYH YDOXHV DUH FRPELQHG ZLWK WKH H[SHFWHG UHSDLU FRVW ��
L

&(Y �

7KH YDOXH RI HDFK DWWULEXWH LV FDWHJRUL]HG DV IROORZLQJ�

z 5HSDLU GLIILFXOW\ ��
L

&5' KDV WKH YDOXH RI

^� �GLIILFXOW�� � �DYHUDJH�� � �HDV\�`�

z &RQILGHQFH RI GLDJQRVLV ��
L

&&' KDV WKH YDOXH RI

^� �XQFHUWDLQ�� � �DOPRVW FHUWDLQ�� � �FHUWDLQ�`�

7KH FRVW H[SHFWDWLRQ YDOXH ��
L

&9 LV FRPSXWHG E\ WKH IROORZLQJ HTXDWLRQ�

���������
LLLL

&(Y&&'&5'&9 ×=
7KH FDVH ZLWK WKH ELJJHVW ��

L
&9 LV ILQDOO\ VHOHFWHG� 7KH ELJJHU ��

L
&9 LV� WKH

EHWWHU WKH FDVH &L LV�

� ([SHULPHQWDO 5HVXOWV

7KH &%40� XWLOL]HV ERWK RI WKH VLPLODULW\ DQG WKH FRVW H[SHFWDWLRQ YDOXH LQ VHOHFWLQJ

DSSURSULDWH FDVHV IURP D FDVHEDVH� :H DSSOLHG RXU PHWKRG WR D ILHOG VHUYLFH FDVHEDVH

WKDW FRQWDLQV ������ VHUYLFH UHSRUWV� 7KLV FDVHEDVH LV EXLOG IRU D SURGXFW� 2QH UHSRUW

KDV �� LWHPV� 7KH YDULHWLHV RI V\PSWRPV DUH PRUH WKDQ ����)LJ� � VKRZV WKH PRVW

IUHTXHQWO\�RFFXUUHG VHUYLFH FDVHV� ZKRVH SURGXFW PRGHO DQG V\PSWRPV DUH VLPLODU WR

WKRVH RI D WDUJHW FDVH� 7KH FRQYHQWLRQDO &%5 LQ)LJ� � VHOHFWV WKHVH �� FDVHV� 7KH\

VKRXOG EH SURPLVLQJ FDQGLGDWHV WR VROYH WKH WDUJHW SUREOHP� +RZHYHU� WKHUH H[LVW ILYH

FDVHV� 1�����1�� ZKLFK D VHUYLFH WHFKQLFLDQ FDQQRW FDUU\ RXW� 7KH FRQWHQWV RI WKHVH

FDVHV DUH GLVSOD\HG LQ 7DEOH �� 7KH UHDVRQ ZK\ WKHVH FDVHV DUH VHOHFWHG LV WKDW WKH
&%5 PHFKDQLVP LJQRUHV ¦UHSDLU GLIILFXOW\§� ¦UHSDLU FRVW§� DQG ¦FRQILGHQFH RI

GLDJQRVLV§�

5� 5� 1� 1� 5� 5� 1� 5� 5� 5� 5� 1� 1� 5� 5��

����

����

���

���

�

)LJ� �� 6HUYLFH 5HSRUWV RUGHUHG E\)UHTXHQF\�

578 H. Taki, S. Hori, and N. Abe

althoff@iis.uni-hildesheim.de

+RZHYHU� RXU PHWKRG HYDOXDWHV WKHVH XVHOHVV FDVHV DW YHU\ ORZ SRLQWV DV VKRZQ LQ

)LJ� �� $FFRUGLQJ WR RXU H[SHULPHQWV� ��� RI WKH FRQYHQWLRQDO &%5©V RXWSXW DUH

XVHIXO VROXWLRQV� 2Q WKH FRQWUDU\� ��� RI WKH &%40©V RXWSXW DUH HIIHFWLYH VROXWLRQV�

7DEOH �� &DVHV ZKLFK 6HUYLFH 7HFKQLFLDQV FDQQRW FDUU\ RXW�

&DVH 'HVFULSWLRQ

1� &RQILGHQFH RI GLDJQRVLV LV ORZ� 7KH VHUYLFH WHFKQLFLDQ GLGQ©W REVHUYH

PDOIXQFWLRQ� 7KLV PLJKW EH DQ LQWHUPLWWHQW GHIHFW� 7KLV FDVH FDQQRW

EH DSSOLHG WR VROYH WKH WDUJHW FDVH EHFDXVH WKH FDVH GRHVQ©W FRQWDLQ

FRQILUPHG FDXVH DQG UHPHG\�

1� 5HSDLU WLPH LV ORQJ� 9DULRXV FDXVHV UHVXOW LQ WKLV PDOIXQFWLRQ VR WKDW

WKH IUHTXHQF\ RI WKLV FDVH EHFRPHV ODUJH� +RZHYHU� WKLV FDVH GRHVQ©W

FRQWDLQ D VLQJOH UHPHG\ WR VROYH WKH PDOIXQFWLRQ�

1� 5HSDLU FRVW LV KLJK� ,QDSSURSULDWH GHVLJQ LV WKH FDXVH RI GHIHFW� 1RW D

VHUYLFH WHFKQLFLDQ EXW 'HVLJQ VHFWLRQ RXJKW WR WDNH DQ DFWLRQ WR VROYH

WKLV SUREOHP�

1� 8VHU©V LQVXIILFLHQW XQGHUVWDQGLQJ RI SURGXFW RSHUDWLRQ UHVXOWHG LQ WKH

VHUYLFH FDOO� 7KLV FDOO VKRXOG QRW EH VROYHG E\ D VHUYLFH WHFKQLFLDQ�

� &RQFOXVLRQ

7KH &%40 �&DVH�%DVHG 4XDOLW\ 0DQDJHPHQW� HPSOR\V WKH FDVH�EDVHG UHDVRQLQJ

PHFKDQLVP ZKLFK LV EDVHG RQ WKH FRVW H[SHFWDWLRQ YDOXH 9�&M�� 7KH FRVW H[SHFWDWLRQ

5� 5� 1� 1� 5� 5� 1� 5� 5� 5� 5� 1� 1� 5� 5��

����

����

����

���

�

)LJ� �� ([SHFWDWLRQ YDOXH ��
L

&9 RI 6HUYLFH

579Case-Based Quality Management System Using Expectation Values

althoff@iis.uni-hildesheim.de

YDOXH HQDEOHV WKH &%5 PHFKDQLVP WR FRQVLGHU QRW RQO\ VLPLODULW\� EXW DOVR VRPH

H[SHFWDWLRQ YDOXHV� H�J�� UHSDLU GLIILFXOW\� FRQILGHQFH RI GLDJQRVLV� $V WKH

H[SHULPHQWDO UHVXOWV VKRZV WKDW LQIRUPDWLRQ VWRUHG LQ FDVHV LV QRW VXIILFLHQW WR

HYDOXDWH WKH WKHLU XVHIXOQHVV� 7KHUHIRUH LW LV QHFHVVDU\ WR DGG VXEMHFWLYH HYDOXDWLRQ WR

HDFK FDVH� 7KLV NLQG RI NQRZOHGJH LV GLIILFXOW WR HOLFLW DQG ZULWH WKHP DV UXOHV� 2XU

PHFKDQLVP XWLOL]HV WKH VXEMHFWLYH MXGJHPHQW RI KXPDQ H[SHUWV WKURXJK WKH FRVW

H[SHFWDWLRQ YDOXH 9�&M��

5HIHUHQFHV

�� &DVDGDEDQ� &�(�� ¦'(%� $ 'LDJQRVWLF ([SHULHQFH %URZVHU XVLQJ 6LPLODULW\

1HWZRUNV§� 1$6$ &RQI� 3XEOLFDWLRQ� 9RO�1$6$�&3������ SS�������� �������

�� *ROGLQJ� $�5� DQG 5RVHQEORRP� 3�6�� ¦,PSURYLQJ 5XOH�%DVHG 6\VWHPV WKURXJK

&DVH�%DVHG 5HDVRQLQJ§� 3URF� RI $$$, ����� SS������ �������

�� +DPPRQG� .�-�� ¦&+()�$ 0RGHO RI &DVH�EDVHG 3ODQQLQJ§� 3URF� $$$,���

SS������� �������
�� .LUD� .� DQG 5HQGHOO� /�$�� ¦7KH)HDWXUH 6HOHFWLRQ 3UREOHP� 7UDGLWLRQDO

0HWKRGV DQG D 1HZ $OJRULWKP§ � 3URF� RI $$$, �������

�� .RED\DVKL� 6� DQG 1DNDPXUD� .�� ¦.QRZOHGJH &RPSLODWLRQ DQG 5HILQHPHQW IRU

)DXOW 'LDJQRVLV§� ,(((([SHUW� 9RO��� 1R��� SS������� 2FW� �������

�� .XLSHU� %�� ¦4XDOLWDWLYH 6LPXODWLRQ§ $UWLILFLDO ,QWHOOLJHQFH 9RO�� SS����� ���

�������

�� 1JX\HQ� 7�� HW� DO�� ¦&RPSDT 4XLFNVRXUFH 3URYLGLQJ WKH &RQVXPHU ZLWK WKH

3RZHU RI $,§ $, PDJD]LQH SS������ �)DOO ������

�� 4XLQODQ� -�5�� ¦'HFLVLRQ 7UHHV DQG 'HFLVLRQ PDNLQJ§� ,(((7UDQV� RQ 6\VWHPV�

0DQ DQG &\EHUQLWLFV� 9RO����1R��� SS�������� �������

�� 5HZDUL� $� HG�� ¦$, LQ &RUSRUDWH 6HUYLFH DQG 6XSSRUW�� ,(((([SHUW� 9RO���
1R��� SS����� �������

��� 6KLQPRUL� $�� ¦$ 3URSRVDO WR &RPELQH 3UREDELOLVWLF 5HDVRQLQJ ZLWK &DVH�%DVHG

5HWULHYDO IRU 6RIWZDUH 7URXEOHVKRRWLQJ§� $$$, 7HFKQLFDO 5HSRUW :6�������

���� :RUNVKRS &DVH�EDVHG 5HDVRQLQJ ,QWHJUDWLRQ� SS������� �������

��� 7VDWVRXOL� &�� &KHQJ� 4� DQG :HL� +�<� ¦,QWHJUDWLQJ &DVH�%DVHG 5HDVRQLQJ DQG

'HFLVLRQ 7KHRU\§� ,(((([SHUW� 9RO���� 1R��� SS������ �������

��� <DQJ� 4�� .LP� (� DQG 5DFLQH� .�� &DVH$GYLVRU� ¦6XSSRUWLQJ ,QWHUDFWLYH

3UREOHP 6ROYLQJ DQG &DVH %DVH 0DLQWHQDQFH IRU +HOS 'HVN $SSOLFDWLRQV§�

,-,&$,�� SUDFWLFDO 8VH RI &%5 :RUNVKRS� SS������ �������

��� 6DDW\� 7�/�� ¦0XOWLFULWHULD 'HFLVLRQ 0DNLQJ � 7KH $QDO\WLF +LHUDUFK\ 3URFHVV§�

5:6 SXEOLFDWLRQV� �������

��� +RUL� 6�� 6KXJLPDWVX� .��)XUXNDZD� 6� DQG 7DNL� +�� 8WLOL]LQJ 5HSDLU &DVHV RI
+RPH (OHFWULFDO $SSOLDQFHV� 3URF� RI 3UDFWLFDO 8VH RI &DVH�%DVHG 5HDVRQLQJ

,-,&$,��� :RUNVKRS� SS������ ������

��� $DPRGW� $� DQG 3OD]D� (�� &DVH�%DVHG 5HDVRQLQJ�)RXQGDWLRQDO ,VVXHV�

0HWKRGRORJLFDO 9DULDWLRQV� DQG 6\VWHP $SSURDFKHV� $, &RPPXQLFDWLRQV �����

����� ������

��� $FNQR6RIW� KWWS���ZZZ�DFNQRVRIW�FRP�I7HFKQRORJ\�KWPO

580 H. Taki, S. Hori, and N. Abe

althoff@iis.uni-hildesheim.de

ICARUS: Design and Deployment of a Case-Based
Reasoning System for Locomotive Diagnostics

Anil Varma1

1Information Technology Laboratory,
 General Electric Corporate Research and Development,

Niskayuna, NY 12301
varma@crd.ge.com

Keywords : Case-based reasoning, locomotive, diagnosis, feature extraction,
feature weighing, fault codes

Abstract. Locomotives, like many modern complex machines, are equipped
with the capability to generate on-board fault messages indicating the presence
of anomalous conditions. Such messages tend to generate in large quantities
and difficult and time consuming to interpret manually. This paper presents the
design and development of a case-based reasoning system for diagnosing lo-
comotive faults using such fault messages as input. The process of using his-
torical repair data and expert input for case generation and validation is de-
scribed. An algorithm for case matching is presented along with some results
on pilot data.

1 Introduction

There is a recent move in industry towards supporting equipment servicing as a
means of augmenting traditional revenue sources such as those generated by equip-
ment sales with limited warrenties and subsequent parts supply. This is especially
applicable in the case of heavy machinery which due to its design complexity is often
best serviced by the manufacturer. Examples in case include gas turbines, aircraft
engines and locomotives. With the emergence of long-term service contracts for such
equipment, it is essential that the manufacture minimize its cost of service by proac-
tive on-board and off-board monitoring and diagnosis. Within this context, this paper
describes the development of ICARUS (Intelligent Case-based Analysis for Railroad
Uptime Support) - a case-based reasoning tool for off-board locomotive diagnosis for
use by GE Transportation Systems.

K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.), ICCBR-99, LNAI 1650, pp. 581-596, 1999
 Springer-Verlag Berlin Heidelberg 1999

althoff@iis.uni-hildesheim.de

 Locomotives are complex electromechanical systems and are equipped with the
capability to monitor their state and generate fault messages in response to anomalous
conditions of varying severity. Since removing a locomotive from a track for repair (
or powering down a gas turbine or removing an airplane engine from wing) is an
extremely expensive and disruptive procedure, it is desirable that

1. Problems occurring on the equipment while in operation are accurately identi-
fied so the repair can be scheduled best keeping with the severity of the prob-
lem.

2. Problems with the equipment are completely identified so the time in the re-
pair shop is utilized at not merely fixing one problem but releasing an overall
healthy machine.

ICARUS was designed to reason with the fault codes generated by locomotives
during operation. In addition, it was a requirement ICARUS be able to build up it’s
information base quickly for rapid deployment and have the capability to learn as new
information became available. It was also required that the tool be applicable across
locomotive models and fleets with little modification.

This project presented three challenges that are typical of the real-world require-
ments deviating from textbook theory. First, diagnostic cases for the case base were
not readily available and had to be reconstructed by mining historical repair records.
Their accuracy was thus not guaranteed and case validation became an essential ac-
tivity in itself. Very limited expert knowledge and time was available to fully validate
the cases. Association of fault codes to specific repairs was difficult due to the stan-
dard railroad practice of multiple repairs on the same visit as well as some uncertainty
about the accuracy of the date of repair. Finally, the continual nature of the fault logs
made casting the case as a finite feature vector almost impossible.

This paper first presents the current operating scenario and the nature and avail-
ability of the data. We then present details of the process for generating meaningful
cases. A new feature extraction and weighing algorithm is described as well as the
results obtained from its implementation. This work is then related to prior activity in
the literature. Finally some lessons learned from the project about CBR design and
deployment are discussed.

2 Overview of Current Process

Locomotive fault logs are accumulated on-board the locomotive and are periodically
uploaded to a database for access in case a diagnostic need arises. Highly skilled field
engineers at General Electric Transportation Systems have acquired expert knowl-
edge over time that enables accurate diagnosis of locomotive problems from an ex-
amination of the fault log. While this provides positive evidence for the diagnostic
significance of fault logs, the volume of logged data makes it impossible to rely on

582 A. Varma

althoff@iis.uni-hildesheim.de

human examination alone for reliable and consistent identification of locomotive
problems on many hundred locomotives on a daily basis.

A case-based approach was considered as this appeared to be cognitively closest to
the procedure used by the experts during diagnosis. It was desirable to move away
from a rule based approach for several reasons. Some of these may be outlined as :

1. Accurate rules only existed for a small percentage of the locomotive’s failure
modes. The rest apparently happened in a manner too varied to capture in
rules.

2. Frequent configuration changes and upgrades make rule based approaches
hard to maintain.

3. Capturing knowledge as cases appeared to be the best approach for maintain-
ing knowledge in a remote diagnostics environment where the diagnostic per-
sonnel were not necessarily all experts.

4. There was a realization that many more patterns may exist in the fault log data
then anyone was aware of or could create rules for. There was a push for a
learning approach for identifying these from case data.

5. It was desirable to deploy a functional system fairly rapidly, from concept to
pilot operation in less than a year. However, experts had severe time con-
straints while there was considerable historical data that could be potentially
mined for cases.

The objective of the project, thus was to build a tool that could take the fault log
shown in Fig. 1 as input and output the top n repair codes with associated confidence
values.

2.1 Historical Fault log and Repair Data

A sample fault log is shown in Fig. 1 . While the actual data constituting the log
has been changed or masked, the essential features of the log are present. The first
two columns identify the company that is operating the locomotive and the specific
locomotive ID respectively. The next column indicates the date on which the fault
occurred. The fault itself is identified by a ‘fault code’ a unique alphanumeric label
associated with that fault. Next , a time stamp indicates the beginning and end of the
fault message. The next few columns marked with ‘X’ represent a ‘snapshot’ of some
important operating parameters of the locomotive at the time the fault occurred. Rep-
resentative examples of such parameters would be speed, operating temperatures,
pressure readings, whether certain switches are on or off etc. Finally a short text de-
scription associated with the fault code is displayed.

583ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

Fig 1. Sample Locomotive Fault Log

The fault log represents an arbitrarily long data stream with new data flowing in
every day. Locomotive experts intimately familiar with the engineering specifics of
the locomotive are able to look at the log alone and usually identify patterns that may
indicate problems. It is worthwhile noting that multiple problems may be occurring
simultaneously in the locomotive that will register a presence in the fault log. How-
ever, not all problems are critical enough to stop the basic operation of the locomotive
and these accumulate till they are attended to during a regular service visit.

Since there was no direct association from individual fault codes to actual locomo-
tive problems requiring repair, this information was sought to be implicitly acquired.
A source of data used for this purpose was the repair database maintained by the
manufacturer. The nature of the repair log was as shown in Fig. 2.

Fig. 2.Sample Locomotive Repair Log

. The basic operation of the tool required taking the fault log as input and recom-
mending a repair action with associated confidence. For reference, there were about
600 distinct faults that could be logged and 700 repair actions that could be taken. In
addition, the repair actions could be logged in the database up to a week later than the
actual physical repair.

An approach was defined wherein, candidate cases would be generated to ‘seed’
the case base by mining historical fault log and repair records. These cases would

AB 2004 12-oct-1997 176B 52.93 52.95 X X X X X X Oil Problem

AB 2004 12-oct-1997 142E 52.95 53.00 X X X X X X Fault Reset

AB 2004 14-oct-1997 170F 36.91 36.99 X X X X X X Loading Limited

AB 2004 14-oct-1997 142E 36.96 75.81 X X X X X X Fault Reset

AB 2004 17-oct-1997 172B 15.63 15.63 X X X X X X High Current Problem

AB 2004 17-oct-1997 172A 15.63 15.63 X X X X X X Motor problem

AB 2004 17-oct-1997 172B 15.63 15.65 X X X X X X High Current Problem

AB 2004 17-oct-1997 1737 15.63 15.67 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1736 15.63 15.65 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1749 15.63 15.65 X X X X X X High Temp Problem

Customer Loco ID Fault Code Fault Start and

End

Snapshot

Parameters

Fault

Description
Fault Date

AB 1101 5013 24-FEB-1997 Fixed Component A

AB 1101 6105 27-MAY-1997 Scheduled Maintenance

AB 1101 4105 27-MAY-1997 Fixed Component B

AB 1101 5405 27-MAY-1997 Replaced Component D

Customer Loco ID Repair Code Repair Date Repair Description

584 A. Varma

althoff@iis.uni-hildesheim.de

then be minimally validated by format checking and checking for missing data. It was
acknowledged that many of these cases could be diagnostically partially or com-
pletely incorrect. This may be due to the fact that either an incorrect repair was per-
formed that did not actually address the problem that was causing activity in the fault
logs or that the repair was incorrectly dated, or that there were multiple problems not
all of which were addressed.

3 Process for defining and acquiring cases

The first task was to build candidate cases from historical fault log and repair rec-
ords. A program was written to interleave the repair log with the fault log. A two
year data window was chosen for prototype case generation with data gathered for
over 200 locomotives. The process of raw case generation was as follows :

1. A particular repair type (diagnosis) was chosen for case collection.
2. All locomotives repair records were sequentially scanned for occurrence of

that repair.
3. Every time that repair was encountered on a locomotive, a case was generated

that contained the fault log contents for the N days preceding that repair.
This process is shown graphically in Fig. 3.

Fig. 3. Process for Case Acquisition
Each case was labeled by the repair code – the intended diagnosis. Multiple cases

were collected for each repair code to capture the different fault code scenarios lead-

Fault Log Repair Log

AB 2004 5013 24-FEB-1997 Fixed Component A

AB 2004 17-oct-1997 172B 15.63 15.63 X X X X X X High Current Problem

AB 2004 17-oct-1997 172A 15.63 15.63 X X X X X X Motor problem

AB 2004 17-oct-1997 172B 15.63 15.65 X X X X X X High Current Problem

AB 2004 17-oct-1997 1737 15.63 15.67 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1736 15.63 15.65 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1749 15.63 15.65 X X X X X X High Temp Problem

Candidate Case

Raw
Case
Base

Feasibility Review

585ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

ing to that repair being the diagnosis. This process was repeated for many repair
codes for which case-base coverage was required.

Each case so produced was still beset with certain problems. These included

1. Insufficient or missing fault log data : Since the fault log is fairly continual in
nature, gaps of many days in the log indicated missing data rather than ab-
sence of faults.

2. Multiple repairs on the same day : There were many instances of 3-5 repairs
performed on the same day. By our process, this resulted in many cases with
identical fault logs but associated with different repairs.

3. Overlapping fault logs for repairs : If there were multiple repairs within N
days of each other, they shared a common portion of the fault log for those N
days.

For the above 3 conditions, heuristics were used to weed out cases that could pos-

sible ‘contaminate’ the case base. Cases with missing fault log were eliminated. Due
to large quantities of historical data available, it was possible to restrict case selection
to only those instances where there was only one repair on a given day. Nothing was
done to correct for situation 3 since it was reasoned that the effect of overlapping
fault log would be reduced with appropriate case feature weighing if sufficient cases
for each of the overlapping repairs were collected.

 Each case thus collected was subjected to a feasibility review by an experienced
field engineer. The task of the field engineer was to review and eliminate any case in
which the fault log was obviously not related to the repair performed. This task of
saying yes or no placed a lower cognitive burden on the experts as compared to veri-
fying each case as a ‘gold’ standard for that kind of repair. About 500 cases were
collected following this procedure.

4 Feature Extraction

Much CBR work has implicitly assumed the availability of a finite number of indices
by which to characterize a case. This is not always true, however as evidenced by the
ultrasonic rail inspection system application reported in (Jarmulak & Kerckhoffs,
1997). This was certainly not true of our basic case structure. The N day fault log
constituting each case could contain from zero to an indeterminate number of occur-
rences of each fault code. The total number of fault codes occurring in the case could
potentially vary from one to over 700. It was evident that some feature extraction
was necessary to identify indexes that would unify the case representation and make
case matching possible. There were a number of options for feature representation.
Cases could be matched or distinguished by taking into account

1. Presence/Absence of fault codes.
2. Fault code frequency
3. Combinations of fault codes

586 A. Varma

althoff@iis.uni-hildesheim.de

4. Time based trends in fault code occurrences i.e. if fault code frequency in-
creased leading up to the repair.

5. Anomalous indicators in the parameter data i.e. if any of the continuous pa-
rameters were out of specification.

6. Sequence information in fault code occurrence i.e. if fault codes repeatedly
occurred in a certain sequence .

However, there was another consideration constraining the choice of features. This
was the fact that our cases were constructed by assuming that a certain causal rela-
tionship existed between fault logs and repairs data when their time line was overlaid.
There was no initial evidence as to the degree of error associated with the assump-
tions underlying this approach. For this reason, it was decided to keep feature extrac-
tion fairly basic till such a determination could be made.

4.1 Fault Cluster Generation

Fault combinations were selected as the feature of choice for case representation. A
variety of tests were carried out on historical fault log data to determine the maximum
number of fault codes that appeared to occur repeatedly in combination on a given
day. The analysis appeared to indicate that more than four faults seldom occurred
repeatedly in combination in test data. As a result, the following approach was
adopted. Each case was polled for a list of distinct fault codes occurring before the
repair with which it was associated. The list of distinct faults was used to generate
combinations (or fault clusters, as we termed them) as follows :

Distinct faults contained in case 1 : A,B,C,D
1-Clusters : A, B,C,D
2-Clusters : AB, AC,AD,BC,BD,CD
3-Clusters : ABC,ABD,ACD,BCD
4-Clusters : ABCD
This process was carried out for all the cases. A master list of fault clusters of each

size was maintained. Each case was now indexed in terms of its features – namely
Diagnosis + fault clusters. An example is shown in Fig. 4.

 Diagnosis Fault Clusters

Fig 4 Case Representation with Fault Clusters

CASE 1

CASE 3

Repair 1

Repair 1

Repair 2

A , B , C , AB , AC , BC , ABC

B , D , F , BD , BF , DF , BDF

CASE 2

 A , B , AB

587ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

The objective of this exercise was to generate a complete list of candidate fault clus-
ters of size four or less. Using this list, the next step was to determine which of this
exhaustive list of clusters represented valuable repetitive patterns with diagnostic
significance. This computer-intensive approach was adopted since there was virtually
no expert opinion available to guide the selection of diagnostically useful fault pat-
terns. Considering all possibilities of size four and under let the weighing algorithm
consider a wide variety of cluster candidates in a reasonable time period.

4.2 Fault Cluster Weighing

Due to the inexact case creation procedure as well as the knowledge that there was
not a one-to-one mapping between faults in the fault log and repairs, a process was
created to assign weights to fault clusters based upon the cases in the case base. As
new cases were continually being added, the system was designed to operate in two
modes. In the learn mode, it calibrated the significance of available fault clusters
based upon all the cases in the case base. During the diagnose mode, it used the
weighted clusters as indicators to match the features of the incoming case with the
most appropriate stored case.
The learn mode involves learning a weight value ∈ [0,1] for each fault cluster. The
weight is intended to be representative of each cluster’s ability to isolate a specific
repair code. If a cluster only appears in cases of a specific repair code, it has a weight
of 1. On the other hand, if that cluster occurs with an evenly distributed frequency in
cases of multiple repair codes, it’s weight is appropriately lowered. A cluster is re-
quired to repeat a certain number of times before it is assigned a non-zero weight.
After weight assignment, a clusters below a certain weight threshold are assigned a
weight of zero. The process is shown in pseudo code below.

588 A. Varma

althoff@iis.uni-hildesheim.de

 Generating [1-4] sized combinations of all faults in a case results in generating a lot
of candidate fault clusters. In practice, thresholding resulted in only a small percent-
age of fault clusters emerging as significant in that they had non-zero weights. This
was consistent with our approach of examining a wide variety of options to learn the
features that were significant. In general, the number of single and double fault clus-
ters that emerged as significant was larger that the number for three and four sized
clusters. The average weight though followed the inverse relation. Three and Four
sized clusters had higher average weights that one and two sized clusters. When faults
appeared repeatedly in three and four sized combination they were usually strong
indicators of diagnostic significance. The weight assignment can simply recognized
as the maximum conditional probability of any repair for a given fault cluster over all
the repairs it occurrs before.

 Weight of Fault Cluster F_clusteri = Maxj [P(Repair j / F_clusteri)]

Program Calculate_cluster_weights

for each target repair code I (where repair code is a
categorization of a repair action)

 {
select distinct fault codes where (incident date -
fault date) < N days.

Store as case.

Delete from cases where #fault codes < min or > max.
}
for each case CI

{ from distinct fault list Fi belonging to CI
for (j = Maxclustersize ; j=1; j=j-1)

 [Maxclustersize = 4 in our application]

 create distinct Fault clusters of size j .
}

For each fault cluster F_clusterI

{
count total # of cases it occurs in
count # incident codes it occurs in with what frequency.

Cluster significance = ƒ(#cases,#distinct repair codes
it occurs in cases of,discriminating power)

If total # of cases < case_threshold : delete cluster

589ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

5 Case Matching

Once weights for fault clusters were acquired, case matching was straightforward.
New diagnosis was requested by identifying the locomotive that was experiencing
problems. The fault log database was queried for fault codes occurring in the N days
preceding the diagnosis request.

Degree of match between a new and stored case was calculated as

[∑ Weights of common clusters between stored and new case]2

 __

 [∑Weights of Clusters in stored case] X [∑Weights of Clusters in new case]

The repair code associated with the case with the highest degree of match was the
diagnosis returned by the system.

6 Case Validation

The case base currently contains cases for diagnosing over 50 repair codes. The num-
ber of cases associated with each repair code varies from three to seventy. Leave-one-
out testing was performed to test the performance of the case base. In this process,
one case was removed from the case base and formed the testing set. All other cases,
as part of the training set were used to learn fault cluster weights. The case-base was
then used to match and retrieve the top three repair codes in response to the left-out
case. If the repair code associated with the testing case was in the top-3 set, the diag-
nosis was declared a success. This process was repeated with every case in the case
base being the testing set once.

The accuracy of the case base was then tabulated as success % by repair code.
There were a few repair codes where the case-base was consistently unable to cor-
rectly diagnose even in top 3 predictions more than 10-15% of the time. The cases
associated with these repair codes were referred back to the domain experts. In most
cases it was discovered that the repair codes were such that the fault codes could not
be expected to predict them. In other instances, the same repair situation was classi-
fied under three different repair codes. Once these were unified, the accuracy of diag-
nosis on that repair code increased.

This process of case validation was a necessary closure to our initial approach of
gathering cases that were approximately accurate. This allowed us to avoid requiring
the time of domain experts to verify each case in the beginning. Now only a focused
number of cases were required to be examined that did not appear to be consistent
with each other.

590 A. Varma

althoff@iis.uni-hildesheim.de

7 Results of Experiments

Accuracy was measured only for repair codes that had over 10 cases associated with
them. After removing repair codes deemed undiagnosable through the process in the
previous section, accuracy on repair codes ranged from 23% to 94%. Overall accu-
racy was around 80% , assuming that the correct diagnosis appearing in the top three
diagnoses given by the system was regarded as a success. In general the following
trends were observed.

1. Repair codes associated with a greater number of cases had a higher diagnosis
accuracy rate.

2. Accuracy increased as fault clusters of increasing size were used. The relative
increase in accuracy was small but significant. Accuracy using fault clusters of
size 1 was about 60 - 65%.

8 Related Work

There are quite a few examples of CBR being applied to diagnosis. We discuss a
few that have addressed problems similar to ours both from an application as well
as design viewpoint. Jarmulak et al. (1997) present a system that uses CBR for a
rail inspection application. Their system uses image data as input and shares the
limitation in that it is not easily expressed as a feature vector. They use a hybrid
rule + case-based system for image classification with no adaptation. They also
mention the need to periodically identify cases in the case base that never match
well as possibly ‘bad’ cases or noisy images. Acorn and Walden (1992) report on
SMART – a CBR help-desk system developed for COMPAQ. In contrast to our
semi-automated, mining approach to creating cases, this describes a more conven-
tional case-population process wherein senior engineers were designated as case-
builders with a daily review process. Correctness of the cases is not an issue. How-
ever, their observations that they could go live before having a complete and cor-
rect knowledge base is in agreement with our experience as well. Hennessy and
Hinkle (1992) report on CLAVIER – one of the early commercial CBR applica-
tions. A key aspect motivating its development is described as the inability of the
operators to articulate good rules. This, again, is consistent with our experience.
CLAVIER’s role as corporate memory that increases in quality and quantity with
use very much in line with the role expected of ICARUS. Kitano et al. (1993) with
their SQUAD system highlight the role of CBR systems as maintainers of corpo-
rate knowledge. Since they report dealing with over 20,000 cases, they describe a
well managed human intensive process for case collection, filtering and quality
control. They use a system of abstraction hierarchies to create neighborhood rela-
tionships between attributes. Interestingly, they also appear to use a system of
combination generation. The motivation however seems to be to enumerate a sql
type query for each type of attribute value below in the hierarchy from where the

591ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

user has specified the attributes. Bonzano et al. describe an approach towards ‘in-
trospective’ learning of feature weights in CBR, recognizing that standard CBR
matching functions can be extremely sensitive to noise and irrelevant features and
suitable weight vectors are not always available. While this concept is recognized
in our approach, we do not make an effort to adjust feature weights in response to
incorrect retrieval. This arises from our understanding that the error could lie with
the case itself, and consequently consistent incorrect retrieval is used as an indica-
tion of a defective case rather than incorrect feature weighing.

CBR applications in similar domains have been reported under the INRECA proj-
ect (Klaus-Dieter et al., 1995). INRECA uses induction to extract a decision tree
to guide the user but uses CBR to handle unknown values. An application of IN-
RECA to robot diagnosis uses a combination of causal rules, decision trees and
weight factors for knowledge representation. This seems consistent with future de-
velopment plans for ICARUS where a hybrid rule/case based system is eventually
envisaged. In another application to CFM56 engines, use of legacy data to create
initial cases with ongoing integration of model based knowledge is described. A
concurrent benefit of the case building activity mentioned here is creation of a
knowledge management process that helps highlight high occurrence failure
modes through a systematic cleaning and analysis of data. This has been the case
with ICARUS as cost-benefit analysis of fault generation from a diagnostic point
of view is being revisited with a goal of generating more meaningful faults on the
locomotive.

9 Institutional deployment and Cost-Benefit Analysis

ICARUS development was started in early 1997. A first prototype was deployed
on pilot fault log data from 35 locomotives in October of the same year. A team of
five diagnostics experts independently examines the fault logs daily and arrive at a
diagnosis. These conclusions are compared with the output of ICARUS. This consti-
tuted the validation phase of the tool. An integrated recommendation was delivered to
the railroad based on this activity. The primary benefit of identifying problems is that
the locomotive can be better scheduled for repair and unscheduled failures leading to
a mission loss are avoided. In most instances, a recommendation is kept open until
feedback is obtained from the repair shop as to the actual work done. If this feedback
corresponds to the top 3 repair recommendations of the CBR tool, the case is closed
and declared as a success. If not, then it is classified as a failure. One field engineer at
GE Transportation systems has been assigned the primary responsibility of running
and validating the tool each day.

Both successful and failed attempts at diagnosis are examined in greater detail by
the tool design team including the author. In many cases, experts point out that cer-
tain problems are not well manifested in fault logs and cases relating to these repairs
are removed from the case-base. The primary driver for seeking expert input is when

592 A. Varma

althoff@iis.uni-hildesheim.de

the case base is unable to predict a repair code at a > 50% accuracy despite having >
10 cases for it. This focused approach helps minimize expert time requirements.

Some early successes in diagnosing problems in the pilot program have helped
management allocate increasing resources to the project. The biggest benefit is that
new incoming cases (that are not mined from historical data but based upon daily
analysis) are of much higher quality due to expert validation and have contributed to
increasing the accuracy of the tool. It is estimated that a savings of a few thousand
dollars could be realized per locomotive per year just by optimizing its repair actions
based upon an accurate understanding of the failures occurring on board. Over 350
locomotives expected to be monitored in 1999-2000, this adds up to a considerable
sum. There is a considerable productivity benefit as well as a limited staff of upto ten
experts will be required to monitor the 350 locomotive fleet and tools like ICARUS
can considerably reduce the effort required for diagnosis.

10 Discussion

A number of lessons were learned in the course of this project. Some of these may be
listed as

1. The availability of high quality cases cannot be taken for granted. In complex
domains specially, it becomes increasingly difficult to find expertise that will
certify cases as fully correct. In this application we were specially mandated
not to rely on ‘preconceived’ expert knowledge to guide the case base devel-
opment – rather to learn from the data. Many experts freely acknowledged that
there was possibly much more hidden in the data than they had expertise over.

2. Case representation can be a design issue. In most case-based applications, the
identification of a case feature vector arises naturally from the way the case
exists. Out of many possible features that could characterize the cases in this
application, fault combinations were one of the features identified as being
potentially significant and were chosen for case representation. Feature
weighing was able to consider and eliminate a majority of fault clusters as
being diagnostically insignificant.

3. The assumption that each case contained data associated with only one diag-
nosis was not valid in this case. The extent that multiple simultaneous prob-
lems were being manifested in the fault codes was not known. Again, this was
addressed partly by choosing candidate cases carefully and subsequently by
feature weighing. Only fault clusters that consistently occurred in cases of a
particular repair code were assigned high weights by the feature weighing al-
gorithm.

4. Commonly recognized advantages of a case-based reasoning approach like
quick deployment, capability for continuous learning, low knowledge elicita-

593ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

tion needs and a measure of explanation stood true in this application. The
system was developed in about eight months and is currently running on live
pilot data. While the initial case seeding was based on historically mined
cases, future cases that are being added are of much higher quality since the
final resolution of problems will are accurately tracked and verified from the
field.

The portability of the case-based approach was vividly demonstrated once the
system was developed. Business focus required that ICARUS be applied to a
model of locomotives different from the data on which the system was devel-
oped. In less than a month, new seeding cases were acquired, feature weights
were recomputed and another version of ICARUS was released. This was in
comparison to a rule-based approach which would have required development
from scratch. For reference, previous rule-based approaches for locomotive
models had taken few years to develop.

Incremental learning was specially important in this application. Locomotives
undergo frequent hardware and software changes. A case-based approach
could adapt to this, given sufficient quantity of cases.

5. Learning weights for case features can help make implicit knowledge explicit.
In many cases, a physical explanation could be attached to particular faults
occurring together. This provided an additional means to occasionally check
the knowledge in the case base.

6. As yet, there is no concept of adaptation in the working of ICARUS.

7. Finally, the ability to come up with a working albeit incomplete system early
on was vital in maintaining management and user involvement in the applica-
tion.

11 Conclusions and Future Work

ICARUS will be deployed for providing monitoring support to over 350 locomotives
in 1999. As more cases are added to the system, we are exploring additional features
by which to characterize cases to sustain and improve the system’s accuracy. Prelimi-
nary results incorporating fault occurrence trends as case features have shown evi-
dence of positively impacting diagnostic accuracy. As can be expected, this too has a
stronger effect on certain repair codes as compared to others.

In conclusion, we have presented a case-based application for diagnosis that em-
ploys a variety of pre and post-processing techniques to transform historical data into
a format suitable for a case-based approach. We present an ‘propose and verify’ ap-
proach towards case generation where candidate cases of approximate diagnostic

594 A. Varma

althoff@iis.uni-hildesheim.de

accuracy are generated and case performance metrics are used to isolate cases that
may need expert validation. Feature weights are learned from the data. The applica-
tion is such that a complete and accurate diagnostic formulation with any approach is
practically impossible. Our experience has shown that a case-based approach has
been able to contribute significantly towards capturing a tractable amount of knowl-
edge even if approximately, and consequently reducing the load of the diagnostics
expert.

Acknowledgements

The author would like to acknowledge and thank Nicholas Roddy for developing the
CBR software as well as running validation tests. Thanks are due to Tom Shaginaw
for motivating the Case-Based approach. Special thanks to David Gibson for sup-
porting our efforts with business and data support and domain expertise.

References

1. Jarmulak, J., Kerckhoffs, E.,Veen, P. : Case-Based Reasoning in an Ultrasonic Rail-
Inspection System. In: Leake, D., Plaza, E.(eds.): Case-Based Reasoning Research and
Development. Lecture Notes in Computer Science, Vol 1266. Springer-Verlag New York
(1997) ,43–52.

2. Acorn,T., and Walden, S. : SMART: Support Management Automated Reasoning Tech-
nology for Compaq Customer Service. In Proceedings of AAAI-92. Cambridge, MA:
AAAI Press, MIT Press.(1992)

3. Hennessy, D., and Hinkle, D. : Applying Case-Based Reasoning to Autoclave Loading.
IEEE Expert,(1992), 7(5), 21-26.

4. Kitano, H., Shimazu, H. and Shibata, A. : Case-Method: A Methodology for Building
Large-Scale Case-Based Systems. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, (1993), 303-308.

5. Bonzano, A., Cunningham, P. and Smyth, B. : Using Introspective Learnng to Improve
Retrieval in CBR : A Case Study in Air Traffic Control. In: Leake, D., Plaza, E.(eds.):
Case-Based Reasoning Research and Development. Lecture Notes in Computer Science,
Vol 1266. New York (1997) ,291–302.

6. Klaus-Dieter, A., Auriol, E., Bergmann, R., Breen, S., Dittrich, S., Johnston,R. Manago,
M., Traphoener, R., Wess, Stefan : Case-Based Reasoning for Decision Support and Di-
agnostic Problem Solving: The INRECA Aproach. In B. Bartsch-Sporl, D. Janetzko & S.
Wess (eds.), Proceedings of the 3rd workshop of the German special interest group on
CBR , (1995), 63-72.

595ICARUS: CBR System for Locomotive Diagnostics

althoff@iis.uni-hildesheim.de

List of Authors

Abe, N. 572
Abi-Zeid, I. 74, 358
Aha, D. W. 288
Arcos, J. L. 1
Ashley, K. D. 59, 248
Auriol, E. 372

Babka, O. 233
Ballas, J. A. 288
Bellazzi, R. 386
Birnbaum, L. 482
Blanzieri, E. 14
Bloor, K. 426
Branting, L. K. 29, 44
Breslow, L. 288
Brüninghaus, S. 59

Camilo dos Santos, R. 89
Cañamero, D. 1
Carrick, C. 74
Cheetham, W. 415
Coello, J. M. A. 89
Conruyt, N. 401
Cotter, P. 561
Crowder, R. M. 372
Cuddihy, P. 415
Cunningham, P. 468

Díaz-Agudo, B. 147
Dillon, T. 497

Fagan, M. 426
Fernández-Conde, C. 147
Ficet-Cauchard, V. 438
Fuchs, B. 104, 118

Garanito, L. A. G. 233
Gierl, L. 550

Göker, M. 132
Gómez de Silva Garza, A. 162
Gómez-Albarrán, M. 147
González-Calero, P. A. 147
Gresse von Wangenheim, C. 173
Grosser, D. 401

Hammond, K. 482
Han, Y. 453
Hayes, C. 468
Hori, S. 572

Kerschbaummayr, J. 535
Knudsen, T. 372

Lamontagne, L. 74, 358
Lawton, J. H. 188
Leake, D. B. 203, 218, 482
Lee, K. 453
Lei, C. 233
Lieber, J. 104
López de Mántaras, R. 1

MacKendrick, R. 372
Maher, M. L. 162
Main, J. 497
Marlow, C. 482
McFarlane, D. C. 288
McKenna, E. 329, 343
McLaren, B. 248
Melchiors, C. 510
Melis, E. 263,
Mille, A. 104, 118
Montani, S. 386
Muñoz-Avila, H. 276, 288

Napoli, A. 104
Nau, D. S. 288

althoff@iis.uni-hildesheim.de

598 List of Author

Perner, P. 525
Pollwein, B. 550
Porquet, C. 438
Portinale, L. 303, 386
Praehofer, H. 535

Revenu, M. 438
Ricci, F. 14
Riva, A. 386
Roth-Berghofer, T. 132
Rowe, R. 372

Schmidt, R. 550
Seitz, A. 318
Smyth, B. 329, 343, 561

Taki, H. 572
Tarouco, L. M. R. 510
Tao, Y. 44
Tavano, P. 303
Torasso, P. 303
Turner, E. H 188
Turner, R. M. 188

Ullrich, C. 263

Varma, A. 581

Wilson, D. C. 203, 218

Yang, H. 482
Yang, Q. 74, 358

althoff@iis.uni-hildesheim.de

	Case-Based Reasoning Research and Development
	Preface
	Organization
	Table of Contents
	Affect-Driven CBR to generate expressive music
	Probability Based Metrics for Nearest Neighbor Classification and Case-Based Reasoning
	Active Exploration in Instance-Based Preference Modeling
	A Multiple-Domain Evaluation of Stratified Case-Based Reasoning
	Bootstrapping Case Base Development with Annotated Case Summaries*
	Activating CBR Systems through Autonomous Information Gathering
	Integrating CBR and Heuristic Search for Learning and Reusing Solutions in Real-time Task Scheduling
	Towards a Unified Theory of Adaptation in Case-Based Reasoning
	A Knowledge-level Task Model of Adaptation in Case-Based Reasoning
	Development and Utilization of a Case-Based Help-Desk Support System in a Corporate Environment
	Modelling the CBR Life Cycle Using Description Logics *
	An Evolutionary Approach to Case Adaptation
	REMEX - A Case-Based Approach for Reusing Software Measurement Experienceware
	Unified Long-Term Memory System*
	Combining CBR with Interactive Knowledge Acquisition, Manipulation and Reuse*
	When Experience is Wrong: Examining CBR for Changing Tasks and Environments*
	Case Library Reduction Applied to Pile Foundations
	Case Representation, Acquisition, and Retrieval in SIROCCO
	Flexibly Interleaving Processes
	A Case Retention Policy based on Detrimental Retrieval
	Using Guidelines to Constrain Interactive Case-Based HTN Planning
	Speed-up, Quality and Competence in Multi-Modal Case-Based Reasoning
	A Case-Based Methodology for Planning Individualized Case Oriented Tutoring
	Building Compact Competent Case-Bases
	Footprint-Based Retrieval
	Is CBR Applicable to the Coordination of Search and Rescue Operations? A Feasibility Study
	Unbenannt

	Integrating Case-Based Reasoning and Hypermedia Documentation: An Application for the Diagnosis of a Welding Robot at Odense Steel Shipyard
	Integrating Rule-Based and Case-Based Decision Making in Diabetic Patient Management*
	Managing Complex Knowledge in Natural Sciences
	ELSI: A Medical Equipment Diagnostic System
	Case-Based Reasoning for Candidate List Extraction in a Marketing Domain.
	CBR for the Reuse of Image Processing Knowledge : a Recursive Retrieval/Adaptation Strategy
	Virtual Function Generators: Representing and Reusing Underlying Design Concepts in Conceptual Synthesis of Mechanisms for Function Generation
	Shaping a CBR view with XML
	Integrating Information Resources: A Case Study of Engineering Design Support*
	A Hybrid Case-Based Reasoner for Footwear Design
	Fault Management in Computer Networks Using Case-Based Reasoning: DUMBO System
	An Architecture for a CBR Image Segmentation System
	Supporting Reusability in a System DesignEnvironment by Case-Based Reasoning Techniques ¹
	Case-Based Reasoning for Antibiotics Therapy Advice
	Surfing the Digital Wave
	Case-Based Quality Management System using Expectation Values
	ICARUS: Design and Deployment of a Case-Based Reasoning System for Locomotive Diagnostics
	List of Authors

