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Abstract— The work presented in this paper describes the
use and evaluation of machine learning techniques like neural
networks and support vector regression to learn a model of
magnetic field distortions often induced in inertial measurement
units using magnetometers by changing currents, postures or
configurations of a robotic system. Such a model is needed in
order to compensate the local dynamic distortions, especially
for complex and confined robotic systems, and to achieve more
robust and accurate ambient magnetic field measurements.
This is crucial for a wide variety of autonomous navigation
purposes from simple heading estimation over standard SLAM
approaches to sophisticated magnetic field based localization
techniques. The approach was evaluated in a laboratory setup
and with a complex robotic system in an outdoor environment.

I. INTRODUCTION
Current robots are taking a more and more prominent role

in the world of today, where they have to cope with increas-
ingly demanding environments. And in correlation with the
progress of robotic skills and the advances in the degree of
autonomy, expectations are raised and society legitimately
demands that robotic systems support humans not only in
laboratory environments, but in real world scenarios from
everyday situations at home to most challenging and maybe
also dangerous tasks.

The area of localization and mapping plays an important
role in robotics since decades and has seen huge advances
in recent years, nonetheless, there are still open issues es-
pecially when leaving laboratory or office-like environments
and dealing with long term autonomous robotic operations.
Commonly used sensors in such applications often include
global navigation satellite systems (GNSS), cameras (stereo,
time of flight, monocular, RGB-D, etc.), LIDARs, different
kinds of sonars (especially in the underwater domain) as
well as a huge variety of other exteroceptive sensors [1,
Chapter 6], all of which may fail in certain scenarios de-
pending on the ambient condition of the situation at hand.
But one common denominator in nearly all robot navigation
applications is the utilization of an inertial measurement
unit (IMU), usually consisting of at least accelerometers
and gyroscopes to determine orientation. Since gyroscope
measurements drift over time, IMUs are often supplemented
with a magnetometer to stabilize heading. From seemingly
simple absolute heading estimation over standard SLAM
approaches to sophisticated magnetic field based localization
techniques, these integrated magnetometers play a crucial
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role by measuring the flux density of the ambient magnetic
field.

However, in order to fully exploit the benefits of this
convenient combination of an absolute sensor and an almost
omnipresent ambient magnetic field, one has to properly
deal with the significant dynamic magnetic field distortions
caused by ferromagnetic materials or strong electric currents
near the magnetometer originating from the robotic system
itself. This specifically applies to systems with restricted
sensor mounting options far away from distortion sources,
for example on very compact robots or autonomous under-
water vehicles with pressure housings, but also on com-
plex systems with a lot of moving parts or reconfiguration
options like the hybrid legged-wheeled intervention robot
SherpaTT [2] (Fig. 1) or other forms of complex walking
robots.

Fig. 1: The hybrid legged wheeled robot SherpaTT with a high
amount of degrees of freedom and therefore high amount of
magnetic field distortion sources during field trials in the desert
of Utah, US

The paper is structured as follows: after this introduction,
we discuss magnetic fields and distortions in section II,
describe our approach of dynamic distortion model learning
in section III and present experimental results in section IV.
Finally, we conclude the work presented in section V.

II. MAGNETIC FIELDS AND DISTORTIONS

A. Geomagnetic Field

The most prominent use case for magnetometers (compass
applications for heading estimation), depends on measuring
the horizontal components of the earth’s magnetic field to
determine the direction towards the magnetic north pole.
Although the pole’s location is changing over time and the
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magnetic field is significantly locally distorted depending on
latitude and longitude of the observer, the declination from
magnetic to true north can be computed using analytical
models like the World Magnetic Model (WMM) [3] or
the International Geomagnetic Reference Field (IGRF) [4],
or numerical models for special situations like field rever-
sals [5]. Apart from this variation coming from the main
magnetic field density contributors (the earth core with its
geodynamo effect and the earth crust), the earth magnetic
field can be considered sufficiently stable in the temporal
domain for our purpose. Although there are also variations
due to changes in the magnetosphere like SQ-variations
or coronary mass ejections, these only have a very small
effect, typically less than 250 nT compared to the strength
of the earth magnetic field between 25 000 nT to 65 000 nT,
depending on the location [6].

B. System Immanent Distortions

Ferromagnetic materials and strong currents flowing
through a wire in the vicinity of the sensor can cause
significant distortions of the measured magnetic flux density.
These vehicle-immanent distortions are usually classified as
hard- and soft-iron effects [7]. Hard-iron effects occur due
to the magnetic remanence of nearby material (permanent
magnets in motors, magnetized iron or steel) and show a
constant offset in every field component. Without distortions,
arbitrary magnetic field direction measurements would lie
on the surface of a S2 sphere in R3. Hard-iron distortions
however lead to a shift of the center of the sphere from the
origin (one-cycle error, see Fig. 2) and can be modeled as a
3-component bias vector bhi =

(
xhi yhi zhi

)T
.
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Fig. 2: Hard-iron distortion and misalignment of multiple mag-
netometers on robotic crawler Wally projected onto the xy-plane
leading to off-center effects, depending on their mounting position

Strong currents flowing through wires near the magne-
tometers also lead to hard-iron effects, but are usually non-
static, while soft-iron effects distort the magnetic field by
providing a path of lower impedance while an external field
is applied to the ferromagnetic compound. This induces
magnetism depending on the orientation of the material with
respect to the applied field (two-cycle error). As such, soft-
iron effects lead to deforming the sphere to a 3D ellipsoid,
but retaining the origin. The classic approach to deal with
these distortions is to trying to mount the magnetometer as
far away from dynamic distortions sources as possible to
minimize dynamic distortions and for the static part compute
calibrated parameters x̂, ŷ, ẑ from raw sensor readings x, y, z
by finding the values for the following equation in an a priori

one-shot calibration procedure:x̂ŷ
ẑ

 = Malign ·

scx 0 0
0 scy 0
0 0 scz

 ·Msi ·

xy
z

− bhi


with the misalignment matrix Malign, a diagonal
scale/conversion matrix, soft iron distortion matrix Msi and
hard-iron offset vector bhi.

Depending on the severity of the system-induced and
dynamically changing field distortions in the vicinity of
the sensor, a priori calibration techniques can correct the
measurements only to a certain point and may fail completely
on systems with moving ferromagnetic parts.

III. DYNAMIC DISTORTION MODEL LEARNING

System-immanent dynamic disturbances are a strong con-
tributor to distortions of the otherwise evenly distributed
ambient magnetic field, especially in complex and confined
robotic systems, as discussed in section II-B. To be able to
use the ambient magnetic field for orientation or localization
purposes in the first place, the dynamic distortions have to
be compensated for.

The rationale behind the chosen approach is that in most
recent robotic systems there is a huge amount of propriocep-
tive sensor data available at runtime that can help to deduct
the magnetic field distortions emanating from the system. For
example, we often have means to measure the actual currents
flowing through wires or torques applied to the motors. Apart
from full reflex-driven robots, we will most of the time have
quite accurate data on the relative position of extremities
and appendages of the robotic system (e.g. in legged robots)
as well as current state information (e.g. attached payloads
or robot configuration) in reconfigurable robots. For systems
with restricted access to the proprioceptive sensor data (often
the case with commercial systems), an approach for dynamic
distortion filtering using a distributed magnetometer array is
described in [8].

While it is possible to facilitate some simplifications and
model certain distortions as bar magnets, the sheer amount of
contributing and intertwined magnetic field distortion sources
in the systems in consideration almost always renders the
formulation of an analytical solution impossible.

The approach in this paper is therefore to learn a func-
tion f of the resulting and superimposed distortions at the
point of the magnetometer sensor from the proprioceptive
sensor data of a robotic system (Fig. 3). Since we are not
classifying but try to establish a function and the target to
be learned is in our case a 3D offset vector, the problem
falls in the class of multi-target function regression. To
evaluate our approach with different regression techniques
and meta-parameter optimization, we used the scikit-learn
framework [9] in combination with the robotic framework
Rock [10].

A. Support Vector Regressor

The basic concept of support vector regression (SVR) is to
learn a linear function such that the given training data lies
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Fig. 3: Multi target function regression approach from propriocep-
tive robot data

within an epsilon-tube around this function, i.e., distances
between the learned function and the given values in the
training data are less than epsilon [11]. Larger errors are
linearly penalized. Furthermore, a regularization term is pre-
ferring smooth functions with small weights. The weighting
between error (loss) and regularization (small weights) is
done with a regularization constant C. For modeling complex
functions, the kernel trick is applied [12], [13]. Using the
very common radial basis function kernel ( e−γ||xi−xj ||2 ,
RBF), an additional hyperparameter γ has to be chosen.

With the SVR approach, we have to train one support
vector machine for each of the three dimensions of the target
offset vector, which somewhat neglects the fact, that these 3
components are inherently coupled, because they describe a
magnetic flux density vector, incorporating field orientation
and strength.

B. Multi Layer Perceptron Regressor

A neural network in the form of a multi layer perceptron
regressor (MLP) can innately represent coupling between
components and directly be trained for multi target regression
in contrast to a SVR. In our case, the input layer represents
the different commands and sensor inputs that can influence
the magnetic field measurement and the output is a represen-
tation of the different components of the magnetic field like
directions and strength. The core components of an MLP are
perceptrons that linearly weight the different inputs and apply
a gating/activation function afterwards [14]. Each layer of an
MLP consists of several perceptrons that are not connected
to each other but to all perceptrons in the preceding and
the follow-up layer. For learning the weights of the single
perceptrons, numerous optimization strategies can be used
that are often able to handle huge amounts of data [15].

IV. EXPERIMENTS

In order to evaluate the overall compensation performance
of our approach, e.g. how well the learned model can keep
the directional component of the magnetometer measure-
ments stable in the presence of local dynamic magnetic
field distortions, we conducted experiments with an artificial
distortion turntable setup as well as with the hybrid wheeled-
legged robot SherpaTT. The tests were performed in a very
noise free environment in the Mars-like desert of Utah,
US, during an extended field trials period with a team of
heterogeneous robotic systems [2], [16].

To compare the compensation performance, we are using
two different probabilistic distributions. This is because
the 3 components measured by the magnetometer are not
isolated, but represent the strength and direction of the local
magnetic flux density field. For example sometimes even
strong distortions result in a strong change of the magnetic
field strength, whereas the directional component is rather
steady and vice versa. We model the strength component as
a Gaussian distribution of the L2-norm with mean µst and
standard deviation σ.

To model the three-dimensional direction component, we
use the von Mises Fisher (vMF) distribution [17], originating
from directional statistics, analog to circular wrap-around
distributions in the one-dimensional case. The vMF distribu-
tion is defined on the Sp−1-dimensional sphere in Rp. The
probability density function of a vMF distribution on S2 is
given by

p(xi|µdir, κ) =
κ

4π sinhκ

with mean direction µdir and concentration parameter κ for
a unit direction vector x. κ = 0 means uniform distribution,
while it is more concentrated with higher κ (see Fig. 4,
in our application, higher kappa means better directional
compensation).
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Fig. 4: Samples from three different vMF-distributions on S2 with
different mean and concentration parameter κ

We approximate µdir as

µ̂dir =
r

‖r‖
=

∑n
i=1 xi

‖
∑n
i=1 xi‖

and κ according to [18] and as proposed for small dimensions
by [19] as

κ̂ =
r̄d− r̄3

1− r̄2
with r̄ =

‖r‖
n

A. Magnetic Field Distortion Turntable

In order to test the approach with very defined and
separable distortion sources, we created an artificial turntable
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setup as shown in Fig. 5. To resemble hard-iron distortions a
neodym magnet was mounted to a lever-arm (1) moving 90◦

arc-wise towards the magnetometer mounted in the center of
the turntable. To emulate soft-iron distortions, a 1 kg 99.9 %
pure iron block (2) was moved 6 cm linearly towards and
away from the sensor. And finally, to simulate electromag-
netic distortions from motor supply currents, a 6 mm2 wire
(3) was fixated close to the sensor (4). The material of the
setup was chosen in order to minimize magnetic distortion
sources different from those named above. Also every piece
of equipment brought to the experimental site was validated
to not interfere with the experimental setup.

Fig. 5: Magnetic distortion turntable experiment in the desert of
Utah, US

During data recording, every distortion source activity
was activated individually and then simultaneously. In each
trial, the hard iron source lever was moved 90◦ twice in
an arc towards the sensor. The soft iron source was moved
once towards the sensor and then back, while the current
was raised from 0 A to 20 A and back to 0 A to simulate
electromagnetic disturbances from supply lines. After each
trial, the turntable was rotated by 20◦ to eventually achieve
a full circle. Whereas the hard iron source, as expected, had
the strongest impact on the magnetic field when coming near
to the sensor, all other distortion sources were clearly also
superimposing the ambient magnetic field (see Fig. 6).
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Fig. 6: Magnetometer z component plotted against the superimpos-
ing distortion source activities (turntable trials, heading 80◦)

Before applying the different machine learning (ML)
techniques, we applied a second order Butterworth filter to
filter out high frequency noise. For evaluation, the turntable
dataset was randomly split into a training set (60 %) and a
test set (40 %). We then applied a k-fold cross-validation
grid search with 5 splits on the training set to prevent
leakage of knowledge about the test set into the model
during hyperparameter tuning. We used a grid over the

ranges α: 1× 10−3 to 1× 10−7, number of hidden layers
between 1 to 3 with 5 to 100 perceptrons per layer, solvers
Adam [20] and LBFGS [21], and activation functions logistic,
relu, and tanh. Training our MLP regressor with 4 inputs (3
distortion sources plus heading) and 3 outputs, we achieved
best performance using 2 hidden layers of size [10, 20], an
α value of 1× 10−4, relu as activation function and LBFGS
as a solver. The prediction and compensation quality on the
turntable data set is shown in Fig. 7.
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Fig. 7: Component-wise MLP prediction (left) and compensation
(right) of magnetic field distortions (turntable trials, heading 80◦)

The MLP Regressor with the parameters presented above
achieved an R2-score [22] of 0.986. Finally, using the MLP
Regressor to predict the magnetic field distortions at the
point of the magnetometer sensor given only the values of
the activity for the various distortion sources, we achieved
a significant reduction of the deviation due to dynamic dis-
tortions in the direction component, reflected in an increase
in the κ concentration parameter from 0.86 to 618.2. See
Fig. 7 for a component wise comparison and Fig. 8 for a 3D
directional scatter plot.

B. SherpaTT dataset and evaluation

Apart from the turntable experiment, we also evaluated
our approach by a series of experiments with the complex
hybrid wheeled legged robot SherpaTT, to analyze to what
extend it is transferable to real robotic systems. The idea, as
in the turntable setup, was to try to keep the orientation of the
magnetometer stable in the ambient magnetic field and then
activate as many measurable distortion sources as possible,
both solitary and in combination, and record the induced
vector field deviation from the sensor baseline. We did this
by repeating a sequence of leg movements of the robot, first
trying to cover most of the robot’s DOF workspace, and
second varying the single joint ranges while maintaining the

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2017.



Field strength x (normalized)

−1.0
−0.5

0.0
0.5

1.0
Field strength y (normalized)

−1.0
−0.5

0.0
0.5

1.0
F

ie
ld

 s
tr

en
g
th

 z
 (

n
o
rm

al
iz

ed
)

−1.0

−0.5

0.0

0.5

1.0

Distorted

Compensated MLP

Fig. 8: 3D scatter plot of dynamically distorted vs. MLP compen-
sated directions (turntable trials, heading 80◦). Every dot represents
the direction of a magnetic field direction measurement. Undistorted
measurements would stay on the same spot on the sphere’s surface.

central body pose. Furthermore, we generated strong changes
in the supply current. Since soft-iron types of distortion
depend on the orientation in the ambient magnetic field,
we recorded the data set in 45◦ steps, covering a full 360◦

spot turn circle. Extra care was taken to prevent external
disturbances during the data gathering.

Fig. 9: SherpaTT during magnetic field distortion data set gathering

Whereas we had few distinct and strong distortion sources
in the turntable experiment (IV-A), in the experimental setup
using the robot SherpaTT we had a multitude of permanent
magnets moving around in each actuated robotic leg joint
and the manipulator as well as multiple power supply lines
in varying distance from the sensor for the four legs and the
robotic arm. In general, we observed deviations of the mag-
netic field measurements orders of magnitude smaller than
the deviations that occurred during the turntable experiment.
This was expected, since the magnetometer was positioned
further away from possible distortion sources inside the
robot’s main body housing than in the turntable experimental
setup, where we intentionally moved or placed the distortion
sources verly close to the sensor.

This time, we also trained a SVR with two different
kernels (linear and RBF) for comparison with the MLP
regressor. The MLP had an input layer of size 25 (5 joint
positions and one supply line per leg plus heading) and
again 3 outputs representing the magnetic field offset vector.

To obtain the best parameters for the SVR and MLP, we
again applied a grid search over the the same ranges as
in the turntable experiment for MLP and from 0.1 to 25
for the SVR C parameter. For the SVR γ parameter, we
used the auto functionality of sklearn.svm.SVR. As with
the turntable data set, the SherpaTT deviation dataset was
randomly split into a training set (60 %) and a test set (40 %).
We again applied a k-fold with 5 splits on the training set
for hyperparameter tuning. We achieved best performance
using 3 hidden layers of size [100, 50, 25], an α value of
1× 10−4, tanh as activation function and again LBFGS as
a solver (which is common for small training datasets) for
MLP and C = 1.5 for SVR with RBF kernel. The resulting
predictions on the test data are shown in Fig. 10 for SVR
and in Fig. 11 for MLP.
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Fig. 10: Component-wise SVR prediction of magnetic field dis-
tortions with linear (left) and RBF (right) kernel (SherpaTT trials,
heading 180◦)
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Fig. 11: Component-wise MLP prediction of magnetic field distor-
tions (SherpaTT trials, heading 180◦)
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The multi target MLP model with its optimized meta
parameters was able to achieve a much better fit on the
test data set with R2 training scores of 0.96 compared to
the single component SVR models with 0.60, 0.84, 0.46
(X, Y, Z linear kernel) and 0.63, 0.91, 0.80 (X, Y, Z RBF
kernel). This is also reflected in the compensation quality
of the directional component of the magnetic field: the SVR
based compensation was not able to stabilize the direction
to the same extent as the MLP based compensation, with
the respective compensation parameters κ = 8.21 for SVR
with linear kernel, κ = 15.91 for SVR with RBF kernel and
κ = 114.50 for MLP compared to the distorted directions
with concentration κ = 3.64 (Fig. 12). This indicates that for
modeling the magnetic field, simple interpolation approaches
like SVR with linear or RBF kernels are insufficient and
more complex functions like those represented by a 3-layer
MLP are required.
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Fig. 12: 3D scatter plot of dynamically distorted and MLP com-
pensated directions (SherpaTT trials, heading 180◦)

V. CONCLUSIONS

In this paper, we presented and discussed a ML approach
to model magnetic field distortions arising from dynamic
changes in complex robotic systems. We found that, com-
pared to SVR, MLP regressors with LBFGS solvers are
especially capable of predicting the magnetometer deviations
and we presented promising results of direction compensa-
tion based on such an approach not only in a laboratory
setup, but also on a complex real robot. While the MLP
fits the data quite well, in future work we would like to
investigate more the robustness and transferability of our
approach in combination with sparse training input data. It
would also be interesting to derive models that can provide
more insight about the distortion contribution of the different
input sources.

We think having a ML-based tool to establish magnetic
field distortion models as presented in this work may become
relevant in a lot of upcoming real world scenarios in robotics,
since it widens the usability of magnetometers as one of the
core sensors in many navigation applications.
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