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Abstract

Training machine learning models at scale is a popular workload for distributed
data flow systems. However, as these systems were originally built to fulfill quite
different requirements it remains an open question how effectively they actually
perform for ML workloads. In this paper we argue that benchmarking of large scale
ML systems should consider state of the art, single machine libraries as baselines
and sketch such a benchmark for distributed data flow systems.
We present an experimental evaluation of a representative problem for XGBoost,
LightGBM and Vowpal Wabbit and compare them to Apache Spark MLlib with
respect to both: runtime and prediction quality. Our results indicate that while being
able to robustly scale with increasing data set size, current generation data flow
systems are surprisingly inefficient at training machine learning models at need
substantial resources to come within reach of the performance of single machine
libraries.

1 Introduction

Rapidly decreasing costs of processing and storage hardware, the sheer size of available data sets
and remarkable successes of machine learning algorithms for a variety of tasks have led to an
unprecedented demand to efficiently execute machine learning algorithms at scale. A popular choice
for this task are second generation distributed data flow systems such as Apache Spark [4] with its
scalable machine learning library MLlib [25]. However, in their first generation, these distributed
data flow systems, most prominently MapReduce [16] and its open-source implementation Hadoop
[2], were built to address quite different requirements. MapReduce was built as a system which
enables automatic parallelization and distribution of large-scale special-purpose computations that
process large amounts of raw data, such as crawled documents or web request logs and compute
various kinds of derived data (e.g. inverted indices). The requirement to run iterative workloads such
as machine learning algorithms at scale surfaced later. Since many machine learning algorithms can
easily be formulated in the functional MapReduce programming model on a logical level [15], efforts
such as Mahout [3] set out to implement ML Methods on top of Hadoop MapReduce. However it
became apparent that while being capable to robustly execute simple data-intensive computations on
very large partitioned data, MapReduce is inefficient at executing iterative workloads, at least in the
form of its open source implementation Hadoop [20, 27]. The acyclic data flow model underlying
Hadoop’s implementation and the intricacies of its distributed implementation lead to unsatisfactory
performance. Particularly the fixed Map-Shuffle-Reduce pipeline and the inability to efficiently
execute iterative computations turned out to be major drawbacks of Hadoop/MapReduce.

This shortcoming sparked the development of a multitude of novel approaches and systems aiming to
improve the performance and ease of implementation of more complex iterative workloads such as
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distributed machine learning algorithms [9, 17, 30, 18, 22]. However, while these second generation
big data analytics systems have been shown to outperform Hadoop for canonical iterative workloads
[30, 5, 21], it remains an open question how effectively they perform for actual large scale machine
learning problems. The learning algorithms chosen in the systems papers appear to be those that fit
well onto the system’s paradigm (e.g. batch gradient descent solvers for linear models) rather than
state of the art methods which would be chosen to solve a supervised learning problem in the absence
of these systems’ constraints and provide state of the art with respect to prediction quality.

In order to assess how well the systems resting on the paradigm of distributed dataflow perform and
to guide future systems research, it is imperative to benchmark and evaluate them for relevant and
representative end-to-end machine learning workloads. Unfortunately, benchmarking of distributed
data processing platforms with respect to machine learning workloads is still at an insufficient level.
While some efforts exist [10, 28, 29, 23, 7] all of them focus on evaluating scalability and execution
speed of simple algorithms, but neglect quality metrics such as accuracy completely. On the other
hand there have been numerous endeavours in evaluating machine learning algorithms empirically
with respect to their prediction quality, e.g. [12, 11], however none of them in the light of distributed
data processing systems, actually not taking into account runtime at all.

Contributions. In this paper we argue that benchmarking of large scale machine learning systems
should consider state of the art, single machine algorithms as baselines. Solely evaluating scalability
and comparing with other distributed systems is not sufficient and provides potentially misleading
results. Distributed data processing systems for large scale machine learning should be benchmarked
against sophisticated single machine libraries that practitioners would choose to solve an actual
machine learning problem and evaluated with respect to both: runtime as well as prediction quality
metrics. We sketch such a Benchmark and present an experimental evaluation (Section 3) of state of
the art machine learning libraries XGBoost, LightGBM and Vowpal Wabbit for supervised learning
and compare them to Apache Spark MLlib, one of the most widely used distributed data processing
system for machine learning workloads. Results (Section 4) indicate that while distributed data flow
systems such as Apache Spark do provide robust scalability, it takes a substantial amount of extra
compute resources to reach the performance of a single threaded or single machine implementation.

To summarize, the contributions of this paper are the following:

• We argue that benchmarking of large scale machine learning systems should consider state
of the art, single machine algorithms as baselines and sketch such a Benchmark.

• We present an experimental evaluation of a representative problem on state of the art
machine learning libraries XGBoost, LightGBM and Vowpal Wabbit for supervised learning
and compare them to Apache Spark MLlib.

• In order to foster the reproducibility of benchmarks and experiments and in hope of ben-
efiting future systems research we intend to make the code (including config files and
hyperparameters used) available as open source1

2 Background

Scalability - but at what COST? The distributed systems and database systems communities
have put a heavy emphasis on the scalability of new distributed data processing systems that have
been proposed. While most such publications contain experiments to showcase the scalability of
their system, very few directly evaluate their absolute performance against reasonable baselines.
However, as McSherry et.al. [24] pointed out, “any system can scale arbitrarily well with a sufficient
lack of care in its implementation”. The authors thus propose to evaluate distributed systems
against against simple, single-threaded implementations on the same data sets in absolute numbers
(COST or the Configuration that Outperforms a Single Thread). They showed, that for popular
graph processing algorithms, none of the published systems managed to outperform the best single-
threaded implementation using a high-end 2014 laptop even though the distributed systems leveraged
substantial compute resources. It is thus imperative to compare these distributed data processing
systems to competent single machine baselines.

Size of Workloads and Data Sets Analysis of industrial MapReduce workload traces over long-
durations [14] has revealed, that most jobs in Big Data Systems have input, shuffle, and output sizes in

1https://github.com/bodenc/dist-ml-cost

2



Figure 1: Poll of data scientists regarding the largest (raw) data set analyzed, 2013-2016: While some data
sets that are analyzed are indeed in the PB range, the wast majority are in the GB range - a trend that shows
surprising stability over the years. (Source: www.kdnuggets.com)

the MB to GB range. Annual polls of data scientists regarding the largest data set analyzed conducted
by by KDnuggets2 (Figure 1), a popular site for Analytics and Data Science, while non-representative,
do seem to suggest that this pattern holds for data analysis in general. While some reported the raw
size of their largest data sets analyzed to be in the PB range, the vast majority are actually in the GB
range, about 70% are smaller than 100 GB. This trend has been surprisingly stable for years. Since
all major IaaS providers offer on-demand compute nodes with hundreds of GBs of main memory,
the question arises whether distributed data flow systems really are the optimal design choice for
large scale machine learning systems, in particular since the actual training data is often significantly
smaller after feature extraction of the raw data. The yardstick to compare against should be the
performance of state of the art single machine ML libraries, as large portions of the training data
sets used, are within the order of magnitude of the available main memory systems and out-of core
libraries can scale even beyond main memory on a single machine.

3 Methodology and Systems

Data Set In order to evaluate a relevant and representative standard problem, we choose to use the
Criteo Click Logs 3 data set. This clickthrough rate (CTR) prediction data set contains feature values
and click feedback for millions of display ads drawn from a portion of Criteo’s traffic over a period
of 24 days. It consists of 13 numeric and 26 categorical features. In its entirety, the data set spawns
about 4 billion data points, has a size of 1.5 TB. For our experiments we sub-sampled the data such
that both classes have equal probability, resulting in roughly 270 million data points and 200 GB of
data in tsv/text format. Given the insights from figure 1, this seems to be a reasonable size. We use
the first 23 days (except day 4 due to a corrupted archive) as training data and day 24 as test data,
ensuring a proper time split.
Libraries and Systems Among the machine learning methods used in practice, gradient tree boosting
[19] is one technique that shines in many applications, for example if data is not abundant or of
limited dimensionality. We thus choose gradient-boosted trees and logistic regression as a simple
baseline to sketch our benchmark of distributed data flow systems for machine learning. (Note that
we want to evaluate systems with relevant machine learning workloads and not machine learning
algorithms themselves.) We used the following state of the art libraries for our experiments:
XGBoost [13]4 is a scalable machine learning system for tree boosting that is quite popular among
practitioners and participants of data mining competitions such as the Kaggle challenges, where it is
often part of winning solutions.
LightGBM is a fast, distributed, high performance gradient boosting framework 5 based on decision
tree algorithms, used for ranking, classification and many other machine learning tasks.
Vowpal Wabbit (VW) is a fast out-of-core library that trains (among other things) a logistic regression
classifier with stochastic gradient decent. By default, VW runs the parsing and learning in two separate
threads and can thus essentially be seen as a single threaded implementation compared to the other
libraries and systems that exploit all available cores.
Apache Spark is is a distributed dataflow system for large-scale data processing originally centered

2https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html
3http://labs.criteo.com/downloads/download-terabyte-click-logs/
4https://github.com/dmlc/xgboost
5https://github.com/Microsoft/LightGBM
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around the concept of data-parallel transformations on Resilient Distributed Datasets (RDDs) [30]:
read-only collections of data partitioned across nodes, which can be cached and recomputed in case
of node failures, to support the efficient execution of iterative algorithms. It is one of the most popular
open source systems for big data analytics and ships with the scalable machine learning library MLlib.
The primary Machine Learning API for Spark since Version 2.0 is the DataFrame-based API, which
leverages Tungsten’s fast in-memory encoding and code generation. We use Spark and MLlib version
2.2.0 and the aforementioned API (spark.ml) for all of our Spark experiments in our experiments.
Parameter Tuning is a crucial part of applying machine learning methods and can have a significant
impact on an algorithms performance. In order to strive for a fair comparison in our experiments
we allotted a fixed and identical timeframe for tuning the parameters to all systems and libraries,
honouring the fact practitioners also face tight deadlines when performing hyperparameter tuning
and may not have the time for exhaustive search of a global optimum [8]. We built all three libraries
based on their latest available release on github. For the benchmark experiments we relied on the
command line versions of XGBoost and LightGBM, however for hyperparamter tuning we relied
on the python interface and used the hyperopt6 package to find the optimal parameters. For VW
we used vw-hypersearch to tune the hyperparamters for learning-rate and regularization. Apache
Spark MLlib provides a CrossValidator to find the best parameter for a model. Unfortunately
we ran into continuous OutOfMemory issues even for data sets several orders of magnitude smaller
than the available main memory and thus had to rely on rather coarse grained grid search for
the Spark algorithms. (The resulting hyperparameters used for the experiments can be found at
https://github.com/bodenc/dist-ml-cost)
Features For the gradient-boosted tree libraries we only transformed the categorical features to from
hex to integer values, for VW we left them unchanged. Since VW uses feature hashing internally, we
implemented the same as a pre-processing step for the Spark version of Logistic regression with the
218 = 262144 features, which is the default value for VW and small enough to avoid problems that
high dimensional vectors have been shown to cause within Apache Spark [7].
Measurements In order to generate plots that illustrate prediction quality over time we used the
following pragmatic approach: for VW’s SGD we measured training time for different fractions
of the data set, for Spark LR, GBT as well as XGBoost and LightGBM for different numbers of
iterations. We ran all experiments with and without evaluation and only plotted the time elapsed in
the no-evaluation runs. As Spark does not easily allow intermediate evaluation, we had to re-re run
it with different numbers of iterations from scratch using the PEEL [6, 1] framework.

Cluster Hardware We run our experiments on two different cluster setups available in the local
university data center: a small one with very limited amounts of cores and memory but more powerful
CPUs and a big setup with large amounts of main memory, cpu cores and storage.
Small node: Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU with 8 hyperthreads (4 cores),
16 GB RAM, 3x1TB hard disks (linux software RAID0) which are connected via 1 GBit Ethernet
NIC via a HP 5412-92G-PoE+-4G v2 zl switch.
Big node: 2 x AMD Opteron 6238 CPU with 12 Cores @ 2,6 GHz (24 cores), 256 GB RAM, 8x 2
TB Disk, 6 × GE Ethernet via a Cisco C2969-48TD-L Rack Switch.

4 Experiments

We propose and run two experiments to evaluate the performance for distributed data flow systems
for scalable machine learning workloads. We measure training time (including loading the data and
writing out the model) and (in a separate run) the AuC the trained models achieve on a held-out
test set (day 24 of criteo). The relevant hyperparameters have been tuned beforehand as described
in Section 3. Please keep in mind that our motivation is to evaluate systems with relevant machine
learning workloads and not machine learning algorithms themselves.

Experiment 1: Logistic Regression as a baseline. In the first experiment we look at regularized
logistic regression, a popular baseline method that can be solved using embarrassingly parallel
algorithms such as batch gradient descent. Apache Spark MLlib implements Logistic Regression
training using the Breeze library’s LBFGS solver where it locally computes partial gradient updates in
parallel using all available cores and and aggregates them in the driver. As a single machine baseline
we use Vowpal Wabbit which implements an online stochastic gradient decent using only two cores:
one for parsing the input data and one to compute gradient updates.

6https://github.com/hyperopt/hyperopt
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Figure 2: Logistic regression trained using Sprk MLlib and Vowpal Wabbit on small (4 cores, 16 GB Ram)
and big (24 cores, 256 GB Ram) cluster nodes. The plots show AuC on a test set achieved after a certain amount
of training time. Apache Spark MLlib needs substantially more hardware resources (15 small or 6 big nodes)
to come within reach of Vowpal Wabbit’s performance, even though Vowpal Wabbit only utilizes two cores
and Spark implements L-BFGS which is embarrassingly parallel.

Figure 2 shows the results for experiments on the small nodes (left) with only 4 cores and 16 GB
Ram and the big nodes (right) with 24 cores and 256 GB Ram. For both hardware configurations,
the Spark MLlib implementation needs significantly more time to achieve comparable AuC, even
though it runs on substantially more resources. While VW can immediately start to update the model
as data is read, Spark spends considerable time reading and caching the data, before it can run the
first L-BFGS iteration. Once this is accomplished, additional iterations run very fast on the cached
data. For the runs on big nodes (right), where the data set is actually smaller than the available main
memory, it takes 6 nodes (144 cores) to get within reach of the VW performance using only one node
and two threads/cores. For the runs on small nodes we observe that for 6 nodes, Spark MLlib is
slower than VW on single node. We increased the number of nodes to 15 small nodes (60 cores) and
here (grey line on in the left plot) Spark MLlib gets within reach of VW’s performance on a single
small node (4 cores).

These experiments show that even for an embarrassingly parallel learning algorithm, the latest genera-
tion distributed data flows systems such as Spark 2.2.0, which leverages explicit memory management
and code-generation to exploit modern compilers and CPUs to obtain optimal performance on the
jvm, need substantial hardware resources (factor 6-15) to obtain comparable prediction quality with
a competent single machine implementation within the same timeframe. (Note that since Vowpal
Wabbit is an out-of-core library both Spark MLLib and VW could be scaled to even larger data set
sizes.)
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Figure 3: Gradient Boosted Trees classifier trained using Apache Spark MLlib, XGBoost and LightGBM on
big (24 cores, 256 GB Ram) cluster nodes. The plots show AuC on a test set achieved after a certain amount of
training time. The single machine (24 cores) implementations of XGBoost and LightGBM outperform Spark’s
implementation on 6 nodes (144 cores).

Experiment 2: Gradient Boosted Trees. In the second experiment we evaluate Gradient Boosted
Tree classifiers, a very popular ensemble method on the large cluster setup. We use LightGBM,
XGBoost with its histogram-based algorithm as tree method and Spark MLLib’s Gradient Boosted
Tree classifier. Figure 3 shows the results of our experiments. For this experiment all three evaluated
libraries and systems are multi-core implementations that leverage all available cores. Both XGBoost
and LightGBM achieve about the same AuC which is better than the one achieved in the logistic
regression experiments as would be expected. While training runs somewhat faster withLightGBM in
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our setup, there is no substantial difference to XGBoost. The Spark GBT training is substantially
slower on 6 big nodes however. (It takes almost an order of magnitude more time per iteration).
It does not manage to achieve AuC comparable to XGBoost and LightGMB within the same time
frame even though it uses six times the hardware resources. The overheads introduced by the
distributed data processing system are substantial and the amount of extra resources needed to
reach performance comparable to single machine libraries appears to lie beyond six times the single
machine configuration (which is the maximum we had available for our experiments.)

In the absence of other reasons to execute the training of machine learning models on distributed data
flow systems (e.g. raw data being already hosted in HDFS, integration of pre-rocessing and feature
extraction pipelines) single machine libraries would thus be the preferred method in the evaluated
setting.

5 Related Work

Benchmarking and performance analysis of data analytics frameworks have received attention in the
research community [26, 28, 29, 23]. However most of the papers focus on evaluating runtime and
execution speed of non-representative workloads such as WordCount, Grep or Sort. The ones that do
focus on machine learning workloads [10, 7] neglect quality metrics such as accuracy completely.
On the other hand there have been numerous endeavours in evaluating machine learning algorithms
empirically with respect to their prediction quality, e.g. [12, 11], however none of them in the light
of distributed data processing systems, actually not taking into account runtime at all. McSherry
et. al [24] introduced COST (the Configuration that Outperforms a Single Thread) as a new metric
distributed data processing systems should be evaluated against. This metric weighs a system’s
scalability against the overheads it introduces and reflects actual performance gains without rewarding
systems that simply introduce substantial but parallelizable overheads. This paper can be seen as an
extension of this idea to the domain of distributed machine learning.

6 Summary and Conclusion

Distributed data flow systems such as Apache Spark are popular choices to execute distributed machine
learning algorithms. However their first generation was built to address quite different requirements,
namely distributed execution of data transformations on massive data sets like constructing an inverted
index. Performance Analyses and Benchmarks of such systems tend to focus on similarly simple
workloads and evaluate execution time and scalability in comparison to other distributed systems. We
argued that when it comes to machine learning workloads these systems should be evaluated against
sophisticated single machine libraries that practitioners would choose to solve an actual machine
learning problem with respect to both: runtime as well as prediction quality metrics.

We sketched such a benchmark and performed such an evaluation comparing single machine libraries
Vowpal Wabbit, XGBoost and LightGBM to Spark MLlib’s Logistic Regression and Gradient
Boosted Trees implementation. Our results indicate, that the distributed data flow system Spark
needs substantially more resources to reach comparable performance to the single machine libraries
(or even fails to do so with all nodes available to us). Given that in many cases, the size of data sets
used to train machine learning models in practice appears to be in the range of available main memory
of current compute nodes, it is not clear whether executing the training of ML models on distributed
data flow systems is always the most efficient choice. Future systems research should include such an
evaluation for representative use cases, potentially beyond the ones sketched in this paper.

We also observed that the process of tuning hyperparamters for the libraries is still surprisingly
challenging, as it is often not directly integrated into the libraries and quite time consuming to execute.
However it would appear that this problem is a perfect candidate for parallelization and distribution.
Focussing on distributed grid search, cross validation and hyperparameter search thus may be a
fruitful path to pursue in future work rather than focusing on distributed training of machine learning
models.
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