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ABSTRACT
Gaze is known to be a dominant modality for conveying
spatial information, and it has been used for grounding in
human-robot dialogues. In this work, we present the proto-
type of a gaze-supported multi-modal dialogue system that
enhances two core tasks in human-robot collaboration: 1)
our robot is able to learn new objects and their location
from user instructions involving gaze, and 2) it can instruct
the user to move objects and passively track this movement
by interpreting the user’s gaze. We performed a user study
to investigate the impact of di↵erent eye trackers on user
performance. In particular, we compare a head-worn device
and an RGB-based remote eye tracker. Our results show
that the head-mounted eye tracker outperforms the remote
device in terms of task completion time and the required
number of utterances due to its higher precision.
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1. INTRODUCTION
Human gaze is involved in many processes in multi-modal

speech-based interaction, such as in disambiguating speech,
in joint attention during collaboration and in turn-taking [6].
For instance, there is a strong link between gaze behaviour
and spoken language: speakers fixate elements ”less than
a second before naming them” [2]. Further, the coordina-
tion of hand-movements involves vision, e.g., when ”direct-
ing the hand or object in the hand to a new location” [4]. To
this end, gaze is ideal for incorporating non-verbal cues to
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Figure 1: Setting of our user study.

human-robot dialogues, especially for complementing spa-
tial information. We developed a multi-modal dialogue sys-
tem that takes advantage of the temporal congruence be-
tween gaze and spoken deictic references to acquire and up-
date spatial knowledge about objects. However, gaze esti-
mation is erroneous [1] and the eye tracker’s form-factor is
important1. We conducted a user study for investigating
the impact of di↵erent devices, a remote and a hear-worn
eye tracker, on user performance. Figure 1 shows the set-
ting of our study including a shared workspace (3⇥ 3 grid),
the humanoid robot NAO and a display for calibrating the
head-mounted eye tracker.

2. METHOD
Our dialogue system enables the humanoid robot NAO to

learn new objects and their positions from the user (Learn-
ing), and second, can instruct the user to move objects
while tracking this movement (Instructing). For Learning,
we combine the user’s speech and gaze to infer an objects
position [2]. The link between gaze and hand movements
facilitates tracking and updating position data [4] for In-
structing. For realising the multi-modal dialogue interac-
tions with NAO we used the Situation-Adaptive Dialogue
Platform (SiAM-dp) [7].

We integrated two eye trackers, a head-worn Pupil eye
tracker [3] as mobile device and a usual webcam with a mod-
ified version of libfacetracker [8] as state-of-the-art remote
device. Both were adapted to report gaze in terms of nor-
malised workspace coordinates, which could be mapped to
a 3⇥ 3 grid (positions from 1 to 9) by computing the near-

1E.g., dementia day hospitals require non-obtrusive devices.



M SD

Spatial
Accuracy

Mobile 4.32� 42.94mm 1.17� 8.17mm

Remote 4.69� 37.43mm 2� 8.44mm

Spatial
Precision

Mobile .37� 3.83mm .28� 3.37mm

Remote 2.36� 20.08mm .78� 3.15mm

Table 1: Mean and SD of spatial accuracy and spa-

tial precision in degrees of visual angle and mm.

est neighbour (Euclidean distance). For the mobile device,
we used the built-in screen-based calibration algorithm and
the marker-based surface detection for mapping gaze to the
workspace. Real-time fixation detection is not supported,
hence we apply our own dispersion based method. For the
remote device, we extended libfacetracker with a head pose
estimation similar to [5] to receive 3D gaze estimates. These
could be intersected with our workspace (z = 0 plane). Fur-
ther, we developed a polynomial calibration feature to au-
tomatically configure the camera position and to cope for
individual di↵erences. Calibration is required once per user.

3. EVALUATION AND RESULTS
To evaluate our dialogue system we conducted a within-

subject user study (10 participants). We tested how users
perform with two di↵erent eye trackers, a Mobile and a
Remote one, in two tasks, Learning and Instructing. For
Learning we asked the user to teach three objects (LEGOR�

bricks) to NAO by putting them on the grid between them,
one by one, stating, e.g., ”This is a brick”. For Instructing
all bricks were randomly distributed on the 3⇥3 grid and the
user had to follow three instructions of NAO, e.g., ”Move the
brick from position 3 to 5”. Besides, we asked users to per-
form an accuracy and precision test with each device (they
had to fixate pre-defined workspace targets). For the remote
device, these samples were used for calibration.
In a first step, we analysed the spatial accuracy and spa-

tial precision of both eye trackers averaged over all sampling
targets (see Table 1). The di↵erences in mean were signif-
icant for spatial precision (t(9) = 9.25, p < .001), but not
for spatial accuracy (t(9) = �1.43, p = .186). In a second
step, we analysed the task completion times and the required
number of utterances for both eye trackers, separate for each
task. For both measures, the mobile device achieved signif-
icantly better results (see Figure 2). On average, it took
participants 4.4s and 5.28s less to complete a task using
the mobile device for Learning (t(9) = 3.42, p = .008) and
Instructing (t(9) = 3.57, p = .006), respectively. Likewise,
the required number of utterances was decreased by 0.92
(t(9) = 4.12, p = .003) and 0.96 (t(9) = 3.59, p = .006),
respectively. We used the two-tailed paired samples t-test.

4. DISCUSSION AND CONCLUSION
Our evaluation showed that the mobile eye tracker is sig-

nificantly more precise than the remote device. However,
both devices have nearly the same spatial accuracy concern-
ing the shared workspace of our study. Reasons for the in-
accurate results of the mobile device, which we expected to
better in this regard, are probably due to parallax error.
Nevertheless, the mobile eye tracker outperformed the re-
mote device in terms of task completion time and required
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Figure 2: Dependent measures for each condition.

number of utterances (all utterances of the user and NAO).
This leads us to the conclusion that high spatial precision
is essential for our human-robot collaboration and thus the
mobile eye tracker is better suited for our scenario.

In future work, we aim to include further eye tracking
devices for investigating the impact of additional features
such as spatial accuracy. More sophisticated calibration and
fixation detection techniques could increase the performance
of our dialogue system, as well. In addition, we want to
enhance the gaze mapping process to the 3D environment,
to become independent of the grid-like interaction space. A
limitation of our system is the timing of fusing gaze and
deictic references, which could be solved by incorporating
the user’s hand movements or learning individual delays.
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